1
|
Bellanger T, Wien F, Combet S, Varela PF, Weidmann S. The role of membrane physiology in sHSP Lo18-lipid interaction and lipochaperone activity. Sci Rep 2024; 14:17048. [PMID: 39048624 PMCID: PMC11269701 DOI: 10.1038/s41598-024-67362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
To cope with environmental stresses, organisms, including lactic acid bacteria such as O. oeni, produce stress proteins called HSPs. In wine, O. oeni is constantly confronted by stress affecting its membrane fluidity. To survive through in these deleterious conditions, O. oeni synthesizes Lo18, a unique, small HSP which acts as a molecular chaperone and a lipochaperone. The molecular mechanism underlying its lipochaperone activity, particularly regarding membrane lipid composition, remains poorly understood. In this context, Lo18 lipochaperone activity and the associated modification in protein structure were studied during interaction with different liposomes from O. oeni cultures representing unstressed, stressed and stressed-adapted physiological states. The results showed that the presence of the membrane (whatever its nature) induces a modification of Lo18's structure. Also, the presence of oleic acid and/or phosphatidylglycerol is important to favor Lo18-membrane interaction, allowing lipochaperone activity. This research enhances understanding of sHSP-membrane interactions in bacterial systems.
Collapse
Affiliation(s)
- Tiffany Bellanger
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, 21000, Dijon, France
| | - Frank Wien
- Synchrotron SOLEIL, L'Orme Des Merisiers, Saint Aubin BP 48, 91192, Gif-Sur-Yvette, France
| | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, 91191, Gif-Sur-Yvette CEDEX, France
| | | | - Stéphanie Weidmann
- Univ. Bourgogne, UMR PAM A 02.102, Institut Agro Dijon, INRAE, 21000, Dijon, France.
| |
Collapse
|
2
|
Yon T, Réveillon D, Sibat M, Holland C, Litaker RW, Nascimento SM, Rossignoli AE, Riobó P, Hess P, Bertrand S. Targeted and non-targeted mass spectrometry to explore the chemical diversity of the genus Gambierdiscus in the Atlantic Ocean. PHYTOCHEMISTRY 2024; 222:114095. [PMID: 38631521 DOI: 10.1016/j.phytochem.2024.114095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Dinoflagellates of the genus Gambierdiscus have been associated with ciguatera, the most common non-bacterial fish-related intoxication in the world. Many studies report the presence of potentially toxic Gambierdiscus species along the Atlantic coasts including G. australes, G. silvae and G. excentricus. Estimates of their toxicity, as determined by bio-assays, vary substantially, both between species and strains of the same species. Therefore, there is a need for additional knowledge on the metabolite production of Gambierdiscus species and their variation to better understand species differences. Using liquid chromatography coupled to mass spectrometry, toxin and metabolomic profiles of five species of Gambierdiscus found in the Atlantic Ocean were reported. In addition, a molecular network was constructed aiming at annotating the metabolomes. Results demonstrated that G. excentricus could be discriminated from the other species based solely on the presence of MTX4 and sulfo-gambierones and that the variation in toxin content for a single strain could be up to a factor of two due to different culture conditions between laboratories. While untargeted analyses highlighted a higher variability at the metabolome level, signal correction was applied and supervised multivariate statistics performed on the untargeted data set permitted the selection of 567 features potentially useful as biomarkers for the distinction of G. excentricus, G. caribaeus, G. carolinianus, G. silvae and G. belizeanus. Further studies will be required to validate the use of these biomarkers in discriminating Gambierdiscus species. The study also provided an overview about 17 compound classes present in Gambierdiscus, however, significant improvements in annotation are still required to reach a more comprehensive knowledge of Gambierdiscus' metabolome.
Collapse
Affiliation(s)
- Thomas Yon
- Ifremer, PHYTOX, Laboratoire METALG, F-44000 Nantes, France.
