1
|
Lei M, Wang W, Zhang H, Gong J, Cai H, Wang Z, Zhu L, Yang X, Wang S, Ma C. Piezo1 Regulates Stiffness-Dependent DRG Axon Regeneration via Modifying Cytoskeletal Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405705. [PMID: 39514408 DOI: 10.1002/advs.202405705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Despite medical interventions, the regenerative capacity of the peripheral nervous system is limited. Dorsal root ganglion (DRG) neurons possess the capacity to detect mechanical signals from their microenvironment, but the impact and mechanism by which these signals regulate axon regrowth and even regeneration in DRG neurons remain unclear. In this study, DRG neurons from newborn rats are cultured on substrates with varying degrees of stiffness in vitro to investigate the role of mechanical signals in axon regrowth. The findings reveal that substrate stiffness plays a crucial role in regulating axon regrowth, with an optimal stiffness required for this process. In addition, the data demonstrate that Piezo1, a mechanosensitive cation channel, detects substrate stiffness at the growth cone and regulates axon regrowth through activating downstream Ca2+-CaMKII-FAK-actin cascade signaling pathway. Interestingly, knocking down Piezo1 in adult rat DRG neurons leads to enhanced axon regeneration and accelerated recovery of sensory function after sciatic nerve injury. Overall, these findings contribute to the understanding of the role of mechanical signals in axon regeneration and highlight microenvironmental stiffness as a promising therapeutic target for repairing nerve injuries.
Collapse
Affiliation(s)
- Mengshi Lei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiyou Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, 430079, China
| | - Hanmian Cai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhili Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan, 430079, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, Wuhan, 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Brain-inspired Intelligent Systems, Wuhan, 430074, China
| |
Collapse
|
2
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
3
|
Fischer NC, Friedman V, Martinez-Reyes MA, Hao H, Chowdhury TA, Starr DA, Quinn CC. The ANC-1 (Nesprin-1/2) organelle-anchoring protein functions through mitochondria to polarize axon growth in response to SLT-1. PLoS Genet 2022; 18:e1010521. [PMID: 36409768 PMCID: PMC9721489 DOI: 10.1371/journal.pgen.1010521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/05/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
A family of giant KASH proteins, including C. elegans ANC-1 and mammalian Nesprin-1 and -2, are involved in organelle anchoring and are associated with multiple neurodevelopmental disorders including autism, bipolar disorder, and schizophrenia. However, little is known about how these proteins function in neurons. Moreover, the role of organelle anchoring in axon development is poorly understood. Here, we report that ANC-1 functions with the SLT-1 extracellular guidance cue to polarize ALM axon growth. This role for ANC-1 is specific to its longer ANC-1A and ANC-1C isoforms, suggesting that it is mechanistically distinct from previously described roles for ANC-1. We find that ANC-1 is required for the localization of a cluster of mitochondria to the base of the proximal axon. Furthermore, genetic and pharmacological studies indicate that ANC-1 functions with mitochondria to promote polarization of ALM axon growth. These observations reveal a mechanism whereby ANC-1 functions through mitochondria to polarize axon growth in response to SLT-1.
Collapse
Affiliation(s)
- Nathan C. Fischer
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Vladislav Friedman
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Miguel A. Martinez-Reyes
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Hongyan Hao
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Tamjid A. Chowdhury
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, California, United States of America
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee; Milwaukee, Wisconsin, United States of America
| |
Collapse
|
4
|
Zhu H, Zhang Y, Zhang C, Xie Z. RNA-Binding Profiles of CKAP4 as an RNA-Binding Protein in Myocardial Tissues. Front Cardiovasc Med 2022; 8:773573. [PMID: 35004889 PMCID: PMC8733325 DOI: 10.3389/fcvm.2021.773573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Pathological tissue remodeling such as fibrosis is developed in various cardiac diseases. As one of cardiac activated-myofibroblast protein markers, CKAP4 may be involved in this process and the mechanisms have not been explored. Methods: We assumed that CKAP4 held a role in the regulation of cardiac fibrotic remodeling as an RNA-binding protein. Using improved RNA immunoprecipitation and sequencing (iRIP-seq), we sought to analyze the RNAs bound by CKAP4 in normal atrial muscle (IP1 group) and remodeling fibrotic atrial muscle (IP2 group) from patients with cardiac valvular disease. Quantitative PCR and Western blotting were applied to identify CKAP4 mRNA and protein expression levels in human right atrium samples. Results: iRIP-seq was successfully performed, CKAP4-bound RNAs were characterized. By statistically analyzing the distribution of binding peaks in various regions on the reference human genome, we found that the reads of IP samples were mainly distributed in the intergenic and intron regions implying that CKAP4 is more inclined to combine non-coding RNAs. There were 913 overlapping binding peaks between the IP1 and IP2 groups. The top five binding motifs were obtained by HOMER, in which GGGAU was the binding sequence that appeared simultaneously in both IP groups. Binding peak-related