1
|
Zhao X, Chen C, Hou J, Jia Z, Chen C, Lv X. Graphitic carbon @ silver nanoparticle @ porous silicon Bragg mirror composite SERS substrate for gallic acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124861. [PMID: 39089071 DOI: 10.1016/j.saa.2024.124861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Graphite carbon (G) @ silver (Ag) @ porous silicon Bragg mirror (PSB) composite SERS substrate was successfully synthesized using electrochemical etching (ec) and hydrothermal carbonization (HTC) techniques with silver nitrate as the source of silver and glucose as the source of carbon. The PSB was used as a functional scaffold for the synthesis of graphite-carbon and silver composite nanoparticles (G@AgNPs) on its surface, thereby combining SERS activity and antioxidant properties. To our knowledge, this is the first time that G@AgNPs has been synthesized on the PSB using glucose as a carbon source. The synthesized G@Ag@PSB was utilized as a SERS platform for the detection of gallic acid (GA). Test results demonstrated that the substrate exhibited a remarkable SERS enhancement capability for GA, with the enhancement factor (EF) reaching 2 × 105. The reproducibility of the SERS spectral signal was excellent, with a relative standard deviation (RSD) of 7.5 %. The sensitivity test results showed that the linear range of GA detection based on G@Ag@PSB composite SERS substrate was 2 × 10-3-2 × 10-12M. The relationship between GA concentration and SERS signal intensity exhibited a strong linear correlation, with a linear correlation coefficient (R2) of 0.97634. Moreover, even with an extended storage period, only a marginal decline in the signal intensity of GA on the substrate was observed. The results of this study demonstrate that the prepared G@Ag@PSB composite SERS substrate had good potential application performance as a low-cost SERS detection platform suitable for commercial use. In addition, this advance facilitates the further exploration of more nanomaterials with ultra-high sensitivity in SERS technology.
Collapse
Affiliation(s)
- Xin Zhao
- College of Materials Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Chen Chen
- College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - JunWei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Zhenhong Jia
- College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 840046, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 840046, China.
| |
Collapse
|
2
|
Yang J, Zhang B, Nie Q, Zheng R, Lin P, Wang C, Lu Y, Xu Y, You R. Preparation of carboxymethyl cellulose membrane flexible SERS substrate and its application in the detection of metabolites and pH in urine. Int J Biol Macromol 2024; 283:137821. [PMID: 39566779 DOI: 10.1016/j.ijbiomac.2024.137821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/30/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Uric acid, urea, and other metabolites in urine after exercise often reflect chronic injury syndrome in athletes. However, traditional urine detection methods have issues such as high costs and low detection sensitivity. SERS can rapidly, continuously, and sensitively monitor metabolites in human urine. In this research, a combined SERS substrate (CMBCM@Ag NPs@PGA) was developed based on the carboxymethyl modification of the bacterial cellulose membrane (BCM) surface. The numerous carboxyl groups on the CMBCM surface made it easier for silver ions to be adsorbed, leading to their conversion into silver nanoparticles (Ag NPs) when a reducing agent was introduced. This process allowed the nanoparticles to firmly adhere to the CMBCM surface, forming a uniform and stable "hot spot." "The CMBCM@Ag NPs@PGA substrate maintains excellent stability and sensitivity in the assay." It can detect very small amounts of urea and uric acid in urine with high sensitivity, with LOD of 1.05 μM for urea and 0.0075 μM for uric acid. Additionally, it exhibits good stability, antibacterial properties, and cell compatibility. In addition, the substrate can be used as a sensor to monitor pH in real-time. This expands the use of cellulose in flexible SERS sensing and detecting human exercise metabolic health.
Collapse
Affiliation(s)
- Jinglei Yang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Bohan Zhang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qingling Nie
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ruping Zheng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ping Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Chuyi Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yunli Xu
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, Fujian 350007, China.
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
3
|
Le TQX, Pham TB, Nguyen VC, Nguyen MT, Nguyen TL, Dao NT. A Novel Method for Rapid and High-Performance SERS Substrate Fabrication by Combination of Cold Plasma and Laser Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1689. [PMID: 39513769 PMCID: PMC11547355 DOI: 10.3390/nano14211689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
In this paper, we report a simple yet efficient method for rapid and high-performance SERS substrate fabrication by a combination of cold plasma and laser treatment. Our analysis reveals that cold plasma pre-treatment significantly reduced surface roughness, transforming 200 nm spikes into an almost perfectly uniform surface, while enhancing the substrate's surface energy by lowering the water contact angle from 59° to 0°, all achieved within just 30 s of 0.9-mW plasma treatment, while 15-min green-laser treatment facilitated more uniform deposition of AuNPs across the entire treated area, effectively creating the SERS substrates. The combined treatments result in enhancement of the Raman intensity (11 times) and consistency over the whole area of the SERS substrates, and their reusability (up to 10 times). The fabricated SERS substrates exhibit a significant enhancement factor of approximately 3 × 10⁸ with R6G, allowing detection down to a concentration of 10-12 M. We demonstrate the application of these SERS substrates by detecting amoxicillin-an antibiotic used worldwide to treat a diversity of bacterial infections-in a dynamic expanded linear range of seven orders (from 10-3 to 10-9 M) with high reliability (R2 = 0.98), and a detection limit of 9 × 10-10 M. Our approach to high-performance SERS substrate fabrication holds potential for further expansion to other metallic NPs like Ag, or magnetic NPs (Fe3O4).
Collapse
Affiliation(s)
- Thi Quynh Xuan Le
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.Q.X.L.); (T.B.P.); (V.C.N.); (M.T.N.); (T.L.N.)
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| | - Thanh Binh Pham
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.Q.X.L.); (T.B.P.); (V.C.N.); (M.T.N.); (T.L.N.)
| | - Van Chuc Nguyen
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.Q.X.L.); (T.B.P.); (V.C.N.); (M.T.N.); (T.L.N.)
| | - Minh Thu Nguyen
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.Q.X.L.); (T.B.P.); (V.C.N.); (M.T.N.); (T.L.N.)
| | - Thu Loan Nguyen
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.Q.X.L.); (T.B.P.); (V.C.N.); (M.T.N.); (T.L.N.)
| | - Nguyen Thuan Dao
- Institute of Materials Science (IMS), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam; (T.Q.X.L.); (T.B.P.); (V.C.N.); (M.T.N.); (T.L.N.)