| | | | - Manoëlla Sibat
- Ifremer, PHYTOX, Laboratoire METALG, F-44000 Nantes, France
| | - Chris Holland
- Beaufort Laboratory, National Centers for Coastal Ocean Science, National Ocean Service, NOAA, Beaufort, NC 28516, USA
| | - R Wayne Litaker
- CSS, Inc. Under Contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, National Ocean Service, Beaufort, NC 28516, USA
| | - Silvia M Nascimento
- Laboratório de Microalgas Marinhas, Departamento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 22290-240, Brazil
| | - Araceli E Rossignoli
- Instituto Español de Oceanografía, Centro Ocenográfico de Vigo, Subida a Radiofaro 50, 36390 Vigo, Spain
| | - Pilar Riobó
- Instituto de Investigaciones Marinas, CSIC. Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - Philipp Hess
- Ifremer, PHYTOX, Laboratoire METALG, F-44000 Nantes, France
| | - Samuel Bertrand
- Nantes Université, Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, F-44000 Nantes, France; ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44311 Nantes, France
| |
Collapse
|
3
|
Elebishehy A, Ahmed MM, Aldahmash B, Mohamed MA, Shetaia AA, Khalifa SAM, Eldaim MAA, El-Seedi HR, Yosri N. Cymbopogon schoenanthus (L) extract ameliorates high fat diet-induced obesity and dyslipidemia via reducing expression of lipogenic and thermogenic proteins. Fitoterapia 2024; 175:105897. [PMID: 38479618 DOI: 10.1016/j.fitote.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Globally, obesity has become one of the major health problems. This study was conducted to evaluate the anti-obesity potential of Cymbopogon schoenanthus methanolic extract (CS) in rats. Fifty male Wistar rats of six to eight weeks old, 100-120 g body weight (BW) were randomly assigned into 5 groups (n = 10): The control group was fed a basal diet. CS-group was supplied with basal diet and orally given CS (200 mg/kg BW) for 12 weeks. HFD-group was fed a high-fat diet (HFD) for 18 weeks. HFD + CS-group was fed on HFD and CS HFD then CS-group was fed HFD for 12 weeks then shifted to basal diet and CS for another 6 weeks. Phytochemical analysis of CS indicated the presence of various terpenes and flavonoid compounds. Among the compounds characterized are quercetin, apigenin, luteolin, orientin, eudesmene, cymbopogonol, caffeic acid, coumaric acid, and linolenic acid. Supplementation of HFD significantly increased the body weight, levels of serum triacylglycerol, total cholesterol, very low-density lipoprotein, low-density lipo-protein (HDL), glucose, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. In addition, HFD up-regulated the protein expression of uncoupling protein (UCP)-1 in both brown and white adipose tissue; and the expression of hepatic mRNA of sterol regulatory element-binding protein (SREBP)-1c and SREBP-2. However, it decreased the serum level of HDL, and protein expression level of UCP-1 in both brown and white adipose tissue. Treatment of HFD-fed animals with CS extract either concurrently (HFD + CS-group), or after obesity induction (HFD then CS-group) significantly reversed all HFD-induced alterations in body weight; food intake; serum biochemical profile (including hyperglycemia, dyslipidemia); and tissue gene expressions. These results indicate that CS methanolic extract ameliorated HFD-induced obesity, serum biochemical, hepatic, and adipose tissue gene expression alterations. CS extract accomplished these effects mostly through its various identified bioactive compounds which have been proven to have anti-obesity and anti-diabetic activities.
Collapse
Affiliation(s)
- Asmaa Elebishehy
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Mohamed M Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Menoufia, Egypt.
| | - Badr Aldahmash
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Aya A Shetaia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebeen Elkom, Menoufia, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic plants, Research Institute of Medicinal and Aro-matic plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt; China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Cai X, Wu J, Lian Y, Yang S, Xue Q, Li D, Wu D. Characterization and Discrimination of Marigold Oleoresin from Different Origins Based on UPLC-QTOF-MS Combined Molecular Networking and Multivariate Statistical Analysis. Metabolites 2024; 14:225. [PMID: 38668353 PMCID: PMC11051770 DOI: 10.3390/metabo14040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Marigold oleoresin is an oil-soluble natural colorant mainly extracted from marigold flowers. Xinjiang of China, India, and Zambia of Africa are the three main production areas of marigold flowers. Therefore, this study utilized ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technology, combined with Global Natural Products Social Molecular Networking (GNPS) and multivariate statistical analysis, for the qualitative and discriminant analysis of marigold oleoresin obtained from three different regions. Firstly, 83 compounds were identified in these marigold oleoresin samples. Furthermore, the results of a principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) indicated significant differences in the chemical compositions of the marigold oleoresin samples from different regions. Finally, 12, 23, and 38 differential metabolites were, respectively, identified by comparing the marigold oleoresin from Africa with Xinjiang, Africa with India, and Xinjiang with India. In summary, these results can be used to distinguish marigold oleoresin samples from different regions, laying a solid foundation for further quality control and providing a theoretical basis for assessing its safety and nutritional aspects.
Collapse
Affiliation(s)
- Xingfu Cai
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Juanjuan Wu
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Handan 057250, China
| | - Yunhe Lian
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Shuaiyao Yang
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Qiang Xue
- Chenguang Biological Technology Group HanDan Co., Ltd., Handan 056000, China
| | - Dewang Li
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
| | - Di Wu
- Chenguang Biological Technology Group Co., Ltd., Handan 057250, China (Y.L.)
