1
|
Ahmad B, Lerma-Reyes R, Mukherjee T, Nguyen HV, Weber AL, Cummings EE, Schulze WX, Comer JR, Schrick K. Nuclear localization of Arabidopsis HD-Zip IV transcription factor GLABRA2 is driven by importin α. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6441-6461. [PMID: 39058342 DOI: 10.1093/jxb/erae326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor from Arabidopsis, is a developmental regulator of specialized cell types in the epidermis. GL2 contains a monopartite nuclear localization sequence (NLS) that is conserved in most HD-Zip IV members across the plants. We demonstrate that NLS mutations affect nuclear transport and result in a loss-of-function phenotypes. NLS fusions to enhanced yellow fluorescent protein (EYFP) show that it is sufficient for nuclear localization in roots and trichomes. Despite partial overlap of the NLS with the homeodomain, genetic dissection indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plants followed by MS-based proteomics identified importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Cytosolic yeast two-hybrid assays and co-immunoprecipitation experiments with recombinant proteins verified NLS-dependent interactions between GL2 and several IMPα isoforms. IMPα triple mutants (impα-1,2,3) exhibit abnormal trichome formation and defects in GL2 nuclear localization in trichomes, consistent with tissue-specific and redundant functions of IMPα isoforms. Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 in Arabidopsis, a process that is critical for cell type differentiation of the epidermis.
Collapse
Affiliation(s)
- Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ruben Lerma-Reyes
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Thiya Mukherjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - Hieu V Nguyen
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Audra L Weber
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Emily E Cummings
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Jeffrey R Comer
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | - Kathrin Schrick
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Sakurai K, Morita M, Aomine Y, Matsumoto M, Moriyama T, Kasahara E, Sekiyama A, Otani M, Oshima R, Loveland KL, Yamada M, Yoneda Y, Oka M, Hikida T, Miyamoto Y. Importin α4 deficiency induces psychiatric disorder-related behavioral deficits and neuroinflammation in mice. Transl Psychiatry 2024; 14:426. [PMID: 39379355 PMCID: PMC11461878 DOI: 10.1038/s41398-024-03138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Importin α4, which is encoded by the Kpna4 gene, is a well-characterized nuclear-cytoplasmic transport factor known to mediate transport of transcription factors including NF-κB. Here, we report that Kpna4 knock-out (KO) mice exhibit psychiatric disorder-related behavioral abnormalities such as anxiety-related behaviors, decreased social interaction, and sensorimotor gating deficits. Contrary to a previous study predicting attenuated NF-κB activity as a result of Kpna4 deficiency, we observed a significant increase in expression levels of NF-κB genes and proinflammatory cytokines such as TNFα, Il-1β or Il-6 in the prefrontal cortex or basolateral amygdala of the KO mice. Moreover, examination of inflammatory responses in primary cells revealed that Kpna4 deficient cells have an increased inflammatory response, which was rescued by addition of not only full length, but also a nuclear transport-deficient truncation mutant of importin α4, suggesting contribution of its non-transport functions. Furthermore, RNAseq of sorted adult microglia and astrocytes and subsequent transcription factor analysis suggested increases in polycomb repressor complex 2 (PRC2) activity in Kpna4 KO cells. Taken together, importin α4 deficiency induces psychiatric disorder-related behavioral deficits in mice, along with an increased inflammatory response and possible alteration of PRC2 activity in glial cells.
Collapse
Affiliation(s)
- Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Makiko Morita
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mitsunobu Matsumoto
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Miltenyi Biotec K.K., Koto-ku, Tokyo, Japan
| | - Tetsuji Moriyama
- Department of Cell Biology and Biochemistry, Division of Medicine, School of Medical Sciences, University of Fukui, Eiheiji Cho, Fukui, Japan
| | - Emiko Kasahara
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Atsuo Sekiyama
- Department of Preemptive Medical Pharmacology for Mind and Body, Graduate School and School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Mayumi Otani
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Rieko Oshima
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research Wright St, Clayton, VIC, Australia
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, School of Medical Sciences, University of Fukui, Eiheiji Cho, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Fukui, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
- Department of Regulation of Infectious Cancer, Research Institute of Microbial Diseases (RIMD), Osaka University, Suita, Osaka, Japan.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan.
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
- Laboratory of Biofunctional Molecular Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
| |
Collapse
|
3
|
Ren Q, Zhang Z, Zhang Y, Zhang Y, Gao Y, Zhang H, Wang X, Wang G, Hong N. Protein P5 of pear chlorotic leaf spot-associated virus is a pathogenic factor that suppresses RNA silencing and enhances virus movement. MOLECULAR PLANT PATHOLOGY 2024; 25:e70015. [PMID: 39412447 PMCID: PMC11481690 DOI: 10.1111/mpp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Pear chlorotic leaf spot-associated virus (PCLSaV) is a newly described emaravirus that infects pear trees. The virus genome consists of at least five single-stranded, negative-sense RNAs. The P5 encoded by RNA5 is unique to PCLSaV. In this study, the RNA silencing suppression (RSS) activity of P5 and its subcellular localization were determined in Nicotiana benthamiana plants by Agrobacterium tumefaciens-mediated expression assays and green fluorescent protein RNA silencing induction. Protein P5 partially suppressed local RNA silencing, strongly suppressed systemic RNA silencing and triggered reactive oxygen species accumulation. The P5 self-interacted and showed subcellular locations in plasmodesmata, endoplasmic reticulum and nucleus. Furthermore, P5 rescued the cell-to-cell movement of a movement defective mutant PVXΔP25 of potato virus X (PVX) and enhanced the pathogenicity of PVX. The N-terminal 1-89 amino acids of the P5 were responsible for the self-interaction ability and RSS activity, for which the signal peptide at positions 1-19 was indispensable. This study demonstrated the function of an emaravirus protein as a pathogenic factor suppressing plant RNA silencing to enhance virus infection and as an enhancer of virus movement.
Collapse
Affiliation(s)
- Qiuting Ren
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Zhe Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yongle Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yue Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Yujie Gao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Hongyi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Xianhong Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Guoping Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| | - Ni Hong
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
4
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024:10.1007/s10815-024-03248-w. [PMID: 39320554 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
5
|
Malamos P, Kalyvianaki K, Panagiotopoulos AA, Vogiatzoglou AP, Tsikalaki AA, Katifori A, Polioudaki H, Darivianaki MN, Theodoropoulos PA, Panagiotidis CA, Notas G, Castanas E, Kampa M. Nuclear translocation of the membrane oxoeicosanoid/androgen receptor, OXER1: Possible mechanisms involved. Mol Cell Endocrinol 2024; 594:112357. [PMID: 39236798 DOI: 10.1016/j.mce.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
OXER1, the receptor for the arachidonic acid metabolite 5-οxo-eicosatetraenoic acid (5-oxo-ETE), has been reported to also bind and mediate the membrane-initiated actions of androgens. Indeed, androgens antagonize the 5-oxo-ETE effects through OXER1, affecting a number of signaling pathways and inhibiting cancer cell proliferation and migration. OXER1, being a GPCR, was classically described to be localized in the plasma membrane. However, for numerous GPCRs, there is now strong evidence that they can be also found in other cellular compartments, including the nucleus. The aim of the present work was to investigate OXER1's possible localization in the nucleus and identify the mechanism(s) involved. For this purpose, we verified OXER1's nuclear presence by immunofluorescence and western blot, in whole cells and nuclei of two different prostate cancer cell lines (DU-145 and LNCaP) and in CHO cells transfected with a GFP labelled OXER1, both in untreated and OXER1 ligands' treated cells. Mutated, OXER1-tGFP expressing, CHO cells were used to verify that OXER1 agonist (5-oxo-ETE) binding is necessary for OXER1 nuclear translocation. NLS sequences were in silico identified, and a specific inhibitor, as well as, specific importins' siRNAs were also utilized to explore the mechanism involved. Moreover, we examined the role of palmitoylation in OXER1 nuclear translocation by in silico identifying possible palmitoylation sites and using a palmitoylation inhibitor. Our results clearly show that OXER1 can be localized in the nucleus, in an agonist-dependent manner, that is inhibited by androgens. We also provide evidence for two possible mechanisms for its nuclear trafficking, that involve receptor palmitoylation and importin-mediated cytoplasmic-nuclear transport. In our knowledge, it is the first time that a membrane androgen receptor is identified into the nucleus, suggesting an alternative, more direct, mode of action, involving nuclear mechanisms. Therefore, our findings provide new insights on androgen-mediated actions and androgen-lipid interactions, and reveal new possible therapeutic targets, not only for cancer, but also for other pathological conditions in which OXER1 may have an important role.
Collapse
Affiliation(s)
- Panagiotis Malamos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasios A Panagiotopoulos
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Amalia P Vogiatzoglou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Athanasia Artemis Tsikalaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Anastasia Katifori
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Hara Polioudaki
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Maria N Darivianaki
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Panayiotis A Theodoropoulos
- Laboratory of Biochemistry, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Christos A Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Voutes Campus, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Khan MM, Sharma V, Serajuddin M, Kirabo A. Integrated grade-wise profiling analysis reveals potential plasma miR-373-3p as prognostic indicator in Prostate Cancer & its target KPNA2. Noncoding RNA Res 2024; 9:954-963. [PMID: 38699204 PMCID: PMC11063115 DOI: 10.1016/j.ncrna.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Background Plasma microRNAs (miRNAs) have recently garnered attention for their potential as stable biomarkers in the context of Prostate Cancer (PCa), demonstrating established associations with tumor grade, biochemical recurrence (BCR), and metastasis. This study seeks to assess the utility of plasma miRNAs as prognostic indicators for distinguishing between high-grade and low-grade PCa, and to explore their involvement in PCa pathogenesis. Methodology We conducted miRNA profiling in both plasma and tissue specimens from patients with varying PCa grades. Subsequently, the identified miRNAs were validated in a substantial independent PCa cohort. Furthermore, we identified and confirmed the gene targets of these selected miRNAs through Western blot analysis. Results In our plasma profiling investigation, we identified 98, 132, and 154 differentially expressed miRNAs (DEMs) in high-grade PCa vs. benign prostatic hyperplasia (BPH), low-grade PCa vs. BPH, and high-grade PCa vs. low-grade PCa, respectively. Our tissue profiling study revealed 111, 132, and 257 statistically significant DEMs for the same comparisons. Notably, miR-373-3p emerged as the sole consistently dysregulated miRNA in both plasma and tissue samples of PCa. This miRNA displayed significant overexpression in plasma and tissue samples, with fold changes of 3.584 ± 0.5638 and 8.796 ± 1.245, respectively. Furthermore, we observed a significant reduction in KPNA2 protein expression in PCa. Conclusion Our findings lend support to the potential of plasma miR-373-3p as a valuable biomarker for predicting and diagnosing PCa. Additionally, this miRNA may contribute to the progression of PCa by inhibiting KPNA2 expression, shedding light on its role in the disease.
