1
|
Lin M, Yang H, Li Q, Xiao H, Jiang S, Liang J, Cui X, Zhao S. Dual lateral flow assay based on PdRu nanocages for human Papillomavirus detection. J Colloid Interface Sci 2024; 673:893-900. [PMID: 38908288 DOI: 10.1016/j.jcis.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
Cervical cancer is one of the most common gynecological malignancies, with the vast majority of which being caused by persistent infection with Human Papillomavirus (HPV) 16 and 18. The current available HPV detection methods are sensitive and genotyped but are restricted by expensive instruments and skilled personnel. The development of an easy-to-use, rapid, and cost-friendly analysis method for HPV is of great need. Herein, hollow palladium-ruthenium nanocages modified with two oligonucleotides (PdRu capture probes) were constructed for genotyping and simultaneous detection of target nucleic acids HPV16 and HPV18 by dual lateral flow assay (DLFA). PdRu capture probes were endowed with bi-functions for the first time, which could be used to output signals and hybridize target nucleic acids. Under optimized conditions, the PdRu based-DLFA with detection limits of 0.93 nM and 0.19 nM, respectively, exhibited convenient operation, and high sensitivity. Meanwhile, the DLFA achieved excellent rapid detection within 20 min, which was attributed to capture probes that can be directly bound to amplification-free target nucleic acids. Therefore, the development of PdRu-based DLFA can be utilized for rapid, sensitive, and simultaneous genotyping detection of HPV16 and HPV18, showing great application for nucleic acid detection.
Collapse
Affiliation(s)
- Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Huiyi Yang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Huanxin Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shilin Jiang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jinhui Liang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiping Cui
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Luu AP, Rao SS, Malik HY, Shi RB, Toubian AA, Kamei DT. Investigating bottom phase extraction from aqueous two-phase systems for detecting bacteria using the lateral-flow immunoassay. Anal Biochem 2024; 694:115634. [PMID: 39094782 DOI: 10.1016/j.ab.2024.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Lateral-flow immunoassays (LFAs) can be used to diagnose urinary tract infections caused by Escherichia coli (E. coli) at the point of care. Unfortunately, urine samples containing dilute concentrations of E. coli can yield false negative results on LFAs. Our laboratory was first to implement aqueous two-phase systems (ATPSs) to preconcentrate samples into smaller volumes prior to their application on LFAs. This is achieved by manipulating the ratio of the volume of the top phase to that of the bottom phase (volume ratio; VR) and concentrating biomarkers in the bottom phase which, when applied to LFAs in fixed volumes, leads to corresponding improvements in sensitivity. This work is the first demonstration that the same LOD can be achieved irrespective of the VR when the entire bottom phase is added to LFAs. A custom 3D-printed device was also developed to decrease liquid handling steps. Across different VRs expected from patient urine variability, this diagnostic workflow successfully detected E. coli concentrations down to 2 × 105 colony-forming units (cfu) mL-1 in synthetic urine, demonstrating consistent 10-fold improvements in sensitivity compared to trials conducted without ATPS preconcentration. This method successfully addresses the variability of patient samples while remaining easy to use at the point of care.
Collapse
Affiliation(s)
- Audrey P Luu
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Shreedevi S Rao
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Humza Y Malik
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Robin B Shi
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Adam A Toubian
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Daniel T Kamei
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Hussain W, Wang H, Yang X, Ullah MW, Hussain J, Ullah N, Ul-Islam M, Awad MF, Wang S. Ultrasensitive Electrochemical Detection of Salmonella typhimurium in Food Matrices Using Surface-Modified Bacterial Cellulose with Immobilized Phage Particles. BIOSENSORS 2024; 14:500. [PMID: 39451713 PMCID: PMC11506579 DOI: 10.3390/bios14100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The rapid and sensitive detection of Salmonella typhimurium in food matrices is crucial for ensuring food safety. This study presents the development of an ultrasensitive electrochemical biosensor using surface-modified bacterial cellulose (BC) integrated with polypyrrole (Ppy) and reduced graphene oxide (RGO), further functionalized with immobilized S. typhimurium-specific phage particles. The BC substrate, with its ultra-fibrous and porous structure, was modified through in situ oxidative polymerization of Ppy and RGO, resulting in a highly conductive and flexible biointerface. The immobilization of phages onto this composite was facilitated by electrostatic interactions between the polycationic Ppy and the negatively charged phage capsid heads, optimizing phage orientation and enhancing bacterial capture efficiency. Morphological and chemical characterization confirmed the successful fabrication and phage immobilization. The biosensor demonstrated a detection limit of 1 CFU/mL for S. typhimurium in phosphate-buffered saline (PBS), with a linear detection range spanning 100 to 107 CFU/mL. In real samples, the sensor achieved detection limits of 5 CFU/mL in milk and 3 CFU/mL in chicken, with a linear detection range spanning 100 to 106 CFU/mL, maintaining high accuracy and reproducibility. The biosensor also effectively discriminated between live and dead bacterial cells, demonstrating its potential in real-world food safety applications. The biosensor performed excellently over a wide pH range (4-10) and remained stable for up to six weeks. Overall, the developed BC/Ppy/RGO-phage biosensor offers a promising tool for the rapid, sensitive, and selective detection of S. typhimurium, with robust performance across different food matrices.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (H.W.); (X.Y.)
| | - Huan Wang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (H.W.); (X.Y.)
| | - Xiaohan Yang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (H.W.); (X.Y.)
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jawad Hussain
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Najeeb Ullah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA;
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Salalah 211, Oman;
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Shenqi Wang
- Advanced Biomaterials and Tissue Engineering Center, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.H.); (H.W.); (X.Y.)
| |
Collapse
|
4
|
Zhang J, Dong Z, Xu L, Han X, Sheng Z, Chen W, Zheng J, Lai D, Shen F. An Injection Molded SlipChip with Self-Sampling for Integrated Point-of-Care Testing of Human Papilloma Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406367. [PMID: 39320328 DOI: 10.1002/advs.202406367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Indexed: 09/26/2024]
Abstract
High-risk human papillomavirus (HPV) screening is crucial for cervical cancer prevention. However, laboratory-based nucleic acid amplification tests (NAATs) require costly equipment, designated lab space, and skilled personnel. Additionally, cervical swabs collected by healthcare professionals can be inconvenient, uncomfortable, and reduce privacy, limiting broader application and patient compliance. A SlipChip-based Integrated Point-of-Care (SIPOC) system featuring an injection-molded SlipChip is presented with preloaded reagents for nucleic acid extraction and a portable four-channel real-time quantitative PCR instrument for detection. This system incorporates a self-sampling method that allows participants to collect their own vaginal swabs, with the β-Globin gene as a control. After testing 130 participants for HPV-16 and HPV-18, 97.7% of the self-collected samples are valid. Among valid samples, 25 tested positive for HPV-16 and 9 for HPV-18. Compared to Roche's standard HPV PCR test, the SIPOC system shows 100% positive predictive value (PPV) for both HPV-16 and HPV-18 and negative predictive values (NPVs) of 99.0% and 99.1%, respectively. This system is promising for HPV screening in resource-limited settings and adaptable for other point-of-care NAAT applications, including home testing.
Collapse
Affiliation(s)
- Jiajie Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zhangli Dong
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Xu Han
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Zheyi Sheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Weiyu Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Jiayi Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
- Hefei Early Cancer Screening Innovation Technology Institute, Hefei Inovation Industrial Park, Wangjiang West Road, Hefei, China
| |
Collapse
|
5
|
Chen T, Sun C, Abbas SC, Alam N, Qiang S, Tian X, Fu C, Zhang H, Xia Y, Liu L, Ni Y, Jiang X. Multi-dimensional microfluidic paper-based analytical devices (μPADs) for noninvasive testing: A review of structural design and applications. Anal Chim Acta 2024; 1321:342877. [PMID: 39155092 DOI: 10.1016/j.aca.2024.342877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
The rapid emergence of microfluidic paper-based devices as point-of-care testing (POCT) tools for early disease diagnosis and health monitoring, particularly in resource-limited areas, holds immense potential for enhancing healthcare accessibility. Leveraging the numerous advantages of paper, such as capillary-driven flow, porous structure, hydrophilic functional groups, biodegradability, cost-effectiveness, and flexibility, it has become a pivotal choice for microfluidic substrates. The repertoire of microfluidic paper-based devices includes one-dimensional lateral flow assays (1D LFAs), two-dimensional microfluidic paper-based analytical devices (2D μPADs), and three-dimensional (3D) μPADs. In this comprehensive review, we provide and examine crucial information related to paper substrates, design strategies, and detection methods in multi-dimensional microfluidic paper-based devices. We also investigate potential applications of microfluidic paper-based devices for detecting viruses, metabolites and hormones in non-invasive samples such as human saliva, sweat and urine. Additionally, we delve into capillary-driven flow alternative theoretical models of fluids within the paper to provide guidance. Finally, we critically examine the potential for future developments and address challenges for multi-dimensional microfluidic paper-based devices in advancing noninvasive early diagnosis and health monitoring. This article showcases their transformative impact on healthcare, paving the way for enhanced medical services worldwide.