- Key Laboratory of Comprehensive Utilization of Plant Resources in Hebei Province, Handan 057250, China
| |
Collapse
|
5
|
Zhang Y, She L, Ding H, Chen B, Fu Z, Wang L, Zhang T, Han L. Comprehensive quality control of Qingjin Yiqi granule based on UHPLC-Q-Orbitrap-MS and UPLC-QQQ-MS. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:184-197. [PMID: 37726965 DOI: 10.1002/pca.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Qingjin Yiqi granule (QYG) is a prescription medicine of traditional Chinese medicine which is widely used clinically for the recovery of coronavirus patients. However, there is currently limited research on the quality control of QYG. OBJECTIVE To evaluate the quality of QYG qualitatively and quantitatively by making full use of advanced chromatography-mass spectrometry techniques. METHODS Firstly, a multicomponent characterisation of QYG was performed by ultrahigh-performance liquid chromatography coupled with a Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS) system using a rapid negative/positive switching mode. Secondly, the co-condition fingerprint analysis of constituted herbal medicines of QYG was performed to unveil active ingredients as the quality markers of QYG. Thirdly, the marker compounds in 10 batches of QYG were quantified by ultrahigh-performance liquid chromatography coupled with a Waters Xevo TQ-S triple quadrupole mass spectrometry (UPLC-QQQ-MS) system. RESULTS A comprehensive method that combined the inclusion list and data-dependent acquisition (DDA) to achieve a systematic characterisation of QYG was established by UHPLC-Q-Orbitrap-MS. After analysis based on Compound Discoverer software and Global Natural Products Social (GNPS) platform, a total of 332 compounds were detected. Eleven Q-markers were determined for the quality evaluation of QYG by comparison with the fingerprint of nine constituted herbal medicines. An adjusted multiple reaction monitoring (MRM) quantification method was further established to simultaneously determine the 11 Q-markers for holistic quality evaluation of QYG. CONCLUSION This is the first study to report comprehensive multicomponent characterisation, identification, and quality assessment of QYG, which could be used for effective guarantee of the quality of QYG.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lihe She
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Biying Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
6
|
Li XL, Guo ZF, Wen XD, Li MN, Yang H. A molecular networking-assisted automatic database screening strategy for comprehensive annotation of small molecules in complex matrices. J Chromatogr A 2023; 1710:464417. [PMID: 37778098 DOI: 10.1016/j.chroma.2023.464417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Liquid chromatography-tandem with high-resolution mass spectrometry (LCHRMS) has proven challenging for annotating multiple small molecules within complex matrices due to the complexities of chemical structure and raw LCHRMS data, as well as limitations in previous literatures and reference spectra related to those molecules. In this study, we developed a molecular networking assisted automatic database screening (MN/auto-DBS) strategy to examine the combined effect of MS1 exact mass screening and MS2 similarity analysis. We compiled all previously reported compounds from the relevant literatures. With the development of a Python software, the in-house database (DB) was created by automatically calculating the m/z and data from experimental MS1 hits were rapid screened with DB. We then performed a feature-based molecular network analysis on the auto-MS2 data for supplementary identification of unreported compounds, including clustered FBMN and annotated GNPS compounds. Finally, the results from both strategies were merged and manually curated for correct structural assignment. To demonstrate the applicability of MN/auto-DBS, we selected the Huangqi-Danshen herb pair (HD), commonly used in prescriptions or patent medicines to treat diabetic nephropathy and cerebrovascular disease. A total of 223 compounds were annotated, including 65 molecules not previously reported in HD, such as aromatic polyketides, coumarins, and diarylheptanoids. Using MN/auto-DBS, we can profile and mine a wide range of complex matrices for potentially new compounds.
Collapse
Affiliation(s)
- Xin-Lu Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China
| | - Xiao-Dong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Xiang, Nanjing 210009, China.
| |
Collapse
|
7
|
Portas A, Carriot N, Ortalo-Magné A, Damblans G, Thiébaut M, Culioli G, Quillien N, Briand JF. Impact of hydrodynamics on community structure and metabolic production of marine biofouling formed in a highly energetic estuary. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106241. [PMID: 37922705 DOI: 10.1016/j.marenvres.2023.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Biofouling is a specific lifestyle including both marine prokaryotic and eukaryotic communities. Hydrodynamics are poorly studied parameters affecting biofouling formation. This study aimed to investigate how water dynamics in the Etel Estuary (Northwest Atlantic coasts of France) influences the colonization of artificial substrates. Hydrodynamic conditions, mainly identified as shear stress, were characterized by measuring current velocity, turbulence intensity and energy using Acoustic Doppler Current Profiler (ADCP). One-month biofouling was analyzed by coupling metabarcoding (16S rRNA, 18S rRNA and COI genes), untargeted metabolomics (liquid chromatography coupled with high-resolution mass spectrometry, LC-HRMS) and characterization of the main biochemical components of the microbial exopolymeric matrix. A higher richness was observed for biofouling communities (prokaryotes and eukaryotes) exposed to the strongest currents. Ectopleura (Cnidaria) and its putative symbionts Endozoicomonas (Gammaproteobacteria) were dominant in the less dynamic conditions. Eukaryotes assemblages were specifically shaped by shear stress, leading to drastic changes in metabolite profiles. Under high hydrodynamic conditions, the exopolymeric matrix increased and was composed of 6 times more polysaccharides than proteins, these latter playing a crucial role in the adhesion and cohesion properties of biofilms. This original multidisciplinary approach demonstrated the importance of shear stress on both the structure of marine biofouling and the metabolic response of these complex communities.