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Yu H, Chen Y, Wen Z, Wang R, Jia S, Zhu W, Song Y, Sun H, Liu B. Selective SERS Sensing of R6G Molecules Using MoS 2 Nanoflowers under Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21804-21813. [PMID: 39364594 DOI: 10.1021/acs.langmuir.4c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Pressure-induced surface-enhanced Raman spectroscopy (PI-SERS) has garnered significant attention as a subfield of SERS detection due to its capacity to regulate the band gap between molecules and substrates through pressure modulation. Currently, SERS detection primarily focuses on single molecules at atmospheric pressure with limited investigations conducted under high pressure conditions. Herein, we employed rose-shaped MoS2 nanoflowers as the SERS substrate and realized selective PI-SERS enhancement of R6G molecules in the binary (MV+R6G) and ternary (MV+R6G+RhB) systems. The MoS2 demonstrated an exceptionally low SERS detection limit of 5 × 10-6 M in binary and ternary systems with equimolar amounts of molecules. High-pressure experimental results indicate that MoS2 displays selective enhancement for R6G molecules, as evidenced by the comparison of the PI-SERS peak intensity ratio between MoS2 and the probe molecules. The proposed enhancement mechanism in binary and ternary SERS systems under high pressure involves pressure-induced changes in both the band structures of the MoS2 substrate and molecules, thereby influencing their charge transfer dynamics. Consequently, this approach holds great promise for practical applications in complex SERS systems operating under extreme conditions.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yongxue Chen
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Zhenyu Wen
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Rensheng Wang
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Sisi Jia
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Wenjie Zhu
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Yanping Song
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Huanhuan Sun
- Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province and Zhejiang Institute of Photoelectronics, College of Physics and Electronic Information Engineering, 688 Yingbin Avenue, Zhejiang Normal University, Jinhua 321004, P.R. China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
5
|
Oyebanji M, Chen L, Qian R, Tu M, Zhang Q, Yang X, Yu H, Zhu M. Ultra-small water-soluble fluorescent copper nanoclusters for p-nitrophenol detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6688-6695. [PMID: 39253984 DOI: 10.1039/d4ay01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Due to the widespread application of p-nitrophenol (p-NP) across various industries, particularly in the pharmaceutical and chemical sectors, it has emerged as a significant environmental contaminant in both soil and water ecosystems. The development of swift and sensitive detection platforms for p-NP is therefore demanding. Herein, a fluorescence sensor based on ultra-small copper nanoclusters with exterior glutathione ligands determined by electrospray ionization mass spectrometry (ESI-MS) as [Cu14(SG)12]+ (denoted as Cu-SG NCs) has been prepared in high efficiency, and shown high selectivity for p-NP detection. The Cu-SG NCs, synthesized via a facile one-pot chemical reduction technique, exhibit emission maxima at 620 nm. Notably, the introduction of p-NP into the nanocluster system causes a significant quenching of the Cu-SG NCs fluorescence. The quenching phenomenon arises predominantly as a result of the inner filter effect (IFE), which stems from the substantial overlap between the UV-Vis absorption spectrum of p-NP and the excitation wavelength of Cu-SG NCs. The developed fluorescence sensor platform demonstrates a wide determination range for p-NP, ranging from 0.04 to 2000 µM, with a detection limit of 30 nM. Additionally, the sensor efficacy was successfully validated in the analysis of actual water samples. The ease of synthesis, excellent optical properties, and low toxicity of Cu-SG NCs represent significant advantages over the reported noble metal nanomaterials and is highly promising for future practical applications.
Collapse
Affiliation(s)
- Mayowa Oyebanji
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Ling Chen
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Ruru Qian
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Mengyuan Tu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Qiangli Zhang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Xuejiao Yang
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Haizhu Yu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| | - Manzhou Zhu
- Department of Chemistry, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure, Functional, Regulation of Hybrid Materials of Physical Science and Information Technology, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, China.
| |
Collapse
|
6
|
Parambath JBM, Vijai Anand K, Alawadhi H, Mohamed AA. Impact of Graphene Oxide on SERS Enhancement of Arylated Gold Nanospheres: Mechanistic Insight. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17675-17688. [PMID: 39120713 DOI: 10.1021/acs.langmuir.4c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The performance of gold nanospheres as substrates for surface-enhanced Raman spectroscopy (SERS) investigation has been compromised by their low adsorption efficiency, high colloidal dispersibility, and diminishing hot spots. However, gold nanosphere substrates modified using aryldiazonium gold(III) chemistry via durable gold-carbon bonds are promising for SERS enhancement due to their controlled organic layer density. In this study, arylated gold nanospheres AuNSs-COOH have shown SERS enhancement when incorporated into graphene oxide (GO) to form nanocomposites (NCs) labeled AuNSs-COOH/GO (AuNCs). Our investigation using X-ray photoelectron spectroscopy (XPS) surface analysis showed that the gold-aryl nanospheres reached their maximum SERS enhancement with an optimal coating. The evaluation included the Au 4f chemical environment and compact graphitic layers for the SERS substrate optimization. The fabricated AuNC substrates demonstrated superior efficiency and reproducibility. A broad linear range of 10-3-10-7 M 4-nitrophenol detection was obtained with exceptional repeatability, as evidenced by the relative standard deviation (RSD) of 9.32%. A detailed investigation of the energy profiles, particularly the valence band maximum (VBM) and band gap values of the substrate and analyte, depicted the electromagnetic (EM) and charge-transfer-induced enhancement and the role of GO inclusion in substrate efficiency in SERS enhancement mechanisms. The finite-difference time domain (FDTD) simulation results revealed that AuNCs incorporated with graphitic nanostructures exhibited the most substantial SERS effect through an EM field enhancement mechanism. This study demonstrated significant SERS enhancement using gold-aryl nanospheres when modified with GO, in contrast to the typical reliance on anisotropic nanostructures.
Collapse
Affiliation(s)
- Javad B M Parambath
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
- Department of Chemistry, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India
| | - Hussain Alawadhi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Applied Physics & Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmed A Mohamed
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
7
|
Roa S, Kaihara T, Pedano ML, Parsamyan H, Vavassori P. Laser polarization as a critical factor in the SERS-based molecular sensing performance of nano-gapped Au nanowires. NANOSCALE 2024; 16:15280-15297. [PMID: 39078267 DOI: 10.1039/d4nr00817k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Nowadays, Au dimer-based nanostructures are exhaustively studied due to their outstanding potential as plasmonic nanoantennas for future applications in high-sensitivity molecular sensing by Surface-Enhanced Raman Spectroscopy (SERS). In this work, we analyze nano-gapped Au nanowires (NWs) or Au-NW dimers for designing efficient nanoantennas, reporting an exhaustive study about dimer length and laser polarization orientation effects on their SERS-based molecular sensing performance. Arrays of nanoantennas with gaps of about 22 ± 4 nm, nominal square cross-sections of 60 nm × 60 nm, and different segment lengths from 300 nm up to 1200 nm were fabricated by Au evaporation and subsequent e-beam lithography. The SERS performance was studied by confocal Raman microscopy using a linearly-polarized 633 nm laser. A critical impact of the polarization alignment on the spectral resolution of the studied Raman marker imprint was observed. The results show that the Raman signal is maximized by aligning the polarization orientation with the nanowire long axis, it is reduced by increasing the relative angle, and it is abruptly minimized when both are perpendicular. These observations were consistent with numerical simulations carried out by the FDTD method, which predicts a similar dependence between the orientation of linearly-polarized light and electric-near field amplification in the nano-gap zone. Our results provide an interesting paradigm and relevant insights in determining the role of laser polarization in the Raman signal enhancement in nano-gapped Au nanowires, showing the key role of this measurement condition on the SERS-based molecular sensing efficiency of this kind of nanostructure.
Collapse
Affiliation(s)
- Simón Roa
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
| | - Terunori Kaihara
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
| | - María Laura Pedano
- Instituto de Nanociencia y Nanotecnología (CNEA - CONICET), Nodo Bariloche, Av. Bustillo 9500, C.P. 8400, S.C. de Bariloche, Río Negro, Argentina.
- Laboratorio de Fotónica y Optoelectrónica, Centro Atómico Bariloche, Av. Bustillo 9500, 8400 S. C. de Bariloche, Río Negro, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo (UNCUYO), Av. E. Bustillo 9500, C.P. 8400, S. C. de Bariloche, Río Negro, Argentina
| | - Henrik Parsamyan
- Institute of Physics, Yerevan State University, 1 Alex Manoogian, Yerevan 0025, Armenia
| | - Paolo Vavassori
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Yang K, Dong Q, Liu H, Wu L, Zong S, Wang Z. A MXene Hydrogel-Based Versatile Microrobot for Controllable Water Pollution Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309257. [PMID: 38704697 PMCID: PMC11234425 DOI: 10.1002/advs.202309257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The urgent demand for addressing dye contaminants in water necessitates the development of microrobots that exhibit remote navigation, rapid removal, and molecular identification capabilities. The progress of microrobot development is currently hindered by the scarcity of multifunctional materials. In this study, a plasmonic MXene hydrogel (PM-Gel) is synthesized by combining bimetallic nanocubes and Ti3C2Tx MXene through the rapid gelation of degradable alginate. The hydrogel can efficiently adsorb over 60% of dye contaminants within 2 min, ultimately achieving a removal rate of >90%. Meanwhile, the hydrogel exhibits excellent sensitivity in surface enhanced Raman scattering (SERS) detection, with a limit of detection (LOD) as low as 3.76 am. The properties of the plasmonic hydrogel can be further adjusted for various applications. As a proof-of-concept experiment, thermosensitive polymers and superparamagnetic particles are successfully integrated into this hydrogel to construct a versatile, light-responsive microrobot for dye contaminants. With magnetic and optical actuation, the robot can remotely sample, identify, and remove pollutants in maze-like channels. Moreover, light-driven hydrophilic-hydrophobic switch of the microrobots through photothermal effect can further enhance the adsorption capacity and reduced the dye residue by up to 58%. These findings indicate of a broad application potential in complex real-world environments.