Collapse
Affiliation(s)
- Ting Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Ce Sun
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Syed Comail Abbas
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA
| | - Nur Alam
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Sheng Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Xiuzhi Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chenglong Fu
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Hui Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Yuanyuan Xia
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China; Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Liu Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Yonghao Ni
- Limerick Pulp & Paper Centre & Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada; Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME, USA.
| | - Xue Jiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Province Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
6
|
Mondal R, Chakraborty J, Dam P, Shaw S, Gangopadhyay D, Ertas YN, Mandal AK. Development of Aptamer-Functionalized Gold Nanoparticles as Probes in Point-of-Care Diagnostic Device for Rapid Detection of Multidrug-Resistant Bacteria in Bombyx mori L. . ACS APPLIED BIO MATERIALS 2024; 7:5740-5753. [PMID: 39110486 DOI: 10.1021/acsabm.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.
Collapse
Affiliation(s)
- Rittick Mondal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Joydeep Chakraborty
- Department of Microbiology, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Paulami Dam
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Shubhajit Shaw
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Debnirmalya Gangopadhyay
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
- Department of Technical Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
- Center for Nanotechnology Sciences (CeNS), Raiganj University, North Dinajpur, Raiganj, West Bengal 733134, India
| |
Collapse
|
7
|
Maleki F, Razmi H, Rashidi MR, Yousefi M, Ramezani S, Ghorbani M. Electrospun EU/HPMC nanofibers decorated by ZIF-8 nanoparticle as the advanced electrochemical biosensor modifier for sensitive and selective detection of c-MET cancer biomarker in human plasma sample. Biosens Bioelectron 2024; 257:116319. [PMID: 38669845 DOI: 10.1016/j.bios.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
This research presents a selective and sensitive electrochemical biosensor for the detection of the mesenchymal-epithelial transition factor (c-MET). The biosensing is based on a modification of the SPCE (screen-printed carbon electrode) with the electrospun nanofiber containing eudragit (EU), hydroxypropyl methylcellulose (HPMC), and Zeolite imidazolate frameworks (ZIF-8) nanoparticles. EU/HPMC/ZIF-8 nanofibers have presented a high capability of electron transfer, and more active surface area than bare SPCE due to synergistic effects between EU, HPMC, and ZIF-8. On the other hand, EU/HPMC nanofibers provided high porosity, flexible structures, high specific surface area, and good mechanical strength. The presence of ZIF-8 nanoparticles improved the immobilization of anti-c-MET on the modified SPCE and also resulted in increasing the conductivity. By c-MET incubation on the modified SPCE, c-MET was connected to anti-c-MET, and consequently the electrochemical signal of [Fe(CN)6]3-/4- as the anion redox probe was reduced. In order to investigate the structural and morphological characteristics and elemental composition of electrospun nanofibers, various characterization methods including FE-SEM, XRD, FTIR, and EDS were used. Under optimum conditions with a working potential range -0.3-0.6 V (vs. Ag/AgCl), linear range (LR), correlation coefficient (R2), sensitivity, and limit of detection (LOD) were acquired at 100 fg/mL-100 ng/mL, 0.9985, 53.28 μA/cm2.dec, and 1.28 fg/mL, respectively. Moreover, the mentioned biosensor was investigated in a human plasma sample to determine c-MET and showed ideal results including reproducibility, stability, and good selectivity against other proteins.
Collapse
Affiliation(s)
- Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161, Tabriz, Iran.
| | | | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Soghra Ramezani
- Faculty of Textile Engineering, Urmia University of Technology, Urmia 5716693188, Iran
| | - Marjan Ghorbani
- Iran Polymer and Petrochemical Institute, PO Box:14965/115, Tehran, Iran.
| |
Collapse
|
8
|
Cui S, Wei Y, Li C, Zhang J, Zhao Y, Peng X, Sun F. Visual Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid On-Site Detection of Escherichia coli O157: H7 in Milk Products. Foods 2024; 13:2143. [PMID: 38998648 PMCID: PMC11241362 DOI: 10.3390/foods13132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Rapid on-site testing is an effective method for the detection of Escherichia coli O157: H7(E. coli O157: H7) in food ingredients and the environment. (2) Methods: In this study, we developed colorimetric loop-mediated isothermal amplification (LAMP) and immunochromatographic test strips (ICTs) for the rapid and visual detection of E. coli O157: H7. This study designed new specific LAMP primers for E. coli O157: H7 virulence island genes. After the LAMP amplification, the double-stranded DNA target sequence labeled with digoxin and fluorescein isothiocyanate (FITC) at both ends was bound to the anti-digoxin antibody on the gold nanoparticles. Subsequently, it was further bound to the anti-FITC antibody at the T line of the ICTs, forming a positive test result. Hydroxynaphthyl blue dye was directly added to the LAMP amplification product. A blue color indicated positive results, while a purple color indicated negative results. (3) Results: Two visualization methods showed high specificity for the target strains. The visualization tests had sensitivities of 5.7 CFU mL-1, and the detection limit of the Escherichia coli O157: H7 in artificially contaminated milk samples was 5.7 × 102 CFU mL-1, which was consistent with the results of the standard method (LAMP-electrophoresis method) used in commercial inspection. (4) Conclusions: Both methods could be useful in remote and under-resourced areas.
Collapse
Affiliation(s)
- Shuangshuang Cui
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yong Wei
- Xinjiang Tianrun Dairy Co., Ltd., Wuchang Road No. 2702, Urumqi 830000, China
| | - Can Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiayu Peng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fengxia Sun
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
9
|
Frigoli M, Lowdon JW, Caldara M, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Emerging Biomimetic Sensor Technologies for the Detection of Pathogenic Bacteria: A Commercial Viability Study. ACS OMEGA 2024; 9:23155-23171. [PMID: 38854523 PMCID: PMC11154936 DOI: 10.1021/acsomega.4c01478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
Ensuring a rapid and accurate identification of harmful bacteria is crucial in various fields including environmental monitoring, food safety, and clinical diagnostics. Conventional detection methods often suffer from limitations such as long analysis time, complexity, and the need for qualified personnel. Therefore, a lot of research effort is devoted to developing technologies with the potential to revolutionize the detection of pathogenic bacteria by offering rapid, sensitive, and user-friendly platforms for point-of-care analysis. In this light, biosensors have gained significant commercial attention in recent years due to their simplicity, portability, and rapid analysis capabilities. The purpose of this review is to identify a trend by analyzing which biosensor technologies have become commercially successful in the field of bacteria detection. Moreover, we highlight the characteristics that a biosensor must possess to finally arrive in the market and therefore in the hands of the end-user, and we present critical examples of the market applications of various technologies. The aim is to investigate the reason why certain technologies have achieved commercial success and extrapolate these trends to the future economic viability of a new subfield in the world of biosensing: the development of biomimetic sensor platforms. Therefore, an overview of recent advances in the field of biomimetic bacteria detection will be presented, after which the challenges that need to be addressed in the coming years to improve market penetration will be critically evaluated. We will zoom into the current shortcomings of biomimetic sensors based on imprinting technology and aptamers and try to come up with a recommendation for further development based on the trends observed from previous commercial success stories in biosensing.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W. Lowdon
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Manlio Caldara
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J. Cleij
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department,
Faculty of Science and Engineering, Maastricht
University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
10
|
Jang WS, Lee JM, Lee E, Park S, Lim CS. Loop-Mediated Isothermal Amplification and Lateral Flow Immunochromatography Technology for Rapid Diagnosis of Influenza A/B. Diagnostics (Basel) 2024; 14:967. [PMID: 38732380 PMCID: PMC11083224 DOI: 10.3390/diagnostics14090967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Influenza viruses cause highly contagious respiratory diseases that cause millions of deaths worldwide. Rapid detection of influenza viruses is essential for accurate diagnosis and the initiation of appropriate treatment. We developed a loop-mediated isothermal amplification and lateral flow assay (LAMP-LFA) capable of simultaneously detecting influenza A and influenza B. Primer sets for influenza A and influenza B were designed to target conserved regions of segment 7 and the nucleoprotein gene, respectively. Optimized through various primer set ratios, the assay operated at 62 °C for 30 min. For a total of 243 (85 influenza A positive, 58 influenza B positive and 100 negative) nasopharyngeal swab samples, the performance of the influenza A/B multiplex LAMP-LFA was compared with that of the commercial AllplexTM Respiratory Panel 1 assay (Seegene, Seoul, Korea). The influenza A/B multiplex LAMP-LFA demonstrated a specificity of 98% for the non-infected clinical samples, along with sensitivities of 94.1% for the influenza A clinical samples and 96.6% for the influenza B clinical samples, respectively. The influenza A/B multiplex LAMP-LFA showed high sensitivity and specificity, indicating that it is reliable for use in a low-resource environment.