Collapse
Affiliation(s)
- Aurélie Portas
- France Energies Marines, Plouzané, France; MAPIEM, EA 4323, Université de Toulon, France
| | | | | | | | | | - Gérald Culioli
- MAPIEM, EA 4323, Université de Toulon, France; IMBE, Aix-Marseille Université, Avignon Université, CNRS, IRD, Avignon, France
| | | | | |
Collapse
|
8
|
Zhang L, Song S, Chen B, Li R, Wang L, Wang C, Han L, Fu Z, Zhang Z, Wang Q, Yu H. Integration of UHPLC/Q-OrbitrapMS-based metabolomics and activities evaluation to rapidly explore the anti-inflammatory components from lasianthus. Heliyon 2023; 9:e16117. [PMID: 37274662 PMCID: PMC10238613 DOI: 10.1016/j.heliyon.2023.e16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
Lasianthus, belonging to Rubiaceae, has been verified to improve clinical syndrome in immune diseases (e.g., hepatitis, nephritis, and rheumatoid arthritis). Both the anti-inflammatory function and chemical composition of Lasianthus vary considerably between different species but few studies focus. So essential it is to explore lasianthus and further search for anti-inflammatory substances. The target of this artical is to analyze the anti-inflammatory activity and chemical composition of lasianthus of different species. And the subsequent active compounds were explored. Primary, the anti-inflammatory activity among seven species of lasianthus (e.g., L. fordii., L. wallichii., L. hookeri C., L. verticillatus., L. sikkimensis., L. appressihirtus., and L. hookeri var) were evaluated by vitro experiments (RAW 264.7 cells). Next, UHPLC/Q-Orbitrap-MS-based metabolomics and the mass defect filter (MDF) algorithm were performed to explore metabolites. In addition, principal component analysis (PCA) was to screen out differential compounds in seven species. Finally, the correlation analysis between activities and composition to rapidly discover the active compounds (compounds were verified pharmacologically). Among the 7 species of lasianthus, the L. fordii. and L. hookeri C indicated the best anti-inflammatory activity. Untargeted metabolomics and MDF show 112 compounds, classified into six dominant types (e.g., flavonoids, phenolic acids, alkaloids, iridoids, coumarins, and anthraquinones). Furthermore, 33 differential metabolites were confirmed by PCA. Then according to correlation analysis and pharmacological validation, 7 compounds IC50<100 (e.g., scopoletin, asperulosidic acid, chlorogenic acid, ferulic acid, betaine, syringic acid, and emodin) were verified as anti-inflammatory compounds and conduct quantitative analysis. Metabolomics integrated with activities evaluation might be a rapid and effective strategy to explore the active compounds from natural products.
Collapse
Affiliation(s)
- Lele Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Shaofei Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Biying Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Rongrong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, 666100, China
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, PR China
| | - Heshui Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| |
Collapse
|
9
|
Wu X, Ding H, Zhang Z, Zheng M, Ni H, Huang Z, Wu W, Long H, Zhou Y, Li F, Lei M, Hou J, Wu W, Guo D. An improved strategy for identification and annotation of easily in-sourced dissociation diterpene lactones from plant natural products: Taking Andrographis paniculata (Burm. f.) as an example. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9483. [PMID: 36718976 DOI: 10.1002/rcm.9483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
RATIONALE Diterpene lactones (DL) in Andrographis paniculata (AP) are known as "natural antibiotics" for their excellent antibacterial activity. During mass spectrometry (MS) analysis, the hydroxyl groups in the AP DL skeleton are prone to neutral loss of H2 O, producing high in-source fragment peaks and affecting the characterization of these components. METHODS Mass tags were applied during the MS data acquisition step, and special adduct ion form was used to guide the data processing and characterization steps. Besides, the total number of characterized AP DLs significantly increased when combining the number of neutrally lost H2 O from AP DLs, incorporating information on the diagnostic ions, and adopting molecular networks generated with the Global Natural Products Social Molecular Networking database. RESULTS Ninety-nine DLs, comprising 6 monohydroxyl groups, 20 dihydroxyl groups, 27 trihydroxy groups, and 46 DLs with more than 3 hydroxyl groups, were characterized from AP. In addition, based on the characteristic fragments in the product ions (C3 H4 , Δm/z = 40.03 Da), it could be assumed that 90 DLs had the C19-OH structure among the identified DLs. The current study provides a new approach for collecting, processing, and characterizing MS analysis of natural DLs prone to in-source fragmentation. CONCLUSIONS MS characterization of AP DLs was significantly improved, and many potential new compounds were identified in AP. This characterization provides new methods for the purification and identification of AP DLs.
Collapse
Affiliation(s)
- Xingdong Wu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Guizhou Engineering Research Center of Industrial Key-Technology for Dendrobium Nobile, Zunyi Medical University, Zunyi, China
| | - Hongwei Ding
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zijia Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Man Zheng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Ni
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, China
| | - Wenyong Wu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Huali Long
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Lei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinjun Hou
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanying Wu
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dean Guo
- Department of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Lv Y, Xu X, Wei Y, Shen Y, Chen W, Wei X, Wang J, Xin J, He J, Zu X. Characterization and Discrimination of Ophiopogonis Radix with Different Levels of Sulfur Fumigation Based on UPLC-QTOF-MS Combined Molecular Networking with Multivariate Statistical Analysis. Metabolites 2023; 13:metabo13020204. [PMID: 36837823 PMCID: PMC9963253 DOI: 10.3390/metabo13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Ophiopogonis Radix, also known as "Maidong" (MD) in China, is frequently sulfur-fumigated (SF) in the pretreatment process of MD to improve the appearance and facilitate preservation. However, the process leads to changes in chemical composition, so it is essential to develop an approach to identify the chemical characteristics between nonfumigated and sulfur-fumigated products. This paper provided a practical method based on UPLC-QTOF-MS combined Global Natural Products Social Molecular Networking (GNPS) with multivariate statistical analysis for the characterization and discrimination of MD with different levels of sulfur fumigation, high concentration sulfur fumigation (HS), low concentration sulfur fumigation (LS) and without sulfur fumigation (WS). First, a number of 98 compounds were identified in those MD samples. Additionally, the results of Principal component analysis (PCA) and Orthogonal partial least-squares-discriminant analysis (OPLS-DA) demonstrated that there were significant chemical differences in the chemical composition of MD with different degrees of SF. Finally, fourteen and sixteen chemical markers were identified upon the comparison between HS and WS, LS and WS, respectively. Overall, these results can be able to discriminate MD with different levels of SF as well as establish a solid foundation for further quality control and pharmacological research.