Collapse
Affiliation(s)
- Kuo Yang
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Qianqian Dong
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Hang Liu
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Lei Wu
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Shenfei Zong
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Zhuyuan Wang
- Advanced Photonics CenterSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
9
|
Kim G, Jeong DW, Lee G, Lee S, Ma KY, Hwang H, Jang S, Hong J, Pak S, Cha S, Cho D, Kim S, Lim J, Lee YW, Shin HS, Jang AR, Lee JO. Unusual Raman Enhancement Effect of Ultrathin Copper Sulfide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306819. [PMID: 38152985 DOI: 10.1002/smll.202306819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/26/2023] [Indexed: 12/29/2023]
Abstract
In surface-enhanced Raman spectroscopy (SERS), 2D materials are explored as substrates owing to their chemical stability and reproducibility. However, they exhibit lower enhancement factors (EFs) compared to noble metal-based SERS substrates. This study demonstrates the application of ultrathin covellite copper sulfide (CuS) as a cost-effective SERS substrate with a high EF value of 7.2 × 104 . The CuS substrate is readily synthesized by sulfurizing a Cu thin film at room temperature, exhibiting a Raman signal enhancement comparable to that of an Au noble metal substrate of similar thickness. Furthermore, computational simulations using the density functional theory are employed and time-resolved photoluminescence measurements are performed to investigate the enhancement mechanisms. The results indicate that polar covalent bonds (Cu─S) and strong interlayer interactions in the ultrathin CuS substrate increase the probability of charge transfer between the analyte molecules and the CuS surface, thereby producing enhanced SERS signals. The CuS SERS substrate demonstrates the selective detection of various dye molecules, including rhodamine 6G, methylene blue, and safranine O. Furthermore, the simplicity of CuS synthesis facilitates large-scale production of SERS substrates with high spatial uniformity, exhibiting a signal variation of less than 5% on a 4-inch wafer.
Collapse
Affiliation(s)
- Gwangwoo Kim
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Engineering Chemistry, Chungbuk National University, Chungdae-ro 1, Cheongju, 28644, Republic of Korea
| | - Du Won Jeong
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
- Department of Physics, Sungkyungkwan University (SKKU), Seobu-Ro 2066, Suwon, 16419, Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| | - Suok Lee
- Department of Energy Systems, Soonchunhyang University, Soonchunhyang-ro 2, Asan, 31538, Republic of Korea
| | - Kyung Yeol Ma
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyuntae Hwang
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Seunghun Jang
- Chemical Data-Driven Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| | - John Hong
- School of Materials Science and Engineering, Kookmin University, Jeongneung-ro 77, Seoul, 02707, Republic of Korea
| | - Sangyeon Pak
- School of Electronic and Electrical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - SeungNam Cha
- Department of Physics, Sungkyungkwan University (SKKU), Seobu-Ro 2066, Suwon, 16419, Republic of Korea
| | - Donghwi Cho
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| | - Sunkyu Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young-Woo Lee
- Department of Energy Systems, Soonchunhyang University, Soonchunhyang-ro 2, Asan, 31538, Republic of Korea
| | - Hyeon Suk Shin
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - A-Rang Jang
- Division of Electrical, Electronic and Control Engineering, Kongju National University, Cheonan-daero 1223-24, Cheonan, 31080, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon, 34114, Republic of Korea
| |
Collapse
|
10
|
Wu H, Kanike C, Marcati A, Zhang X. Flexible Surface-Enhanced Raman Scattering Tape Based on Ag Nanostructured Substrate for On-Site Analyte Detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4218-4227. [PMID: 38354289 DOI: 10.1021/acs.langmuir.3c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as a powerful surface analytical technique that amplifies Raman scattering signals of molecules adsorbed onto metal nanostructured surfaces. The droplet reaction method has recently been employed to fabricate large-scale microring patterns of silver (Ag) nanostructures on rigid substrates, which enables sensitive detection within the ring area. However, these rigid substrates present limitations for direct on-site detection of analyte residues on irregular sample surfaces. There is a need to develop soft and flexible SERS substrates that can intimately conform to arbitrary surfaces. In this study, we presented a SERS substrate using flexible and adhesive tape as the supporting material. This SERS tape was fabricated by repeatedly transferring presynthesized Ag nanostructures from a rigid substrate to the tape. For a model compound adenine, our SERS tape exhibited a good linear response from 5 × 10-4 M to 5 × 10-5 M with a low limit of detection (LOD) of 5 × 10-7 M and displayed a SERS enhancement factor (EF) of 3.2 × 105. The relative standard deviation (RSD) of SERS intensity achieved was as low as 1.93%, indicating its outstanding uniformity. The as-prepared SERS tape was used for in situ detection of pesticide residue on an apple surface and dye residue on human hair. Leveraging the large surface area of Ag nanostructure patterns from the droplet reaction, the developed SERS tape demonstrates excellent performance in terms of sensitivity and uniformity. The successful detection of analyte residues on arbitrary surfaces of apple and human hair highlights the potential of this flexible SERS tape for real-world applications across various industries for enhanced diagnostic accuracy.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Chiranjeevi Kanike
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
| | - Alain Marcati
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta T6G 1H9, Canada
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
11
|
Tan Y, Zhou Z, Xu Y, Xie A, Wu S, Xue C. Detection of organic dyes using Ag NPAs/SMP SERS substrate produced via sandpaper template-assisted lithography and liquid-liquid interface self-assembly. Anal Bioanal Chem 2024; 416:1047-1056. [PMID: 38095682 DOI: 10.1007/s00216-023-05094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and reliable fingerprinting technique. However, its analytical capability is closely related to the quality of a SERS substrate used for the analysis. In particular, conventional colloidal substrates possess disadvantages in terms of controllability, stability, and reproducibility, which limit their application. In order to address these issues, a simple, cost-effective, and efficient SERS substrate based on silver nanoparticle arrays (Ag NPAs) and sandpaper-molded polydimethylsiloxane (SMP) was proposed in this work. Successfully prepared via template lithography and liquid-liquid interface self-assembly (LLISA), the substrate can be applied to the specific detection of organic dyes in the environment. The substrate exhibited good SERS performance, and the limit of detection (LOD) of rhodamine 6G (R6G) was shown to be 10-7 M under the optimal conditions (1000 grit sandpaper) with a relative standard deviation (RSD) of 7.76%. Moreover, the SERS signal intensity was maintained at 60% of the initial intensity after the substrate was stored for 30 days. In addition, the Ag NPAs/SMP SERS substrate was also employed to detect crystal violet (CV) and methylene blue (MB) with the LODs of 10-6 M and 10-7 M, respectively. In summary, the Ag NPAs/SMP SERS substrate prepared in this study has great potential for the detection of organic dyes in ecological environments.
Collapse
Affiliation(s)
- Yuanhang Tan
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Ziyu Zhou
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Yiting Xu
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Atian Xie
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Changguo Xue
- School of Material Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui, 232001, People's Republic of China.
