1
|
Bató L, Fürjes P. Vertical Microfluidic Trapping System for Capturing and Simultaneous Electrochemical Detection of Cells. SENSORS (BASEL, SWITZERLAND) 2024; 24:6638. [PMID: 39460118 PMCID: PMC11511429 DOI: 10.3390/s24206638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Electrochemical impedance spectroscopy (EIS) is a non-invasive and label-free method widely used for characterizing cell cultures and monitoring their structure, behavior, proliferation and viability. Microfluidic systems are often used in combination with EIS methods utilizing small dimensions, controllable physicochemical microenvironments and offering rapid real-time measurements. In this work, an electrode array capable of conducting EIS measurements was integrated into a multichannel microfluidic chip which is able to trap individual cells or cell populations in specially designed channels comparable to the size of cells. An application-specific printed circuit board (PCB) was designed for the implementation of the impedance measurement in order to facilitate connection with the device used for taking EIS spectra and for selecting the channels to be measured. The PCB was designed in consideration of the optical screening of trapped cells in parallel with the EIS measurements which allows the comparison of EIS data with optical signals. With continuous EIS measurement, the filling of channels with cell suspension can be followed. Yeast cells were trapped in the microfluidic system and EIS spectra were recorded considering each individual channel, which allows differentiating between the number of trapped cells.
Collapse
Affiliation(s)
- Lilia Bató
- Microsystems Lab, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary;
- Doctoral School on Materials Sciences and Technologies, Óbuda University, H-1034 Budapest, Hungary
| | - Péter Fürjes
- Microsystems Lab, Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, H-1121 Budapest, Hungary;
| |
Collapse
|
2
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Ni C, Yang M, Yang S, Zhu Z, Chen Y, Jiang L, Xiang N. Three-dimensional inertial focusing based impedance cytometer enabling high-accuracy characterization of electrical properties of tumor cells. LAB ON A CHIP 2024; 24:4333-4343. [PMID: 39132910 DOI: 10.1039/d4lc00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The differences in the cross-sectional positions of cells in the detection area have a severe negative impact on achieving accurate characterization of the impedance spectra of cells. Herein, we proposed a three-dimensional (3D) inertial focusing based impedance cytometer integrating sheath fluid compression and inertial focusing for the high-accuracy electrical characterization and identification of tumor cells. First, we studied the effects of the particle initial position and the sheath fluid compression on particle focusing. Then, the relationship of the particle height and the signal-to-noise ratio (SNR) of the impedance signal was explored. The results showed that efficient single-line focusing of 7-20 μm particles close to the electrodes was achieved and impedance signals with a high SNR and a low coefficient of variation (CV) were obtained. Finally, the electrical properties of three types of tumor cells (A549, MDA-MB-231, and UM-UC-3 cells) were accurately characterized. Machine learning algorithms were implemented to accurately identify tumor cells based on the amplitude and phase opacities at multiple frequencies. Compared with traditional two-dimensional (2D) inertial focusing, the identification accuracy of A549, MDA-MB-231, and UM-UC-3 cells using our 3D inertial focusing increased by 57.5%, 36.4% and 36.6%, respectively. The impedance cytometer enables the detection of cells with a wide size range without causing clogging and obtains high SNR signals, improving applicability to different complex biological samples and cell identification accuracy.
Collapse
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Mingqi Yang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shuai Yang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhixian Zhu
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Yao Chen
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Lin Jiang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
4
|
Shen M, Chen X, Wu C, Song Z, Shi J, Liu S, Zhao Y. A microfluidic impedance cytometry device for robust identification of H. pluvialis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5684-5691. [PMID: 39129414 DOI: 10.1039/d4ay00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
H. pluvialis contains rich oleic acid and astaxanthin, which have important applications in the fields of biodiesel and biomedicine. Detection of live H. pluvialis is the prerequisite to obtaining oleic acid and astaxanthin. For this purpose, we successfully developed a reliable microfluidic impedance cytometry for the identification of live H. pluvialis. Firstly, we established a simulation model for detecting H. pluvialis based on their morphology and studied the effect of medium conductivity on the impedance of H. pluvialis at different frequencies. From the simulations, we determined that the optimal solution conductivity for the detection of H. pluvialis was 1500 μS cm-1 and studied the frequency responses of the impedance of H. pluvialis. Secondly, we fabricated the microchannels and stainless-steel detection electrodes and assembled them into microfluidic impedance cytometry. The frequency dependence of live and dead H. pluvialis was explored under different frequencies, and live and dead H. pluvialis were distinguished at a frequency of 1 MHz. The impedance of live H. pluvialis at the frequency of 1 MHz ranges from 33.73 to 52.23 Ω, while that of dead ones ranges from 13.05 to 19.59 Ω. Based on these findings, we accomplished the identification and counting of live H. pluvialis in the live and dead sample solutions. Furthermore, we accomplished the identification and counting of live H. pluvialis in the mixed samples containing Euglena and H. pluvialis. This approach possesses the promising capacity to serve as a robust tool in the identification of target microalgae, addressing a challenge in the fields of biodiesel and biomedicine.