Collapse
Affiliation(s)
- Woong Sik Jang
- Emergency Medicine, College of Medicine, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea;
| | - Jun Min Lee
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
| | - Eunji Lee
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (E.L.); (S.P.)
| | - Seoyeon Park
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (E.L.); (S.P.)
| | - Chae Seung Lim
- Department of Laboratory Medicine, College of Medicine, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul 08308, Republic of Korea; (E.L.); (S.P.)
| |
Collapse
|
11
|
Lee SY, Oh SW. Point-of-Care Diagnostic System for Viable Salmonella Species via Improved Propidium Monoazide and Recombinase Polymerase Amplification Based Nucleic Acid Lateral Flow. Diagnostics (Basel) 2024; 14:831. [PMID: 38667476 PMCID: PMC11049151 DOI: 10.3390/diagnostics14080831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella species are prominent foodborne microbial pathogens transmitted through contaminated food or water and pose a significant threat to human health. Accurate and rapid point-of-care (POC) diagnosis is gaining attention in effectively preventing outbreaks of foodborne disease. However, the presence of dead bacteria can interfere with an accurate diagnosis, necessitating the development of methods for the rapid, simple, and efficient detection of viable bacteria only. Herein, we used an improved propidium monoazide (PMAxx) to develop a nucleic acid lateral flow (NALF) assay based on recombinase polymerase amplification (RPA) to differentiate viable Salmonella Typhimurium. We selected an RPA primer set targeting the invA gene and designed a probe for NALF. RPA-based NALF was optimized for temperature (30-43 °C), time (1-25 min), and endonuclease IV concentration (0.025-0.15 unit/µL). PMAxx successfully eliminated false-positive results from dead S. Typhimurium, enabling the accurate detection of viable S. Typhimurium with a detection limit of 1.11 × 102 CFU/mL in pure culture. The developed method was evaluated with spiked raw chicken breast and milk with analysis completed within 25 min at 39 °C. This study has potential as a tool for the POC diagnostics of viable foodborne pathogens with high specificity, sensitivity, rapidity, and cost-effectiveness.
Collapse
Affiliation(s)
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Republic of Korea;
| |
Collapse
|
12
|
Wu T, Shen C, Zhao Z, Lyu M, Bai H, Hu X, Zhao J, Zhang R, Qian K, Xu G, Ying B. Integrating Paper-Based Microfluidics and Lateral Flow Strip into Nucleic Acid Amplification Device toward Rapid, Low-Cost, and Visual Diagnosis of Multiple Mycobacteria. SMALL METHODS 2024:e2400095. [PMID: 38466131 DOI: 10.1002/smtd.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Indexed: 03/12/2024]
Abstract
Efficient diagnosis of mycobacterial infections can effectively manage and prevent the transmission of infectious diseases. Unfortunately, existing diagnostic strategies are challenged by long assay times, high costs, and highly specialized expertise to distinguish between pulmonary tuberculosis (PTB) and nontuberculous mycobacterial pulmonary diseases (NTM-PDs). Herein, in this study, an optimized 3D paper-based analytical device (µPAD) is incorporated with a closed lateral flow (LF) strip into a loop-mediated isothermal amplification (LAMP) device (3D-µPAD-LF-LAMP) for rapid, low-cost, and visual detection of pathogenic mycobacteria. The platform's microfluidic feature enhanced the nucleic acid amplification, thereby reducing the costs and time as compared to boiling, easyMAG, and QIAGEN techniques. Moreover, the LF unit is specifically designed to minimize aerosol contamination for a user-friendly and visual readout. 3D-µPAD-LF-LAMP is optimized and assessed using standard strains, demonstrating a limit of detection (LOD) down to 10 fg reaction-1 . In a cohort of 815 patients, 3D-µPAD-LF-LAMP displays significantly better sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), and diagnostic accuracy than conventional bacterial culture and Xpert techniques. Collectively, 3D-µPAD-LF-LAMP demonstrates enhanced accessibility, efficiency, and practicality for the diagnosis of multiple pathogenic mycobacteria, which can be applied across diverse clinical settings, thereby ultimately improving public health outcomes.
Collapse
Affiliation(s)
- Tao Wu
- Department of Clinical Laboratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750001, China
| | - Chenlan Shen
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Mengyuan Lyu
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hao Bai
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Xuejiao Hu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, 510080, China
| | - Junwei Zhao
- Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Dong Road, ErQi District, Zhengzhou, Henan Province, China
| | - Ru Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Kun Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Gaolian Xu
- Shanghai Sci-Tech InnoCenter for Infection & Immunity, Building A1, Bay Valley Science and Technology Park, Lane 1688, Guoquan North Road, Yangpu District, Shanghai, China
| | - Binwu Ying
- Department of Laboratory Medicine and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| |
Collapse
|
13
|
Lehnert T, Gijs MAM. Microfluidic systems for infectious disease diagnostics. LAB ON A CHIP 2024; 24:1441-1493. [PMID: 38372324 DOI: 10.1039/d4lc00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Microorganisms, encompassing both uni- and multicellular entities, exhibit remarkable diversity as omnipresent life forms in nature. They play a pivotal role by supplying essential components for sustaining biological processes across diverse ecosystems, including higher host organisms. The complex interactions within the human gut microbiota are crucial for metabolic functions, immune responses, and biochemical signalling, particularly through the gut-brain axis. Viruses also play important roles in biological processes, for example by increasing genetic diversity through horizontal gene transfer when replicating inside living cells. On the other hand, infection of the human body by microbiological agents may lead to severe physiological disorders and diseases. Infectious diseases pose a significant burden on global healthcare systems, characterized by substantial variations in the epidemiological landscape. Fast spreading antibiotic resistance or uncontrolled outbreaks of communicable diseases are major challenges at present. Furthermore, delivering field-proven point-of-care diagnostic tools to the most severely affected populations in low-resource settings is particularly important and challenging. New paradigms and technological approaches enabling rapid and informed disease management need to be implemented. In this respect, infectious disease diagnostics taking advantage of microfluidic systems combined with integrated biosensor-based pathogen detection offers a host of innovative and promising solutions. In this review, we aim to outline recent activities and progress in the development of microfluidic diagnostic tools. Our literature research mainly covers the last 5 years. We will follow a classification scheme based on the human body systems primarily involved at the clinical level or on specific pathogen transmission modes. Important diseases, such as tuberculosis and malaria, will be addressed more extensively.
Collapse
Affiliation(s)
- Thomas Lehnert
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
14
|
Rastmanesh A, Boruah JS, Lee MS, Park S. On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. BIOSENSORS 2024; 14:122. [PMID: 38534229 DOI: 10.3390/bios14030122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Bioaerosols are small airborne particles composed of microbiological fragments, including bacteria, viruses, fungi, pollens, and/or by-products of cells, which may be viable or non-viable wherever applicable. Exposure to these agents can cause a variety of health issues, such as allergic and infectious diseases, neurological disorders, and cancer. Therefore, detecting and identifying bioaerosols is crucial, and bioaerosol sampling is a key step in any bioaerosol investigation. This review provides an overview of the current bioaerosol sampling methods, both passive and active, as well as their applications and limitations for rapid on-site monitoring. The challenges and trends for detecting airborne microorganisms using molecular and immunological methods are also discussed, along with a summary and outlook for the development of prompt monitoring technologies.
Collapse
Affiliation(s)
- Afagh Rastmanesh
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| | - Jayanta S Boruah
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| | - Min-Seok Lee
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| | - Seungkyung Park
- Complex Fluids Laboratory, School of Mechanical Engineering, Korea University of Technology and Education, Cheonan 31253, Chungnam, Republic of Korea
| |
Collapse
|
15
|
Schobesberger S, Thumfart H, Selinger F, Schlimp CJ, Zipperle J, Ertl P. Development of a Paper-based Hematocrit Test and a Lateral Flow Assay to Detect Critical Fibrinogen Concentrations Using a Bottom-Up Pyramid Workflow Approach. ACS OMEGA 2024; 9:8533-8542. [PMID: 38405462 PMCID: PMC10882670 DOI: 10.1021/acsomega.3c10045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Fibrinogen is a coagulation factor in human blood and the first one to reach critical levels in major bleeding. Hypofibrinogenemia (a too low fibrinogen concentration in blood) poses great challenges to first responders, clinicians, and healthcare providers since it represents a risk factor for exsanguination and massive transfusion requirements. Thus, the rapid assessment of the fibrinogen concentration at the point of care has gained considerable importance in preventing and managing major blood loss. However, in whole blood measurements, hematocrit variations affect the amount (volume fraction) of plasma that passes the detection zone. In an attempt to accurately determine realistic critical levels of fibrinogen (<1.5 mg/mL) in patients needing immediate treatment and medical interventions, we have developed novel diagnostic systems capable of estimating hematocrit and critical fibrinogen concentrations. A lateral flow assay (LFA) for the detection of fibrinogen has been developed by establishing a workflow employing rapid characterization methods to streamline LFA development. The integration of two detection lines enables (i) the identification of fibrinogen (first line) present in the sample and (ii) the determination of the clinically critical fibrinogen concentrations below 1.5 mg/mL (second line). Furthermore, the paper-based separation of blood cells from plasma provides a semiquantitative estimate of the hematocrit by analyzing the fractions. Initial validation of the point-of-care (PoC) hematocrit test revealed good comparability to a standard laboratory method. The developed diagnostic systems have the ability to accelerate decision-making in cases with major bleeding.