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
12
|
Shaikh N, Som NN, Jha PK, Pamidimukkala P. Chitosan supported silver nanostructures as surface-enhanced Raman scattering sensor: Spectroscopic and density functional theory insights. Int J Biol Macromol 2023; 253:127444. [PMID: 37839595 DOI: 10.1016/j.ijbiomac.2023.127444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
In this work, nanostructures comprising silver nanoparticles supported on a wrinkled chitosan matrix (Ag@Ch) were successfully synthesized by a simple aging process at room temperature for four days through self-assembly. Chitosan, a natural polysaccharide was used as a support as well as a reducing agent for the formation of Ag nanostructures and the creation of hotspots for SERS activity. The fabricated Ag@Ch nanostructures were characterized by several spectroscopic techniques and were used as a surface-enhanced Raman scattering (SERS) substrate. The effect of wet, dry, and liquid samples on the SERS enhancement has been studied and was found to be effective for sensing Methylene blue, Crystal Violet, and p-Nitrophenol with detection limits of 3.8, 8.1, and 8.2 ppb respectively. The SERS enhancement of the Ag@Ch was attributed to the combination of both electromagnetic (EM) and chemical effects (CE). Density functional theory (DFT) calculations were used to explain the observed surface enhancement. Good agreement was observed between the experimental and simulated spectra.
Collapse
Affiliation(s)
- Naznin Shaikh
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Sayajigunj, Vadodara 390002, India
| | - Narayan N Som
- Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Wołoska Str., 02-507 Warsaw, Poland
| | - Prafaulla K Jha
- Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat 390002, India
| | - Padmaja Pamidimukkala
- Department of Chemistry, Faculty of Science, The M. S. University of Baroda, Sayajigunj, Vadodara 390002, India.
| |
Collapse
|
13
|
Weng G, Yang J, Li J, Zhu J, Zhao J. Ag triangle nanoplates assembled on PVC/SEBS membrane as flexible SERS substrates for skin cortisol sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123154. [PMID: 37478705 DOI: 10.1016/j.saa.2023.123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Surface-enhanced Raman scattering (SERS) based on rigid substrates has been widely used in biomedical detection due to its high sensitivity and specificity. However, the tedious operation steps for preparing SERS rigid substrates limited their applications in real-world detection. Compared with general rigid substrate, the flexible substrate has the advantages of simple preparation and easy portability, which are suitable for rapid, wearable and personalized detection in the field of point-of-care test. Herein, the flexible SERS substrates employing copolymer were fabricated and used for detection of skin cortisol, a biomarker for evaluating psychological stress in sweat. Silver triangle nanoplates with sharp corner were used as enhanced particles, and transferred to polyvinyl chloride/styrene-ethylene-butene-styrene copolymer (PVC/SEBS) film through three-phase interface self-assembly. By adjusting the size of silver nanoparticles, the ratio of PVC to SEBS in the polymer film, and the number of transfers of self-assembled silver films, the enhancement effect of the flexible SERS substrate was maximized. In addition, functionalization of the flexible SERS substrate with cortisol antibodies is used to achieve specific detection of cortisol on the skin surface. Under the optimal conditions, the Raman peak intensities at 1268 and 1500 cm-1 of the cortisol had a good linear relationship with the logarithm of its concentration in the range of 10-7 to 10-3 M, and the detection limits were 5.47 × 10-8 M and 5.51 × 10-8 M, respectively. The flexible silver triangle nanoplates SERS substrate constructed by self-assembly in the three-phase interface has the characteristics of good specificity and high sensitivity, which has potential for transdermal cortisol wearable detection, providing a feasible method for the rapid evaluating psychological stress level.
Collapse
Affiliation(s)
- Guojun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jianming Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China
| | - Junwu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an 710049, China.
| |
Collapse
|
14
|
Czerwiński M, del Olmo Martinez R, Michalska-Domańska M. Application of Anodic Titanium Oxide Modified with Silver Nanoparticles as a Substrate for Surface-Enhanced Raman Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5696. [PMID: 37629988 PMCID: PMC10456277 DOI: 10.3390/ma16165696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The formation of nanostructured anodic titanium oxide (ATO) layers was explored on pure titanium by conventional anodizing under two different operating conditions to form nanotube and nanopore morphologies. The ATO layers were successfully developed and showed optimal structural integrity after the annealing process conducted in the air atmosphere at 450 °C. The ATO nanopore film was thinner (1.2 +/- 0.3 μm) than the ATO nanotube layer (3.3 +/- 0.6 μm). Differences in internal pore diameter were also noticeable, i.e., 88 +/- 9 nm and 64 +/- 7 nm for ATO nanopore and nanotube morphology, respectively. The silver deposition on ATO was successfully carried out on both ATO morphologies by silver electrodeposition and Ag colloid deposition. The most homogeneous silver deposit was prepared by Ag electrodeposition on the ATO nanopores. Therefore, these samples were selected as potential surface-enhanced Raman spectroscopy (SERS) substrate, and evaluation using pyridine (aq.) as a testing analyte was conducted. The results revealed that the most intense SERS signal was registered for nanopore ATO/Ag substrate obtained by electrodeposition of silver on ATO by 2.5 min at 1 V from 0.05M AgNO3 (aq.) (analytical enhancement factor, AEF ~5.3 × 104) and 0.025 M AgNO3 (aq.) (AEF ~2.7 × 102). The current findings reveal a low-complexity and inexpensive synthesis of efficient SERS substrates, which allows modification of the substrate morphology by selecting the parameters of the synthesis process.
Collapse
Affiliation(s)
- Mateusz Czerwiński
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| | | | - Marta Michalska-Domańska
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| |
Collapse
|
15
|
You R, Wang H, Wang C, Huang J, Zhu H, Liu Y, Zhang JH, Liu J, Yu X, Lu Y. Bacterial cellulose loaded with silver nanoparticles as a flexible, stable and sensitive SERS-active substrate for detection of the shellfish toxin DTX-1. Food Chem 2023; 427:136692. [PMID: 37364315 DOI: 10.1016/j.foodchem.2023.136692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
Diarrheal shellfish toxins are considered one of the most lethal red tide algae toxins in the worldwide. In this work, we propose an Ag NPs-loaded bacterial cellulose membrane (BCM) surface-enhanced Raman scattering (SERS) sensor based on an aptamer (Apt) for the ultrasensitive detection of dinophysistoxin (DTX-1), a type of diarrheal shellfish toxin. During drying, Ag NPs can be further densified on "gel-like" BCM to form high-density SERS "hot spots". We developed the "Apt-SH@Ag NPs@BCM" SERS sensor and used the competition of DTX-1 and complementary base (Cob) in the process of base complementary pairing to achieve SERS detection of DTX-1, with a minimum detection limit of 9.5 × 10-10 mol/L. Sample assays showed DTX-1 recovery rates ranging from 95.8% and 108.2% and the detection results were comparable to those obtained by LC-MS. Therefore, this work holds great potential for detecting of toxic substances in shellfish products, especially for the oyster (portuguese oyster) and mussel (blue mussel).