Collapse
Affiliation(s)
- Yanhui Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yanping Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xintong Wei
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jie Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiayun Xin
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jixiang He
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (J.H.); (X.Z.); Tel.: +086-0531-89628200 (J.H.); +086-021-81871248 (X.Z.)
| | - Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Correspondence: (J.H.); (X.Z.); Tel.: +086-0531-89628200 (J.H.); +086-021-81871248 (X.Z.)
| |
Collapse
|
11
|
Chen Y, Zhang R, Mi D, Wang Q, Huang T, Dong X, Zhang H, Xiao H, Shi S. SPK1/S1P axis confers gastrointestinal stromal tumors (GISTs) resistance of imatinib. Gastric Cancer 2023; 26:26-43. [PMID: 35999321 PMCID: PMC9398498 DOI: 10.1007/s10120-022-01332-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imatinib mesylate (IM) is highly effective in the treatment of gastrointestinal stromal tumors (GISTs). However, the most of GISTs patients develop secondary drug resistance after 1-3 years of IM treatment. The aim of this study was to explore the IM-resistance mechanism via the multi-scope combined with plasma concentration of IM, genetic polymorphisms and plasma sensitive metabolites. METHODS This study included a total of 40 GISTs patients who had been regularly treated and not treated with IM. The plasma samples were divided into three experiments, containing therapeutic drug monitoring (TDM), OCT1 genetic polymorphisms and non-targeted metabolomics. According to the data of above three experiments, the IM-resistant cell line, GIST-T1/IMR cells, was constructed for verification the IM-resistance mechanism. RESULTS The results of non-targeted metabolomics analysis suggested that the sphingophospholipid metabolic pathway including the SPK1/S1P axis was inferred in IM-insensitive patients with GISTs. A GIST cell line (GIST-T1) was immediately induced as an IM resistance cell model (GIST-T1/IMR) and we found that blocking the signal pathway of SPK1/S1P in the GIST-T1/IMR could sensitize treatment of IM and reverse the IM-resistance. CONCLUSIONS Our findings suggest that IM secondary resistance is associated with the elevation of S1P, and blockage the signaling pathway of SPK1/S1P warrants evaluation as a potential therapeutic strategy in IM-resistant GISTs. The design of this study from blood management, group information collection, IM plasma concentration with different elements, identification of sphingolipid metabolism and lastly verification the function of SPK1/S1P in the IM-resistance GISTs cells.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, 611137, People's Republic of China
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Rui Zhang
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Dandan Mi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, 611137, People's Republic of China
| | - Qiuju Wang
- Department of Clinical Laboratory, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Tingwenli Huang
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Xinwei Dong
- Department of Clinical Pharmacy, Nantong Tumor Hospital, Nantong, 226300, People's Republic of China
| | - Hongwei Zhang
- Department of Anesthesiology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, People's Republic of China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, 611137, People's Republic of China.
| |
Collapse
|
12
|
Wang C, Chen H, Song S, Chen B, Li R, Fu Z, Zhang Z, Wang Q, Han L. Discovery of metabolic markers for the discrimination of Helwingia species based on bioactivity evaluation, plant metabolomics, and network pharmacology. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9411. [PMID: 36195983 DOI: 10.1002/rcm.9411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Helwingia japonica (HJ), a traditional medicinal plant, is commonly used for the treatment of dysentery, blood in the stool, and scald burns. Three major HJ species, Helwingia japonica (Thunb.) Dietr. (QJY), Helwingia himalaica Hook. f. et Thoms. ex C. B. Clarke, and Helwingia chinensis Batal., share great similarities in both morphology and chemical constituents. The discrimination of medicinal plants directly affects their pharmacological and clinical effects. Here, we solved the taxonomy uncertainty of these three HJ species and explored the discrimination and study of other traditional medicines (TMs). METHODS First, the anti-inflammatory effects of the three HJ species were compared using lipopolysaccharide (LPS)-induced inflammatory responses in mouse leukemia cells of monocyte macrophage (RAW) 264.7 cells. Then, plant metabolomics were performed in 48 batches of samples to discover chemical markers for discriminating different HJ species. Finally, network pharmacology was applied to explore the linkages among constituents, targets, and signaling pathways. RESULTS In vitro experiments showed that the QJY exhibited the most potential anti-inflammatory activities. Meanwhile, 172 compounds were tentatively identified and eight metabolites with higher relative content in QJY were designated as chemical markers to distinguish QJY and the other two species. According to the property of absorbed in vivo, threonic acid, arginine, and tyrosine were selected to construct a component-target-pathway network. The network pharmacology analysis confirmed that the chemotaxonomy differentiation was consistent with the bioactive assessment. CONCLUSIONS The present study demonstrates that bioactivity evaluation integrated with plant metabolomics and network pharmacology could be used as an effective approach to discriminate different TMs and discover the active compounds.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Hao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Shaofei Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Biying Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Rongrong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zhifei Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zhonglian Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
13
|
Dai Y, Zhang K, Wang L, Xiong L, Huang F, Huang Q, Wu J, Zeng J. Rapid Profiling of Metabolites Combined with Network Pharmacology to Explore the Potential Mechanism of Sanguisorba officinalis L. against Thrombocytopenia. Metabolites 2022; 12:1074. [PMID: 36355157 PMCID: PMC9693491 DOI: 10.3390/metabo12111074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Sanguisorba officinalis L. (SO), a well-known herbal medicine, has been proven to show effect against thrombocytopenia. However, metabolites of SO in vivo are still unclear, and the underlying mechanism of SO against thrombocytopenia from the aspect of metabolites have not been well elucidated. In this study, an improved analytical method combined with UHPLC-QTOF MS and a molecular network was developed for the rapid characterization of metabolites in vivo based on fragmentation patterns. Then, network pharmacology (NP) was used to elucidate the potential mechanism of SO against thrombocytopenia. As a result, a total of 1678 exogenous metabolites were detected in urine, feces, plasma, and bone marrow, in which 104 metabolites were tentatively characterized. These characterized metabolites that originated from plasma, urine, and feces were then imported to the NP analysis. The results showed that the metabolites from plasma, urine, and feces could be responsible for the pharmacological activity against thrombocytopenia by regulating the PI3K-Akt, MAPK, JAK-STAT, VEGF, chemokine, actin cytoskeleton, HIF-1, and pluripotency of stem cells. This study provides a rapid method for metabolite characterization and a new perspective of underlying mechanism study from the aspect of active metabolites in vivo.