Collapse
Affiliation(s)
| | - Helena Thumfart
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Florian Selinger
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoph J Schlimp
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
- Department of Anaesthesiology and Intensive Care, AUVA Trauma Center Linz, Garnisonstraße 7, 4010 Linz, Austria
| | - Johannes Zipperle
- Ludwig-Boltzmann-Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
16
|
Reinicke M, Braun SD, Diezel C, Lemuth O, Engelmann I, Liebe T, Ehricht R. From Shadows to Spotlight: Enhancing Bacterial DNA Detection in Blood Samples through Cutting-Edge Molecular Pre-Amplification. Antibiotics (Basel) 2024; 13:161. [PMID: 38391548 PMCID: PMC10886392 DOI: 10.3390/antibiotics13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
One of the greatest challenges to the use of molecular methods for diagnostic purposes is the detection of target DNA that is present only in low concentrations. One major factor that negatively impacts accuracy, diagnostic sensitivity, and specificity is the sample matrix, which hinders the attainment of the required detection limit due to the presence of residual background DNA. To address this issue, various methods have been developed to enhance sensitivity through targeted pre-amplification of marker sequences. Diagnostic sensitivity to the single molecular level is critical, particularly when identifying bloodstream infections. In cases of clinically manifest sepsis, the concentration of bacteria in the blood may reach as low as one bacterial cell/CFU per mL of blood. Therefore, it is crucial to achieve the highest level of sensitivity for accurate detection. In the present study, we have established a method that fills the analytical gap between low concentrations of molecular markers and the minimum requirements for molecular testing. For this purpose, a sample preparation of whole blood samples with a directly downstream pre-amplification was developed, which amplifies specific species and resistance markers in a multiplex procedure. When applying pre-amplification techniques, the sensitivity of the pathogen detection in whole blood samples was up to 100 times higher than in non-pre-amplified samples. The method was tested with blood samples that were spiked with several Gram-positive and Gram-negative bacterial pathogens. By applying this method to artificial spiked blood samples, it was possible to demonstrate a sensitivity of 1 colony-forming unit (CFU) per millilitre of blood for S. aureus and E. faecium. A detection limit of 28 and 383 CFU per ml of blood was achieved for E. coli and K. pneumoniae, respectively. If the sensitivity is also confirmed for real clinical blood samples from septic patients, the novel technique can be used for pathogen detection without cultivation, which might help to accelerate diagnostics and, thus, to decrease sepsis mortality rates.
Collapse
Affiliation(s)
- Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sascha Daniel Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Oliver Lemuth
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ines Engelmann
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Theresa Liebe
- InfectoGnostics Research Campus, 07743 Jena, Germany
- BLINK AG, 07747 Jena, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Centre for Photonics in Infection Research (LPI), 07745 Jena, Germany
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| |
Collapse
|
17
|
Quan H, Wang S, Xi X, Zhang Y, Ding Y, Li Y, Lin J, Liu Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens Bioelectron 2024; 245:115837. [PMID: 38000308 DOI: 10.1016/j.bios.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Culture plating is worldwide accepted as the gold standard for quantifying viable foodborne pathogens. However, it is time-consuming (1-2 days) and requires specialized laboratory and personnel. This study reported a deep learning enhanced digital microfluidic platform for multiplex detection of viable foodborne pathogens. The new method used a Time-Lapse images driven EfficientNet-Transformer Network (TLENTNet) to type and quantify the bacteria through spatiotemporal features of bacterial growth and digital enumeration of bacterial culture. First, the bacterial sample was prepared with LB medium and injected into a pre-vacuumed microfluidic chip with an array of 800 microwells to encapsulate at most one bacterium in each well. Then, a programmed sliding microscopic platform was used to scan all microwells every 15 min, capturing time-lapse images of bacterial growth within each microwell. Finally, the TLENTNet was used to facilitate bacterial typing and quantification. Under optimal conditions, this platform was able to detect four bacterial species (S.typhimurium, E. coli O157:H7, S. aureus and B. cereus) with an average accuracy of 97.72% and a detection limit of 63 CFU/mL in 7 h.
Collapse
Affiliation(s)
- Han Quan
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Siyuan Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Xinge Xi
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Yingchao Zhang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Ying Ding
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jianhan Lin
- Key Laboratory of Smart Agriculture System Integration, Ministry of Education, China Agricultural University, Beijing, 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
18
|
Cirrincione M, Downing M, Leite K, Dolphin S, Samuta A, Schermer M, Noble K, Walsh B. Assessment of Reader Technologies for Over-the-Counter Diagnostic Testing. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:210-215. [PMID: 38606399 PMCID: PMC11008808 DOI: 10.1109/ojemb.2024.3355701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/29/2023] [Accepted: 01/15/2024] [Indexed: 04/13/2024] Open
Abstract
Background: Over-the-counter (OTC) diagnostic testing is on the rise with many in vitro diagnostic tests being lateral flow assays (LFAs). A growing number of these are adopting reader technologies, which provides an alternative to visual readouts for results interpretation, allowing for improved accessibility of OTC diagnostics. As the reader technology market develops, there are many technologies entering the market, but no clear, single solution has yet been identified. The purpose of this research is to identify and discuss important parameters for the assessment of LFA reader technologies for consideration by manufacturers or researchers. Methods: As part of The National Institute of Biomedical Imaging and Bioengineering's Rapid Acceleration of Diagnostics (RADx) Tech program, reader manufacturers were interviewed to investigate the current state of reader technology development through several parameters identified as important industry standards. Readers were categorized by technology type and parameters including cost, detection method, multiplex capabilities, assay type, maturity, and use case were all assessed. Results: Fifteen reader manufacturers were identified and interviewed, and information on a total of 19 technologies was assessed. Reader technology type was found to be predictive of other attributes, whether the reader is smart technology only, a standalone reader, a reader with smart technology required, or a reader with smart technology optional. Conclusions: Pairing reader technology with OTC diagnostic tests is important for improving existing COVID-19 tests and can be utilized in other diagnostics as the OTC use case grows in popularity. Reader technology type, which is predictive of core reader attributes, should be considered when selecting a reader technology for a specific LFA test within the context of regulatory guidance. As diagnostics increase in complexity, readers provide solutions to accessibility challenges, facilitate public health reporting, and ease the transition to multiplex testing, therefore increasing market availability.
Collapse
|
19
|
Renzi E, Piper A, Nastri F, Merkoçi A, Lombardi A. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207949. [PMID: 36942720 DOI: 10.1002/smll.202207949] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Signal amplification strategies are widely used for improving the sensitivity of lateral flow immunoassays (LFiAs). Herein, the artificial miniaturized peroxidase Fe(III)-MimochromeVI*a (FeMC6*a), immobilized on gold nanoparticles (AuNPs), is used as a strategy to obtain catalytic signal amplification in sandwich immunoassays on lateral flow strips. The assay scheme uses AuNPs decorated with the mini-peroxidase FeMC6*a and anti-human-IgG as a detection antibody (dAb), for the detection of human-IgG, as a model analyte. Recognition of the analyte by the capture and detection antibodies is first evidenced by the appearance of a red color in the test line (TL), due to the accumulation of AuNPs. Subsequent addition of 3,3',5,5'-tetramethylbenzidine (TMB) induces an increase of the test line color, due to the TMB being converted into an insoluble colored product, catalyzed by FeMC6*a. This work shows that FeMC6*a acts as an efficient catalyst in paper, increasing the sensitivity of an LFiA up to four times with respect to a conventional LFiA. Furthermore, FeMC6*a achieves lower limits of detection that are found in control experiments where it is replaced with horseradish peroxidase (HRP), its natural counterpart. This study represents a significant proof-of-concept for the development of more sensitive LFiAs, for different analytes, based on properly designed artificial metalloenzymes.
Collapse
Affiliation(s)
- Emilia Renzi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andrew Piper
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Institut Català de Nanociència I Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia, 21, Napoli, 80126, Italy
| |
Collapse
|
20
|
Liang J, Wang K, Gong L, Zhang Z, Wang J, Cao Y, Yang T, Zeng H. High extinction coefficient material combined with multi-line lateral flow immunoassay strip for ultrasensitive detection of bacteria. Food Chem 2023; 427:136721. [PMID: 37390742 DOI: 10.1016/j.foodchem.2023.136721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Lateral flow immunoassay strips (LFIAs) are a reliable and point-of-care detection method for rapid monitoring of bacteria, but their sensitivity was limited by the low extinction coefficient of colloidal gold nanoparticles (Au NPs) and low capture efficiency of test-line. In this study, polydopamine nanoparticles (PDA NPs) were employed to replace Au NPs, due to their high extinction coefficient. And the amount of test-line was increased to 5 for further improving the efficiency of bacteria capture. Thus, under visual observation, the detection limits of PDA-based LFIAs (102 CFU/mL) were about 2 orders of magnitude lower than Au-based LFIAs (104 CFU/mL). Furthermore, the invisible signal could be collected by Image J and the detection limit can reach 10 CFU/mL. The proposed test strips were successfully applied for the quantitative, accurate, and rapid screening of E. coli in food samples. This study provided a universal approach to enhance the sensitivity of bacteria LFIAs.