Collapse
Affiliation(s)
- Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Haonan Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian 365004, China
| | - Chuyi Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jiali Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Huina Zhu
- Integrated Technique Services Center of Dong Shan Customs, Zhangzhou, Fujian 363401, China
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jian-Han Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian 365004, China.
| | - Jiewen Liu
- Integrated Technique Services Center of Dong Shan Customs, Zhangzhou, Fujian 363401, China
| | - Xiaowei Yu
- Integrated Technique Services Center of Dong Shan Customs, Zhangzhou, Fujian 363401, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
16
|
Chen Y, Hao J, Yin Z, Wang Q, Zhou Y, Jia L, Li H, Liao W, Liu K. An accuracy improved ratiometric SERS sensor for rhodamine 6G in chili powder using a metal-organic framework support. RSC Adv 2023; 13:10135-10143. [PMID: 37006373 PMCID: PMC10061268 DOI: 10.1039/d3ra00790a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Internal standard molecule 4-mercaptobenzoic acid (4-MBA) embedded Au core-Ag shell nanorods (Au-MBA@Ag NRs) were prepared by a seed-mediated growth method, then loaded on octahedral MIL-88B-NH2 to obtain a novel ratiometric SERS substrate of Au-MBA@Ag NRs/PSS/MIL-88B-NH2 (AMAPM) for detecting rhodamine 6G (R6G) in chili powder. The porous structure and excellent adsorption ability of MIL-88B-NH2, allowed for increased loading of Au-MBA@Ag NRs, thereby shortening the distance between adsorbed R6G and the "hot spot" resulting from local surface plasmon resonance (LSPR) of Au-MBA@Ag NRs. Based on the SERS characteristic peak ratio of R6G to 4-MBA, the ratiometric SERS substrate displayed improved accuracy and excellent performance for R6G detection, with a wide linear range of 5-320 nM and a low detection limit of 2.29 nM as well as fine stability, reproducibility and specificity. The proposed ratiometric SERS substrate offered a simple, fast and sensitive sensing strategy for R6G detection in chili powder, which demonstrated potential applications in food safety and the analysis of trace analytes in complex matrices.
Collapse
Affiliation(s)
- Yangjie Chen
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Juan Hao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Zhihang Yin
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Qinghui Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Youting Zhou
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| | - Lingpu Jia
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- Institute for Advanced Study, Chengdu University Chengdu 610106 China
| | - Huiming Li
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Wenlong Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
- School of Food and Biological Engineering, Chengdu University Chengdu 610106 China
| | - Kunping Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University Chengdu 610106 China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University Chengdu 610106 China +86-28-8521-6578 +86-28-8521-6578
| |
Collapse
|
17
|
SERS performance of cubic-shaped gold nanoparticles for environmental monitoring. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Fernandes T, Martins NCT, Daniel-da-Silva AL, Trindade T. Dendrimer-based magneto-plasmonic nanosorbents for water quality monitoring using surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121730. [PMID: 35988470 DOI: 10.1016/j.saa.2022.121730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
In this work, we report the synthesis of magneto-plasmonic dendrimer-based nanosorbents containing Au nanostars and we demonstrate that they can be used as versatile optical sensors for the detection of pesticides in spiked water samples. The magnetic hybrid nanoparticles were obtained by conjugating silica-functionalized G5-NH2 PAMAM dendrimers to silica-coated magnetite cores. The resulting magnetic-PAMAM conjugates were then used to reduce and sequester Au seeds for the subsequent in situ growth of Au nanostars. The dendrimer-based magneto-plasmonic substrates containing the Au anisotropic nanophases were then investigated regarding their ability to monitor water quality through surface-enhanced Raman scattering (SERS) spectroscopy. As a proof-of-concept, the ensuing multifunctional materials were investigated as SERS probing systems to detect dithiocarbamate pesticides (ziram and thiram) dissolved in water samples. It was observed that the magneto-plasmonic hybrid materials enhance the Raman signal of these pesticides under variable operational conditions, suggesting the versatility of these systems for water quality monitoring. Moreover, a detailed analysis of the SERS data was accomplished to predict the adsorption profile of the dithiocarbamate pesticides to the Au surface.
Collapse
Affiliation(s)
- Tiago Fernandes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Natércia C T Martins
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Cui K, Li R, Zhang Y, Qiu Y, Zhao N, Cui Y, Wu W, Liu T, Xiao Z. Molecular Planarization of Raman Probes to Avoid Background Interference for High-Precision Intraoperative Imaging of Tumor Micrometastases and Lymph Nodes. NANO LETTERS 2022; 22:9424-9433. [PMID: 36378880 DOI: 10.1021/acs.nanolett.2c03416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intraoperative imaging applications of a large number of Raman probes are hampered by the overlap of their signals with the background Raman signals generated by biological tissues. Here, we describe a molecular planarization strategy for adjusting the Raman shift of these Raman probes to avoid interference. Using this strategy, we modify the backbone of thiophene polymer-poly(3-hexylthiophene) (P3HT), and obtain the adjacent thiophene units planarized polycyclopenta[2,1-b;3,4-b']dithiophene (PCPDT). Compared with P3HT whose signal is disturbed by the Raman signal of lipids in tissues, PCPDT exhibits a 60 cm-1 blueshift in its characteristic signal. Therefore, the PCPDT probe successfully avoids the signal of lipids, and achieves intraoperative imaging of lymph nodes and tumor micrometastasis as small as 0.30 × 0.36 mm. In summary, our study presents a concise molecular planarization strategy for regulating the signal shift of Raman probes, and brings a tunable thiophene polymer probe for high-precision intraoperative Raman imaging.
Collapse
Affiliation(s)
- Kai Cui
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Ruike Li
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yongming Zhang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yuanyuan Qiu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, People's Republic of China
| | - Na Zhao
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Yanna Cui
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Wenwei Wu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Tize Liu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People's Republic of China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, People's Republic of China
| |
Collapse
|
20
|
Sultangaziyev A, Ilyas A, Dyussupova A, Bukasov R. Trends in Application of SERS Substrates beyond Ag and Au, and Their Role in Bioanalysis. BIOSENSORS 2022; 12:bios12110967. [PMID: 36354477 PMCID: PMC9688019 DOI: 10.3390/bios12110967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 05/31/2023]
Abstract
This article compares the applications of traditional gold and silver-based SERS substrates and less conventional (Pd/Pt, Cu, Al, Si-based) SERS substrates, focusing on sensing, biosensing, and clinical analysis. In recent decades plethora of new biosensing and clinical SERS applications have fueled the search for more cost-effective, scalable, and stable substrates since traditional gold and silver-based substrates are quite expensive, prone to corrosion, contamination and non-specific binding, particularly by S-containing compounds. Following that, we briefly described our experimental experience with Si and Al-based SERS substrates and systematically analyzed the literature on SERS on substrate materials such as Pd/Pt, Cu, Al, and Si. We tabulated and discussed figures of merit such as enhancement factor (EF) and limit of detection (LOD) from analytical applications of these substrates. The results of the comparison showed that Pd/Pt substrates are not practical due to their high cost; Cu-based substrates are less stable and produce lower signal enhancement. Si and Al-based substrates showed promising results, particularly in combination with gold and silver nanostructures since they could produce comparable EFs and LODs as conventional substrates. In addition, their stability and relatively low cost make them viable alternatives for gold and silver-based substrates. Finally, this review highlighted and compared the clinical performance of non-traditional SERS substrates and traditional gold and silver SERS substrates. We discovered that if we take the average sensitivity, specificity, and accuracy of clinical SERS assays reported in the literature, those parameters, particularly accuracy (93-94%), are similar for SERS bioassays on AgNP@Al, Si-based, Au-based, and Ag-based substrates. We hope that this review will encourage research into SERS biosensing on aluminum, silicon, and some other substrates. These Al and Si based substrates may respond efficiently to the major challenges to the SERS practical application. For instance, they may be not only less expensive, e.g., Al foil, but also in some cases more selective and sometimes more reproducible, when compared to gold-only or silver-only based SERS substrates. Overall, it may result in a greater diversity of applicable SERS substrates, allowing for better optimization and selection of the SERS substrate for a specific sensing/biosensing or clinical application.
Collapse
|
21
|
Phuong NTT, Nguyen TA, Huong VT, Tho LH, Anh DT, Ta HKT, Huy TH, Trinh KTL, Tran NHT. Sensors for Detection of the Synthetic Dye Rhodamine in Environmental Monitoring Based on SERS. MICROMACHINES 2022; 13:mi13111840. [PMID: 36363861 PMCID: PMC9694732 DOI: 10.3390/mi13111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 05/05/2023]
Abstract
This article presents a review of many types of SERS sensors for food safety and environmental pollution monitoring based on detecting rhodamine. It introduces the basic concepts of substrates, enhancement factors, and mechanisms, devices' sensors integrated with the microstructure. Here, we review the state-of-the-art research in the field of rhodamine monitoring and highlight the applications of SERS sensors. The trends in the development of substrates for different applications have been mentioned with the aim of providing an overview of the development of different SERS substrates. Thus, an efficient approach for rhodamine detection has a good perspective for application in environmental monitoring.