Collapse
Affiliation(s)
- Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Chungang Wu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Zhipeng Song
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Jishun Shi
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| |
Collapse
|
5
|
Guo Y, Ye H, Huang L. Design and optimization of microchannel for enhancement of the intensity of induced signal in particle/cell impedance measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:074703. [PMID: 38975798 DOI: 10.1063/5.0196728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The measured impedance signal of a single particle or cell in a microchannel is of the μA level, which is a challenge for measuring such weak signals. Therefore, it is necessary to improve the intensity for expanding the applications of impedance measurement. In this paper, we analyzed the impact of geometric parameters of microchannel on output signal intensity by using the three-dimensional finite element method. In comparison to conventional microchannels, which are distributed at a uniform height, the microchannels in this design use the height difference to enhance the signal intensity. By analyzing the effects of the geometric dimensions of the constriction channel, main channel height, radius of particles, types of cells, shapes of particles with different ellipticities, and particles spacing on the current signal, we concluded the optimal dimensions of these parameters to improve the intensity of the induced current signal. Through the fabrication of the optimized size of device and experimental demonstration, it is verified that the current signal intensity caused by the particle with a diameter of 10 µm is nearly twice that of the conventional structure with a height of 20 µm, which proves the correctness of the optimization results and the feasibility of this work. In addition, the performance of the device was verified by measuring the mixtures of different size particles as well as non-viable and viable yeast cells.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, and The School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haisheng Ye
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, and The School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, and The School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
7
|
Wu G, Zhang Z, Du M, Wu D, Zhou J, Hao T, Xie X. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design. BIOSENSORS 2024; 14:204. [PMID: 38667197 PMCID: PMC11048680 DOI: 10.3390/bios14040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Microfluidic impedance cytometry (MIC) has emerged as a popular technique for single-cell analysis. Traditional MIC electrode designs consist of a pair of (or three) working electrodes, and their detection performance needs further improvements for microorganisms. In this study, we designed an 8-electrode MIC device in which the center pair was defined as the working electrode, and the connection status of bypass electrodes could be changed. This allowed us to compare the performance of layouts with no bypasses and those with floating or grounding electrodes by simulation and experiment. The results of detecting Φ 5 μm beads revealed that both the grounding and the floating electrode outperformed the no bypass electrode, and the grounding electrode demonstrated the best signal-to-noise ratio (SNR), coefficient of variation (CV), and detection sensitivity. Furthermore, the effects of different bypass grounding areas (numbers of grounding electrodes) were investigated. Finally, particles passing at high horizontal positions can be detected, and Φ 1 μm beads can be measured in a wide channel (150 μm) using a fully grounding electrode, with the sensitivity of bead volume detection reaching 0.00097%. This provides a general MIC electrode optimization technology for detecting smaller particles, even macromolecular proteins, viruses, and exosomes in the future.
Collapse
Affiliation(s)
- Guangzu Wu
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Zhiwei Zhang
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| | - Manman Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Dan Wu
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Junting Zhou
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Tianteng Hao
- School of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China; (D.W.); (J.Z.); (T.H.)
| | - Xinwu Xie
- Systems Engineering Institute, Academy of Military Sciences, People’s Liberation Army, Tianjin 300161, China; (G.W.); (Z.Z.)
- National Bio-Protection Engineering Center, Tianjin 300161, China
| |
Collapse
|
8
|
Chen X, Shen M, Liu S, Wu C, Sun L, Song Z, Shi J, Yuan Y, Zhao Y. Microfluidic impedance cytometry with flat-end cylindrical electrodes for accurate and fast analysis of marine microalgae. LAB ON A CHIP 2024; 24:2058-2068. [PMID: 38436397 DOI: 10.1039/d3lc00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Marine microalgae play an increasingly significant role in addressing the issues of environmental monitoring and disease treatment, making the analysis of marine microalgae at the single-cell level an essential technique. For this, we put forward accurate and fast microfluidic impedance cytometry to analyze microalgal cells by assembling two cylindrical electrodes and microchannels to form a three-dimensional detection zone. Firstly, we established a mathematical model of microalgal cell detection based on Maxwell's mixture theory and numerically investigated the effects of the electrode gap, microalgal positions, and ion concentrations of the solution on detection to optimize detection conditions. Secondly, 80 μm stainless steel wires were used to construct flat-ended cylindrical electrodes and were then inserted into two collinear channels fabricated using standard photolithography techniques to form a spatially uniform electric field to promote the detection throughput and sensitivity. Thirdly, based on the validation of this method, we measured the impedance of living Euglena and Haematococcus pluvialis to study parametric influences, including ion concentration, cell density and electrode gap. The throughput of this method was also investigated, which reached 1800 cells per s in the detection of Haematococcus pluvialis. Fourthly, we analyzed live and dead Euglena to prove the ability of this method to detect the physiological status of cells and obtained impedances of 124.3 Ω and 31.0 Ω with proportions of 15.9% and 84.1%, respectively. Finally, this method was engineered for the analysis of marine microalgae, measuring living Euglena with an impedance of 159.61 Ω accounting for 3.9%, dead Euglena with an impedance of 36.43 Ω accounting for 10.1% and Oocystis sp. with an impedance of 55.00 Ω accounting for about 81.0%. This method could provide a reliable tool to analyze marine microalgae for monitoring the marine environment and treatment of diseases owing to its outstanding advantages of low cost, high throughput and high corrosion resistance.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Chungang Wu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Liangliang Sun
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Zhipeng Song
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Jishun Shi
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Yulong Yuan
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| |
Collapse
|
9
|
Huang X, Chen X, Tan H, Wang M, Li Y, Wei Y, Zhang J, Chen D, Wang J, Li Y, Chen J. Advance of microfluidic flow cytometry enabling high-throughput characterization of single-cell electrical and structural properties. Cytometry A 2024; 105:139-145. [PMID: 37814588 DOI: 10.1002/cyto.a.24806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
This paper reported a micro flow cytometer capable of high-throughput characterization of single-cell electrical and structural features based on constrictional microchannels and deep neural networks. When single cells traveled through microchannels with constricted cross-sectional areas, they effectively blocked concentrated electric field lines, producing large impedance variations. Meanwhile, the traveling cells were confined within the cross-sectional areas of the constrictional microchannels, enabling the capture of high-quality images without losing focuses. Then single-cell features from impedance profiles and optical images were extracted from customized recurrent and convolution networks (RNN and CNN), which were further fused for cell-type classification based on support vector machines (SVM). As a demonstration, two leukemia cell lines (e.g., HL60 vs. Jurkat) were analyzed, producing high-classification accuracies of 99.3% based on electrical features extracted from Long Short-Term Memory (LSTM) of RNN, 96.7% based on structural features extracted from Resnet18 of CNN and 100.0% based on combined features enabled by SVM. The microfluidic flow cytometry developed in this study may provide a new perspective for the field of single-cell analysis.