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, Tennessee, USA
- Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Vineeta Sharma
- Department of Microbiology, University of Delhi, 110021, India
| | | | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, Tennessee, USA
| |
Collapse
|
7
|
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev 2024; 211:115354. [PMID: 38857762 DOI: 10.1016/j.addr.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
Collapse
Affiliation(s)
- Michal Skowicki
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Manuel Kraus
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
8
|
Deng Q, Qiang J, Liu C, Ding J, Tu J, He X, Xia J, Peng X, Li S, Chen X, Ma W, Zhang L, Jiang Y, Shao Z, Chen C, Liu S, Xu J, Zhang L. SOSTDC1 Nuclear Translocation Facilitates BTIC Maintenance and CHD1-Mediated HR Repair to Promote Tumor Progression and Olaparib Resistance in TNBC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306860. [PMID: 38864559 PMCID: PMC11304230 DOI: 10.1002/advs.202306860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/01/2024] [Indexed: 06/13/2024]
Abstract
Breast tumor-initiating cells (BTICs) of triple-negative breast cancer (TNBC) tissues actively repair DNA and are resistant to treatments including chemotherapy, radiotherapy, and targeted therapy. Herein, it is found that a previously reported secreted protein, sclerostin domain containing 1 (SOSTDC1), is abundantly expressed in BTICs of TNBC cells and positively correlated with a poor patient prognosis. SOSTDC1 knockdown impairs homologous recombination (HR) repair, BTIC maintenance, and sensitized bulk cells and BTICs to Olaparib. Mechanistically, following Olaparib treatment, SOSTDC1 translocates to the nucleus in an importin-α dependent manner. Nuclear SOSTDC1 interacts with the N-terminus of the nucleoprotein, chromatin helicase DNA-binding factor (CHD1), to promote HR repair and BTIC maintenance. Furthermore, nuclear SOSTDC1 bound to β-transducin repeat-containing protein (β-TrCP) binding motifs of CHD1 is found, thereby blocking the β-TrCP-CHD1 interaction and inhibiting β-TrCP-mediated CHD1 ubiquitination and degradation. Collectively, these findings identify a novel nuclear SOSTDC1 pathway in regulating HR repair and BTIC maintenance, providing insight into the TNBC therapeutic strategies.
Collapse
Affiliation(s)
- Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Cuicui Liu
- Department of Breast SurgeryShanghai Cancer Center and Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiajun Ding
- Department of ThyroidBreast and Vascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'an710032P. R. China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jie Xia
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xilei Peng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xian Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yi‐Zhou Jiang
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐Ming Shao
- Department of Breast SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan ProvinceKunming Institute of ZoologyKunming650201China
- Academy of Biomedical Engineering & The Third Affiliated HospitalKunming Medical UniversityKunming650118China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Cancer MedicineNanjing Medical UniversityNanjing211166China
| | - Jiahui Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical SciencesState Key Laboratory of Genetic EngineeringCancer InstitutesKey Laboratory of Breast Cancer in ShanghaiThe Shanghai Key Laboratory of Medical EpigeneticsShanghai Key Laboratory of Radiation OncologyThe International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
9
|
Wang T, Li Q, Xu R, Zhao Z, Sun Q, Xu X, Li R. Nanoparticles (NPs)-mediated lncMALAT1 silencing to reverse cisplatin resistance for effective hepatocellular carcinoma therapy. Front Pharmacol 2024; 15:1437071. [PMID: 39139640 PMCID: PMC11319142 DOI: 10.3389/fphar.2024.1437071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Platinum-based chemotherapy has been widely used for clinical cancer treatment, but drug resistance is the main barrier to induce the poor prognosis of cancer patients. Long non-coding RNAs (lncRNAs) have been recognized as a type of new cancer therapeutic targets due to their important role in regulating cancer progression such as drug resistance. However, it is still challenged to effectively intervene the expression of lncRNAs as they are usually located at various subcellular organelles (e.g., nucleus, mitochondrion, and endoplasmic reticulum). We herein developed an endosomal pH-responsive nanoparticle (NP) platform for small interfering RNA (siRNA) and cisplatin prodrug co-delivery and effective cisplatin-resistant hepatocellular carcinoma (HCC) therapy. This co-delivery nanoplatform is comprised of a hydrophilic polyethylene glycol (PEG) shell and a hydrophobic poly (2-(diisopropylamino)ethyl methacrylate) (PDPA) core, in which cisplatin prodrug and electrostatic complexes of nucleus-targeting amphiphilic peptide (NTPA) and siRNA are encapsulated. After intravenous injection and then uptake by tumor cells, the endosomal pH could trigger the dissociation of nanoplatform and enhance the endosomal escape of loaded cisplatin prodrug and NTPA/siRNA complexes via the "proton sponge" effect. Subsequently, the NTPA/siRNA complexes could specifically transport siRNA into the nucleus and efficiently reverse cisplatin resistance via silencing the expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncMALAT1) mainly localized in the nucleus, ultimately inhibiting the growth of cisplatin-resistant HCC tumor.
Collapse
Affiliation(s)
- Ting Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianyao Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Rui Xu
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Zixuan Zhao
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Sun
- Department of Neurosurgery, Yiyang Central Hospital, Yiyang, China
| | - Xiaoding Xu
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Rong Li
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
Huhtinen O, Prince S, Lamminmäki U, Salbo R, Kulmala A. Increased stable integration efficiency in CHO cells through enhanced nuclear localization of Bxb1 serine integrase. BMC Biotechnol 2024; 24:44. [PMID: 38926833 PMCID: PMC11210126 DOI: 10.1186/s12896-024-00871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries. To increase the Bxb1 integrase-mediated stable integration efficiency, our study investigates factors that potentially affect the nuclear localization of Bxb1 integrase. METHODS In an attempt to enhance Bxb1 serine integrase-mediated integration efficiency, we fused various nuclear localization signals (NLS) to the N- and C-termini of the integrase. Concurrently, we co-expressed multiple proteins associated with nuclear transport to assess their impact on the stable integration efficiency of green fluorescent protein (GFP)-encoding DNA and an antibody display cassette into the genome of Chinese hamster ovary (CHO) cells containing a landing pad for Bxb1 integrase-mediated integration. RESULTS The nucleoplasmin NLS from Xenopus laevis, when fused to the C-terminus of Bxb1 integrase, demonstrated the highest enhancement in stable integration efficiency among the tested NLS fusions, exhibiting over a 6-fold improvement compared to Bxb1 integrase lacking an NLS fusion. Subsequent additions of extra NLS fusions to the Bxb1 integrase revealed an additional 131% enhancement in stable integration efficiency with the inclusion of two copies of C-terminal nucleoplasmin NLS fusions. Further improvement was achieved by co-expressing the Ran GTPase-activating protein (RanGAP). Finally, to validate the applicability of these findings to more complex proteins, the DNA encoding the membrane-bound clinical antibody abrilumab was stably integrated into the genome of CHO cells using Bxb1 integrase with two copies of C-terminal nucleoplasmin NLS fusions and co-expression of RanGAP. This approach demonstrated over 14-fold increase in integration efficiency compared to Bxb1 integrase lacking an NLS fusion. CONCLUSIONS This study demonstrates that optimizing the NLS sequence fusion for Bxb1 integrase significantly enhances the stable genomic integration efficiency. These findings provide a practical approach for constructing larger libraries in mammalian cells through the stable integration of genes into a genomic landing pad.
Collapse
Affiliation(s)
- Olli Huhtinen
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
| | - Stuart Prince
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Rune Salbo
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland
| | - Antti Kulmala
- Protein & Antibody Engineering, Orion Corporation, Turku, Finland.
| |
Collapse
|
11
|
Shrikondawar AN, Chennoju K, Ghosh DK, Ranjan A. Identification and characterization of nuclear localization signals in the circumsporozoite protein of Plasmodium falciparum. FEBS Lett 2024; 598:801-817. [PMID: 38369616 DOI: 10.1002/1873-3468.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Secretory proteins of Plasmodium exhibit differential spatial and functional activity within the host cell nucleus. However, the nuclear localization signals (NLSs) for these proteins remain largely uncharacterized. In this study, we have identified and characterized two NLSs in the circumsporozoite protein of Plasmodium falciparum (Pf-CSP). Both NLSs in the Pf-CSP contain clusters of lysine and arginine residues essential for specific interactions with the conserved tryptophan and asparagine residues of importin-α, facilitating nuclear translocation of Pf-CSP. While the two NLSs of Pf-CSP function independently and are both crucial for nuclear localization, a single NLS of Pf-CSP leads to weak nuclear localization. These findings shed light on the mechanism of nuclear penetrability of secretory proteins of Plasmodium proteins.