Collapse
Affiliation(s)
- Nguyen Tran Truc Phuong
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy-An Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City 550000, Vietnam
| | - Vu Thi Huong
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Korea
| | - Le Hong Tho
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Do Thao Anh
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Tran Huu Huy
- Quy Nhon College of Engineering and Technology, Quy Nhon 590000, Vietnam
| | - Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, Seongnam 13120, Korea
- Correspondence: (K.T.L.T.); (N.H.T.T.)
| | - Nhu Hoa Thi Tran
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- Correspondence: (K.T.L.T.); (N.H.T.T.)
| |
Collapse
|
22
|
Ko TS, Kuo KY. Using a Au/pitted a-plane GaN substrate to aggregate polar molecules for highly efficient surface-enhanced Raman scattering. J Chem Phys 2022; 157:114702. [DOI: 10.1063/5.0115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a search for efficient surface-enhanced Raman scattering (SERS) substrates is still a challenge. In this study we used metal-organic chemical vapor deposition to directly grow a pitted a-plane GaN thin film, subsequently covered by a thin Au layer ( ca. 25 nm), for use as a SERS substrate, without the need for any additional etching or lithography processes. The SERS substrate containing these micrometer-sized pits provided a low limit of detection ( ca. 10-9 M) for rhodamine 6G (R6G), with a high enhancement factor (4.27 ´ 108) relative to normal Raman spectroscopy. Furthermore, Raman spectral mapping indicated that most of the R6G molecules were concentrated in the pits, enhancing the localization of the probe molecules for further analysis. The same phenomenon was still effective for polar methylene blue molecules but unclear for nonpolar paraffin molecules. The molecular aggregation became more ambiguous upon increasing the thickness of the Au layer, suggesting that the polarity of the Ga and N atoms in the pits was responsible for the efficient aggregation of the polar R6G molecules, potentially beneficial for biomedical detection.
Collapse
Affiliation(s)
- Tsung-Shine Ko
- Department of Electronic Engineering, National Changhua University of Education, Taiwan
| | - Kai-Yuan Kuo
- National Changhua University of Education, Taiwan
| |
Collapse
|
23
|
Sridhar K, Inbaraj BS, Chen BH. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. CHEMOSPHERE 2022; 301:134702. [PMID: 35472615 DOI: 10.1016/j.chemosphere.2022.134702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Organic toxins are persistent chemicals of global concern capable of accumulating in environment and food. Surface enhanced Raman spectroscopy (SERS) is a promising technique that facilitates onsite detection of organic toxins. However, the fabrication of a SERS substrate is complicated and difficult to provide flexibility, fastness and cost-effectiveness. This study aims to develop a paper-based SERS method using grape skin-gold nanoparticles/graphene oxide (GE-AuNPs/GO) as SERS substrate and evaluate its efficiency with rhodamine 6G (Rh6G) as a model organic toxin and a real water and food contaminant. GE-AuNPs synthesized by green method using grape skin waste extract and GE-AuNPs/GO showed a surface plasmon resonance at 536 and 539 nm, particle size 18.6 and 19.5 nm, and zeta potential -44.6 and -59.7 mV, respectively. Paper-based SERS substrates were prepared by coating a hydrophobic thin-film of 30% polydimethylsiloxane solution in hexane on Whatman no. 1 filter paper, followed by drop-casting GE-AuNPs or GE-AuNPs/GO and drying. The SERS signals of Rh6G showed an enhancement factor of 5.8 × 104 for GE-AuNPs and 1.92 × 109 for GE-AuNPs/GO, implying that a combination of electromagnetic surface plasmon, charge transfer and molecular resonances may be responsible for a higher enhancement of signal by the latter. A low detection limit of 7.33 × 10-11 M in the linear range of 10-11-10-5 M was obtained for GE-AuNPs/GO, while the relative standard deviation of repeatability and reproducibility was 9.6 and 12.6%, respectively. Paper-based GE-AuNPs/GO SERS substrate was highly stable as <20% loss in efficiency was shown over a 60-day storage period. Application to real samples showed a high recovery of Rh6G from tap water (93.9-100.8%) as well as food samples such as red chilli powder (91.0-95.4%), red glutinous rice ball (96.6-98.3%) and tomato ketchup (98.9-102.3%) after QuEChERS extraction. Collectively, the developed paper-based GE-AuNPs/GO can be a potential substrate for sensitive onsite detection of rhodamine 6G by SERS method.
Collapse
Affiliation(s)
- Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan; Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
24
|
Three-Dimensional Dendritic Au-Ag Substrate for On-Site SERS Detection of Trace Molecules in Liquid Phase. NANOMATERIALS 2022; 12:nano12122002. [PMID: 35745341 PMCID: PMC9229001 DOI: 10.3390/nano12122002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The development of a facile surface-enhanced Raman scattering (SERS) sensor for the on-site detection of trace molecules in liquid phase is a compelling need. In this paper, a three-dimensional (3D) dendritic Au–Ag nanostructure was constructed by a two-step electro displacement reaction in a capillary tube for the on-site liquid phase detection of trace molecules. The multiplasmon resonance mechanism of the dendritic Au–Ag structure was simulated using the finite-difference time domain (FDTD) method. It was confirmed that the highly branched 3D structure promoted the formation of high-density “hot spots” and interacted with the gold nanoparticles at the dendrite tip, gap, and surface to maximize the spatial electric field, which allowed for high signal intensification to be observed. More importantly, the unique structure of the capillary made it possible to achieve the on-site detection of trace molecules in liquids. Using Rhodamine 6G (R6G) solution as a model molecule, the 3D dendritic Au–Ag substrate exhibited a high detection sensitivity (10−13 mol/L). Furthermore, the developed sensor was applied to the detection of antibacterial agents, ciprofloxacin (CIP), with clear Raman characteristic peaks observed even at concentrations as low as 10−9 mol/L. The results demonstrated that the 3D dendritic Au–Ag sensor could successfully realize the rapid on-site SERS detection of trace molecules in liquids, providing a promising platform for ultrasensitive and on-site liquid sample analysis.
Collapse
|
25
|
Sharafeldin M, Davis JJ. Characterising the biosensing interface. Anal Chim Acta 2022; 1216:339759. [DOI: 10.1016/j.aca.2022.339759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
26
|
Gomez-Cruz J, Bdour Y, Stamplecoskie K, Escobedo C. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection. BIOSENSORS 2022; 12:bios12020128. [PMID: 35200388 PMCID: PMC8870321 DOI: 10.3390/bios12020128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/07/2023]
Abstract
Metallic nanoparticles (MNPs) and metallic nanostructures are both commonly used, independently, as SERS substrates due to their enhanced plasmonic activity. In this work, we introduce and investigate a hybrid nanostructure with strong SERS activity that benefits from the collective plasmonic response of the combination of MNPs and flow-through nanohole arrays (NHAs). The electric field distribution and electromagnetic enhancement factor of hybrid structures composed of silver NPs on both silver and gold NHAs are investigated via finite-difference time-domain (FDTD) analyses. This computational approach is used to find optimal spatial configurations of the nanoparticle positions relative to the nanoapertures and investigate the difference between Ag-NP-on-Ag-NHAs and Ag-NP-on-Au-NHAs hybrid structures. A maximum GSERS value of 6.8 × 109 is achieved with the all-silver structure when the NP is located 0.5 nm away from the rim of the NHA, while the maximum of 4.7 × 1010 is obtained when the nanoparticle is in full contact with the NHA for the gold-silver hybrid structure. These results demonstrate that the hybrid nanostructures enable hotspot formation with strong SERS activity and plasmonic enhancement compatible with SERS-based sensing applications.