Collapse
Affiliation(s)
- Xukun Huang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yimin Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuanchen Wei
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jie Zhang
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yueying Li
- Beijing Institute of Genomics, China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
10
|
Arman S, Tilley RD, Gooding JJ. A review of electrochemical impedance as a tool for examining cell biology and subcellular mechanisms: merits, limits, and future prospects. Analyst 2024; 149:269-289. [PMID: 38015145 DOI: 10.1039/d3an01423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Herein the development of cellular impedance biosensors, electrochemical impedance spectroscopy, and the general principles and terms associated with the cell-electrode interface is reviewed. This family of techniques provides quantitative and sensitive information into cell responses to stimuli in real-time with high temporal resolution. The applications of cell-based impedance biosensors as a readout in cell biology is illustrated with a diverse range of examples. The current state of the field, its limitations, the possible available solutions, and the potential benefits of developing biosensors are discussed.
Collapse
Affiliation(s)
- Seyedyousef Arman
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Richard D Tilley
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia.
- Australia Centre for Nanomedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
11
|
Mansor MA, Ahmad MR, Petrů M, Rahimian Koloor SS. An impedance flow cytometry with integrated dual microneedle for electrical properties characterization of single cell. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:371-383. [PMID: 37548425 DOI: 10.1080/21691401.2023.2239274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Electrical characteristics of living cells have been proven to reveal important details about their internal structure, charge distribution and composition changes in the cell membrane, as well as the extracellular context. An impedance flow cytometry is a common approach to determine the electrical properties of a cell, having the advantage of label-free and high throughput. However, the current techniques are complex and costly for the fabrication process. For that reason, we introduce an integrated dual microneedle-microchannel for single-cell detection and electrical properties extraction. The dual microneedles utilized a commercially available tungsten needle coated with parylene. When a single cell flows through the parallel-facing electrode configuration of the dual microneedle, the electrical impedance at multiple frequencies is measured. The impedance measurement demonstrated the differential of normal red blood cells (RBCs) with three different sizes of microbeads at low and high frequencies, 100 kHz and 2 MHz, respectively. An electrical equivalent circuit model (ECM) was used to determine the unique membrane capacitance of individual cells. The proposed technique demonstrated that the specific membrane capacitance of an RBC is 9.42 mF/m-2, with the regression coefficients, ρ at 0.9895. As a result, this device may potentially be used in developing countries for low-cost single-cell screening and detection.
Collapse
Affiliation(s)
- Muhammad Asraf Mansor
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Ridzuan Ahmad
- Department of Control and Mechatronics Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Michal Petrů
- Faculty of Mechanical Engineering, Technical University of Liberec, Liberec, Czech Republic
| | - Seyed Saeid Rahimian Koloor
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
12
|
Yang X, Liang Z, Luo Y, Yuan X, Cai Y, Yu D, Xing X. Single-cell impedance cytometry of anticancer drug-treated tumor cells exhibiting mitotic arrest state to apoptosis using low-cost silver-PDMS microelectrodes. LAB ON A CHIP 2023; 23:4848-4859. [PMID: 37860975 DOI: 10.1039/d3lc00459g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Chemotherapeutic drugs such as paclitaxel and vinblastine interact with microtubules and thus induce complex cell states of mitosis arrest at the G2/M phase followed by apoptosis dependent on drug exposure time and concentration. Microfluidic impedance cytometry (MIC), as a label-free and high-throughput technology for single-cell analysis, has been applied for viability assay of cancer cells post drug exposure at fixed time and dosage, yet verification of this technique for varied tumor cell states after anticancer drug treatment remains a challenge. Here we present a novel MIC device and for the first time perform impedance cytometry on carcinoma cells exhibiting progressive states of G2/M arrest followed by apoptosis related to drug concentration and exposure time, after treatments with paclitaxel and vinblastine, respectively. Our results from impedance cytometry reveal increased amplitude and negative phase shift at low frequency as well as higher opacity for HeLa cells under G2/M mitotic arrest compared to untreated cells. The cells under apoptosis, on the other hand, exhibit opposite changes in these electrical parameters. Therefore, the impedance features differentiate the HeLa cells under progressive states post anticancer drug treatment. We also demonstrate that vinblastine poses a more potent drug effect than paclitaxel especially at low concentrations. Our device is fabricated using a unique sacrificial layer-free soft lithography process as compared to the existing MIC device, which gives rise to readily aligned parallel microelectrodes made of silver-PDMS embedded in PDMS channel sidewalls with one molding step. Our results uncover the potential of the MIC device, with a fairly simple and low-cost fabrication process, for cellular state screening in anticancer drug therapy.
Collapse
Affiliation(s)
- Xinlong Yang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Ziheng Liang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueyuan Yuan
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Yao Cai
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Duli Yu
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | - Xiaoxing Xing
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| |
Collapse
|
13
|
Lu X, Bao J, Wei Y, Zhang S, Liu W, Wu J. Emerging Roles of Microrobots for Enhancing the Sensitivity of Biosensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2902. [PMID: 37947746 PMCID: PMC10650336 DOI: 10.3390/nano13212902] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
To meet the increasing needs of point-of-care testing in clinical diagnosis and daily health monitoring, numerous cutting-edge techniques have emerged to upgrade current portable biosensors with higher sensitivity, smaller size, and better intelligence. In particular, due to the controlled locomotion characteristics in the micro/nano scale, microrobots can effectively enhance the sensitivity of biosensors by disrupting conventional passive diffusion into an active enrichment during the test. In addition, microrobots are ideal to create biosensors with functions of on-demand delivery, transportation, and multi-objective detections with the capability of actively controlled motion. In this review, five types of portable biosensors and their integration with microrobots are critically introduced. Microrobots can enhance the detection signal in fluorescence intensity and surface-enhanced Raman scattering detection via the active enrichment. The existence and quantity of detection substances also affect the motion state of microrobots for the locomotion-based detection. In addition, microrobots realize the indirect detection of the bio-molecules by functionalizing their surfaces in the electrochemical current and electrochemical impedance spectroscopy detections. We pay a special focus on the roles of microrobots with active locomotion to enhance the detection performance of portable sensors. At last, perspectives and future trends of microrobots in biosensing are also discussed.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
- Biomedical Engineering Fusion Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Jinhui Bao
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
- Biomedical Engineering Fusion Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Ying Wei
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
- Biomedical Engineering Fusion Laboratory, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Shuting Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; (J.B.); (Y.W.); (S.Z.)