gene cluster enrichment analysis demonstrated these genes were mainly involved in biological processes such as signal transduction, protein phosphorylation, axonal guidance, and cell connection. The signal pathways ranking most varied in the IP2 group compared to the IP1 group were relating to mitotic cell cycle, protein ubiquitination and nerve growth factor receptors. More impressively, peak analysis revealed the lncRNA-binding features of CKAP4 in both IP groups. Furthermore, qPCR verified CKAP4 differentially bound lncRNAs including LINC00504, FLJ22447, RP11-326N17.2, and HELLPAR in remodeling myocardial tissues when compared with normal myocardial tissues. Finally, the expression of CKAP4 is down-regulated in human remodeling fibrotic atrium. Conclusions: We reveal certain RNA-binding features of CKAP4 suggesting a relevant role as an unconventional RNA-binding protein in cardiac remodeling process. Deeper structural and functional analysis will be helpful to enrich the regulatory network of cardiac remodeling and to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanfeng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengliang Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhongshang Xie
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Compartmentalized Neuronal Cultures. Methods Mol Biol 2021. [PMID: 34033084 DOI: 10.1007/978-1-0716-1437-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The culturing of neurons results in formation of the layer of neurons with random extensive overlapping outgrowth. To understand specific roles of somas, axons, and dendrites in complex function of neurons and to identify molecular mechanisms of biological processes in these cellular compartments, various methods were developed. We utilized AXon Investigation System (AXIS™) manufactured by Millipore. This device provides an opportunity to orient neuronal outgrowth and spatially isolate neuronal processes from neuronal bodies. AXIS device is a slide-mounted microfluidic system, which consists of four wells. Two of the wells are connected by a channel on each side of the device. Channels are connected by microgrooves (approximately 120). The size of microgrooves (10μm in width and 5μm in height) does not permit passage of cell through while allowing extension of neurites. The microfluidic design also allows for an establishment of a hydrostatic gradient when the volume in one chamber is greater than that in the other (Park et al., Nat Protoc 1:2128-2136, 2006). This feature allows for studying of the effect of specific compounds on selected compartments of neurons.
Collapse
|
6
|
Juvale IIA, Che Has AT. Possible interplay between the theories of pharmacoresistant epilepsy. Eur J Neurosci 2020; 53:1998-2026. [PMID: 33306252 DOI: 10.1111/ejn.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/22/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is one of the oldest known neurological disorders and is characterized by recurrent seizure activity. It has a high incidence rate, affecting a broad demographic in both developed and developing countries. Comorbid conditions are frequent in patients with epilepsy and have detrimental effects on their quality of life. Current management options for epilepsy include the use of anti-epileptic drugs, surgery, or a ketogenic diet. However, more than 30% of patients diagnosed with epilepsy exhibit drug resistance to anti-epileptic drugs. Further, surgery and ketogenic diets do little to alleviate the symptoms of patients with pharmacoresistant epilepsy. Thus, there is an urgent need to understand the underlying mechanisms of pharmacoresistant epilepsy to design newer and more effective anti-epileptic drugs. Several theories of pharmacoresistant epilepsy have been suggested over the years, the most common being the gene variant hypothesis, network hypothesis, multidrug transporter hypothesis, and target hypothesis. In our review, we discuss the main theories of pharmacoresistant epilepsy and highlight a possible interconnection between their mechanisms that could lead to the development of novel therapies for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
7
|
Ebbing A, Middelkoop TC, Betist MC, Bodewes E, Korswagen HC. Partially overlapping guidance pathways focus the activity of UNC-40/DCC along the anteroposterior axis of polarizing neuroblasts. Development 2019; 146:dev.180059. [PMID: 31488562 DOI: 10.1242/dev.180059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022]
Abstract
Directional migration of neurons and neuronal precursor cells is a central process in nervous system development. In the nematode Caenorhabditis elegans, the two Q neuroblasts polarize and migrate in opposite directions along the anteroposterior body axis. Several key regulators of Q cell polarization have been identified, including MIG-21, DPY-19/DPY19L1, the netrin receptor UNC-40/DCC, the Fat-like cadherin CDH-4 and CDH-3/Fat, which we describe in this study. How these different transmembrane proteins act together to direct Q neuroblast polarization and migration is still largely unknown. Here, we demonstrate that MIG-21 and DPY-19, CDH-3 and CDH-4, and UNC-40 define three distinct pathways that have partially redundant roles in protrusion formation, but also separate functions in regulating protrusion direction. Moreover, we show that the MIG-21, DPY-19 and Fat-like cadherin pathways control the localization and clustering of UNC-40 at the leading edge of the polarizing Q neuroblast, and that this is independent of the UNC-40 ligands UNC-6/netrin and MADD-4. Our results provide insight into a novel mechanism for ligand-independent localization of UNC-40 that directs the activity of UNC-40 along the anteroposterior axis.