Collapse
Affiliation(s)
- Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Kiranmai Chennoju
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | | | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
12
|
Heaney J, Zhao J, Casagranda F, Loveland KL, Siddall NA, Hime GR. Drosophila Importin Alpha 1 (Dα1) Is Required to Maintain Germline Stem Cells in the Testis Niche. Cells 2024; 13:494. [PMID: 38534338 DOI: 10.3390/cells13060494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Stem cell maintenance and differentiation can be regulated via the differential activity of transcription factors within stem cells and their progeny. For these factors to be active, they need to be transported from their site of synthesis in the cytoplasm into the nucleus. A tissue-specific requirement for factors involved in nuclear importation is a potential mechanism to regulate stem cell differentiation. We have undertaken a characterization of male sterile importin alpha 1 (Dα1) null alleles in Drosophila and found that Dα1 is required for maintaining germline stem cells (GSCs) in the testis niche. The loss of GSCs can be rescued by ectopic expression of Dα1 within the germline but the animals are still infertile, indicating a second role for Dα1 in spermatogenesis. Expression of a Dα1 dominant negative transgene in GSCs confirmed a functional requirement for Dα1 in GSC maintenance but expression of the transgene in differentiating spermatogonia did not exhibit a phenotype indicating a specific role for Dα1 within GSCs. Our data indicate that Dα1 is utilized as a regulatory protein within GSCs to facilitate nuclear importation of proteins that maintain the stem cell pool.
Collapse
Affiliation(s)
- James Heaney
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jiamin Zhao
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Hoad M, Roby JA, Forwood JK. Structural basis for nuclear import of bat adeno-associated virus capsid protein. J Gen Virol 2024; 105:001960. [PMID: 38441555 PMCID: PMC10999750 DOI: 10.1099/jgv.0.001960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/22/2024] [Indexed: 03/07/2024] Open
Abstract
Adeno-associated viruses (AAV) are one of the world's most promising gene therapy vectors and as a result, are one of the most intensively studied viral vectors. Despite a wealth of research into these vectors, the precise characterisation of AAVs to translocate into the host cell nucleus remains unclear. Recently we identified the nuclear localization signals of an AAV porcine strain and determined its mechanism of binding to host importin proteins. To expand our understanding of diverse AAV import mechanisms we sought to determine the mechanism in which the Cap protein from a bat-infecting AAV can interact with transport receptor importins for translocation into the nucleus. Using a high-resolution crystal structure and quantitative assays, we were able to not only determine the exact region and residues of the N-terminal domain of the Cap protein which constitute the functional NLS for binding with the importin alpha two protein, but also reveal the differences in binding affinity across the importin-alpha isoforms. Collectively our results allow for a detailed molecular view of the way AAV Cap proteins interact with host proteins for localization into the cell nucleus.
Collapse
Affiliation(s)
- Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
14
|
Breckel CA, Johnson ZM, Hickey CM, Hochstrasser M. Yeast 26S proteasome nuclear import is coupled to nucleus-specific degradation of the karyopherin adaptor protein Sts1. Sci Rep 2024; 14:2048. [PMID: 38267508 PMCID: PMC10808114 DOI: 10.1038/s41598-024-52352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
In eukaryotes, the ubiquitin-proteasome system is an essential pathway for protein degradation and cellular homeostasis. 26S proteasomes concentrate in the nucleus of budding yeast Saccharomyces cerevisiae due to the essential import adaptor protein Sts1 and the karyopherin-α protein Srp1. Here, we show that Sts1 facilitates proteasome nuclear import by recruiting proteasomes to the karyopherin-α/β heterodimer. Following nuclear transport, the karyopherin proteins are likely separated from Sts1 through interaction with RanGTP in the nucleus. RanGTP-induced release of Sts1 from the karyopherin proteins initiates Sts1 proteasomal degradation in vitro. Sts1 undergoes karyopherin-mediated nuclear import in the absence of proteasome interaction, but Sts1 degradation in vivo is only observed when proteasomes successfully localize to the nucleus. Sts1 appears to function as a proteasome import factor during exponential growth only, as it is not found in proteasome storage granules (PSGs) during prolonged glucose starvation, nor does it appear to contribute to the rapid nuclear reimport of proteasomes following glucose refeeding and PSG dissipation. We propose that Sts1 acts as a single-turnover proteasome nuclear import factor by recruiting karyopherins for transport and undergoing subsequent RanGTP-initiated ubiquitin-independent proteasomal degradation in the nucleus.
Collapse
Affiliation(s)
- Carolyn Allain Breckel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Christopher M Hickey
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Arvinas, Inc., 5 Science Park, New Haven, CT, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Kose S, Ogawa Y, Imamoto N. Thermal Stress and Nuclear Transport. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:61-78. [PMID: 39289274 DOI: 10.1007/978-981-97-4584-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Nuclear transport is the basis for the biological reaction of eukaryotic cells, as it is essential to coordinate nuclear and cytoplasmic events separated by nuclear envelope. Although we currently understand the basic molecular mechanisms of nuclear transport in detail, many unexplored areas remain. For example, it is believed that the regulations and biological functions of the nuclear transport receptors (NTRs) highlights the significance of the transport pathways in physiological contexts. However, physiological significance of multiple parallel transport pathways consisting of more than 20 NTRs is still poorly understood, because our knowledge of each pathway, regarding their substrate information or how they are differently regulated, is still limited. In this report, we describe studies showing how nuclear transport systems in general are affected by temperature rises, namely, thermal stress or heat stress. We will then focus on Importin α family members and unique transport factor Hikeshi, because these two NTRs are affected in heat stress. Our present review will provide an additional view to point out the importance of diversity of the nuclear transport pathways in eukaryotic cells.
Collapse
Affiliation(s)
- Shingo Kose
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan.
| |
Collapse
|
16
|
Wang J, Hsu Y, Lee Y, Lin N. Importin α2 participates in RNA interference against bamboo mosaic virus accumulation in Nicotiana benthamiana via NbAGO10a-mediated small RNA clearance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13422. [PMID: 38279848 PMCID: PMC10799208 DOI: 10.1111/mpp.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/29/2024]
Abstract
Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus-induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6-dependent secondary virus-derived small-interfering RNAs (vsiRNAs). Small RNA-seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV-infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i-mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1-NbAGO10a-SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Jiun‐Da Wang
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Yun‐Shien Lee
- Department of BiotechnologyMing Chuan UniversityTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| |
Collapse
|
17
|
Gao Q, Weng Z, Feng Y, Gong T, Zheng X, Zhang G, Gong L. KPNA2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus envelope protein through selective autophagy. J Virol 2023; 97:e0011523. [PMID: 38038431 PMCID: PMC10734479 DOI: 10.1128/jvi.00115-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Porcine epidemic diarrhea, characterized by vomiting, dehydration, and diarrhea, is an acute and highly contagious enteric disease caused by porcine epidemic diarrhea virus (PEDV) in neonatal piglets. This disease has caused large economic losses to the porcine industry worldwide. Thus, identifying the host factors involved in PEDV infection is important to develop novel strategies to control PEDV transmission. This study shows that PEDV infection upregulates karyopherin α 2 (KPNA2) expression in Vero and intestinal epithelial (IEC) cells. KPNA2 binds to and degrades the PEDV E protein via autophagy to suppress PEDV replication. These results suggest that KPNA2 plays an antiviral role against PEDV. Specifically, knockdown of endogenous KPNA2 enhances PEDV replication, whereas its overexpression inhibits PEDV replication. Our data provide novel KPNA2-mediated viral restriction mechanisms in which KPNA2 suppresses PEDV replication by targeting and degrading the viral E protein through autophagy. These mechanisms can be targeted in future studies to develop novel strategies to control PEDV infection.
Collapse
Affiliation(s)
- Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Vaccine Development, Guangzhou, China
| | - Zhijun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Vaccine Development, Guangzhou, China
| | - Yongzhi Feng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Vaccine Development, Guangzhou, China
| | - Ting Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoyu Zheng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Guihong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
18
|
Xu X, Song B, Zhang Q, Qi W, Xu Y. Hsa_circ_0022383 promote non-small cell lung cancer tumorigenesis through regulating the miR-495-3p/KPNA2 axis. Cancer Cell Int 2023; 23:282. [PMID: 37981709 PMCID: PMC10658815 DOI: 10.1186/s12935-023-03068-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/17/2023] [Indexed: 11/21/2023] Open
Abstract
Hsa_circ_0022383 (circ_0022383) is a newly discovered circRNA. Its functions and relevant molecular mechanisms in tumorigenesis have not been reported. Here we aimed to explore how circ_0022383 regulates the tumorigenesis of non-small-cell lung cancer (NSCLC). We found thatcirc_0022383 expression was dramatically elevated in NSCLC tissues and cell lines. Upregulation of circ_0022383 was associated with poor prognosis in NSCLC patients. Silencing of circ_0022383 repressed cell proliferation and migration in vitro and inhibited oncogenesis and tumor metastasis in vivo. Moreover, our results discovered that circ_0022383 was mainly located in the cytoplasm of NSCLC cells. Mechanistically, circ_0022383 sponged miR-495-3p to modulate KPNA2 expression, thereby regulating NSCLC tumorigenesis and progression. In conclusion, our study demonstrates that circ_0022383 facilitates NSCLC tumorigenesis by regulating the miR-495-3p/KPNA2 axis, providing new insights into NSCLC development.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No. 1882, Central South Road, Jiaxing, Zhejiang, 314000, PR China
| | - Binbin Song
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No. 1882, Central South Road, Jiaxing, Zhejiang, 314000, PR China
| | - Qiuliang Zhang
- Department of Nutriology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, PR China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No. 1882, Central South Road, Jiaxing, Zhejiang, 314000, PR China.
| | - Yufen Xu
- Department of Oncology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, No. 1882, Central South Road, Jiaxing, Zhejiang, 314000, PR China.
| |
Collapse
|
19
|
Arifuzzaman M, Mamidi S, Sanz-Saez A, Zakeri H, Scaboo A, Fritschi FB. Identification of loci associated with water use efficiency and symbiotic nitrogen fixation in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1271849. [PMID: 38034552 PMCID: PMC10687445 DOI: 10.3389/fpls.2023.1271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Soybean (Glycine max) production is greatly affected by persistent and/or intermittent droughts in rainfed soybean-growing regions worldwide. Symbiotic N2 fixation (SNF) in soybean can also be significantly hampered even under moderate drought stress. The objective of this study was to identify genomic regions associated with shoot carbon isotope ratio (δ13C) as a surrogate measure for water use efficiency (WUE), nitrogen isotope ratio (δ15N) to assess relative SNF, N concentration ([N]), and carbon/nitrogen ratio (C/N). Genome-wide association mapping was performed with 105 genotypes and approximately 4 million single-nucleotide polymorphism markers derived from whole-genome resequencing information. A total of 11, 21, 22, and 22 genomic loci associated with δ13C, δ15N, [N], and C/N, respectively, were identified in two environments. Nine of these 76 loci were stable across environments, as they were detected in both environments. In addition to the 62 novel loci identified, 14 loci aligned with previously reported quantitative trait loci for different C and N traits related to drought, WUE, and N2 fixation in soybean. A total of 58 Glyma gene models encoding for different genes related to the four traits were identified in the vicinity of the genomic loci.