Collapse
Affiliation(s)
- Yubei Dai
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Xiong
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Qianqian Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
- Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Southwest Medical University, Luzhou 646000, China
- Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou 646000, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
14
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|
15
|
Chemical comparison of Astragali Radix by UHPLC/Q-TOF-MS with different growing patterns. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Shang Z, Tian Y, Yi Y, Li K, Qiao X, Ye M. Comparative bioactivity evaluation and chemical profiling of different parts of the medicinal plant Glycyrrhiza uralensis. J Pharm Biomed Anal 2022; 215:114793. [PMID: 35489249 DOI: 10.1016/j.jpba.2022.114793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Glycyrrhiza uralensis is a popular medicinal plant worldwide. Its roots and rhizomes are used as the traditional Chinese medicine Gan-Cao. However, little is known on medicinal potential and chemistry of the other parts of the plant. In this work, the biological activities and chemical components of the roots, stems, leaves, and seeds of G. uralensis were investigated comparatively. The four parts exhibited different but noticeable biological activities. The chemicals in the four parts were globally characterized by liquid chromatography coupled with mass spectrometry (LC/MS) on a Thermo Vanquish UHPLC system connected to a Q-Exactive quadrupole Orbitrap mass spectrometer. By integrating molecular networking, compound spectral matching, MS2LDA-based substructure recognition, and reference standards comparison, a total of 1301 compounds were rapidly characterized. Three flavonoid C-glycosides were purified and their structures were identified by NMR spectroscopic analysis. Orthogonal partial least squares-discriminate analysis (OPLS-DA) further revealed 196 differential chemicals for the four parts. This work will promote the medicinal resource utilization of G. uralensis.
Collapse
Affiliation(s)
- Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yungang Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Kai Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China; Yunnan Baiyao International Medical Research Center, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
17
|
Carriot N, Barry-Martinet R, Briand JF, Ortalo-Magné A, Culioli G. Impact of phosphate concentration on the metabolome of biofilms of the marine bacterium Pseudoalteromonas lipolytica. Metabolomics 2022; 18:18. [PMID: 35290545 DOI: 10.1007/s11306-022-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/22/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Marine biofilms are the most widely distributed mode of life on Earth and drive biogeochemical cycling processes of most elements. Phosphorus (P) is essential for many biological processes such as energy transfer mechanisms, biological information storage and membrane integrity. OBJECTIVES Our aim was to analyze the effect of a gradient of ecologically relevant phosphate concentrations on the biofilm-forming capacity and the metabolome of the marine bacterium Pseudoalteromonas lipolytica TC8. METHODS In addition to the evaluation of the effect of different phosphate concentration on the biomass, structure and gross biochemical composition of biofilms of P. lipolytica TC8, untargeted metabolomics based on liquid chromatography-mass spectrometry (LC-MS) analysis was used to determine the main metabolites impacted by P-limiting conditions. Annotation of the most discriminating and statistically robust metabolites was performed through the concomitant use of molecular networking and MS/MS fragmentation pattern interpretation. RESULTS At the lowest phosphate concentration, biomass, carbohydrate content and three-dimensional structures of biofilms tended to decrease. Furthermore, untargeted metabolomics allowed for the discrimination of the biofilm samples obtained at the five phosphate concentrations and the highlighting of a panel of metabolites mainly implied in such a discrimination. A large part of the metabolites of the resulting dataset were then putatively annotated. Ornithine lipids were found in increasing quantity when the phosphate concentration decreased, while the opposite trend was observed for oxidized phosphatidylethanolamines (PEs). CONCLUSION This study demonstrated the suitability of LC-MS-based untargeted metabolomics for evaluating the effect of culture conditions on marine bacterial biofilms. More precisely, these results supported the high plasticity of the membrane of P. lipolytica TC8, while the role of the oxidized PEs remains to be clarified.
Collapse
Affiliation(s)
- Nathan Carriot
- Laboratoire MAPIEM, Université de Toulon, EA 4323, La Garde, France
| | | | | | | | - Gérald Culioli
- Laboratoire MAPIEM, Université de Toulon, EA 4323, La Garde, France.