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China;
| |
Collapse
|
14
|
Sun J, Huang X, Chen J, Xiang R, Ke X, Lin S, Xuan W, Liu S, Cao Z, Sun L. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst 2023; 148:4922-4938. [PMID: 37743834 DOI: 10.1039/d3an01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.
Collapse
Affiliation(s)
- Jingjing Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Rikui Xiang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiang Ke
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Siru Lin
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Weipeng Xuan
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| |
Collapse
|
15
|
Zhu J, Feng Y, Chai H, Liang F, Cheng Z, Wang W. Performance-enhanced clogging-free viscous sheath constriction impedance flow cytometry. LAB ON A CHIP 2023; 23:2531-2539. [PMID: 37082895 DOI: 10.1039/d3lc00178d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a label-free and high-throughput single cell analysis platform, impedance flow cytometry (IFC) suffers from clogging caused by a narrow microchannel as mechanical constriction (MC). Current sheath constriction (SC) solutions lack systematic evaluation of the performance and proper guidelines for the sheath fluid. Herein, we hypothesize that the viscosity of the non-conductive liquid is the key to the performance of SC, and propose to employ non-conductive viscous sheath flow in SC to unlock the tradeoff between sensitivity and throughput, while ensuring measurement accuracy. By placing MC and SC in series in the same microfluidic chip, we established an evaluation platform to prove the hypothesis. Through modeling analysis and experiments, we confirmed the accuracy (error < 1.60% ± 4.71%) of SC w.r.t. MC, and demonstrated that viscous non-conductive PEG solution achieved an improved sensitivity (7.92×) and signal-to-noise ratio (1.42×) in impedance measurement, with the accuracy maintained and free of clogging. Viscous SC IFC also shows satisfactory ability to distinguish different types of cancer cells and different subtypes of human breast cancer cells. It is envisioned that viscous SC IFC paves the way for IFC to be really usable in practice with clogging-free, accurate, and sensitive performance.
Collapse
Affiliation(s)
- Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| | - Zhen Cheng
- Department of Automation, Tsinghua University, Beijing, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, P. R. China.
| |
Collapse
|
16
|
Fang Q, Feng Y, Zhu J, Huang L, Wang W. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization. Anal Chem 2023; 95:6374-6382. [PMID: 36996369 DOI: 10.1021/acs.analchem.2c05822] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
As a label-free, low-cost, and noninvasive tool, impedance measurement has been widely used in single-cell characterization analysis. However, due to the tiny volume of cells, the uncertainty of the spatial position in the microchannel will bring measurement errors in single-cell electrical parameters. To overcome the issue, we designed a novel microdevice configured with a coplanar differential electrode structure to accurately resolve the spatial position of single cells without constraining techniques such as additional sheath fluids or narrow microchannels. The device precisely localizes single cells by measuring the induced current generated by the combined action of the floating electrode and the differential electrodes when single cells flow through the electrode-sensing area. The device was experimentally validated by measuring 6 μm yeast cells and 10 μm particles, achieving spatial localization with a resolution down to 2.1 μm (about 5.3% of the channel width) in lateral direction and 1.2 μm (about 5.9% of the channel height) in the vertical direction at a flow rate of 1.2 μL/min. In addition, by comparing measurement of yeast cells and particles, it was demonstrated that the device not only localizes the single cells or particles but also simultaneously characterizes their status properties such as velocity and size. The device offers a competitive electrode configuration in impedance cytometry with the advantages of simple structure, low cost, and high throughput, promising cell localization and thus electrical characterization.
Collapse
Affiliation(s)
- Qiang Fang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongxiang Feng
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Junwen Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument and School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wenhui Wang
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Nguyen TH, Nguyen HA, Tran Thi YV, Hoang Tran D, Cao H, Chu Duc T, Bui TT, Do Quang L. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review. Analyst 2023; 148:1912-1929. [PMID: 36928639 DOI: 10.1039/d2an02027k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Microfluidic cytometry (MC) and electrical impedance spectroscopy (EIS) are two important techniques in biomedical engineering. Microfluidic cytometry has been utilized in various fields such as stem cell differentiation and cancer metastasis studies, and provides a simple, label-free, real-time method for characterizing and monitoring cellular fates. The impedance microdevice, including impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS), is integrated into MC systems. IFC measures the impedance of individual cells as they flow through a microfluidic device, while EIS measures impedance changes during binding events on electrode regions. There have been significant efforts to improve and optimize these devices for both basic research and clinical applications, based on the concepts, electrode configurations, and cell fates. This review outlines the theoretical concepts, electrode engineering, and data analytics of these devices, and highlights future directions for development.
Collapse
Affiliation(s)
- Thu Hang Nguyen
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | | | - Y-Van Tran Thi
- University of Science, Vietnam National University, Hanoi, Vietnam.
| | | | - Hung Cao
- University of California, Irvine, USA
| | - Trinh Chu Duc
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Tung Thanh Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam.
| | - Loc Do Quang
- University of Science, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
18
|
de Bruijn DS, Van de Waal DB, Helmsing NR, Olthuis W, van den Berg A. Microfluidic Impedance Cytometry for Single-Cell Particulate Inorganic Carbon:Particulate Organic Carbon Measurements of Calcifying Algae. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200151. [PMID: 36910468 PMCID: PMC10000273 DOI: 10.1002/gch2.202200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Indexed: 06/18/2023]
Abstract
Calcifying algae, like coccolithophores, greatly contribute to the oceanic carbon cycle and are therefore of particular interest for ocean carbon models. They play a key role in two processes that are important for the effective CO2 flux: The organic carbon pump (photosynthesis) and the inorganic carbon pump (calcification). The relative contribution of calcification and photosynthesis can be measured in algae by the amount of particulate inorganic carbon (PIC) and particulate organic carbon (POC). A microfluidic impedance cytometer is presented, enabling non-invasive and high-throughput assessment of the calcification state of single coccolithophore cells. Gradual modification of the exoskeleton by acidification results in a strong linear fit (R 2 = 0.98) between the average electrical phase and the PIC:POC ratio of the coccolithophore Emiliania huxleyi 920/9. The effect of different CO2 treatments on the PIC:POC ratio, however, is inconclusive, indicating that there is no strong effect observed for this particular strain. Lower PIC:POC ratios in cultures that grew to higher cell densities are found, which are also recorded with the impedance-based PIC:POC sensor. The development of this new quantification tool for small volumes paves the way for high-throughput analysis while applying multi-variable environmental stressors to support projections of the future marine carbon cycle.