Collapse
Affiliation(s)
- Muhammad Arifuzzaman
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Sujan Mamidi
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hossein Zakeri
- College of Agriculture, California State University-Chico, Chico, CA, United States
| | - Andrew Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Felix B. Fritschi
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
20
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
21
|
Ahmad B, Lerma-Reyes R, Mukherjee T, Nguyen HV, Weber AL, Schulze WX, Comer JR, Schrick K. Nuclear localization of HD-Zip IV transcription factor GLABRA2 is driven by Importin α. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565550. [PMID: 37961624 PMCID: PMC10635128 DOI: 10.1101/2023.11.03.565550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
GLABRA2 (GL2), a class IV homeodomain leucine-zipper (HD-Zip IV) transcription factor (TF) from Arabidopsis , is a developmental regulator of specialized cell types in the epidermis. GL2 contains a putative monopartite nuclear localization sequence (NLS) partially overlapping with its homeodomain (HD). We demonstrate that NLS deletion or alanine substitution of its basic residues (KRKRKK) affects nuclear localization and results in a loss-of-function phenotype. Fusion of the predicted NLS (GTNKRKRKKYHRH) to the fluorescent protein EYFP is sufficient for its nuclear localization in roots and trichomes. The functional NLS is evolutionarily conserved in a distinct subset of HD-Zip IV members including PROTODERMAL FACTOR2 (PDF2). Despite partial overlap of the NLS with the HD, genetic dissection of the NLS from PDF2 indicates that nuclear localization and DNA binding are separable functions. Affinity purification of GL2 from plant tissues followed by mass spectrometry-based proteomics identified Importin α (IMPα) isoforms as potential GL2 interactors. NLS structural prediction and molecular docking studies with IMPα-3 revealed major interacting residues. Split-ubiquitin cytosolic yeast two-hybrid assays suggest interaction between GL2 and four IMPα isoforms from Arabidopsis. Direct interactions were verified in vitro by co-immunoprecipitation with recombinant proteins. IMPα triple mutants ( impα- 1,2,3 ) exhibit defects in EYFP:GL2 nuclear localization in trichomes but not in roots, consistent with tissue-specific and redundant functions of IMPα isoforms in Arabidopsis . Taken together, our findings provide mechanistic evidence for IMPα-dependent nuclear localization of GL2 and other HD-Zip IV TFs in plants. One sentence summary GLABRA2, a representative HD-Zip IV transcription factor from Arabidopsis , contains an evolutionarily conserved monopartite nuclear localization sequence that is recognized by Importin α for translocation to the nucleus, a process that is necessary for cell-type differentiation of the epidermis.
Collapse
|
22
|
Herbst A, Bexter F, Kouassi NM, Gabriel G, Rautenschlein S. Distribution of importin-α isoforms in poultry species and their tissue- and age-related differences. Res Vet Sci 2023; 164:104994. [PMID: 37696109 DOI: 10.1016/j.rvsc.2023.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
While importin-α is well studied in mammals, the knowledge in avian species is still limited. In this study, we compared the mRNA expression patterns of five importin-α isoforms in the respiratory tract, liver, and spleen of chickens, turkeys, and pekin ducks in two different age-groups. In addition, we determined the distribution of importin-α in selected tissue of conchae, trachea, and lung of post-hatch chickens at all cellular levels by immunohistochemical staining. Our results indicate that importin-α3 is the most abundant isoform in the respiratory tract of chickens, turkeys, and pekin ducks. Moreover, importin-α is expressed as a gradient with lowest mRNA levels in the conchae and highest levels in the lung. The mRNA expression levels of most isoforms were higher in tissues from post-hatch chickens and turkeys in comparison to the corresponding embryos. In contrast to that, duck embryos mostly show higher mRNA expression levels of importin-α than post-hatch ducks.
Collapse
Affiliation(s)
- Alexandra Herbst
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Frederik Bexter
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | | | - Gülsah Gabriel
- Leibniz-Institute for Virology, Martinistraße 52, 20251 Hamburg, Germany; Institute for Virology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
23
|
Zhang K, Gu T, Xu X, Gan H, Qin L, Feng C, He Z. Sugarcane streak mosaic virus P1 protein inhibits unfolded protein response through direct suppression of bZIP60U splicing. PLoS Pathog 2023; 19:e1011738. [PMID: 37883577 PMCID: PMC10697598 DOI: 10.1371/journal.ppat.1011738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/05/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The unfolded protein response (UPR) is a cell-designated strategy that maintains the balance of protein folding in the endoplasmic reticulum (ER). UPR features a network of signal transduction pathways that reprogram the transcription, mRNA translation, and protein post-translational modification to relieve the ER stresses from unfolded/misfolded proteins. Infection with plant viruses can induce the UPR, and activated UPR often promotes plant viral infections in turn. However, the mechanism used by plant viruses to balance UPR and achieve robust infection remain largely unknown. In this study, P1SCSMV was identified as a virus-encoded RNA silencing suppressor (VSR). Heterologous overexpression of P1SCSMV via potato virus X (PVX) was found lead to programmed cell death (PCD) in Nicotiana benthamiana. Furthermore, P1SCSMV was also found to inhibit the PVX infection-triggered UPR by downregulating UPR-related genes and directly induced the distortion and collapse of the ER polygonal meshes on PVX-P1SCSMV infected N. benthamiana. Moreover, self-interaction, VSR activity, UPR inhibition, and cell death phenotype of P1SCSMV were also found to be dependent on its bipartite nuclear localization signal (NLS) (251RKRKLFPRIPLK262). P1SCSMV was found to directly bind to the stem-loop region of NbbZIP60U via its NLS and inhibit the UPR pathways, ultimately resulting in a PCD phenotype in PVX-P1SCSMV infected N. benthamiana leaves. This study also revealed the balancing role of potyviruses encoded P1SCSMV in the UPR pathway to achieve robust viral infection. This may represent a novel virulence strategy for plant viruses.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tianxiao Gu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiaowei Xu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Haifeng Gan
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Lang Qin
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Chenwei Feng
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Zhen He
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
24
|
Duan Z, Zhang Q, Liu M, Hu Z. Multifunctionality of matrix protein in the replication and pathogenesis of Newcastle disease virus: A review. Int J Biol Macromol 2023; 249:126089. [PMID: 37532184 DOI: 10.1016/j.ijbiomac.2023.126089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
As an important structural protein in virion morphogenesis, the matrix (M) protein of Newcastle disease virus (NDV) is demonstrated to be a nuclear-cytoplasmic trafficking protein and plays essential roles in viral assembly and budding. In recent years, increasing lines of evidence have indicated that the M protein has obvious influence on the pathotypes of NDV, and the interaction of M protein with cellular proteins is also closely associated with the replication and pathogenicity of NDV. Although substantial progress has been made in the past 40 years towards understanding the structure and function of NDV M protein, the available information is scattered. Therefore, this review article summarizes and updates the research progress on the structural feature, virulence and pathotype correlation, and nucleocytoplasmic transport mechanism of NDV M protein, as well as the functions of M protein and cellular protein interactions in M's intracellular localization, viral RNA synthesis and transcription, viral protein synthesis, viral immune evasion, and viral budding and release, which will provide an in-depth understanding of the biological functions of M protein in the replication and pathogenesis of NDV, and also contribute to the development of effective antiviral strategies aiming at blocking the early or late steps of NDV lifecycles.
Collapse
Affiliation(s)
- Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China.
| | - Qianyong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Menglan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China; College of Animal Science, Guizhou University, Guiyang, China
| | - Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
25
|
Chen G, Xu D, Liu Q, Yue Z, Dai B, Pan S, Chen Y, Feng X, Hu H. Regulation of FLC nuclear import by coordinated action of the NUP62-subcomplex and importin β SAD2. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2086-2106. [PMID: 37278318 DOI: 10.1111/jipb.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Flowering locus C (FLC) is a central transcriptional repressor that controls flowering time. However, how FLC is imported into the nucleus is unknown. Here, we report that Arabidopsis nucleoporins 62 (NUP62), NUP58, and NUP54 composed NUP62-subcomplex modulates FLC nuclear import during floral transition in an importin α-independent manner, via direct interaction. NUP62 recruits FLC to the cytoplasmic filaments and imports it into the nucleus through the NUP62-subcomplex composed central channel. Importin β supersensitive to ABA and drought 2 (SAD2), a carrier protein, is critical for FLC nuclear import and flower transition, which facilitates FLC import into the nucleus mainly through the NUP62-subcomplex. Proteomics, RNA-seq, and cell biological analyses indicate that the NUP62-subcomplex mainly mediates the nuclear import of cargos with unconventional nuclear localization sequences (NLSs), such as FLC. Our findings illustrate the mechanisms of the NUP62-subcomplex and SAD2 on FLC nuclear import process and floral transition, and provide insights into the role of NUP62-subcomplex and SAD2 in protein nucleocytoplasmic transport in plants.