Collapse
Affiliation(s)
- Juan Gomez-Cruz
- Department of Chemical Engineering, Queen’s University, 19 Division St., Kingston, ON K7L 3N6, Canada; (J.G.-C.); (Y.B.)
| | - Yazan Bdour
- Department of Chemical Engineering, Queen’s University, 19 Division St., Kingston, ON K7L 3N6, Canada; (J.G.-C.); (Y.B.)
| | - Kevin Stamplecoskie
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada;
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen’s University, 19 Division St., Kingston, ON K7L 3N6, Canada; (J.G.-C.); (Y.B.)
| |
Collapse
|
27
|
Gu C, Shan F, Zheng L, Zhou Y, Hu J, Chen G. Towards a protein-selective Raman enhancement by a glycopolymer-based composite surface. J Mater Chem B 2022; 10:1434-1441. [PMID: 35168248 DOI: 10.1039/d1tb02746h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS), which is based on the surface plasmon resonance (LSPR) of noble metal nanostructures, is widely used in the biological field due to its advantages of non-damaging samples and detection up to the molecular level. For biological SERS detection, preparation of substrates with biocompatibility and specific adsorption, leading to selective enhancement of the target biomolecules, are important design strategies. Utilizing the specific interaction between a carbohydrate and protein, a glycopolymer-based composite surface is fabricated to realize specific SERS detection of proteins. Herein, we use N-3,4-dihydroxybenzeneethyl methacrylamide (DMA), 2-deoxy-2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) as monomers in a sunlight-induced RAFT polymerization to synthesize a dopamine-containing glycopolymer. The glycopolymers are used to prepare a SERS substrate. The composite surface shows specific protein adsorption capacity, and the selective Raman enhancement of specific proteins was successfully achieved between the two different proteins Con A and BSA. This provides a feasible approach to design a SERS surface for protein detection and the study of the interaction between sugar and proteins.
Collapse
Affiliation(s)
- Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
28
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
29
|
Li S, Wang Z, Shao Y, Zhang K, Mei L, Wang J. In situ detection of fluid media based on a three-dimensional dendritic silver surface-enhanced Raman scattering substrate. NEW J CHEM 2022. [DOI: 10.1039/d1nj05451a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A simple substitution reaction was used to grow 3D dendritic silver structures in microfluidic channels, and a highly active SERS detection platform was formed. The system can realize in situ detection of 10−10 mol L−1 R6G solution.
Collapse
Affiliation(s)
- Sha Li
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Zezhou Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Yunpeng Shao
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Kai Zhang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Linyu Mei
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Junyuan Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
30
|
Plasmonic Spherical Nanoparticles Coupled with Titania Nanotube Arrays Prepared by Anodization as Substrates for Surface-Enhanced Raman Spectroscopy Applications: A Review. Molecules 2021; 26:molecules26247443. [PMID: 34946522 PMCID: PMC8705377 DOI: 10.3390/molecules26247443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
As surface-enhanced Raman spectroscopy (SERS) continues developing to be a powerful analytical tool for several probes, four important aspects to make it more accessible have to be addressed: low-cost, reproducibility, high sensibility, and recyclability. Titanium dioxide nanotubes (TiO2 NTs) prepared by anodization have attracted interest in this field because they can be used as safe solid supports to deposit metal nanoparticles to build SERS substrate nanoplatforms that meet these four desired aspects. TiO2 NTs can be easily prepared and, by varying different synthesis parameters, their dimensions and specific features of their morphology can be tuned allowing them to support metal nanoparticles of different sizes that can achieve a regular dispersion on their surface promoting high enhancement factors (EF) and reproducibility. Besides, the TiO2 photocatalytic properties enable the substrate's self-cleaning property for recyclability. In this review, we discuss the different methodological strategies that have been tested to achieve a high performance of the SERS substrates based on TiO2 NTs as solid support for the three main noble metal nanoparticles mainly studied for this purpose: Ag, Au, and Pt.
Collapse
|
31
|
Recent Developments in Plasmonic Sensors of Phenol and Its Derivatives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many scientists are increasingly interested in on-site detection methods of phenol and its derivatives because these substances have been universally used as a significant raw material in the industrial manufacturing of various chemicals of antimicrobials, anti-inflammatory drugs, antioxidants, and so on. The contamination of phenolic compounds in the natural environment is a toxic response that induces harsh impacts on plants, animals, and human health. This mini-review updates recent developments and trends of novel plasmonic resonance nanomaterials, which are assisted by various optical sensors, including colorimetric, fluorescence, localized surface plasmon resonance (LSPR), and plasmon-enhanced Raman spectroscopy. These advanced and powerful analytical tools exhibit potential application for ultrahigh sensitivity, selectivity, and rapid detection of phenol and its derivatives. In this report, we mainly emphasize the recent progress and novel trends in the optical sensors of phenolic compounds. The applications of Raman technologies based on pure noble metals, hybrid nanomaterials, and metal–organic frameworks (MOFs) are presented, in which the remaining establishments and challenges are discussed and summarized to inspire the future improvement of scientific optical sensors into easy-to-operate effective platforms for the rapid and trace detection of phenol and its derivatives.
Collapse
|
32
|
Verma M, Naqvi TK, Tripathi SK, Kulkarni MM, Prasad NE, Dwivedi PK. Plasmonic Paper based Flexible SERS Biosensor for Highly Sensitive Detection of Lactic and Uric Acid. IEEE Trans Nanobioscience 2021; 21:294-300. [PMID: 34710047 DOI: 10.1109/tnb.2021.3124055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selective detection and quantification of biomarkers related to human diseases are essential for preventive healthcare. Surface-enhanced Raman scattering (SERS) spectroscopy is a powerful analytical tool offering high sensitivity. However, the success of this promising analytical tool relies on the ability to effectively fabricate SERS substrate. Herein we have demonstrated a plasmonic paper-based flexible substrate (PPFS) for SERS sensing. In situ growth of silver nanostructures (AgNS) on the paper-based substrate was achieved by using a simple one-step silver mirror reaction (SMR). FESEM and TEM results depicts that the increasing silver ion content influences the morphology (growth of multifacets), as well as size of AgNS. Further, the PPFS substrate was tested with Rhodamine-6G (Rh-6G) dye and an attomole sensitivity with a LOD of 4.54 x 10-18 M was achieved. Further, two biomarkers, lactic acid (LA) and uric acid (UA) were detected on the PPFS substrate, with μM and pM sensitivity, having LOD values of 0.6 x 10-6 and 0.3 x 10-12 M respectively. Above detection levels for UA on PPFS is two orders better than reported values, whereas for LA it is comparable with reported substrates. Finally, UA, LA and their mixtures were tested on PPFS and results compared with commercial substrate. The performance of PPFS were found better in all cases, thus, multifaceted AgNS paper based PPFS offers the potential to be used as a biosensor for detection of various biomarkers from body fluids, responsible for the detection of the critical disease for preventive health care.
Collapse
|
33
|
Yadav N, Garg VK, Chhillar AK, Rana JS. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review. CHEMOSPHERE 2021; 280:130792. [PMID: 34162093 DOI: 10.1016/j.chemosphere.2021.130792] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Environmental deterioration due to anthropogenic activities is a threat to sustainable, clean and green environment. Accumulation of hazardous chemicals pollutes soil, water and air and thus significantly affects all the ecosystems. This article highlight the challenges associated with various conventional techniques such as filtration, absorption, flocculation, coagulation, chromatographic and mass spectroscopic techniques. Environmental nanotechnology has provided an innovative frontier to combat the aforesaid issues of sustainable environment by reducing the non-requisite use of raw materials, electricity, excessive use of agrochemicals and release of industrial effluents into water bodies. Various nanotechnology based approaches including surface enhance scattering, surface plasmon resonance; and distinct types of nanoparticles like silver, silicon oxide and zinc oxide have contributed significantly in detection of environmental pollutants. Biosensing technology has also gained significant attention for detection and remediation of pollutants. Furthermore, nanoparticles of gold, ferric oxide and manganese oxide have been used for the on-site remediation of antibiotics, organic dyes, pesticides, and heavy metals. Recently, green nanomaterials have been given more attention to address toxicity issues of chemically synthesized nanomaterials. Hence, nanotechnology has provided a platform with tremendous applications to have sustainable environment for present as well as future generations. This review article will help to understand the fundamentals for achieving the goals of sustainable development, and healthy environment.