Collapse
Affiliation(s)
- Annabel Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teije C Middelkoop
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marco C Betist
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Eduard Bodewes
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands .,Institute of Biodynamics and Biocomplexity, Developmental Biology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
8
|
Zhou Y, Fu Y, Bai Z, Li P, Zhao B, Han Y, Xu T, Zhang N, Lin L, Cheng J, Zhang J, Zhang J. Neural Differentiation of Mouse Neural Stem Cells as a Tool to Assess Developmental Neurotoxicity of Drinking Water in Taihu Lake. Biol Trace Elem Res 2019; 190:172-186. [PMID: 30465171 DOI: 10.1007/s12011-018-1533-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 10/27/2022]
Abstract
In this study, we used neural stem cells (NSCs) as a toxicology tool to assess the potential developmental neurotoxicity of drinking water from Taihu Lake. We found that the condensed drinking water could inhibit the proliferation and differentiation of NSCs, especially the tap water. Inductively coupled plasma mass spectrometry and high-performance liquid chromatography analysis showed that nickel was detected in the tap water with a high concentration. Our study revealed that nickel could inhibit NSCs proliferation and differentiation, which is induced not only by the intracellular reactive oxygen species generation, but also by the protein levels upregulation of p-c-Raf, p-MEK1/2 and p-Erk1/2 through the axon guidance signal pathways. These findings will provide a new way of research insight for investigation of nickel-induced neurotoxicity. Meanwhile, our test method confirmed the feasibility and reliability of stem cell assays for developmental neurotoxicity testing.
Collapse
Affiliation(s)
- Yang Zhou
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Yu Fu
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Zhendong Bai
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Peixin Li
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Bo Zhao
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yuehua Han
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Ting Xu
- College of Environmental Science and Engineering, Tongji University, Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai, 200092, People's Republic of China
| | - Ningyan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Lin Lin
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China
| | - Jian Cheng
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jun Zhang
- Department of Regenerative Medicine, Tongji University School of Medicine, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
| | - Jing Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
- Tongji Hospital, School of Life Science and Technology, Tongji University, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| |
Collapse
|
9
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
10
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
11
|
Baba K, Yoshida W, Toriyama M, Shimada T, Manning CF, Saito M, Kohno K, Trimmer JS, Watanabe R, Inagaki N. Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance. eLife 2018; 7:34593. [PMID: 30082022 PMCID: PMC6080949 DOI: 10.7554/elife.34593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/05/2018] [Indexed: 12/28/2022] Open
Abstract
Growth cones navigate axonal projection in response to guidance cues. However, it is unclear how they can decide the migratory direction by transducing the local spatial cues into protrusive forces. Here we show that knockout mice of Shootin1 display abnormal projection of the forebrain commissural axons, a phenotype similar to that of the axon guidance molecule netrin-1. Shallow gradients of netrin-1 elicited highly polarized Pak1-mediated phosphorylation of shootin1 within growth cones. We demonstrate that netrin-1–elicited shootin1 phosphorylation increases shootin1 interaction with the cell adhesion molecule L1-CAM; this, in turn, promotes F-actin–adhesion coupling and concomitant generation of forces for growth cone migration. Moreover, the spatially regulated shootin1 phosphorylation within growth cones is required for axon turning induced by netrin-1 gradients. Our study defines a mechano-effector for netrin-1 signaling and demonstrates that shootin1 phosphorylation is a critical readout for netrin-1 gradients that results in a directional mechanoresponse for axon guidance. Neurons communicate with each other by forming intricate webs that link cells together according to a precise pattern. A neuron can connect to another by growing a branch-like structure known as the axon. To contact the correct neuron, the axon must develop and thread its way to exactly the right place in the brain. Scientists know that the tip of the axon is extraordinarily sensitive to gradients of certain molecules in its surroundings, which guide the budding structure towards its final destination. In particular, two molecules seem to play an important part in this process: netrin-1, which is a protein found outside cells that attracts a growing axon, and shootin1a, which is present inside neurons. Previous studies have shown that netrin-1 can trigger a cascade of reactions that activates shootin1a. In turn, activated shootin1a molecules join the internal skeleton of the cell with L1-CAM, a molecule that attaches the neuron to its surroundings. If the internal skeleton is the engine of the axon, L1-CAMs are the wheels, and shootin1a the clutch. However, it is not clear whether shootin1a is involved in guiding growing axons, and how it could help neurons ‘understand’ and react to gradients of netrin-1. Here, Baba et al. discover that when shootin1a is absent in mice, the axons do not develop properly. Further experiments in rat neurons show that if there is a little more netrin-1 on one side of the tip of an axon, this switches on the shootin1a molecules on that edge. Activated shootin1a promote interactions between the internal skeleton and L1-CAM, helping the axon curve towards the area that has more netrin-1. In fact, if the activated shootin1a is present everywhere on the axon, and not just on one side, the structure can develop, but not turn. Taken together, the results suggest that shootin1a can read the gradients of netrin-1 and then coordinate the turning of a growing axon in response. Wound healing, immune responses or formation of organs are just a few examples of processes that rely on cells moving in an orderly manner through the body. Dissecting how axons are guided through their development may shed light on the migration of cells in general. Ultimately, this could help scientists to understand disorders such as birth abnormalities or neurological disabilities, which arise when this process goes awry.