Collapse
Affiliation(s)
- Gang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Danyun Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhichuang Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Biao Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shujuan Pan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongqiang Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhua Feng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
26
|
Gao K, Gao Z, Xia M, Li H, Di J. Role of plectin and its interacting molecules in cancer. Med Oncol 2023; 40:280. [PMID: 37632650 DOI: 10.1007/s12032-023-02132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/20/2023] [Indexed: 08/28/2023]
Abstract
Plectin, as the cytolinker and scaffolding protein, are widely expressed and abundant in many tissues, and has involved in various cellular activities contributing to tumorigenesis, such as cell adhesion, migration, and signal transduction. Due to the specific expression and differential localization of plectin in cancer, most researchers focus on the role of plectin in cancer, and it has emerged as a potent driver of malignant hallmarks in many human cancers, which provides the possibility for plectin to be widely used as a biomarker and therapeutic target in the early diagnosis and targeted drug delivery of the disease. However, there is still a lack of systematic review on the interaction molecules and mechanism of plectin. Herein, we summarized the structure, expression and function of plectin, and mainly focused on recent studies on the functional and physical interactions between plectin and its interacting molecules, shedding light on the potential of targeting plectin for cancer therapy.
Collapse
Affiliation(s)
- Keyu Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Zhimin Gao
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
27
|
Harris W, Kim S, Vӧlz R, Lee YH. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. MOLECULAR PLANT PATHOLOGY 2023; 24:637-650. [PMID: 36942744 DOI: 10.1111/mpp.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.
Collapse
Affiliation(s)
- William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Vӧlz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
Lee ZY, Tran T. Genomic and non-genomic effects of glucocorticoids in respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:1-30. [PMID: 37524484 DOI: 10.1016/bs.apha.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cortisol is an endogenous steroid hormone essential for the natural resolution of inflammation. Synthetic glucocorticoids (GCs) were developed and are currently amongst the most widely prescribed anti-inflammatory drugs in our modern clinical landscape owing to their potent anti-inflammatory activity. However, the extent of GC's effects has yet to be fully elucidated. Indeed, GCs modulate a broad spectrum of cellular activity, from their classical regulation of gene expression to acute non-genomic mechanisms of action. Furthermore, tissue specific effects, disease specific conditions, and dose-dependent responses complicate their use, with side-effects potentially plaguing their use. It is thus vital to outline and consolidate the effects of GCs, to demystify and maximize their therapeutic potential while avoiding pitfalls that would otherwise render them obsolete.
Collapse
Affiliation(s)
- Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
29
|
Lin C, Feng S, DeOliveira CC, Crane BR. Cryptochrome-Timeless structure reveals circadian clock timing mechanisms. Nature 2023; 617:194-199. [PMID: 37100907 PMCID: PMC11034853 DOI: 10.1038/s41586-023-06009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/23/2023] [Indexed: 04/28/2023]
Abstract
Circadian rhythms influence many behaviours and diseases1,2. They arise from oscillations in gene expression caused by repressor proteins that directly inhibit transcription of their own genes. The fly circadian clock offers a valuable model for studying these processes, wherein Timeless (Tim) plays a critical role in mediating nuclear entry of the transcriptional repressor Period (Per) and the photoreceptor Cryptochrome (Cry) entrains the clock by triggering Tim degradation in light2,3. Here, through cryogenic electron microscopy of the Cry-Tim complex, we show how a light-sensing cryptochrome recognizes its target. Cry engages a continuous core of amino-terminal Tim armadillo repeats, resembling how photolyases recognize damaged DNA, and binds a C-terminal Tim helix, reminiscent of the interactions between light-insensitive cryptochromes and their partners in mammals. The structure highlights how the Cry flavin cofactor undergoes conformational changes that couple to large-scale rearrangements at the molecular interface, and how a phosphorylated segment in Tim may impact clock period by regulating the binding of Importin-α and the nuclear import of Tim-Per4,5. Moreover, the structure reveals that the N terminus of Tim inserts into the restructured Cry pocket to replace the autoinhibitory C-terminal tail released by light, thereby providing a possible explanation for how the long-short Tim polymorphism adapts flies to different climates6,7.
Collapse
Affiliation(s)
- Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Shi Feng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
30
|
Yang X, Wang H, Zhang L, Yao S, Dai J, Wen G, An J, Jin H, Du Q, Hu Y, Zheng L, Chen X, Yi Z, Tuo B. Novel roles of karyopherin subunit alpha 2 in hepatocellular carcinoma. Biomed Pharmacother 2023; 163:114792. [PMID: 37121148 DOI: 10.1016/j.biopha.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Hepatocellular carcinoma is the most common type of liver cancer and associated with a high fatality rate. This disease poses a major threat to human health worldwide. A considerable number of genetic and epigenetic factors are involved in the development of hepatocellular carcinoma. However, the molecular mechanism underlying the progression of hepatocellular carcinoma remains unclear. Karyopherin subunit alpha 2 (KPNA2), also termed importin α1, is a member of the nuclear transporter family. In recent years, KPNA2 has been gradually linked to the nuclear transport pathway for a variety of tumor-associated proteins. Furthermore, it promotes tumor development by participating in various pathophysiological processes such as cell proliferation, apoptosis, immune response, and viral infection. In hepatocellular carcinoma, it has been found that KPNA2 expression is significantly higher in liver cancer tissues versus paracancerous tissues. Moreover, it has been identified as a marker of poor prognosis and early recurrence in patients with hepatocellular carcinoma. Nevertheless, the role of KPNA2 in the development of hepatocellular carcinoma remains to be determined. This review summarizes the current knowledge on the pathogenesis and role of KPNA2 in hepatocellular carcinoma, and provides new directions and strategies for the diagnosis, treatment, and prediction of prognosis of this disease.
Collapse
Affiliation(s)
- Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hu Wang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Dai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China; The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
31
|
Luo J, Lu C, Chen Y, Wu X, Zhu C, Cui W, Yu S, Li N, Pan Y, Zhao W, Yang Q, Yang X. Nuclear translocation of cGAS orchestrates VEGF-A-mediated angiogenesis. Cell Rep 2023; 42:112328. [PMID: 37027305 DOI: 10.1016/j.celrep.2023.112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) senses cytosolic incoming DNA and consequently activates stimulator of interferon response cGAMP interactor 1 (STING) to mount immune response. Here, we show nuclear cGAS could regulate VEGF-A-mediated angiogenesis in an immune-independent manner. We found VEGF-A stimulation induces cGAS nuclear translocation via importin-β pathway. Moreover, nuclear cGAS subsequently regulates miR-212-5p-ARPC3 cascade to modulate VEGF-A-mediated angiogenesis through affecting cytoskeletal dynamics and VEGFR2 trafficking from trans-Golgi network (TGN) to plasma membrane via a regulatory feedback loop. In contrast, cGAS deficiency remarkably impairs VEGF-A-mediated angiogenesis in vivo and in vitro. Furthermore, we found strong association between the expression of nuclear cGAS and VEGF-A, and the malignancy and prognosis in malignant glioma, suggesting that nuclear cGAS might play important roles in human pathology. Collectively, our findings illustrated the function of cGAS in angiogenesis other than immune surveillance, which might be a potential therapeutic target for pathological angiogenesis-related diseases.
Collapse
Affiliation(s)
- Juanjuan Luo
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chunjiao Lu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yang Chen
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xuewei Wu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Chenchen Zhu
- Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wei Cui
- College of Life Science and Biopharmaceutical of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shicang Yu
- Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ningning Li
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yihang Pan
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Weijiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qingkai Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China.
| | - Xiaojun Yang
- Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
32
|
Feng HP, Liu YC, Wang CL, Liao WC, Yu JS, Yu CJ. Acetylation regulates the nucleocytoplasmic distribution and oncogenic function of karyopherin alpha 2 in lung adenocarcinoma. Biochem Biophys Res Commun 2023; 659:96-104. [PMID: 37060831 DOI: 10.1016/j.bbrc.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/17/2023]
Abstract
Karyopherin subunit alpha 2 (KPNA2, importin α1) is a nucleoplasmic protein responsible for the nuclear import of proteins with classical nuclear localization signals. Aberrant nuclear accumulation of KPNA2 has been observed in numerous cancer tissues. AMP-activated protein kinase (AMPK) is involved in the phosphorylation and acetylation of KPNA2 in enterocytes. However, the impact of these post-translational modifications on modulating the nucleocytoplasmic distribution of KPNA2 and its oncogenic role remain unclear. Unlike nuclear accumulation of wild-type KPNA2, which promoted lung cancer cell migration, KPNA2 Lys22 acetylation-mimicking mutations (K22Q and K22Q/S105A) prevented nuclear localization of KPNA2 and reduced the cell migration ability. Cytosolic KPNA2 K22Q interacted with and restricted the nuclear entry of E2F transcription factor 1 (E2F1), an oncogenic cargo protein of KPNA2, in lung cancer cells. Intriguingly, the AMPK activator EX229 promoted the nuclear export of KPNA2 S105A. However, the CBP/p300 inhibitor CCS-1477 abolished this phenomenon, suggesting that CBP/p300-mediated acetylation of KPNA2 promoted KPNA2 nuclear export in lung cancer cells. Collectively, our findings suggest that the CBP/p300 positively regulates KPNA2 acetylation, which enhances its cytosolic localization and suppresses its oncogenic activity in lung cancer.
Collapse
Affiliation(s)
- Hsiang-Pu Feng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chin Liu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Liang Wang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
33
|
Jibiki K, Kodama TS, Yasuhara N. Importin alpha family NAAT/IBB domain: Functions of a pleiotropic long chameleon sequence. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:175-209. [PMID: 36858734 DOI: 10.1016/bs.apcsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear transport is essential for eukaryotic cell survival and regulates the movement of functional molecules in and out of the nucleus via the nuclear pore. Transport is facilitated by protein-protein interactions between cargo and transport receptors, which contribute to the expression and regulation of downstream genetic information. This chapter focuses on the molecular basis of the multifunctional nature of the importin α family, the representative transport receptors that bring proteins into the nucleus. Importin α performs multiple functions during the nuclear transport cycle through interactions with multiple molecules by a single domain called the IBB domain. This domain is a long chameleon sequence, which can change its conformation and binding mode depending on the interaction partners. By considering the evolutionarily conserved biochemical/physicochemical propensities of the amino acids constituting the functional complex interfaces, together with their structural properties, the mechanisms of switching between multiple complexes formed via IBB and the regulation of downstream functions are examined in detail. The mechanism of regulation by IBB indicates that the time has come for a paradigm shift in the way we view the molecular mechanisms by which proteins regulate downstream functions through their interactions with other molecules.