Collapse
Affiliation(s)
- Jianwei Liang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kuiyu Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Liangke Gong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhaoyang Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jinhao Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuhua Cao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Tao Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Hui Zeng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Youkai Science and Technology Co., Ltd., Foshan 528000, Guangdong, China.
| |
Collapse
|
21
|
Lee SM, Balakrishnan HK, Doeven EH, Yuan D, Guijt RM. Chemical Trends in Sample Preparation for Nucleic Acid Amplification Testing (NAAT): A Review. BIOSENSORS 2023; 13:980. [PMID: 37998155 PMCID: PMC10669371 DOI: 10.3390/bios13110980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Nucleic acid amplification testing facilitates the detection of disease through specific genomic sequences and is attractive for point-of-need testing (PONT); in particular, the early detection of microorganisms can alert early response systems to protect the public and ecosystems from widespread outbreaks of biological threats, including infectious diseases. Prior to nucleic acid amplification and detection, extensive sample preparation techniques are required to free nucleic acids and extract them from the sample matrix. Sample preparation is critical to maximize the sensitivity and reliability of testing. As the enzymatic amplification reactions can be sensitive to inhibitors from the sample, as well as from chemicals used for lysis and extraction, avoiding inhibition is a significant challenge, particularly when minimising liquid handling steps is also desirable for the translation of the assay to a portable format for PONT. The reagents used in sample preparation for nucleic acid testing, covering lysis and NA extraction (binding, washing, and elution), are reviewed with a focus on their suitability for use in PONT.
Collapse
Affiliation(s)
- Soo Min Lee
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| | - Hari Kalathil Balakrishnan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Egan H. Doeven
- School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Dan Yuan
- School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rosanne M. Guijt
- Centre for Regional and Rural Futures (CeRRF), Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia
| |
Collapse
|
22
|
Gunasekaran R, Chandrasekaran A, Rajarathinam K, Duncan S, Dhaliwal K, Lalitha P, Prajna NV, Mills B. Rapid Point-of-Care Identification of Aspergillus Species in Microbial Keratitis. JAMA Ophthalmol 2023; 141:966-973. [PMID: 37768674 PMCID: PMC10540059 DOI: 10.1001/jamaophthalmol.2023.4214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 09/29/2023]
Abstract
Importance Microbial keratitis (MK) is a common cause of unilateral visual impairment, blindness, and eye loss in low-income and middle-income countries. There is an urgent need to develop and implement rapid and simple point-of-care diagnostics for MK to increase the likelihood of good outcomes. Objective To evaluate the diagnostic performance of the Aspergillus-specific lateral-flow device (AspLFD) to identify Aspergillus species causing MK in corneal scrape and corneal swab samples of patients presenting with microbial keratitis. Design, Setting, and Participants This diagnostic study was conducted between May 2022 and January 2023 at the corneal clinic of Aravind Eye Hospital in Madurai, Tamil Nadu, India. All study participants were recruited during their first presentation to the clinic. Patients aged 15 years or older met the eligibility criteria if they were attending their first appointment, had a corneal ulcer that was suggestive of a bacterial or fungal infection, and were about to undergo diagnostic scrape and culture. Main Outcomes and Measures Sensitivity and specificity of the AspLFD with corneal samples collected from patients with MK. During routine diagnostic scraping, a minimally invasive corneal swab and an additional corneal scrape were collected and transferred to aliquots of sample buffer and analyzed by lateral-flow device (LFD) if the patient met the inclusion criteria. Photographs of devices were taken with a smartphone and analyzed using a ratiometric approach, which was developed for this study. The AspLFD results were compared with culture reports. Results The 198 participants who met the inclusion criteria had a mean (range) age of 51 (15-85) years and included 126 males (63.6%). Overall, 35 of 198 participants with corneal scrape (17.7%) and 17 of 40 participants with swab samples (42.5%) had positive culture results for Aspergillus species. Ratiometric analysis results for the scrape samples found that the AspLFD achieved high sensitivity (0.89; 95% CI, 0.74-0.95), high negative predictive value (0.97; 95% CI, 0.94-0.99), low negative likelihood ratio (0.12; 95% CI, 0.05-0.30), and an accuracy of 0.94 (95% CI, 0.90-0.97). Ratiometric analysis results for the swab samples showed that the AspLFD had high sensitivity (0.94; 95% CI, 0.73-1.00), high negative predictive value (0.95; 95% CI, 0.76-1.00), low negative likelihood ratio (0.07; 95% CI, 0.01-0.48), and an accuracy of 0.88 (95% CI, 0.73-0.96). Conclusions and Relevance Results of this diagnostic study suggest that AspLFD along with the ratiometric analysis of LFDs developed for this study has high diagnostic accuracy in identifying Aspergillus species from corneal scrapes and swabs. This technology is an important step toward the provision of point-of-care diagnostics for MK and could inform the clinical management strategy.
Collapse
Affiliation(s)
- Rameshkumar Gunasekaran
- Department of Ocular Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Abinaya Chandrasekaran
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Karpagam Rajarathinam
- Department of Ocular Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Sheelagh Duncan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, University of Edinburgh, United Kingdom
| | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Bethany Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, University of Edinburgh, United Kingdom
| |
Collapse
|
23
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
24
|
Majdinasab M, Lamy de la Chapelle M, Marty JL. Recent Progresses in Optical Biosensors for Interleukin 6 Detection. BIOSENSORS 2023; 13:898. [PMID: 37754132 PMCID: PMC10526799 DOI: 10.3390/bios13090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Interleukin 6 (IL-6) is pleiotropic cytokine with pathological pro-inflammatory effects in various acute, chronic and infectious diseases. It is involved in a variety of biological processes including immune regulation, hematopoiesis, tissue repair, inflammation, oncogenesis, metabolic control, and sleep. Due to its important role as a biomarker of many types of diseases, its detection in small amounts and with high selectivity is of particular importance in medical and biological fields. Laboratory methods including enzyme-linked immunoassays (ELISAs) and chemiluminescent immunoassays (CLIAs) are the most common conventional methods for IL-6 detection. However, these techniques suffer from the complexity of the method, the expensiveness, and the time-consuming process of obtaining the results. In recent years, too many attempts have been conducted to provide simple, rapid, economical, and user-friendly analytical approaches to monitor IL-6. In this regard, biosensors are considered desirable tools for IL-6 detection because of their special features such as high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current progresses in different types of optical biosensors as the most favorable types of biosensors for the detection of IL-6 are discussed, evaluated, and compared.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM—UMR 6283 CNRS), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France;
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
25
|
Fathi S, Jalilzadeh N, Amini M, Shanebandi D, Baradaran B, Oroojalian F, Mokhtarzadeh A, Kesharwani P, Sahebkar A. Surface plasmon resonance-based oligonucleotide biosensor for Salmonella Typhi detection. Anal Biochem 2023; 677:115250. [PMID: 37482208 DOI: 10.1016/j.ab.2023.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Due to high mortality rates, typhoid fever still is one of the major health problems in the world, particularly in developing countries. The lack of highly specific and sensitive diagnostic tests and the great resemblance of typhoid fever symptoms to other diseases made the false-negative diagnosis a major challenge in typhoid fever management. Hence, we decided to design a Surface Plasmon Resonance (SPR) based biosensor for specific detection of Salmonella typhi through DNA hybridization. The results showed that the 10 nM of the synthetic target sequence, as well as 1 nM of PCR product, were the lowest feasible detected concentrations by the designed biosensor. This genosensor was also found to significantly distinguish the complementary sequence with the accuracy of one base mismatch sequence. The surface of the chip can be regenerated with NaOH solution and used for consecutive diagnosis. Therefore, the function of the designed biosensor indicates its high potential for Salmonella typhi detection practice.
Collapse
Affiliation(s)
- Sepideh Fathi
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanebandi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
de Dieu Habimana J, Mukama O, Amissah OB, Sun Y, Karangwa E, Liu Y, Mugisha S, Cheng N, Wang L, Chen J, Deng S, Huang R, Li Z. A Rationally Designed CRISPR/Cas12a Assay Using a Multimodal Reporter for Various Readouts. Anal Chem 2023; 95:11741-11750. [PMID: 37504509 DOI: 10.1021/acs.analchem.3c01876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The CRISPR/Cas systems offer a programmable platform for nucleic acid detection, and CRISPR/Cas-based diagnostics (CRISPR-Dx) have demonstrated the ability to target nucleic acids with greater accuracy and flexibility. However, due to the configuration of the reporter and the underlying labeling mechanism, almost all reported CRISPR-Dx rely on a single-option readout, resulting in limitations in end-point result readouts. This is also associated with high reagent consumption and delays in diagnostic reports due to protocol differences. Herein, we report for the first time a rationally designed Cas12a-based multimodal universal reporter (CAMURE) with improved sensitivity that harnesses a dual-mode reporting system, facilitating options in end-point readouts. Through systematic configurations and optimizations, our novel universal reporter achieved a 10-fold sensitivity enhancement compared to the DETECTR reporter. Our unique and versatile reporter could be paired with various readouts, conveying the same diagnostic results. We applied our novel reporter for the detection of staphylococcal enterotoxin A due to its high implication in staphylococcal food poisoning. Integrated with loop-mediated isothermal amplification, our multimodal reporter achieved 10 CFU/mL sensitivity and excellent specificity using a real-time fluorimeter, in-tube fluorescence, and lateral flow strip readouts. We also propose, using artificially contaminated milk samples, a fast (2-5 min) Triton X-100 DNA extraction approach with a comparable yield to the commercial extraction kit. Our CAMURE could be leveraged to detect all gene-encoding SEs by simply reprogramming the guide RNA and could also be applied to the detection of other infections and disease biomarkers.