Collapse
Affiliation(s)
- Douwe S. de Bruijn
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| | - Dedmer B. Van de Waal
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBThe Netherlands
| | - Nico R. Helmsing
- Department of Aquatic EcologyNetherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 10Wageningen6708 PBThe Netherlands
| | - Wouter Olthuis
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| | - Albert van den Berg
- BIOS Lab‐on‐a‐Chip groupMESA+ Institute for NanotechnologyMax Planck—University of Twente Center for Complex Fluid DynamicsUniversity of TwenteDrienerlolaan 5EnschedeOverijssel7522 NBThe Netherlands
| |
Collapse
|
19
|
Yang B, Wang C, Liang X, Li J, Li S, Wu JJ, Su T, Li J. Label-Free Sensing of Cell Viability Using a Low-Cost Impedance Cytometry Device. MICROMACHINES 2023; 14:407. [PMID: 36838107 PMCID: PMC9963508 DOI: 10.3390/mi14020407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 05/20/2023]
Abstract
Cell viability is an essential physiological status for drug screening. While cell staining is a conventional cell viability analysis method, dye staining is usually cytotoxic. Alternatively, impedance cytometry provides a straightforward and label-free sensing approach for the assessment of cell viability. A key element of impedance cytometry is its sensing electrodes. Most state-of-the-art electrodes are made of expensive metals, microfabricated by lithography, with a typical size of ten microns. In this work, we proposed a low-cost microfluidic impedance cytometry device with 100-micron wide indium tin oxide (ITO) electrodes to achieve a comparable performance to the 10-micron wide Au electrodes. The effectiveness was experimentally verified as 7 μm beads can be distinguished from 10 μm beads. To the best of our knowledge, this is the lowest geometry ratio of the target to the sensing unit in the impedance cytometry technology. Furthermore, a cell viability test was performed on MCF-7 cells. The proposed double differential impedance cytometry device has successfully differentiated the living and dead MCF-7 cells with a throughput of ~1000 cells/s. The label-free and low-cost, high-throughput impedance cytometry could benefit drug screening, fundamental biological research and other biomedical applications.
Collapse
Affiliation(s)
- Bowen Yang
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chao Wang
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinyi Liang
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinchao Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Shanshan Li
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300132, China
| | - Jie Jayne Wu
- Department of Electrical Engineering and Computer Science, The University of Tennessee, Knoxville, TN 37919, USA
| | - Tanbin Su
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Junwei Li
- Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
20
|
Eades J, Audiffred JF, Fincher M, Choi JW, Soper SA, Monroe WT. A Simple Micromilled Microfluidic Impedance Cytometer with Vertical Parallel Electrodes for Cell Viability Analysis. MICROMACHINES 2023; 14:283. [PMID: 36837983 PMCID: PMC9959585 DOI: 10.3390/mi14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 05/18/2023]
Abstract
Microfluidic impedance cytometry has been demonstrated as an effective platform for single cell analysis, taking advantage of microfabricated features and dielectric cell sensing methods. In this study, we present a simple microfluidic device to improve the sensitivity, accuracy, and throughput of single suspension cell viability analysis using vertical sidewall electrodes fabricated by a widely accessible negative manufacturing method. A microchannel milled through a 75 µm platinum wire, which was embedded into poly-methyl-methacrylate (PMMA), created a pair of parallel vertical sidewall platinum electrodes. Jurkat cells were interrogated in a custom low-conductivity buffer (1.2 ± 0.04 mS/cm) to reduce current leakage and increase device sensitivity. Confirmed by live/dead staining and electron microscopy, a single optimum excitation frequency of 2 MHz was identified at which live and dead cells were discriminated based on the disruption in the cell membrane associated with cell death. At this frequency, live cells were found to exhibit changes in the impedance phase with no appreciable change in magnitude, while dead cells displayed the opposite behavior. Correlated with video microscopy, a computational algorithm was created that could identify cell detection events and determine cell viability status by application of a mathematical correlation method.
Collapse
Affiliation(s)
- Jason Eades
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Julianne F. Audiffred
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Micah Fincher
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| | - Jin-Woo Choi
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Steven A. Soper
- Department of Chemistry, University of Kansas, Lawrence, KS 66044, USA
- Center of Biomodular Multiscale Systems for Precision Medicine, University of Kansas, Lawrence, KS 66044, USA
| | - William Todd Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
21
|
Xiang N, Ni Z. Microfluidics for Biomedical Applications. BIOSENSORS 2023; 13:bios13020161. [PMID: 36831927 PMCID: PMC9953641 DOI: 10.3390/bios13020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 06/12/2023]
Abstract
Microfluidics refers to a technique for controlling and analyzing the fluids or micro-/nano-bioparticles in microscale channels or structures [...].