Collapse
Affiliation(s)
- Kazuya Jibiki
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan
| | - Takashi S Kodama
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan.
| | - Noriko Yasuhara
- Graduate School of Integrated Basic Sciences, Nihon University, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
34
|
Zhou S, Zhuang C, Liu R. KPNA2 promotes osteosarcoma growth and metastasis in a c-Myc-dependent manner via the hedgehog /GLI1 signaling pathway. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
35
|
Jia YZ, Liu J, Wang GQ, Pan H, Huang TZ, Liu R, Zhang Y. HIG1 domain family member 1A is a crucial regulator of disorders associated with hypoxia. Mitochondrion 2023; 69:171-182. [PMID: 36804467 DOI: 10.1016/j.mito.2023.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Mitochondria play a central role in cellular energy conversion, metabolism, and cell proliferation. The regulation of mitochondrial function by HIGD1A, which is located on the inner membrane of the mitochondria, is essential to maintain cell survival under hypoxic conditions. In recent years, there have been shown other cellular pathways and mechanisms involving HIGD1A diametrically or through its interaction. As a novel regulator, HIGD1A maintains mitochondrial integrity and enhances cell viability under hypoxic conditions, increasing cell resistance to hypoxia. HIGD1A mainly targets cytochrome c oxidase by regulating downstream signaling pathways, which affects the ATP generation system and subsequently alters mitochondrial respiratory function. In addition, HIGD1A plays a dual role in cell survival in distinct degree hypoxia regions of the tumor. Under mild and moderate anoxic areas, HIGD1A acts as a positive regulator to promote cell growth. However, HIGD1A plays a role in inhibiting cell growth but retaining cellular activity under severe anoxic areas. We speculate that HIGD1A engages in tumor recurrence and drug resistance mechanisms. This review will focus on data concerning how HIGD1A regulates cell viability under hypoxic conditions. Therefore, HIGD1A could be a potential therapeutic target for hypoxia-related diseases.
Collapse
Affiliation(s)
- Yin-Zhao Jia
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Liu
- Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Geng-Qiao Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tie-Zeng Huang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ran Liu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
36
|
Faerch O, Worth R, Achilonu I, Dirr H. Nuclear localisation sequences of chloride intracellular channels 1 and 4 facilitate nuclear import via interactions with import mediator importin-α: An empirical and theoretical perspective. J Mol Recognit 2023; 36:e2996. [PMID: 36175369 PMCID: PMC10078197 DOI: 10.1002/jmr.2996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Chloride intracellular channel proteins (CLICs) display ubiquitous expression, with each member exhibiting specific subcellular localisation. While all CLICs, except CLIC3, exhibit a highly conserved putative nuclear localisation sequence (NLS), only CLIC1, CLIC3 and CLIC4 exist within the nucleus. The CLIC4 NLS, 199-KVVAKKYR-206, appears crucial for nuclear entry and interacts with mouse nuclear import mediator Impα isoform 1, omitting the IBB domain (mImpα1ΔIBB). The essential nature of the basic residues in the CLIC4 NLS has been established by the fact that mutating out these residues inhibits nuclear import, which in turn is linked to cutaneous squamous cell cancer. Given the conservation of the CLIC NLS, CLIC1 likely follows a similar import pathway to CLIC4. Peptides of the CLIC1 (Pep1; Pep1_S C/S mutant) and CLIC4 (Pep4) NLSs were designed to examine binding to human Impα isoform 1, omitting the IBB domain (hImpα1ΔIBB). Molecular docking indicated that the core CLIC NLS region (KKYR) forms a similar binding pattern to both mImpα1ΔIBB and hImpα1ΔIBB. Fluorescence quenching demonstrated that Pep1_S (Kd ≈ 237 μM) and Pep4 (Kd ≈ 317 μM) bind hImpα1ΔIBB weakly. Isothermal titration calorimetry confirmed the weak binding interaction between Pep4 and hImpα1ΔIBB (Kd ≈ 130 μM) and the presence of a proton-linked effect. This weak interaction may be due to regions distal from the CLIC NLS needed to stabilise and strengthen hImpα1ΔIBB binding. Additionally, this NLS may preferentially bind another hImpα isoform with different flexibility properties.
Collapse
Affiliation(s)
- Olga Faerch
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Roland Worth
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Heini Dirr
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Piccinini G, Milani L. Germline-related molecular phenotype in Metazoa: conservation and innovation highlighted by comparative transcriptomics. EvoDevo 2023; 14:2. [PMID: 36717890 PMCID: PMC9885605 DOI: 10.1186/s13227-022-00207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In Metazoa, the germline represents the cell lineage devoted to the transmission of genetic heredity across generations. Its functions intuitively evoke the crucial roles that it plays in organism development and species evolution, and its establishment is tightly tied to animal multicellularity itself. The molecular toolkit expressed in germ cells has a high degree of conservation between species, and it also shares many components with the molecular phenotype of some animal totipotent cell lineages, like planarian neoblasts and sponge archaeocytes. The present study stems from these observations and represents a transcriptome-wide comparative analysis between germline-related samples of 9 animal species (7 phyla), comprehending also totipotent lineages classically considered somatic. RESULTS Differential expression analyses were performed for each species between germline-related and control somatic tissues. We then compared the different germline-related transcriptional profiles across the species without the need for an a priori set of genes. Through a phylostratigraphic analysis, we observed that the proportion of phylum- and Metazoa-specific genes among germline-related upregulated transcripts was lower than expected by chance for almost all species. Moreover, homologous genes related to proper DNA replication resulted the most common when comparing the considered species, while the regulation of transcription and post-transcriptional mechanisms appeared more variable, showing shared upregulated functions and domains, but very few homologous whole-length sequences. CONCLUSIONS Our wide-scale comparative analysis mostly confirmed previous molecular characterizations of specific germline-related lineages. Additionally, we observed a consistent signal throughout the whole data set, therefore comprehending both canonically defined germline samples (germ cells), and totipotent cell lineages classically considered somatic (neoblasts and archaeocytes). The phylostratigraphic analysis supported the less probable involvement of novel molecular factors in the germline-related transcriptional phenotype and highlighted the early origin of such cell programming and its conservation throughout evolution. Moreover, the fact that the mostly shared molecular factors were involved in DNA replication and repair suggests how fidelity in genetic material inheritance is a strong and conserved driver of germline-related molecular phenotype, while transcriptional and post-transcriptional regulations appear differently tuned among the lineages.
Collapse
Affiliation(s)
- Giovanni Piccinini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Hoad M, Cross EM, Donnelly CM, Sarker S, Roby JA, Forwood JK. Structural Characterization of Porcine Adeno-Associated Virus Capsid Protein with Nuclear Trafficking Protein Importin Alpha Reveals a Bipartite Nuclear Localization Signal. Viruses 2023; 15:v15020315. [PMID: 36851528 PMCID: PMC9964314 DOI: 10.3390/v15020315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Adeno-associated viruses (AAV) are important vectors for gene therapy, and accordingly, many aspects of their cell transduction pathway have been well characterized. However, the specific mechanisms that AAV virions use to enter the host nucleus remain largely unresolved. We therefore aimed to reveal the interactions between the AAV Cap protein and the nuclear transport protein importin alpha (IMPα) at an atomic resolution. Herein we expanded upon our earlier research into the Cap nuclear localization signal (NLS) of a porcine AAV isolate, by examining the influence of upstream basic regions (BRs) towards IMPα binding. Using a high-resolution crystal structure, we identified that the IMPα binding determinants of the porcine AAV Cap comprise a bipartite NLS with an N-terminal BR binding at the minor site of IMPα, and the previously identified NLS motif binding at the major site. Quantitative assays showed a vast difference in binding affinity between the previously determined monopartite NLS, and bipartite NLS described in this study. Our results provide a detailed molecular view of the interaction between AAV capsids and the nuclear import receptor, and support the findings that AAV capsids enter the nucleus by binding the nuclear import adapter IMPα using the classical nuclear localization pathway.
Collapse
Affiliation(s)
- Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Emily M. Cross
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Camilla M. Donnelly
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
| | - Justin A. Roby
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Correspondence:
| |
Collapse
|
39
|
Sharif M, Detti L, Van den Veyver IB. Take your mother's ferry: preimplantation embryo development requires maternal karyopherins for nuclear transport. J Clin Invest 2023; 133:e166279. [PMID: 36647833 PMCID: PMC9843045 DOI: 10.1172/jci166279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The genetic basis of preimplantation embryo arrest is slowly being unraveled. Recent discoveries point to maternally expressed proteins required for cellular functions before the embryonic genome is activated. In this issue of the JCI, Wang, Miyamoto, et al. suggest a critical role for karyopherin-mediated protein cargo transport between oocyte cytoplasm and nucleus. Defective maternal oocyte-expressed human karyopherin subunit α7 (KPNA7) and mouse KPNA2 fail to bind a critical substrate, ribosomal L1 domain-containing protein 1 (RSL1D1), affecting its transport to the nucleus. As shown in embryos of Kpna2-null females, the consequences are disrupted zygotic genome activation and arrest of development. These findings have important implications for diagnosis and treatment of female infertility.
Collapse
Affiliation(s)
| | - Laura Detti
- Department of Obstetrics and Gynecology
- Division of Reproductive Endocrinology and Infertility
| | - Ignatia B. Van den Veyver
- Department of Obstetrics and Gynecology
- Divisions of Maternal Fetal Medicine and Prenatal and Reproductive Genetics, and
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
40
|
Wang W, Miyamoto Y, Chen B, Shi J, Diao F, Zheng W, Li Q, Yu L, Li L, Xu Y, Wu L, Mao X, Fu J, Li B, Yan Z, Shi R, Xue X, Mu J, Zhang Z, Wu T, Zhao L, Wang W, Zhou Z, Dong J, Li Q, Jin L, He L, Sun X, Lin G, Kuang Y, Wang L, Sang Q. Karyopherin α deficiency contributes to human preimplantation embryo arrest. J Clin Invest 2023; 133:159951. [PMID: 36647821 PMCID: PMC9843055 DOI: 10.1172/jci159951] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/02/2022] [Indexed: 01/18/2023] Open
Abstract
Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene-based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2-/- female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2-/- mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2-/- mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.