Collapse
Affiliation(s)
- Kentarou Baba
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Wataru Yoshida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tadayuki Shimada
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Colleen F Manning
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Michiko Saito
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kenji Kohno
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - James S Trimmer
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
| | - Rikiya Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Naoyuki Inagaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
12
|
Florica RO, Hipolito V, Bautista S, Anvari H, Rapp C, El-Rass S, Asgharian A, Antonescu CN, Killeen MT. The ENU-3 protein family members function in the Wnt pathway parallel to UNC-6/Netrin to promote motor neuron axon outgrowth in C. elegans. Dev Biol 2017; 430:249-261. [PMID: 28694018 DOI: 10.1016/j.ydbio.2017.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 10/19/2022]
Abstract
The axons of the DA and DB classes of motor neurons fail to reach the dorsal cord in the absence of the guidance cue UNC-6/Netrin or its receptor UNC-5 in C. elegans. However, the axonal processes usually exit their cell bodies in the ventral cord in the absence of both molecules. Strains lacking functional versions of UNC-6 or UNC-5 have a low level of DA and DB motor neuron axon outgrowth defects. We found that mutations in the genes for all six of the ENU-3 proteins function to enhance the outgrowth defects of the DA and DB axons in strains lacking either UNC-6 or UNC-5. A mutation in the gene for the MIG-14/Wntless protein also enhances defects in a strain lacking either UNC-5 or UNC-6, suggesting that the ENU-3 and Wnt pathways function parallel to the Netrin pathway in directing motor neuron axon outgrowth. Our evidence suggests that the ENU-3 proteins are novel members of the Wnt pathway in nematodes. Five of the six members of the ENU-3 family are predicted to be single-pass trans-membrane proteins. The expression pattern of ENU-3.1 was consistent with plasma membrane localization. One family member, ENU-3.6, lacks the predicted signal peptide and the membrane-spanning domain. In HeLa cells ENU-3.6 had a cytoplasmic localization and caused actin dependent processes to appear. We conclude that the ENU-3 family proteins function in a pathway parallel to the UNC-6/Netrin pathway for motor neuron axon outgrowth, most likely in the Wnt pathway.
Collapse
Affiliation(s)
- Roxana Oriana Florica
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Victoria Hipolito
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Stephen Bautista
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Homa Anvari
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Chloe Rapp
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Suzan El-Rass
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Alimohammad Asgharian
- Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Costin N Antonescu
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3
| | - Marie T Killeen
- Graduate Program in Molecular Science Program, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3; Dept. of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, Ont., Canada M5B 2K3.