Collapse
Affiliation(s)
- Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India; Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Vinod Kumar Garg
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India.
| | - Anil Kumar Chhillar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jogender Singh Rana
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, 131039, India
| |
Collapse
|
34
|
Raman spectroscopy for virus detection and the implementation of unorthodox food safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Mohanta D, Mahanta A, Mishra SR, Jasimuddin S, Ahmaruzzaman M. Novel SnO 2@ZIF-8/gC 3N 4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. ENVIRONMENTAL RESEARCH 2021; 197:111077. [PMID: 33794171 DOI: 10.1016/j.envres.2021.111077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Herein, a novel synthetic strategy has been proposed to prepare engineered SnO2@ZIF-8/gC3N4 nanohybrids for electrochemical sensing of p-nitrophenol (p-NP). The electrochemical properties were investigated using cyclic voltammetry (CV), chronoamperometry (CA), and differential pulse voltammetry (DPV). The developed nanohybrid sensor displayed an excellent electrochemical performance towards sensing of p-NP with a detection limit of 0.565 μM. The sensitivity of the prepared nanohybrid was found to be 2.63 μAcm-2μM-1. Moreover, the newly fabricated sensor exhibited remarkable selectivity (over tenfold excess) in the presence of common interferents. The simultaneous detection of isomers of nitrophenol is difficult using the developed sensor. However, other common interferents, such as phenol and aminophenol have negligible effects on the sensitivity of SnO2@ZIF-8/gC3N4 towards the detection of p-nitrophenol. Further, the newly developed sensor showed consistency of sensing response up to 30 days. Thus, implementation of SnO2@ZIF-8/gC3N4 nanohybrids as a p-NP electrochemical sensor offers the advantages of simplicity, selectivity, and stability.
Collapse
Affiliation(s)
- Dipyaman Mohanta
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Abhinandan Mahanta
- Department of Chemistry, Assam University, Silchar, Assam, 788010, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Sk Jasimuddin
- Department of Chemistry, Assam University, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
36
|
Wen G, Pan S, Gan M, Liang A, Jiang Z. Aptamer-Regulated Gold Nanosol Plasmonic SERS/RRS Dimode Assay of Trace Organic Pollutants Based on TpPa-Loaded PdNC Catalytic Amplification. ACS APPLIED BIO MATERIALS 2021; 4:4582-4590. [PMID: 35006795 DOI: 10.1021/acsabm.1c00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As with excellent catalytic performance, palladium nanoclusters (PdNCs) have a wide range of applications. However, the traditional PdNCs are easy to agglomerate in the analysis system and lose their catalytic activity. A covalent organic framework (COF) has a definite structure, good stability, and easy surface functionalization. So, it is of great significance to develop stable PdNCs with high catalytic activity and then combine with advanced analysis techniques to analyze ultratrace small-molecule pollutants in the environment. In this research, a stable PdNC dispersed on a COF (PdTpPa) catalyst is prepared and we find it with strong catalysis for the NaH2PO2-HAuCl4 catalytic reaction. Furthermore, this nanocatalytic indicator reaction can be tracked by surface-enhanced Raman spectroscopy (SERS) and resonance Rayleigh scattering (RRS) dual-mode. Combined with a highly specific aptamer-modifying technique, a highly sensitive and selective SERS/RRS dimode assay platform for trace organic pollutants has been developed. The detection limits of oxytetracycline (OTC), glyphosate (GLY), tetracycline (TEC), and bisphenol A (BPA) are 0.64, 0.03, 6.2 × 10-3, and 0.53 × 10-3 ng/mL, respectively. This work also provides ideas for the application of COF materials and Pd nanocatalysts in the molecular spectral detection of trace pollutants.
Collapse
Affiliation(s)
- Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Siqi Pan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Mei Gan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi, Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
37
|
Zhang Q, Mei H, Zhou W, Wang X. Cerium ion(III)-triggered aggregation-induced emission of copper nanoclusters for trace-level p-nitrophenol detection in water. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Riswana Barveen N, Wang TJ, Chang YH. In-situ deposition of silver nanoparticles on silver nanoflowers for ultrasensitive and simultaneous SERS detection of organic pollutants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105520] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
39
|
Banua J, Han JI. Biogenesis of Prism-Like Silver Oxide Nanoparticles Using Nappa Cabbage Extract and Their p-Nitrophenol Sensing Activity. Molecules 2020; 25:molecules25102298. [PMID: 32414219 PMCID: PMC7287931 DOI: 10.3390/molecules25102298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to explore the eco-friendly synthesis of prism-like silver oxide nanoparticles (Ag2ONPs) from nappa cabbage extract and its p-nitrophenol sensing activity. The prepared Ag2ONPs were characterized by X-ray diffraction (XRD), field-emission scanning spectroscopy (FESEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet (UV)-visible light spectral analysis (UV-Vis). p-Nitrophenol sensing properties of the prepared nanoparticles were also determined using a simple I-V method. The results showed that the as-prepared Ag2ONPs have a face-centered cubic (fcc) crystalline nature and a prism-like morphology with particle size in the range 21.61-92.26 nm. The result also showed a high intensity of the (111) facet, making the Ag2ONP-carbon black/nickel foam electrode (Ag2ONP-C/NFE) exhibit a high-performance response to p-nitrophenol spanning a wide range of concentrations from 1.0 mM to 0.1 pM and a response time of around 5 s, indicating a high potential for water treatment applications.
Collapse
Affiliation(s)
| | - Jeong In Han
- Correspondence: ; Tel.: +82-2-2260-3364; Fax: + 82-2-2268-8719
| |
Collapse
|
40
|
Daoudi K, Gaidi M, Alawadhi H, Columbus S, Zhang D, Allagui A, Shameer M, Taieb A. Structural effects of silver-nanoprism-decorated Si nanowires on surface-enhanced Raman scattering. NANOTECHNOLOGY 2020; 31:255706. [PMID: 32187584 DOI: 10.1088/1361-6528/ab80fa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Surface enhanced Raman scattering (SERS) is an important analytical tool for the optochemical detection of molecules. The enhancement is commonly achieved by engineering (i) novel types and morphologies of plasmonic nanomaterials, and (ii) patterned or roughened supporting substrates of high surface area for increased light scattering and molecule adsorption. Si substrates can be easily and reproducibly textured for effective SERS applications. In this work, silver nanoprisms (AgNPr) coated silicon nanowire (SiNWs) of different morphologies have been prepared by metal-assisted chemical etching and tested for SERS detection of R6G dye. By varying the etching time from 5 to 30 min, the nanowires' lengths increased from 2.4 to 10.5 µm and resulted in a variable topological morphology of the substrates in terms of bundles and valleys. We found that an optimum of 10 min etching time led to the highest SERS enhancement of R6G on AgNPr/SiNWs at 612 cm-1 Raman shift (30× compared to R6G/Si and 2× compared to R6G/AgNPr/Si), with a detection limit comparable to that of state-of-the-art performances (down to 5×10-10 M of R6G). Such an enhancement is attributed to a middle ground between increased overall surface area of SiNWs, and the available bundle tops trapping the AgNPr and R6G molecules.
Collapse
Affiliation(s)
- Kais Daoudi
- Dept. of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates. Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|