Collapse
Affiliation(s)
- Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Omar Mukama
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'armée, Kigali 3900, Rwanda
| | - Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yirong Sun
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Eric Karangwa
- Research and Development, AAFUD Industry (Zhuhai) Co. Ltd., Zhuhai 519085, China
| | - Yujie Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Samson Mugisha
- Department of Pathology, University of California, San Diego, 9500 Gilman, La Jolla, California 92093, United States
| | - Na Cheng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ling Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jianlin Chen
- Department of Gynecology & Obstetrics, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Sihao Deng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangzhou Qiyuan Biomedical Co., Ltd., Guangzhou 510530, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou 511436, China
- Guangzhou Qiyuan Biomedical Co., Ltd., Guangzhou 510530, China
| |
Collapse
|
27
|
Hu Y, Lu X, Shen L, Dong J, Liang Z, Xie J, Peng T, Yu X, Dai X. Difunctional Magnetic Nanoparticles Employed in Immunochromatographic Assay for Rapid and Quantitative Detection of Carcinoembryonic Antigen. Int J Mol Sci 2023; 24:12562. [PMID: 37628743 PMCID: PMC10454329 DOI: 10.3390/ijms241612562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Immunochromatographic assay (ICA) plays an important role in in vitro diagnostics because of its simpleness, convenience, fastness, sensitivity, accuracy, and low cost. The employment of magnetic nanoparticles (MNPs), possessing both excellent optical properties and magnetic separation functions, can effectively promote the performances of ICA. In this study, an ICA based on MNPs (MNP-ICA) has been successfully developed for the sensitive detection of carcinoembryonic antigen (CEA). The magnetic probes were prepared by covalently conjugating carboxylated MNPs with the specific monoclonal antibody against CEA, which were not only employed to enrich and extract CEA from serum samples under an external magnetic field but also used as a signal output with its inherent optical property. Under the optimal parameters, the limit of detection (LOD) for qualitative detection with naked eyes was 1.0 ng/mL, and the quantitative detection could be realized with the help of a portable optical reader, indicating that the ratio of optical signal intensity correlated well with CEA concentration ranging from 1.0 ng/mL to 64.0 ng/mL (R2 = 0.9997). Additionally, method comparison demonstrated that the magnetic probes were beneficial for sensitivity improvement due to the matrix effect reduction after magnetic separation, and the MNP-ICA is eight times higher sensitive than ICA based on colloidal gold nanoparticles. The developed MNP-ICA will provide sensitive, convenient, and efficient technical support for biomarkers rapid screening in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yalin Hu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xin Lu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Liyue Shen
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jiahui Dong
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Zhanwei Liang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Jie Xie
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Tao Peng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (Y.H.); (L.S.); (J.D.); (X.Y.)
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (X.L.); (Z.L.); (J.X.)
| |
Collapse
|
28
|
Sun K, Yang X, Wang Y, Guan Q, Fu W, Zhang C, Liu Q, An W, Zhao Y, Xing W, Xu D. A Novel Sample-to-Answer Visual Nucleic Acid Detection System for Adenovirus Detection. Microbiol Spectr 2023; 11:e0517022. [PMID: 37022182 PMCID: PMC10269611 DOI: 10.1128/spectrum.05170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Human adenoviruses (HAdVs) are common viruses that can cause local outbreaks in schools, communities and military camps, posing a huge threat to public health. An ideal POCT device for adenovirus detection in resource-limited settings is critical to control the spread of the virus. In this study, we developed an integrated and electricity-independent sample-to-answer system that can complete nucleic acid extraction, amplification, and detection at room temperature. This system is suitable for field and on-site detection because of its rapidity, sensitivity, lack of contamination, and lack of requirements of high-precision instruments and skilled technicians. It consists of two separate modules, ALP FINA (alkaline lysis with the paper-based filtration isolation of nucleic acid) and SV RPA (sealed and visual recombinase polymerase amplification). The extraction efficiency of ALP FINA can reach 48 to 84%, which is close to that of the conventional centrifuge column. The detection sensitivity of SV RPA is close to 10 copies/μL of AdvB and AdvE without aerosol contamination after repeated operations. When SV RPA was applied to the detection of nasopharyngeal swab samples of 19 patients who were infected with AdvB or AdvE as well as 10 healthy volunteers, its sensitivity and specificity reached 100%, respectively. IMPORTANCE HAdV infections are readily transmittable and, in some instances, highly contagious. Early and rapid diagnosis is essential for disease control. In this work, we developed a portable, disposable, and modularized sample-to-answer detection system for AdvB and AdvE, which rendered the entire test to be completely independent of electricity and other laboratory infrastructure. Thus, this detection system can be applied in resource-limited settings, and it has the potential to be further developed as an early diagnosis method in the field.
Collapse
Affiliation(s)
- Kui Sun
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Energy Laboratory of 970 Hospital of the PLA Joint Logistic Support Force, Beijing, China
| | - Xiaodong Yang
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Academy of Medical Laboratory, Hebei North University, Zhangjiakou, China
| | - Qun Guan
- The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qin Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Wenzheng An
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yongqi Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Song Z, Zhang QY, Li JJ, Su JL, Liu YH, Yang GJ, Wang HS. Visual and Electrochemical Detection of let-7a: A Tumor Suppressor and Biomarker. J Med Chem 2023. [PMID: 37248170 DOI: 10.1021/acs.jmedchem.3c00499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Let-7a, a type of low-expressed microRNAs in cancer cells, has been investigated as a promising biomarker and therapeutic target for tumor suppression. Developing simple and sensitive detection methods for let-7a is important for cancer diagnosis and treatment. In this work, the hybridization chain reaction (HCR) was initiated by let-7a via two hairpin primers (H1 and H2). After the HCR, the remaining hairpin H1 was further detected by lateral flow assay (LFA) and electrochemical impedance spectroscopy. For LFA, biotin-modified H1(bio-H1) and free H2 were used for HCR. With the decrease of let-7a concentration, the color of T line gradually increased. As for electrochemical methods, the H1'-AuNP-modified electrode was used for detection of bio-H1 based on the difference of impedance (ΔRct) detected without and with different concentrations of let-7a participating in the HCR. This method could detect let-7a in the range of 10.0 fM and 1.0 nM with detection limits of 4.2 fM.
Collapse
Affiliation(s)
- Zhen Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qiang-Yan Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jia-Jing Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jing-Lian Su
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuan-Hua Liu
- Department of Chemotherapy, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing 210009, P. R. China
| | - Gong-Jun Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, P. R. China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
30
|
Liu X, Kukkar D, Deng Z, Yang D, Wang J, Kim KH, Zhang D. "Lock-and-key" recognizer-encoded lateral flow assays toward foodborne pathogen detection: An overview of their fundamentals and recent advances. Biosens Bioelectron 2023; 235:115317. [PMID: 37236010 DOI: 10.1016/j.bios.2023.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
In light of severe health risks of foodborne pathogenic bacterial diseases, the potential utility of point-of-care (POC) sensors is recognized for pathogens detection. In this regard, lateral flow assay (LFA) is a promising and user-friendly option for such application among various technological approaches. This article presents a comprehensive review of "lock-and-key" recognizer-encoded LFAs with respect to their working principles and detection performance against foodborne pathogenic bacteria. For this purpose, we describe various strategies for bacteria recognition including the antibody-based antigen-antibody interactions, nucleic acid aptamer-based recognition, and phage-mediated targeting of bacterial cells. In addition, we also outline the technological challenges along with the prospects for the future development of LFA in food analysis. The LFA devices built based upon many recognition strategies are found to have great potential for rapid, convenient, and effective POC detection of pathogens in complex food matrixes. Future developments in this field should emphasize the development of high-quality bio-probes, multiplex sensors, and intelligent portable readers.
Collapse
Affiliation(s)
- Xiaojing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali, 147013, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 147013, Punjab, India
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul, 04763, South Korea.