| |
Collapse
|
13
|
Fang X, Li S, Han Q, Zhao Y, Gao J, Yan J, Luo A. Overexpression cdc42 attenuates isoflurane-induced neurotoxicity in developmental brain of rats. Biochem Biophys Res Commun 2017. [PMID: 28642137 DOI: 10.1016/j.bbrc.2017.06.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Uncoupling of UNC5C with Polymerized TUBB3 in Microtubules Mediates Netrin-1 Repulsion. J Neurosci 2017; 37:5620-5633. [PMID: 28483977 DOI: 10.1523/jneurosci.2617-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Modulation of microtubule (MT) dynamics is a key event of cytoskeleton remodeling in the growth cone (GC) during axon outgrowth and pathfinding. Our previous studies have shown that the direct interaction of netrin receptor DCC and DSCAM with polymerized TUBB3, a neuron-specific MT subunit in the brain, is required for netrin-1-mediated axon outgrowth, branching, and attraction. Here, we show that uncoupling of polymerized TUBB3 with netrin-1-repulsive receptor UNC5C is involved in netrin-1-mediated axonal repulsion. TUBB3 directly interacted with UNC5C and partially colocalized with UNC5C in the peripheral area of the GC of primary neurons from the cerebellar external granule layer of P2 mouse pups of both sexes. Netrin-1 reduced this interaction as well as the colocalization of UNC5C and TUBB3 in the GC. Results from the in vitro cosedimentation assay indicated that UNC5C interacted with polymerized TUBB3 in MTs and netrin-1 decreased this interaction. Knockdown of either TUBB3 or UNC5C blocked netrin-1-promoted axon repulsion in vitro and caused defects in axon projection of DRG toward the spinal cord in vivo Furthermore, live-cell imaging of end-binding protein 3 tagged with EGFP (EB3-GFP) in primary external granule layer cells showed that netrin-1 differentially increased MT dynamics in the GC with more MT growth in the distal than the proximal region of the GC during repulsion, and knockdown of either UNC5C or TUBB3 abolished the netrin-1 effect. Together, these data indicate that the disengagement of UNC5C with polymerized TUBB3 plays an essential role in netrin-1/UNC5C-mediated axon repulsion.SIGNIFICANCE STATEMENT Proper regulation of microtubule (MT) dynamics in the growth cone plays an important role in axon guidance. However, whether guidance cues modulate MT dynamics directly or indirectly is unclear. Here, we report that dissociation of UNC5C and polymerized TUBB3, the highly dynamic β-tubulin isoform in neurons, is essential for netrin-1/UNC5C-promoted axon repulsion. These results not only provide a working model of direct modulation of MTs by guidance cues in growth cone navigation but also help us to understand molecular mechanisms underlying developmental brain disorders associated with TUBB3 mutations.
Collapse
|
15
|
Huang GH, Sun ZL, Li HJ, Feng DF. Rho GTPase-activating proteins: Regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 2017; 80:18-31. [PMID: 28163190 DOI: 10.1016/j.mcn.2017.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/06/2017] [Accepted: 01/29/2017] [Indexed: 12/22/2022] Open
Abstract
The Rho family of small GTPases was considered as molecular switches in regulating multiple cellular events, including cytoskeleton reorganization. The Rho GTPase-activating proteins (RhoGAPs) are one of the major families of Rho GTPase regulators. RhoGAPs were initially considered negative mediators of Rho signaling pathways via their GAP domain. Recent studies have demonstrated that RhoGAPs also regulate numerous aspects of neuronal development and are related to various neurodegenerative diseases in GAP-dependent and GAP-independent manners. Moreover, RhoGAPs are regulated through various mechanisms, such as phosphorylation. To date, approximately 70 RhoGAPs have been identified; however, only a small portion has been thoroughly investigated. Thus, the characterization of important RhoGAPs in the central nervous system is crucial to understand their spatiotemporal role during different stages of neuronal development. In this review, we summarize the current knowledge of RhoGAPs in the brain with an emphasis on their molecular function, regulation mechanism and disease implications in the central nervous system.
Collapse
Affiliation(s)
- Guo-Hui Huang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China.
| |
Collapse
|
16
|
Riveiro AR, Mariani L, Malmberg E, Amendola PG, Peltonen J, Wong G, Salcini AE. JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling. Development 2017; 144:856-865. [PMID: 28126843 DOI: 10.1242/dev.142695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/09/2017] [Indexed: 01/10/2023]
Abstract
Components of the KDM7 family of histone demethylases are implicated in neuronal development and one member, PHF8, is often found to be mutated in cases of X-linked mental retardation. However, how PHF8 regulates neurodevelopmental processes and contributes to the disease is still largely unknown. Here, we show that the catalytic activity of a PHF8 homolog in Caenorhabditis elegans, JMJD-1.2, is required non-cell-autonomously for proper axon guidance. Loss of JMJD-1.2 dysregulates transcription of the Hedgehog-related genes wrt-8 and grl-16, the overexpression of which is sufficient to induce the axonal defects. Deficiency of either wrt-8 or grl-16, or reduced expression of homologs of genes promoting Hedgehog signaling, restores correct axon guidance in jmjd-1.2 mutants. Genetic and overexpression data indicate that Hedgehog-related genes act on axon guidance through actin remodelers. Thus, our study highlights a novel function of jmjd-1.2 in axon guidance that might be relevant for the onset of X-linked mental retardation and provides compelling evidence of a conserved function of the Hedgehog pathway in C. elegans axon migration.