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhonghua Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
22
|
Ni C, Zhu Z, Zhou Z, Xiang N. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics. Methods Mol Biol 2023; 2679:193-206. [PMID: 37300617 DOI: 10.1007/978-1-0716-3271-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Detection of malignant tumor cells (MTCs) in pleural effusions is essential for determining the malignancy. However, the sensitivity of MTC detection is significantly decreased due to the existence of a massive number of background blood cells in large-volume samples. Herein, we provide a method for on-chip separation and enrichment of MTCs from malignant pleural effusions (MPEs) by integrating an inertial microfluidic sorter with an inertial microfluidic concentrator. The designed sorter and concentrator are capable of focusing cells toward the specified equilibrium positions by inducing intrinsic hydrodynamic forces, enabling the size-based sorting of cells and the removal of cell-free fluids for cell enrichment. A 99.9% removal of background cells and a nearly 1400-fold ultrahigh enrichment of MTCs from large-volume MPEs can be achieved by this method. The concentrated high-purity MTC solution can be used directly for cytological examination by immunofluorescence staining, enhancing the accurate identification of MPEs. The proposed method can also be employed for the detection and count of rare cells in various clinical samples.
Collapse
Affiliation(s)
- Chen Ni
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Zhixian Zhu
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Zheng Zhou
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, China.
| |
Collapse
|
23
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
24
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
25
|
Wang M, Tan H, Li Y, Chen X, Chen D, Wang J, Chen J. Toward five-part differential of leukocytes based on electrical impedances of single cells and neural network. Cytometry A 2022; 103:439-446. [PMID: 36271498 DOI: 10.1002/cyto.a.24697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The five-part differential of leukocytes plays key roles in the diagnosis of a variety of diseases and is realized by optical examinations of single cells, which is prone to various artifacts due to chemical treatments. The classification of leukocytes based on electrical impedances without cell treatments has not been demonstrated because of limitations in approaches of impedance acquisition and data processing. In this study, based on treatment-free single-cell impedance profiles collected from impedance flow cytometry leveraging constriction microchannels, two types of neural pattern recognition were conducted for comparisons with the purpose of realizing the five-part differential of leukocytes. In the first approach, 30 features from impedance profiles were defined manually and extracted automatically, and then a feedforward neural network was conducted, producing a classification accuracy of 84.9% in the five-part leukocyte differential. In the second approach, a customized recurrent neural network was developed to process impedance profiles directly and based on deep learning, a classification accuracy of 97.5% in the five-part leukocyte differential was reported. These results validated the feasibility of the five-part leukocyte differential based on label-free impedance profiles of single cells and thus provide a new perspective of differentiating white blood cells based on impedance flow cytometry.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yimin Li
- School of Advanced Engineers, University of Science and Technology Beijing, Beijing, People's Republic of China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
26
|
Fang Y, Zhu S, Cheng W, Ni Z, Xiang N. Efficient bioparticle extraction using a miniaturized inertial microfluidic centrifuge. LAB ON A CHIP 2022; 22:3545-3554. [PMID: 35989675 DOI: 10.1039/d2lc00496h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional bioparticle extraction requires labor-intensive operation, and expensive and bulky centrifuges. Herein, we report a miniaturized centrifuge by cascading four paralleled inertial spiral channels with a two-stage serpentine channel, allowing for the efficient washing and acquisition of concentrated bioparticles from background fluids. First, the effects of channel size and flow rate on particle focusing dynamics and solution exchange performances are explored to enable the optimization and wide application of our device. Then, the integrated device is fabricated and tested experimentally. The results indicate that 10-20 μm particles can be washed from the original samples with increased concentrations and with recovery efficiencies of >93%. Finally, to verify its versatility, we use our miniaturized centrifuge to successfully change the culture medium for cultured MCF-7 breast cancer cells, extract A549 lung cancer cells from a calcein-AM staining solution, purify white blood cells (WBCs) from lysed whole blood, and extract target cells from an unbonded magnetic microbead background. Compared with conventional centrifuges, our device has the advantages of simple fabrication, easy operation, and small footprint. More importantly, it offers outstanding capability for extracting bioparticles from various background fluids, and avoids bioparticle damage that may be caused by high-speed centrifugation. Therefore, we envision that our miniaturized centrifuge could be a promising alternative to traditional centrifuges in many applications.
Collapse
Affiliation(s)
- Yaohui Fang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Shu Zhu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design, and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
27
|
Raeisi-Kheirabadi N, Nezamzadeh-Ejhieh A, Aghaei H. Cyclic and Linear Sweep Voltammetric Studies of a Modified Carbon Paste Electrode with Nickel Oxide Nanoparticles toward Tamoxifen: Effects of Surface Modification on Electrode Response Kinetics. ACS OMEGA 2022; 7:31413-31423. [PMID: 36092618 PMCID: PMC9454271 DOI: 10.1021/acsomega.2c03441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
Due to the serious adverse futures of some anticancer drugs, the determination of trace amounts of these drugs by simple analytical techniques is of great interest. In this regard, knowing about the mechanism of the analyte with the sensing material plays an important role. Nickel oxide nanoparticles (NiO NPs) modified by a carbon paste electrode (NiO-CPE) showed an irreversible cyclic voltammetric (CV) behavior in the NaOH (pH 13) supporting electrolyte based on the peak separation of 311 mV. Its peak current was decreased by adding tamoxifen (TAM), confirming that TAM molecules can consume NiO before participating in the electrode reaction. For this goal, TAM can be oxidized or reduced, and the corresponding mechanisms are schematically illustrated in the text. This study focused on the kinetic aspects of the process. Based on the CV results, a surface coverage (Γ) value of 2.72 × 10-5 mol NiO per cm2 was obtained with charge transfer coefficients αa and αc of 0.317 and 0.563, respectively. αa and αc values were changed to 0.08 and 0.72 in the presence of TAM. Further, the rate constant (k s) value was 0.021 ± 0.01 s-1 in the presence of TAM. In linear sweep voltammetry (LSV), an α value of about 0.636 ± 0.023 and an exchange rate constant (k o) value of about 0.097 ± 0.031 s-1 were obtained in the absence of TAM, which changed to 0.62 ± 0.081 and 0.089 ± 0.021 s-1 in the presence of TAM, respectively. Despite more published papers, when the TAM analyte was added to the NaOH supporting electrolyte, both anodic and cathodic peak currents of the modified NiO-CPE decreased. We suggested some reasons for this decreased peak current, and four mechanisms were illustrated for the electrode response in the presence of TAM.