Collapse
Affiliation(s)
- Wenjing Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Biaobang Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Juanzi Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Feiyang Diao
- Reproductive Medicine Center, Jiangsu Province Hospital, Jiangsu, China
| | - Wei Zheng
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qun Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lan Yu
- Reproductive Medicine Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Lin Li
- Key Laboratory of Human Reproduction and Genetics, Department of Reproductive Medicine, Nanchang Reproductive Hospital, Nanchang, China
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Fu
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Shi
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Xia Xue
- Reproductive Medicine Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Jian Mu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhihua Zhang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Tianyu Wu
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Lin Zhao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Weijie Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Zhou Zhou
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Jie Dong
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qiaoli Li
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxi Sun
- Shanghai Ji’ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, and
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| | - Qing Sang
- Institute of Pediatrics, Children’s Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai, China
| |
Collapse
|
41
|
The Nuclear Transporter Importin 13 Can Regulate Stress-Induced Cell Death through the Clusterin/KU70 Axis. Cells 2023; 12:cells12020279. [PMID: 36672214 PMCID: PMC9857240 DOI: 10.3390/cells12020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The cellular response to environmental stresses, such as heat and oxidative stress, is dependent on extensive trafficking of stress-signalling molecules between the cytoplasm and nucleus, which potentiates stress-activated signalling pathways, eventually resulting in cell repair or death. Although Ran-dependent nucleocytoplasmic transport mediated by members of the importin (IPO) super family of nuclear transporters is believed to be responsible for nearly all macromolecular transit between nucleus and cytoplasm, it is paradoxically known to be significantly impaired under conditions of stress. Importin 13 (IPO13) is a unique bidirectional transporter that binds to and releases cargo in a Ran-dependent manner, but in some cases, cargo release from IPO13 is affected by loading of another cargo. To investigate IPO13's role in stress-activated pathways, we performed cell-based screens to identify a multitude of binding partners of IPO13 from human brain, lung, and testes. Analysis of the IPO13 interactome intriguingly indicated more than half of the candidate binding partners to be annotated for roles in stress responses; these included the pro-apoptotic protein nuclear clusterin (nCLU), as well as the nCLU-interacting DNA repair protein KU70. Here, we show, for the first time, that unlike other IPOs which are mislocalised and non-functional, IPO13 continues to translocate between the nucleus and cytoplasm under stress, retaining the capacity to import certain cargoes, such as nCLU, but not export others, such as KU70, as shown by analysis using fluorescence recovery after photobleaching. Importantly, depletion of IPO13 reduces stress-induced import of nCLU and protects against stress-induced cell death, with concomitant protection from DNA damage during stress. Overexpression/FACS experiments demonstrate that nCLU is dependent on IPO13 to trigger stress-induced cell death via apoptosis. Taken together, these results implicate IPO13 as a novel functional nuclear transporter in cellular stress, with a key role thereby in cell fate decision.
Collapse
|
42
|
Hirano-Maeda Y, Ojima D, Kanematsu M. Molecular characterization of Vasa homolog in the pen shell Atrina pectinata: cDNA cloning and expression analysis during gonadal development. Comp Biochem Physiol B Biochem Mol Biol 2023; 263:110798. [PMID: 36064136 DOI: 10.1016/j.cbpb.2022.110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Vasa is an ATP-dependent RNA helicase of the DEAD (Asp-Glu-Ala-Asp) box family and a representative component of the germ plasm. In this study, we cloned the full-length vasa homolog in the bivalve Atrina pectinata (psvasa), and performed phylogenetic analysis, mRNA expression analysis for tissue-specific distributions, and immunostaining analysis to reveal its histological localization. The sequence of psvasa was 3587 bp in length and contained a 5' untranslated region of 150 bp, an open reading frame of 2214 bp, and a 3' untranslated region of 1223 bp. The deduced amino acid sequence of psvasa was 737 amino acids long and contained evolutionarily conserved sequences reported in other animals. The mRNA expression analysis showed the highest expression levels in the gonads. Expression was especially high in the ovaries, followed by the testes. The immunostaining analysis showed Vasa-positive cells in the developing gonads, suggesting the presence of putative germ stem cells contributing to the supply of germ cells. Furthermore, characteristic Vasa signals were observed in the basophilic nuclei of the oocytes, suggesting that psvasa plays an important role in the progression of meiosis in oocytes.
Collapse
Affiliation(s)
- Yuki Hirano-Maeda
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan.
| | - Daisuke Ojima
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan
| | - Masaei Kanematsu
- Momoshima Field Station, Fisheries Technology Institute (FTI), Japan Fisheries Research and Education Agency (FRA), Onomichi, Hiroshima 722-0061, Japan
| |
Collapse
|
43
|
Jin L, Zhang G, Yang G, Dong J. Identification of the Karyopherin Superfamily in Maize and Its Functional Cues in Plant Development. Int J Mol Sci 2022; 23:ijms232214103. [PMID: 36430578 PMCID: PMC9699179 DOI: 10.3390/ijms232214103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
Appropriate nucleo-cytoplasmic partitioning of proteins is a vital regulatory mechanism in phytohormone signaling and plant development. However, how this is achieved remains incompletely understood. The Karyopherin (KAP) superfamily is critical for separating the biological processes in the nucleus from those in the cytoplasm. The KAP superfamily is divided into Importin α (IMPα) and Importin β (IMPβ) families and includes the core components in mediating nucleocytoplasmic transport. Recent reports suggest the KAPs play crucial regulatory roles in Arabidopsis development and stress response by regulating the nucleo-cytoplasmic transport of members in hormone signaling. However, the KAP members and their associated molecular mechanisms are still poorly understood in maize. Therefore, we first identified seven IMPα and twenty-seven IMPβ genes in the maize genome and described their evolution traits and the recognition rules for substrates with nuclear localization signals (NLSs) or nuclear export signals (NESs) in plants. Next, we searched for the protein interaction partners of the ZmKAPs and selected the ones with Arabidopsis orthologs functioning in auxin biosynthesis, transport, and signaling to predict their potential function. Finally, we found that several ZmKAPs share similar expression patterns with their interacting proteins, implying their function in root development. Overall, this article focuses on the Karyopherin superfamily in maize and starts with this entry point by systematically comprehending the KAP-mediated nucleo-cytoplasmic transport process in plants, and then predicts the function of the ZmKAPs during maize development, with a perspective on a closely associated regulatory mechanism between the nucleo-cytoplasmic transport and the phytohormone network.
Collapse
Affiliation(s)
- Lu Jin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Guobin Zhang
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Guixiao Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Jiaqiang Dong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
44
|
Walunj SB, Wang C, Wagstaff KM, Patankar S, Jans DA. Conservation of Importin α Function in Apicomplexans: Ivermectin and GW5074 Target Plasmodium falciparum Importin α and Inhibit Parasite Growth in Culture. Int J Mol Sci 2022; 23:ijms232213899. [PMID: 36430384 PMCID: PMC9695642 DOI: 10.3390/ijms232213899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily of nuclear transporters is critical to the eukaryotic function and a point of therapeutic intervention with the potential to limit disease progression and pathogenic outcomes. Although the apicomplexan parasites Plasmodium falciparum and Toxoplasma gondii both retain unique IMPα genes that are essential, a detailed analysis of their properties has not been performed. As a first step to validate apicomplexan IMPα as a target, we set out to compare the properties of P. falciparum and T. gondii IMPα (PfIMPα and TgIMPα, respectively) to those of mammalian IMPα, as exemplified by Mus musculus IMPα (MmIMPα). Close similarities were evident, with all three showing high-affinity binding to modular nuclear localisation signals (NLSs) from apicomplexans as well as Simian virus SV40 large tumour antigen (T-ag). PfIMPα and TgIMPα were also capable of binding to mammalian IMPβ1 (MmIMPβ1) with high affinity; strikingly, NLS binding by PfIMPα and TgIMPα could be inhibited by the mammalian IMPα targeting small molecules ivermectin and GW5074 through direct binding to PfIMPα and TgIMPα to perturb the α-helical structure. Importantly, GW5074 could be shown for the first time to resemble ivermectin in being able to limit growth of P. falciparum. The results confirm apicomplexan IMPα as a viable target for the development of therapeutics, with agents targeting it worthy of further consideration as an antimalarial.
Collapse
Affiliation(s)
- Sujata B. Walunj
- Molecular Parasitology Lab., Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
| | - Chunxiao Wang
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
| | - Kylie M. Wagstaff
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
| | - Swati Patankar
- Molecular Parasitology Lab., Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A. Jans
- Nuclear Signalling Lab., Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Monash, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
45
|
Deb Roy A, Gross EG, Pillai GS, Seetharaman S, Etienne-Manneville S, Inoue T. Non-catalytic allostery in α-TAT1 by a phospho-switch drives dynamic microtubule acetylation. J Cell Biol 2022; 221:213540. [PMID: 36222836 PMCID: PMC9565784 DOI: 10.1083/jcb.202202100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Spatiotemporally dynamic microtubule acetylation underlies diverse physiological and pathological events. Despite its ubiquity, the molecular mechanisms that regulate the sole microtubule acetylating agent, α-tubulin-N-acetyltransferase-1 (α-TAT1), remain obscure. Here, we report that dynamic intracellular localization of α-TAT1 along with its catalytic activity determines efficiency of microtubule acetylation. Specifically, we newly identified a conserved signal motif in the intrinsically disordered C-terminus of α-TAT1, consisting of three competing regulatory elements-nuclear export, nuclear import, and cytosolic retention. Their balance is tuned via phosphorylation by CDK1, PKA, and CK2, and dephosphorylation by PP2A. While the unphosphorylated form binds to importins and resides both in cytosol and nucleus, the phosphorylated form binds to specific 14-3-3 adapters and accumulates in the cytosol for maximal substrate access. Unlike other molecules with a similar phospho-regulated signal motif, α-TAT1 uniquely uses the nucleus as a hideout. This allosteric spatial regulation of α-TAT1 function may help uncover a spatiotemporal code of microtubule acetylation in normal and aberrant cell behavior.