Collapse
Affiliation(s)
- Alba Redo Riveiro
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.,Centre for Epigenetics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.,Centre for Epigenetics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Emily Malmberg
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.,Centre for Epigenetics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Pier Giorgio Amendola
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark.,Centre for Epigenetics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, 70211, Kuopio, Finland
| | - Garry Wong
- Faculty of Health Sciences, University of Macau, 999078, Macau, China
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, 2200, Copenhagen, Denmark .,Centre for Epigenetics, University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
17
|
Xu Y, Quinn CC. SYD-1 Promotes Multiple Developmental Steps Leading to Neuronal Connectivity. Mol Neurobiol 2016; 53:6768-6773. [PMID: 26660112 PMCID: PMC5841450 DOI: 10.1007/s12035-015-9592-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
The establishment of neuronal connectivity requires precise orchestration of multiple developmental steps, including axon specification, axon guidance, selection of synaptic target sites, and development of synaptic specializations. Although these are separate developmental steps, evidence indicates that some of the signaling molecules that regulate these steps are shared. In this review, we focus on SYD-1, a RhoGAP-like protein that has been implicated in each step of axonal development. We discuss interactions between SYD-1, UNC-40(DCC) and RhoGTPases and highlight both similarities and differences in how SYD-1 functions to regulate the different steps of axonal development. These observations reveal an example of how a signaling protein can be repurposed across sequential developmental steps.
Collapse
Affiliation(s)
- Yan Xu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
18
|
Xu Y, Quinn CC. Transition between synaptic branch formation and synaptogenesis is regulated by the lin-4 microRNA. Dev Biol 2016; 420:60-66. [PMID: 27746167 PMCID: PMC5841448 DOI: 10.1016/j.ydbio.2016.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
Axonal branch formation and synaptogenesis are sequential events that are required for the establishment of neuronal connectivity. However, little is known about how the transition between these two events is regulated. Here, we report that the lin-4 microRNA can regulate the transition between branch formation and synaptogenesis in the PLM axon of C. elegans. The PLM axon grows a collateral branch during the early L1 stage and undergoes synaptogenesis during the late L1 stage. Loss of the lin-4 microRNA disrupts synaptogenesis during the late L1 stage, suggesting that lin-4 promotes synaptogenesis. Conversely, the target of lin-4, the LIN-14 transcription factor, promotes PLM branch formation and inhibits synaptogenesis during the early L1 stage. Moreover, we present genetic evidence suggesting that synaptic vesicle transport is required for PLM branch formation and that the role of LIN-14 is to promote transport of synaptic vesicles to the region of future branch growth. These observations provide a novel mechanism whereby lin-4 promotes the transition from branch formation to synaptogenesis by repressing the branch-promoting and synaptogenesis-inhibiting activities of LIN-14.
Collapse
Affiliation(s)
- Yan Xu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - Christopher C Quinn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.
| |
Collapse
|
19
|
Chisholm AD, Hutter H, Jin Y, Wadsworth WG. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans. Genetics 2016; 204:849-882. [PMID: 28114100 PMCID: PMC5105865 DOI: 10.1534/genetics.115.186262] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment.
Collapse
Affiliation(s)
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, and
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute, Chevy Chase, Maryland, and
| | - William G Wadsworth
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
20
|
Huang H, Shao Q, Qu C, Yang T, Dwyer T, Liu G. Coordinated interaction of Down syndrome cell adhesion molecule and deleted in colorectal cancer with dynamic TUBB3 mediates Netrin-1-induced axon branching. Neuroscience 2015; 293:109-22. [PMID: 25754961 DOI: 10.1016/j.neuroscience.2015.02.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/02/2015] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
Abstract
Modulation of actin and microtubule (MT) dynamics in neurons is implicated in guidance cue-dependent axon outgrowth, branching and pathfinding. Although the role of MTs in axon guidance has been well known, how extracellular guidance signals engage MT behavior in axon branching remains unclear. Previously, we have shown that TUBB3, the most dynamic β-tubulin isoform in neurons, directly binds to deleted in colorectal cancer (DCC) to regulate MT dynamics in Netrin-1-mediated axon guidance. Here, we report that TUBB3 directly interacted with another Netrin-1 receptor Down syndrome cell adhesion molecule (DSCAM) and Netrin-1 increased this interaction in primary neurons. MT dynamics were required for Netrin-1-promoted association of DSCAM with TUBB3. Knockdown of either DSCAM or DCC or addition of a function blocking anti-DCC antibody mutually blocked Netrin-1-induced interactions, suggesting that DSCAM interdependently coordinated with DCC in Netrin-1-induced binding to TUBB3. Both DSCAM and DCC were partially colocalized with TUBB3 in the axon branch and the axon branching point of primary neurons and Netrin-1 increased these colocalizations. Netrin-1 induced the interaction of endogenous DSCAM with polymerized TUBB3 in primary neurons and Src family kinases (SFKs) were required for regulating this binding. Knockdown of DSCAM only, DCC only or both was sufficient to block Netrin-1-induced axon branching of E15 mouse cortical neurons. Knocking down TUBB3 inhibited Netrin-1 induced axon branching as well. These results suggest that DSCAM collaborates with DCC to regulate MT dynamics via direct binding to dynamic TUBB3 in Netrin-1-induced axon branching.