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
31
|
Zhou M, Li X, Wen H, Huang B, Ren J, Zhang J. The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis. Analyst 2023; 148:2308-2315. [PMID: 37083189 DOI: 10.1039/d3an00462g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The simple and efficient detection of nucleic acids is important in the diagnosis of tuberculosis (TB) caused by Mycobacterium tuberculosis (M. tuberculosis). However, base mismatch will lead to false positive and false negative nucleic acid test, which seriously interferes with the accuracy of the final results. Herein, we demonstrated a CRISPR/Cas-9-mediated fluorescent strategy utilizing fluorescence resonance energy transfer (FRET) for the detection of bacteria. High-variable region of M. tuberculosis 16S rDNA fragment was used as the target, and CRISPR/Cas9 was used as the recognition element. The binding of the P1 probe of upconversion nanoparticles (UCNPs) @SiO2-P1 and the P2 probe of Fe3O4@Au-P2 caused the fluorescence quenching of UCNPs. In the presence of the target, the P2 probe hybridized with the target to form double-stranded DNA (dsDNA), which was recognized and cleaved by CRISPR/Cas9, resulting in the breaking of the P1-P2 duplex linkage. UCNPs moved away from Fe3O4@Au under a magnetic field, and the fluorescence signal was restored; bacteria were detected under the excitation of a 980 nm laser source. Using the CRISPR/Cas-9-mediated system, the sensor could distinguish single-base mismatches in 10 bases from the protospacer adjacent motif (PAM) region. The limit of detection (LOD) was 20 CFU mL-1 and the detection time was 2 h. It developed a new way of accurate nucleic acid detection for disease diagnosis.
Collapse
Affiliation(s)
- Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, P. R. China.
| | - Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
32
|
Zhong X, Fu Q, Wang Y, Long L, Jiang W, Chen M, Xia H, Zhang P, Tan F. CRISPR-based quantum dot nanobead lateral flow assay for facile detection of varicella-zoster virus. Appl Microbiol Biotechnol 2023; 107:3319-3328. [PMID: 37052634 DOI: 10.1007/s00253-023-12509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Varicella-zoster virus (VZV) infects more than 90% of the population worldwide and has a high incidence of postherpetic neuralgia in elderly patients, seriously affecting their quality of life. Combined with clustered regularly interspaced short palindromic repeats (CRISPR) system, we develop a quantum dot nanobeads (QDNBs) labeled lateral flow assay for VZV detection. Our assay allows the identification of more than 5 copies of VZV genomic DNA in each reaction. The entire process, from sample preparation to obtaining the results, takes less than an hour. In 86 clinical vesicles samples, the test shows 100% concordance with quantitative real-time PCR for VZV detection. Notably, when vesicles are present in specific areas, such as the genitals, our method outperforms clinical diagnosis. Compared to traditional detection methods, only a minute amount of blister fluid is required for accurate detection. Therefore, we anticipate that our method could be translated to clinical applications for specific and rapid VZV detection. KEY POINTS: • CRISPR/Cas12a and quantum dot nanobead-based lateral flow assay achieved 5 copies per reaction for VZV detection • Specific identification of VZV in atypical skin lesions • Results read by the naked eye within one hour.
Collapse
Affiliation(s)
- Xiaoqin Zhong
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Qiaoting Fu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Yaoqun Wang
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Lan Long
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen, 518172, China
| | - Wencheng Jiang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Meiyu Chen
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Hui Xia
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Pengfei Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Fei Tan
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, 200443, China.
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
33
|
Nan X, Yang L, Cui Y. Lateral Flow Immunoassay for Proteins. Clin Chim Acta 2023; 544:117337. [PMID: 37044163 DOI: 10.1016/j.cca.2023.117337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Protein biomarkers are useful for disease diagnosis. Identification thereof using in vitro diagnostics such as lateral flow immunoassays (LFIAs) has attracted considerable attention due to their low cost and ease of use especially in the point of care setting. Current challenges, however, do remain with respect to material selection for each component in the device and the synergistic integration of these components to display detectable signals. This review explores the principle of LFIA for protein biomarkers, device components including biomaterials and labeling methods. Medical applications and commercial status are examined as well. This review highlights critical methodologies in the development of new LFIAs and their role in advancing healthcare worldwide.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China
| | - Li Yang
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
34
|
Yang R, Zhao L, Wang X, Kong W, Luan Y. Recent progress in aptamer and CRISPR-Cas12a based systems for non-nucleic target detection. Crit Rev Anal Chem 2023; 54:2670-2687. [PMID: 37029907 DOI: 10.1080/10408347.2023.2197062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Efficient and sensitive detection of targets is one of the motivations for constant development and innovation of various biosensors. CRISPR-Cas12a, a new generation of gene editing tools, has shown excellent application potential in biosensor design and construction. By combining with the specific recognition element-aptamer, a single-stranded oligonucleotide obtained by systematic evolution of ligands by exponential enrichment (SELEX) in vitro screening, CRISPR-Cas12a also shows superior performance non-nucleic acid targets detection, such as small molecules, proteins, virus and pathogenic bacteria. However, aptamer and CRISPR-Cas12a (CRISPR-Cas12a/Apt) still face some problems in non-nucleic acid target detection, such as single signal response mode and narrow linear range. The development of diverse CRISPR-Cas12a/Apt biosensors is necessary to meet the needs of various detection environments. In this review, the working principle of CRISPR-Cas12a/Apt was introduced and recent progress in CRISPR-Cas12a/Apt in the application of non-nucleic acid target detection was summarized. Moreover, the requirements of critical parameters such as crRNA sequence, activator sequence, and reaction system in the design of CRISPR-Cas12a/Apt biosensors were discussed, which could provide the reference for the design of efficient and sensitive novel non-nucleic acid target biosensors. In addition, the challenges and prospects of CRISPR-Cas12a/Apt-based biosensor were further presented.
Collapse
Affiliation(s)
- Ruiqi Yang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liping Zhao
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Xinjie Wang
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| | - Weijun Kong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yunxia Luan
- Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China
| |
Collapse
|
35
|
Self-assembled monolayer-assisted label-free electrochemical genosensor for specific point-of-care determination of Haemophilus influenzae. Mikrochim Acta 2023; 190:112. [PMID: 36869922 PMCID: PMC9985083 DOI: 10.1007/s00604-023-05687-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
For sensitive detection of the L-fuculokinase genome related to the Haemophilus influenzae (H. influenzae), this research work demonstrates the label-free electrochemical-based oligonucleotide genosensing assay relying on the performing hybridization process. To enhance the electrochemical responses, multiple electrochemical modifier-tagged agents were effectively utilized. For attaining this goal, NiCr-layered double hydroxide (NiCr LDH) has been synthesized and combined with biochar (BC) to create an efficient electrochemical signal amplifier that has been immobilized on the surface of the bare Au electrode. Low detection and quantification limits (LOD and LOQ) associated with the designed genosensing bio-platform to detect L-fuculokinase have been achieved to 6.14 fM and 11 fM, respectively. Moreover, the wide linear range of 0.1 to 1000 pM demonstrates the capability of the designed platform. Investigated were the 1-, 2-, and 3-base mismatched sequences, and the negative control samples clarified the high selectivity and better performance of the engineered assay. The values of 96.6-104% and 2.3-3.4% have been obtained for the recoveries and RSDs, respectively. Furthermore, the repeatability and reproducibility of the associated bio-assay have been studied. Consequently, the novel method is appropriate for rapidly and quantitatively detecting H. influenzae, and is considered a better candidate for advanced tests on biological samples such as urine samples.
Collapse
|
36
|
Recent progress on lateral flow immunoassays in foodborne pathogen detection. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
37
|
Tackling the issue of healthcare associated infections through point-of-care devices. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
38
|
Patil AA, Kaushik P, Jain RD, Dandekar PP. Assessment of Urinary Biomarkers for Infectious Diseases Using Lateral Flow Assays: A Comprehensive Overview. ACS Infect Dis 2023; 9:9-22. [PMID: 36512677 DOI: 10.1021/acsinfecdis.2c00449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Screening of biomarkers is a powerful approach for providing a holistic view of the disease spectrum and facilitating the diagnosis and prognosis of the state of infectious diseases. Unaffected by the homeostasis mechanism in the human body, urine accommodates systemic changes and reflects the pathophysiological condition of an individual. Easy availability in large volumes and non-invasive sample collection have rendered urine an ideal source of biomarkers for various diseases. Infectious diseases may be communicable, and therefore early diagnosis and treatment are of immense importance. Current diagnostic approaches preclude the timely identification of clinical conditions and also lack portability. Point-of-care (POC) testing solutions have gained attention as alternative diagnostic measures due to their ability to provide rapid and on-site results. Lateral flow assays (LFAs) are the mainstay in POC device development and have attracted interest owing to their potential to provide instantaneous results in resource-limited settings. The discovery and optimization of a definitive biomarker can render POC testing an excellent platform, thus impacting unwarranted antibiotic administration and preventing the spread of infectious diseases. This Review summarizes the importance of urine as an emerging biological fluid in infectious disease research and diagnosis in clinical settings. We review the academic research related to LFAs. Further, we also describe commercial POC devices based on the identification of urinary biomarkers as diagnostic targets for infectious diseases. We also discuss the future use of LFAs in developing more effective POC tests for urinary biomarkers of various infections.