Collapse
Affiliation(s)
- Abhijit Deb Roy
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Shailaja Seetharaman
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691, Université Paris Cité, Centre national de la recherche scientifique, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
46
|
Panagiotopoulos AA, Kalyvianaki K, Tsodoulou PK, Darivianaki MN, Dellis D, Notas G, Daskalakis V, Theodoropoulos PA, Panagiotidis CΑ, Castanas E, Kampa M. Recognition motifs for importin 4 [(L)PPRS(G/P)P] and importin 5 [KP(K/Y)LV] binding, identified by bio-informatic simulation and experimental in vitro validation. Comput Struct Biotechnol J 2022; 20:5952-5961. [PMID: 36382187 PMCID: PMC9646746 DOI: 10.1016/j.csbj.2022.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 01/21/2023] Open
Abstract
Nuclear translocation of large proteins is mediated through karyopherins, carrier proteins recognizing specific motifs of cargo proteins, known as nuclear localization signals (NLS). However, only few NLS signals have been reported until now. In the present work, NLS signals for Importins 4 and 5 were identified through an unsupervised in silico approach, followed by experimental in vitro validation. The sequences LPPRS(G/P)P and KP(K/Y)LV were identified and are proposed as recognition motifs for Importins 4 and 5 binding, respectively. They are involved in the trafficking of important proteins into the nucleus. These sequences were validated in the breast cancer cell line T47D, which expresses both Importins 4 and 5. Elucidating the complex relationships of the nuclear transporters and their cargo proteins is very important in better understanding the mechanism of nuclear transport of proteins and laying the foundation for the development of novel therapeutics, targeting specific importins.
Collapse
Affiliation(s)
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece
| | - Paraskevi K. Tsodoulou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Maria N. Darivianaki
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitris Dellis
- National Infrastructures for Research and Technology, Athens 11523, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece
| | - Vangelis Daskalakis
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | | | - Christos Α. Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece,Corresponding authors.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71013, Greece,Corresponding authors.
| |
Collapse
|
47
|
Huang Z, Liu S, Lu N, Xu L, Shen Q, Huang Z, Huang Z, Saw PE, Xu X. Nucleus-specific RNAi nanoplatform for targeted regulation of nuclear lncRNA function and effective cancer therapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20220013. [PMID: 37325502 PMCID: PMC10191018 DOI: 10.1002/exp.20220013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/15/2022] [Indexed: 06/17/2023]
Abstract
In the context of cancer therapy, a recently identified therapeutic target is represented by the essential subtype of RNA transcripts - the long noncoding RNAs (lncRNA). While this is the case, it is especially difficult to successfully regulate the expression of this subtype in vivo, particularly due to the protection granted by the nuclear envelope of nuclear lncRNAs. This study documents the development of a nucleus-specific RNA interference (RNAi) nanoparticle (NP) platform for the targeted regulation of the nuclear lncRNA function, in order to effectuate successful cancer therapy. An NTPA (nucleus-targeting peptide amphiphile) and an endosomal pH-responsive polymer make up the novel RNAi nanoplatform in development, which is capable of complexing siRNA. The nanoplatform is capable of accumulating greatly in the tumor tissues and being internalized by tumor cells, following intravenous administration. The exposed complexes of the NTPA/siRNA may conveniently escape from the endosome with the pH-triggered NP disassociation, following which it can target the nucleus by specifically interacting with the importin α/β heterodimer. In orthotopic and subcutaneous xenograft tumor models, this would result in a notable suppression of the expression of nuclear lncNEAT2 as well as greatly impede the growth of tumors in liver cancer.
Collapse
Affiliation(s)
- Zixian Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Shaomin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- School of MedicineSun Yat‐sen UniversityShenzhenP. R. China
| | - Nan Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Qian Shen
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Zhuoshan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Zhiquan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong–Hong Kong Joint Laboratory for RNA MedicineMedical Research CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouP. R. China
- RNA Biomedical InstituteSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouP. R. China
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical SchoolUniversity of South ChinaHengyangP. R. China
| |
Collapse
|
48
|
Kalyvianaki K, Panagiotopoulos AA, Patentalaki M, Castanas E, Kampa M. Importins involved in the nuclear transportation of steroid hormone receptors: In silico and in vitro data. Front Endocrinol (Lausanne) 2022; 13:954629. [PMID: 36147566 PMCID: PMC9487861 DOI: 10.3389/fendo.2022.954629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear receptor superfamily (NRS) consists of 48 receptors for lipophilic substances and is divided into 7 different subfamilies, with subfamily 3 comprising steroid hormone receptors. Several nuclear receptors usually bind their cognate ligands in the cytosol and the complex (mono- or dimerized) is transported to the nucleus, where it acts as a transcription initiating factor for a number of genes. The general structure of nuclear receptors consists of an N-terminal activating domain (A/B), important for the binding of activating or inhibitory co-factors, the DNA-binding domain (C), responsible for the association of the receptor-ligand-co-factor complex to the nucleus, the ligand-AF2 domain (E/F), where ligand binding occurs as well as that of ligand-dependent activating/inhibiting factors, and a flexible/non-structured domain (D), linking the DBD and LBD, called hinge region, on which a significant number of post-translational modifications occur. This hinge domain, for the sub-class of steroid receptors, is a non-structured domain and was reported as mainly responsible for the nuclear transport of steroid receptors, since it contains a specific amino acid sequence (Nuclear Localization Signal-NLS), recognized by importin α. In addition to the importin α/β complex, a number of other importins have been discovered and reported to be responsible for the nuclear transport of a number of significant proteins; however, the corresponding recognition sequences for these importins have not been identified. Recently, we have reported the identification of the NLS sequences for importins 4, 5 and 7. In this work, we provide in silico data, followed by experimental in vitro validation, showing that these alternative importins are responsible for the nuclear transportation of steroid hormone receptors such as ERα, AR and PR, and therefore they may consist of alternative targets for the pharmacological manipulation of steroid hormone actions. Moreover, we provide additional in silico data for the hinge region of steroid hormone receptors which is highly enriched with NLS sequences for importins 4, 5 and 7, in addition to the recognition NLS for importin α/β.
Collapse
Affiliation(s)
| | | | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
49
|
Wei W, Zhang Y. PSEN1 is associated with colon cancer development via potential influences on PD-L1 nuclear translocation and tumor-immune interactions. Front Immunol 2022; 13:927474. [PMID: 36059511 PMCID: PMC9428321 DOI: 10.3389/fimmu.2022.927474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Presenilin 1 (PSEN1), as a catalytical core of the γ-secretase complex, plays multiple actions through mediating transmembrane domain shedding of the substrates. Unlike extensive studies performed on investigating the functions of γ-secretase substrates or the effects of γ-secretase inhibitors, our findings uncover a potential action of PSEN1 on PD-L1 alternative truncation and nuclear translocation, broadening our understanding on how the γ-secretase contributes to colon cancer development as well as suggesting a potential strategy to improve the efficacy of PD-1/PD-L1 blockade. Immunohistochemical data showed loss of PD-L1 protein expression in all the primary colon adenocarcioma (COAD) cases in the HPA collection, while PSEN1 was scored to be highly expressed, indicating their converse expression patterns (p<0.001). Meanwhile a strongly positive gene correlation was explored by TIMER2 and GEPIA (p<0.001). Up-regulated PSEN1 expression in COAD might facilitate liberating a C-terminal PD-L1 truncation via proteolytic processing. Then following an established regulatory pathway of PD-L1 nuclear translocation, we found that PSEN1 showed significant correlations with multiple components in HDAC2-mediated deacetylation, clathrin-dependent endocytosis, vimentin-associated nucleocytoplasmic shuttling and importin family-mediated nuclear import. Moreover, connections of PSEN1 to the immune response genes transactivated by nuclear PD-L1 were tested. Additionally, contributions of PSEN1 to the tumor invasiveness (p<0.05) and the tumor infiltrating cell enrichments (p<0.001) were investigated by cBioportal and the ESTIMATE algorithm. Levels of PSEN1 were negatively correlated with infiltrating CD8+ T (p<0.05) and CD4+ T helper (Th) 1 cells (p<0.001), while positively correlated with regulatory T cells (Tregs) (p<0.001) and cancer associated fibroblasts (CAFs) (p<0.001). It also displayed significant associations with diverse immune metagenes characteristic of T cell exhaustion, Tregs and CAFs, indicating possible actions in immune escape. Despite still a preliminary stage of this study, we anticipate to deciphering a novel function of PSEN1, and supporting more researchers toward the elucidations of the mechanisms linking the γ-secretase to cancers, which has yet to be fully addressed.
Collapse
|
50
|
Karasev MM, Baloban M, Verkhusha VV, Shcherbakova DM. Nuclear Localization Signals for Optimization of Genetically Encoded Tools in Neurons. Front Cell Dev Biol 2022; 10:931237. [PMID: 35927988 PMCID: PMC9344056 DOI: 10.3389/fcell.2022.931237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear transport in neurons differs from that in non-neuronal cells. Here we developed a non-opsin optogenetic tool (OT) for the nuclear export of a protein of interest induced by near-infrared (NIR) light. In darkness, nuclear import reverses the OT action. We used this tool for comparative analysis of nuclear transport dynamics mediated by nuclear localization signals (NLSs) with different importin specificities. We found that widely used KPNA2-binding NLSs, such as Myc and SV40, are suboptimal in neurons. We identified uncommon NLSs mediating fast nuclear import and demonstrated that the performance of the OT for nuclear export can be adjusted by varying NLSs. Using these NLSs, we optimized the NIR OT for light-controlled gene expression for lower background and higher contrast in neurons. The selected NLSs binding importins abundant in neurons could improve performance of genetically encoded tools in these cells, including OTs and gene-editing tools.
Collapse
Affiliation(s)
- Maksim M. Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikhail Baloban
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|