Collapse
Affiliation(s)
- H Huang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Q Shao
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - C Qu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - T Yang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - T Dwyer
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - G Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
21
|
Liu G, Dwyer T. Microtubule dynamics in axon guidance. Neurosci Bull 2014; 30:569-83. [PMID: 24968808 DOI: 10.1007/s12264-014-1444-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022] Open
Abstract
Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-3β, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.
Collapse
Affiliation(s)
- Guofa Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, 43606, USA,
| | | |
Collapse
|
22
|
Shigeoka T, Lu B, Holt CE. Cell biology in neuroscience: RNA-based mechanisms underlying axon guidance. ACTA ACUST UNITED AC 2013; 202:991-9. [PMID: 24081488 PMCID: PMC3787380 DOI: 10.1083/jcb.201305139] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Axon guidance plays a key role in establishing neuronal circuitry. The motile tips of growing axons, the growth cones, navigate by responding directionally to guidance cues that pattern the embryonic neural pathways via receptor-mediated signaling. Evidence in vitro in the last decade supports the notion that RNA-based mechanisms contribute to cue-directed steering during axon guidance. Different cues trigger translation of distinct subsets of mRNAs and localized translation provides precise spatiotemporal control over the growth cone proteome in response to localized receptor activation. Recent evidence has now demonstrated a role for localized translational control in axon guidance decisions in vivo.
Collapse
Affiliation(s)
- Toshiaki Shigeoka
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, England, UK
| | | | | |
Collapse
|
23
|
Gomez TM, Letourneau PC. Actin dynamics in growth cone motility and navigation. J Neurochem 2013; 129:221-34. [PMID: 24164353 DOI: 10.1111/jnc.12506] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/07/2013] [Accepted: 10/16/2013] [Indexed: 12/17/2022]
Abstract
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P-) domain]. Actin filament organization in growth cones is regulated by actin-binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin-binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
24
|
Tian C, Shi H, Xiong S, Hu F, Xiong WC, Liu J. The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans. Development 2013; 140:4070-80. [PMID: 24004951 DOI: 10.1242/dev.099838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The deleted in colorectal cancer (DCC) homolog neogenin functions in both netrin- and repulsive guidance molecule (RGM)-mediated axon guidance and in bone morphogenetic protein (BMP) signaling. How neogenin functions in mediating BMP signaling is not well understood. We show that the sole C. elegans DCC/neogenin homolog UNC-40 positively modulates a BMP-like pathway by functioning in the signal-receiving cells at the ligand/receptor level. This function of UNC-40 is independent of its role in netrin-mediated axon guidance, but requires its association with the RGM protein DRAG-1. We have identified the key residues in the extracellular domain of UNC-40 that are crucial for UNC-40-DRAG-1 interaction and UNC-40 function. Surprisingly, the extracellular domain of UNC-40 is sufficient to promote BMP signaling, in clear contrast to the requirement of its intracellular domain in mediating axon guidance. Mouse neogenin lacking the intracellular domain is also capable of mediating BMP signaling. These findings reveal an unexpected mode of action for neogenin regulation of BMP signaling.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
25
|
Tian C, Liu J. Repulsive guidance molecules (RGMs) and neogenin in bone morphogenetic protein (BMP) signaling. Mol Reprod Dev 2013; 80:700-17. [PMID: 23740870 DOI: 10.1002/mrd.22199] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/28/2013] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-beta (TGFβ) superfamily. BMPs mediate a highly conserved signal transduction cascade through the type-I and type-II serine/threonine kinase receptors and intracellular Smad proteins, which regulate multiple developmental and homeostatic processes. Mutations in this pathway can cause various diseases in humans, such as skeletal disorders, cardiovascular diseases, and various cancers. Multiple levels of regulation, including extracellular regulation, help to ensure proper spatiotemporal control of BMP signaling in the right cellular context. The family of repulsive guidance molecules (RGMs) and the type-I transmembrane protein neogenin, a paralog of DCC (Deleted in Colorectal Cancer), have been implicated in modulating the BMP pathway. In this review, we discuss the properties and functions of RGM proteins and neogenin, focusing on their roles in the modulation of BMP signal transduction.