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale (IMBE), UMR CNRS-IRD-Avignon, Université-Aix-Marseille Université, Avignon, France.
| |
Collapse
|
18
|
Algal Lipids as Modulators of Skin Disease: A Critical Review. Metabolites 2022; 12:metabo12020096. [PMID: 35208171 PMCID: PMC8877676 DOI: 10.3390/metabo12020096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
The prevalence of inflammatory skin diseases continues to increase with a high incidence in children and adults. These diseases are triggered by environmental factors, such as UV radiation, certain chemical compounds, infectious agents, and in some cases, people with a genetic predisposition. The pathophysiology of inflammatory skin diseases such as psoriasis or atopic dermatitis, but also of skin cancers, is the result of the activation of inflammation-related metabolic pathways and the overproduction of pro-inflammatory cytokines observed in in vitro and in vivo studies. Inflammatory skin diseases are also associated with oxidative stress, overproduction of ROS, and impaired antioxidant defense, which affects the metabolism of immune cells and skin cells (keratinocytes and fibroblasts) in systemic and skin disorders. Lipids from algae have been scarcely applied to modulate skin diseases, but they are well known antioxidant and anti-inflammatory agents. They have shown scavenging activities and can modulate redox homeostasis enzymes. They can also downmodulate key inflammatory signaling pathways and transcription factors such as NF-κB, decreasing the expression of pro-inflammatory mediators. Thus, the exploitation of algae lipids as therapeutical agents for the treatment of inflammatory skin diseases is highly attractive, being critically reviewed in the present work.
Collapse
|
19
|
Li Y, Cui Z, Li Y, Gao J, Tao R, Li J, Li Y, Luo J. Integrated molecular networking strategy enhance the accuracy and visualization of components identification: A case study of Ginkgo biloba leaf extract. J Pharm Biomed Anal 2021; 209:114523. [PMID: 34894462 DOI: 10.1016/j.jpba.2021.114523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022]
Abstract
Molecular networking (MN) is an efficient tool for natural product research. However, single MN might lead to false annotation due to the limited information, and the importance of combining MN with chromatogram is always ignored. In this study, we proposed a comprehensive MN strategy combining feature-based molecular networking (FBMN) and dual ionization mode MS/MS to improve the annotation accuracy and to achieve structural feature visualization in a chemotaxonomic chromatogram. Three steps were taken: (1) employing FBMN and dual ionization mode MS/MS to distinguish isomers and improve components' identification accuracy. (2) Using a 3-level initiative supported by in-house database to evaluate the annotation confidence. As a result, 95 compounds were successfully identified from Ginkgo biloba leaf extract (GBE) and Ginkgo biloba leaf (GBL), and 70 compounds mainly consisting of flavonoid glycosides, ginkgolides, and lignan glycosides were assigned as high-confidence molecules. (3) Building color-dependent chemotaxonomic chromatograms, to achieve component visualization by connecting FBMN with chromatogram in which the peaks of the same color indicated the compounds with similar structural features. Our research provided a new and efficient strategy for component identification and visualization of herbal medicine.
Collapse
Affiliation(s)
- Yongyi Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhirong Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ying Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Juanjuan Gao
- Testing & Analysis Center, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Rong Tao
- Testing & Analysis Center, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | - Jixin Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yi Li
- Testing & Analysis Center, Nanjing Normal University, Nanjing 210046, People's Republic of China.
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
20
|
Paix B, Potin P, Schires G, Le Poupon C, Misson B, Leblanc C, Culioli G, Briand JF. Synergistic effects of temperature and light affect the relationship between Taonia atomaria and its epibacterial community: a controlled conditions study. Environ Microbiol 2021; 23:6777-6797. [PMID: 34490980 DOI: 10.1111/1462-2920.15758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
In the context of global warming, this study aimed to assess the effect of temperature and irradiance on the macroalgal Taonia atomaria holobiont dynamics. We developed an experimental set-up using aquaria supplied by natural seawater with three temperatures combined with three irradiances. The holobiont response was monitored over 14 days using a multi-omics approach coupling algal surface metabolomics and metabarcoding. Both temperature and irradiance appeared to shape the microbiota and the surface metabolome, but with a distinct temporality. Epibacterial community first changed according to temperature, and later in relation to irradiance, while the opposite occurred for the surface metabolome. An increased temperature revealed a decreasing richness of the epiphytic community together with an increase of several bacterial taxa. Irradiance changes appeared to quickly impact surface metabolites production linked with the algal host photosynthesis (e.g. mannitol, fucoxanthin, dimethylsulfoniopropionate), which was hypothesized to explain modifications of the structure of the epiphytic community. Algal host may also directly adapt its surface metabolome to changing temperature with time (e.g. lipids content) and also in response to changing microbiota (e.g. chemical defences). Finally, this study brought new insights highlighting complex direct and indirect responses of seaweeds and their associated microbiota under changing environments.