Collapse
|
28
|
Zhang Y, Zhao Y, Cole T, Zheng J, Bayinqiaoge, Guo J, Tang SY. Microfluidic flow cytometry for blood-based biomarker analysis. Analyst 2022; 147:2895-2917. [PMID: 35611964 DOI: 10.1039/d2an00283c] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flow cytometry has proven its capability for rapid and quantitative analysis of individual cells and the separation of targeted biological samples from others. The emerging microfluidics technology makes it possible to develop portable microfluidic diagnostic devices for point-of-care testing (POCT) applications. Microfluidic flow cytometry (MFCM), where flow cytometry and microfluidics are combined to achieve similar or even superior functionalities on microfluidic chips, provides a powerful single-cell characterisation and sorting tool for various biological samples. In recent years, researchers have made great progress in the development of the MFCM including focusing, detecting, and sorting subsystems, and its unique capabilities have been demonstrated in various biological applications. Moreover, liquid biopsy using blood can provide various physiological and pathological information. Thus, biomarkers from blood are regarded as meaningful circulating transporters of signal molecules or particles and have great potential to be used as non (or minimally)-invasive diagnostic tools. In this review, we summarise the recent progress of the key subsystems for MFCM and its achievements in blood-based biomarker analysis. Finally, foresight is offered to highlight the research challenges faced by MFCM in expanding into blood-based POCT applications, potentially yielding commercialisation opportunities.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Ying Zhao
- National Chengdu Centre of Safety Evaluation of Drugs, West China Hospital of Sichuan University, Chengdu, China
| | - Tim Cole
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jiahao Zheng
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Bayinqiaoge
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Jinhong Guo
- The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, #1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| | - Shi-Yang Tang
- Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
29
|
Chmayssem A, Tanase CE, Verplanck N, Gougis M, Mourier V, Zebda A, Ghaemmaghami AM, Mailley P. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material. BIOSENSORS 2022; 12:bios12070452. [PMID: 35884254 PMCID: PMC9313146 DOI: 10.3390/bios12070452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Electrochemical impedance spectroscopy (EIS) is widely accepted as an effective and non-destructive method to assess cell health during cell-culture. However, there is a lack of compact devices compatible with microfluidic integration and microscopy that could provide the real-time and non-invasive monitoring of cell-cultures using EIS. In this paper, we reported the design and characterization of a modular EIS testing system based on a patented technology. This device was fabricated using easily processable methodologies including screen-printing of the impedance electrodes and molding or micromachining of the cell culture chamber with an easy assembly procedure. Accordingly, to obtain processable, biocompatible and sterilizable electrode materials that lower the impact of interfacial impedance on TEER (Transepithelial electrical resistance) measurements, and to enable concomitant microscopy observations, we optimized the formulation of the electrode inks and the design of the EIS electrodes, respectively. First, electrode materials were based on carbon biocompatible inks enriched with IrOx particles to obtain low interfacial impedance electrodes approaching the performances of classical non-biocompatible Ag/AgCl second-species electrodes. Secondly, we proposed three original electrode designs, which were compared to classical disk electrodes that were optically compatible with microscopy. We assessed the impact of the electrode design on the response of the impedance sensor using COMSOL Multiphysics. Finally, the performance of the impedance spectroscopy devices was assessed in vitro using human airway epithelial cell cultures.
Collapse
Affiliation(s)
- Ayman Chmayssem
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
- University Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France;
| | - Constantin Edi Tanase
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (C.E.T.); (A.M.G.)
| | - Nicolas Verplanck
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| | - Maxime Gougis
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| | - Véronique Mourier
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| | - Abdelkader Zebda
- University Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France;
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-Bioengineering Group, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (C.E.T.); (A.M.G.)
| | - Pascal Mailley
- University Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France; (N.V.); (M.G.); (V.M.)
| |
Collapse
|
30
|
Wang M, Liang H, Chen X, Chen D, Wang J, Zhang Y, Chen J. Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells. BIOSENSORS 2022; 12:bios12070443. [PMID: 35884246 PMCID: PMC9313373 DOI: 10.3390/bios12070443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022]
Abstract
This article first reviews scientific meanings of single-cell analysis by highlighting two key scientific problems: landscape reconstruction of cellular identities during dynamic immune processes and mechanisms of tumor origin and evolution. Secondly, the article reviews clinical demands of single-cell analysis, which are complete blood counting enabled by optoelectronic flow cytometry and diagnosis of hematologic malignancies enabled by multicolor fluorescent flow cytometry. Then, this article focuses on the developments of optoelectronic flow cytometry for the complete blood counting by comparing conventional counterparts of hematology analyzers (e.g., DxH 900 of Beckman Coulter, XN-1000 of Sysmex, ADVIA 2120i of Siemens, and CELL-DYN Ruby of Abbott) and microfluidic counterparts (e.g., microfluidic impedance and imaging flow cytometry). Future directions of optoelectronic flow cytometry are indicated where intrinsic rather than dependent biophysical parameters of blood cells must be measured, and they can replace blood smears as the gold standard of blood analysis in the near future.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Liang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| | - Yuan Zhang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; (M.W.); (H.L.); (X.C.); (D.C.)