Collapse
Affiliation(s)
- Ashwini A Patil
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Preeti Kaushik
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Ratnesh D Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| | - Prajakta P Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, Maharashtra 400019, India
| |
Collapse
|
39
|
Ramírez-Coronel AA, Alameri AA, Altalbawy F, Sanaan Jabbar H, Lateef Al-Awsi GR, Iswanto AH, Altamimi AS, Shareef Mohsen K, Almulla AF, Mustafa YF. Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook. Crit Rev Anal Chem 2023; 54:2290-2308. [PMID: 36598426 DOI: 10.1080/10408347.2022.2164173] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Smartphone-derived colorimetric tools have the potential to revolutionize food safety control by enabling citizens to carry out monitoring assays. To realize this, it is of paramount significance to recognize recent study efforts and figure out important technology gaps in terms of food security. Driven by international connectivity and the extensive distribution of smartphones, along with their built-in probes and powerful computing abilities, smartphone-based sensors have shown enormous potential as cost-effective and portable diagnostic scaffolds for point-of-need tests. Meantime, the colorimetric technique is of particular notice because of its benefits of rapidity, simplicity, and high universality. In this study, we tried to outline various colorimetric platforms using smartphone technology, elucidate their principles, and explore their applications in detecting target analytes (pesticide residues, antibiotic residues, metal ions, pathogenic bacteria, toxins, and mycotoxins) considering their sensitivity and multiplexing capability. Challenges and desired future perspectives for cost-effective, accurate, reliable, and multi-functions smartphone-based colorimetric tools have also been debated.
Collapse
Affiliation(s)
- Andrés Alexis Ramírez-Coronel
- Laboratory of Psychometrics, Comparative Psychology and Ethology (LABPPCE), Universidad Católica de Cuenca, Ecuador and Universidad CES, Medellín, Colombia, Cuenca, Ecuador
| | - Ameer A Alameri
- Department of Chemistry, Faculty of Science, University of Babylon, Babylon, Iraq
| | - Farag Altalbawy
- Department of Chemistry, University College of Duba, Tabuk University, Duba, Saudi Arabia
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | | | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Abdulmalik S Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Karrar Shareef Mohsen
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
40
|
Yang J, Wang X, Sun Y, Chen B, Hu F, Guo C, Yang T. Recent Advances in Colorimetric Sensors Based on Gold Nanoparticles for Pathogen Detection. BIOSENSORS 2022; 13:29. [PMID: 36671864 PMCID: PMC9856207 DOI: 10.3390/bios13010029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Infectious pathogens cause severe threats to public health due to their frightening infectivity and lethal capacity. Rapid and accurate detection of pathogens is of great significance for preventing their infection. Gold nanoparticles have drawn considerable attention in colorimetric biosensing during the past decades due to their unique physicochemical properties. Colorimetric diagnosis platforms based on functionalized AuNPs are emerging as a promising pathogen-analysis technique with the merits of high sensitivity, low-cost, and easy operation. This review summarizes the recent development in this field. We first introduce the significance of detecting pathogens and the characteristics of gold nanoparticles. Four types of colorimetric strategies, including the application of indirect target-mediated aggregation, chromogenic substrate-mediated catalytic activity, point-of-care testing (POCT) devices, and machine learning-assisted colorimetric sensor arrays, are systematically introduced. In particular, three biomolecule-functionalized AuNP-based colorimetric sensors are described in detail. Finally, we conclude by presenting our subjective views on the present challenges and some appropriate suggestions for future research directions of colorimetric sensors.
Collapse
Affiliation(s)
- Jianyu Yang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yuyang Sun
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fangxin Hu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
41
|
Chuang HS, Fan YJ, Ger TR, Chiu NF, Williams SJ, Bau HH. Editorial: Rapid detection of fungi, microbial, and viral pathogens based on emerging biosensing technology. Front Bioeng Biotechnol 2022; 10:1067322. [DOI: 10.3389/fbioe.2022.1067322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
|
42
|
Development and application of a recombinase-aided amplification and lateral flow assay for rapid detection of pseudorabies virus from clinical crude samples. Int J Biol Macromol 2022; 224:646-652. [DOI: 10.1016/j.ijbiomac.2022.10.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
43
|
The Utilization of Tunable Transducer Elements Formed by the Manipulation of Magnetic Beads with Different Sizes via Optically Induced Dielectrophoresis (ODEP) for High Signal-to-Noise Ratios (SNRs) and Multiplex Fluorescence-Based Biosensing Applications. BIOSENSORS 2022; 12:bios12090755. [PMID: 36140140 PMCID: PMC9496456 DOI: 10.3390/bios12090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
Magnetic beads improve biosensing performance by means of their small volume and controllability by magnetic force. In this study, a new technique composed of optically induced dielectrodphoresis (ODEP) manipulation and image processing was used to enhance the signal-to-noise ratio of the fluorescence for stained magnetic beads. According to natural advantages of size-dependent particle isolation by ODEP manipulation, biomarkers in clinical samples can be easily separated by different sizes of magnetic beads with corresponding captured antibodies, and rapidly distinguished by separated location of immunofluorescence. To verify the feasibility of the concept, magnetic beads with three different diameters, including 21.8, 8.7, and 4.2 μm, were easily separated and collected into specific patterns in the defined target zone treated as three dynamic transducer elements to evaluate fluorescence results. In magnetic beads with diameter of 4.2 μm, the lowest signal-to-noise ratio between stained and nonstained magnetic beads was 3.5. With the help of ODEP accumulation and detection threshold setting of 32, the signal-to-noise ratio was increased to 77.4, which makes this method more reliable. With the further optimization of specific antibodies immobilized on different-size magnetic beads in the future, this platform can be a potential candidate for a high-efficiency sensor array in clinical applications.
Collapse
|
44
|
Lu M, Joung Y, Jeon CS, Kim S, Yong D, Jang H, Pyun SH, Kang T, Choo J. Dual-mode SERS-based lateral flow assay strips for simultaneous diagnosis of SARS-CoV-2 and influenza a virus. NANO CONVERGENCE 2022; 9:39. [PMID: 36063218 PMCID: PMC9441817 DOI: 10.1186/s40580-022-00330-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 05/28/2023]
Abstract
Since COVID-19 and flu have similar symptoms, they are difficult to distinguish without an accurate diagnosis. Therefore, it is critical to quickly and accurately determine which virus was infected and take appropriate treatments when a person has an infection. This study developed a dual-mode surface-enhanced Raman scattering (SERS)-based LFA strip that can diagnose SARS-CoV-2 and influenza A virus with high accuracy to reduce the false-negative problem of the commercial colorimetric LFA strip. Furthermore, using a single strip, it is feasible to detect SARS-CoV-2 and influenza A virus simultaneously. A clinical test was performed on 39 patient samples (28 SARS-CoV-2 positives, 6 influenza A virus positives, and 5 negatives), evaluating the clinical efficacy of the proposed dual-mode SERS-LFA strip. Our assay results for clinical samples show that the dual-mode LFA strip significantly reduced the false-negative rate for both SARS-CoV-2 and influenza A virus.
Collapse
Affiliation(s)
- Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc., Seongnam, 13461, South Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, 52727, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyowon Jang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc., Seongnam, 13461, South Korea.
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
45
|
He F, Lv X, Li X, Yao M, Li K, Deng Y. Fluorescent microspheres lateral flow assay integrated with Smartphone-based reader for multiple microRNAs detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Babaei A, Rafiee N, Taheri B, Sohrabi H, Mokhtarzadeh A. Recent Advances in Early Diagnosis of Viruses Associated with Gastroenteritis by Biosensors. BIOSENSORS 2022; 12:499. [PMID: 35884302 PMCID: PMC9313180 DOI: 10.3390/bios12070499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Gastroenteritis, as one of the main worldwide health challenges, especially in children, leads to 3-6 million deaths annually and causes nearly 20% of the total deaths of children aged ˂5 years, of which ~1.5 million gastroenteritis deaths occur in developing nations. Viruses are the main causative agent (~70%) of gastroenteritis episodes and their specific and early diagnosis via laboratory assays is very helpful for having successful antiviral therapy and reduction in infection burden. Regarding this importance, the present literature is the first review of updated improvements in the employing of different types of biosensors such as electrochemical, optical, and piezoelectric for sensitive, simple, cheap, rapid, and specific diagnosis of human gastroenteritis viruses. The Introduction section is a general discussion about the importance of viral gastroenteritis, types of viruses that cause gastroenteritis, and reasons for the combination of conventional diagnostic tests with biosensors for fast detection of viruses associated with gastroenteritis. Following the current laboratory detection tests for human gastroenteritis viruses and their limitations (with subsections: Electron Microscope (EM), Cell Culture, Immunoassay, and Molecular Techniques), structural features and significant aspects of various biosensing methods are discussed in the Biosensor section. In the next sections, basic information on viruses causing gastroenteritis and recent developments for fabrication and testing of different biosensors for each virus detection are covered, and the prospect of future developments in designing different biosensing platforms for gastroenteritis virus detection is discussed in the Conclusion and Future Directions section as well.
Collapse
Affiliation(s)
- Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin 59811-34197, Iran;
| | - Nastaran Rafiee
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran;
| | - Behnaz Taheri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran;
| | - Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran;
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51666-16471, Iran
| |
Collapse
|
47
|
Asghari S, Ekrami E, Barati F, Avatefi M, Mahmoudifard M. The role of the nanofibers in lateral flow assays enhancement: a critical review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|