Collapse
Affiliation(s)
- Benoit Paix
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | - Philippe Potin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gaëtan Schires
- Sorbonne Université, CNRS, Center for Biological Marine Resources (CRBM), FR 2424, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM110, La Garde, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), UMR 8227, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, La Garde, EA 4323, France
| | | |
Collapse
|
21
|
Paix B, Vieira C, Potin P, Leblanc C, De Clerck O, Briand JF, Culioli G. French Mediterranean and Atlantic populations of the brown algal genus Taonia (Dictyotales) display differences in phylogeny, surface metabolomes and epibacterial communities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Paix B, Layglon N, Le Poupon C, D'Onofrio S, Misson B, Garnier C, Culioli G, Briand JF. Integration of spatio-temporal variations of surface metabolomes and epibacterial communities highlights the importance of copper stress as a major factor shaping host-microbiota interactions within a Mediterranean seaweed holobiont. MICROBIOME 2021; 9:201. [PMID: 34641951 PMCID: PMC8507236 DOI: 10.1186/s40168-021-01124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although considered as holobionts, macroalgae and their surface microbiota share intimate interactions that are still poorly understood. Little is known on the effect of environmental parameters on the close relationships between the host and its surface-associated microbiota, and even more in a context of coastal pollutions. Therefore, the main objective of this study was to decipher the impact of local environmental parameters, especially trace metal concentrations, on an algal holobiont dynamics using the Phaeophyta Taonia atomaria as a model. Through a multidisciplinary multi-omics approach combining metabarcoding and untargeted LC-MS-based metabolomics, the epibacterial communities and the surface metabolome of T. atomaria were monitored along a spatio-temporal gradient in the bay of Toulon (Northwestern Mediterranean coast) and its surrounding. Indeed, this geographical area displays a well-described trace metal gradient particularly relevant to investigate the effect of such pollutants on marine organisms. RESULTS Epibacterial communities of T. atomaria exhibited a high specificity whatever the five environmentally contrasted collecting sites investigated on the NW Mediterranean coast. By integrating metabarcoding and metabolomics analyses, the holobiont dynamics varied as a whole. During the occurrence period of T. atomaria, epibacterial densities and α-diversity increased while the relative proportion of core communities decreased. Pioneer bacterial colonizers constituted a large part of the specific and core taxa, and their decrease might be linked to biofilm maturation through time. Then, the temporal increase of the Roseobacter was proposed to result from the higher temperature conditions, but also the increased production of dimethylsulfoniopropionate (DMSP) at the algal surface which could constitute of the source of carbon and sulfur for the catabolism pathways of these taxa. Finally, as a major result of this study, copper concentration constituted a key factor shaping the holobiont system. Thus, the higher expression of carotenoids suggested an oxidative stress which might result from an adaptation of the algal surface metabolome to high copper levels. In turn, this change in the surface metabolome composition could result in the selection of particular epibacterial taxa. CONCLUSION We showed that associated epibacterial communities were highly specific to the algal host and that the holobiont dynamics varied as a whole. While temperature increase was confirmed to be one of the main parameters associated to Taonia dynamics, the originality of this study was highlighting copper-stress as a major driver of seaweed-epibacterial interactions. In a context of global change, this study brought new insights on the dynamics of a Mediterranean algal holobiont submitted to heavy anthropic pressures. Video abstract.
Collapse
Affiliation(s)
- Benoît Paix
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France
- Present adress: Marine Biodiversity, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Nicolas Layglon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Christophe Le Poupon
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Sébastien D'Onofrio
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Benjamin Misson
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Cédric Garnier
- Université de Toulon, Aix Marseille Université, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM, 110, Toulon, France
| | - Gérald Culioli
- Université de Toulon, Laboratoire MAPIEM, EA, 4323, Toulon, France.
- Present address: Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale (IMBE), UMR CNRS-IRD-Avignon Université-Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|
23
|
Mion S, Carriot N, Lopez J, Plener L, Ortalo-Magné A, Chabrière E, Culioli G, Daudé D. Disrupting quorum sensing alters social interactions in Chromobacterium violaceum. NPJ Biofilms Microbiomes 2021; 7:40. [PMID: 33888726 PMCID: PMC8062528 DOI: 10.1038/s41522-021-00211-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Quorum sensing (QS) is a communication system used by bacteria to coordinate a wide panel of biological functions in a cell density-dependent manner. The Gram-negative Chromobacterium violaceum has previously been shown to use an acyl-homoserine lactone (AHL)-based QS to regulate various behaviors, including the production of proteases, hydrogen cyanide, or antimicrobial compounds such as violacein. By using combined metabolomic and proteomic approaches, we demonstrated that QS modulates the production of antimicrobial and toxic compounds in C. violaceum ATCC 12472. We provided the first evidence of anisomycin antibiotic production by this strain as well as evidence of its regulation by QS and identified new AHLs produced by C. violaceum ATCC 12472. Furthermore, we demonstrated that targeting AHLs with lactonase leads to major QS disruption yielding significant molecular and phenotypic changes. These modifications resulted in drastic changes in social interactions between C. violaceum and a Gram-positive bacterium (Bacillus cereus), a yeast (Saccharomyces cerevisiae), immune cells (murine macrophages), and an animal model (planarian Schmidtea mediterranea). These results underscored that AHL-based QS plays a key role in the capacity of C. violaceum to interact with micro- and macroorganisms and that quorum quenching can affect microbial population dynamics beyond AHL-producing bacteria and Gram-negative bacteria.
Collapse
Affiliation(s)
- Sonia Mion
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France
| | | | | | | | | | - Eric Chabrière
- Aix Marseille University, Institut de Recherche pour le Développement, Assistance Publique - Hôpitaux de Marseille, Microbes Evolution Phylogeny and Infections, Institut Hospitalo-Universitaire-Méditerranée Infection, Marseille, France.
| | - Gérald Culioli
- Université de Toulon, MAPIEM, Toulon, France. .,Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, UMR CNRS-IRD, Avignon Université, Aix-Marseille Université, Avignon, France.
| | | |
Collapse
|