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (J.W.); (Y.Z.); (J.C.)
| |
Collapse
|
31
|
Tang D, Jiang L, Tang W, Xiang N, Ni Z. Cost-effective portable microfluidic impedance cytometer for broadband impedance cell analysis based on viscoelastic focusing. Talanta 2022; 242:123274. [DOI: 10.1016/j.talanta.2022.123274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
|
32
|
Wang M, Zhang J, Tan H, Chen D, Lei Y, Li Y, Wang J, Chen J. Inherent Single-Cell Bioelectrical Parameters of Thousands of Neutrophils, Eosinophils and Basophils Derived from Impedance Flow Cytometry. Cytometry A 2022; 101:639-647. [PMID: 35419939 DOI: 10.1002/cyto.a.24559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/20/2022] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
Single-cell bioelectrical properties are commonly used for blood cell phenotyping in a label-free manner. However, previously reported inherent single-cell bioelectrical parameters (e.g., diameter Dc , specific membrane capacitance Csm and cytoplasmic conductivity σcy ) of neutrophils, eosinophils and basophils were obtained from only tens of individual cells with limited statistical significance. In this study, granulocytes were separated into neutrophils, eosinophils and basophils based on fluorescent flow cytometry, which were further aspirated through a constriction-microchannel impedance flow cytometry for electrical property characterization. Based on this microfluidic impedance flow cytometry, single-cell values of Dc , Csm and σcy were measured as 10.25 ± 0.66 μm, 2.17 ± 0.30 μF/cm2 , and 0.37 ± 0.05 S/m for neutrophils (ncell = 9 442); 9.73 ± 0.51 μm, 2.07 ± 0.19 μF/cm2 , and 0.30 ± 0.04 S/m for eosinophils (ncell = 2 982); 9.75 ± 0.49 μm, 2.06 ± 0.17 μF/cm2 , and 0.31 ± 0.04 S/m for basophils (ncell = 5 377). Based on these inherent single-cell bioelectrical parameters, neural pattern recognition was conducted, producing classification rates of 80.8% (neutrophil vs. eosinophil), 77.7% (neutrophil vs. basophil) and 59.3% (neutrophil vs. basophil). These results indicate that as inherent single-cell bioelectrical parameters, Dc , Csm and σcy can be used to classify neutrophils from eosinophils or basophils to some extent while they cannot be used to effectively distinguish eosinophils from basophils.
Collapse
Affiliation(s)
- Minruihong Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jie Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Huiwen Tan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Lei
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, People's Republic of China.,China National Center for Bioinformation, Beijing, People's Republic of China
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
33
|
Wei J, Zhao Z, Lan K, Wang Z, Qin G, Chen R. Highly sensitive detection of multiple proteins from single cells by MoS 2-FET biosensors. Talanta 2022; 236:122839. [PMID: 34635229 DOI: 10.1016/j.talanta.2021.122839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Single-cell analysis of proteins is critical to gain precise information regarding the mechanisms that dictate the heterogeneity in cellular phenotypes and their differential response to internal and external stimuli. However, tools that allow sensitive and easy measurement of proteins in individual cells are still limited. The emerging semiconductor-based bioelectronics may provide a new approach to overcome the challenges in this field, however its utility in single-cell protein analysis has not been explored. In this study, we investigated multiple protein detection in single cells by MoS2 field effect transistors (MoS2-FETs) modified with specific biological probes. First, β-actin antibody was connected to the surface of MoS2-FETs by covalent bonds, and the fabricated device was tested using β-actin solution with concentrations from 10-9 to 10-3 μg/μL. Next, we examined the application of MoS2-FET for protein analysis in complex biological samples, and the device showed electrical signal response to human embryonic kidney cell line HEK293T in a dose-dependent manner. Furthermore, we applied this method to analyze individual liver cancer MHCC-97L cells, targeting four cellular proteins, including β-actin, epidermal growth factor receptor, sirtuin-2, and glyceraldehyde-3-phosphate dehydrogenase. The devices modified with corresponding probes could identify the target proteins and showed cell number-dependent responses. As a proof of principle, we demonstrated sensitive and multiplexed detection of proteins in single cells using MoS2-FETs. The biosensor and this detection method are cost-efficient and user-friendly with broad application prospects in biological studies and clinical diagnosis.
Collapse
Affiliation(s)
- Junqing Wei
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhihan Zhao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Kuibo Lan
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhi Wang
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Guoxuan Qin
- School of Microelectronics & Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
34
|
Gökçe F, Ravaynia PS, Modena MM, Hierlemann A. What is the future of electrical impedance spectroscopy in flow cytometry? BIOMICROFLUIDICS 2021; 15:061302. [PMID: 34917226 PMCID: PMC8651262 DOI: 10.1063/5.0073457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/02/2023]
Abstract
More than 20 years ago, electrical impedance spectroscopy (EIS) was proposed as a potential characterization method for flow cytometry. As the setup is comparably simple and the method is label-free, EIS has attracted considerable interest from the research community as a potential alternative to standard optical methods, such as fluorescence-activated cell sorting (FACS). However, until today, FACS remains by and large the laboratory standard with highly developed capabilities and broad use in research and clinical settings. Nevertheless, can EIS still provide a complement or alternative to FACS in specific applications? In this Perspective, we will give an overview of the current state of the art of EIS in terms of technologies and capabilities. We will then describe recent advances in EIS-based flow cytometry, compare the performance to that of FACS methods, and discuss potential prospects of EIS in flow cytometry.
Collapse
Affiliation(s)
- Furkan Gökçe
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Paolo S. Ravaynia
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mario M. Modena
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Hierlemann
- Bioengineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
35
|
Lu X, Sun S, Liu K, Sun J, Xu L. Development of a Wearable Gesture Recognition System Based on Two-terminal Electrical Impedance Tomography. IEEE J Biomed Health Inform 2021; 26:2515-2523. [PMID: 34818198 DOI: 10.1109/jbhi.2021.3130374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper proposes a low-cost, wearable gesture recognition system based on the two-terminal electrical impedance tomography (EIT) technique. The system includes a wearable EIT sensor of eight electrodes, a hardware device, and gesture recognition software running on a PC. Nine different gestures can be stably identified from the measured impedance changes through machine learning algorithms. Experimental results show that the Quadric Discriminator algorithm has the highest recognition rate of 98.49% for the filtered validation set. Besides, the recognition results in the two-terminal mode and transformed four-terminal mode are compared by applying a two-to-four-terminal mapping to the two-terminal EIT system, and the recognition rate decreases with the most classification models in the latter mode. Thus, it is supposed that contact impedance plays an important role in gesture recognition. By analyzing the data characteristics with variance inflation factor (VIF) test and principal component analysis (PCA), the supposition is explained and verified, proving the merit of a two-terminal EIT system in gesture recognition.
Collapse
|