Collapse
Affiliation(s)
- Chenxi Tian
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | | |
Collapse
|
26
|
Frazzled/DCC facilitates cardiac cell outgrowth and attachment during Drosophila dorsal vessel formation. Dev Biol 2013; 380:233-42. [PMID: 23685255 DOI: 10.1016/j.ydbio.2013.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/29/2013] [Accepted: 05/07/2013] [Indexed: 01/30/2023]
Abstract
Drosophila embryonic dorsal vessel (DV) morphogenesis is a highly stereotyped process that involves the migration and morphogenesis of 52 pairs of cardioblasts (CBs) in order to form a linear tube. This process requires spatiotemporally-regulated localization of signaling and adhesive proteins in order to coordinate the formation of a central lumen while maintaining simultaneous adhesion between CBs. Previous studies have shown that the Slit/Roundabout and Netrin/Unc5 repulsive signaling pathways facilitate site-specific loss of adhesion between contralateral CBs in order to form a luminal space. However, the concomitant mechanism by which attraction initiates CB outgrowth and discrete localization of adhesive proteins remains poorly understood. Here we provide genetic evidence that Netrin signals through DCC (Deleted in Colorectal Carcinoma)/UNC-40/Frazzled (Fra) to mediate CB outgrowth and attachment and that this function occurs prior to and independently of Netrin/UNC-5 signaling. fra mRNA is expressed in the CBs prior to and during DV morphogenesis. Loss-of-fra-function results in significant defects in cell shape and alignment between contralateral CB rows. In addition, CB outgrowth and attachment is impaired in both fra loss- and gain-of-function mutants. Deletion of both Netrin genes (NetA and NetB) results in CB attachment phenotypes similar to fra mutants. Similar defects are also seen when both fra and unc5 are deleted. Finally we show that Fra accumulates at dorsal and ventral leading edges of paired CBs, and this localization is dependent upon Netrin. We propose that while repulsive guidance mechanisms contribute to lumen formation by preventing luminal domains from coming together, site-specific Netrin/Frazzled signaling mediates CB attachment.
Collapse
|
27
|
Barsi-Rhyne BJ, Miller KM, Vargas CT, Thomas AB, Park J, Bremer M, Jarecki JL, VanHoven MK. Kinesin-1 acts with netrin and DCC to maintain sensory neuron position in Caenorhabditis elegans. Genetics 2013; 194:175-87. [PMID: 23475988 PMCID: PMC3632465 DOI: 10.1534/genetics.113.149310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022] Open
Abstract
The organization of neurons and the maintenance of that arrangement are critical to brain function. Failure of these processes in humans can lead to severe birth defects, mental retardation, and epilepsy. Several kinesins have been shown to play important roles in cell migration in vertebrate systems, but few upstream and downstream pathway members have been identified. Here, we utilize the genetic model organism Caenorhabditis elegans to elucidate the pathway by which the C. elegans Kinesin-1 Heavy Chain (KHC)/KIF5 ortholog UNC-116 functions to maintain neuronal cell body position in the PHB sensory neurons. We find that UNC-116/KHC acts in part with the cell and axon migration molecules UNC-6/Netrin and UNC-40/DCC in this process, but in parallel to SAX-3/Robo. We have also identified several potential adaptor, cargo, and regulatory proteins that may provide insight into the mechanism of UNC-116/KHC's function in this process. These include the cargo receptor UNC-33/CRMP2, the cargo adaptor protein UNC-76/FEZ and its regulator UNC-51/ULK, the cargo molecule UNC-69/SCOCO, and the actin regulators UNC-44/Ankyrin and UNC-34/Enabled. These genes also act in cell migration and axon outgrowth; however, many proteins that function in these processes do not affect PHB position. Our findings suggest an active posterior cell migration mediated by UNC-116/KHC occurs throughout development to maintain proper PHB cell body position and define a new pathway that mediates maintenance of neuronal cell body position.
Collapse
Affiliation(s)
| | - Kristine M. Miller
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Christopher T. Vargas
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Anthony B. Thomas
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Joori Park
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Martina Bremer
- Department of Mathematics, San José State University, San José, California 95192
| | - Jessica L. Jarecki
- Department of Biological Sciences, San José State University, San José, California 95192
| | - Miri K. VanHoven
- Department of Biological Sciences, San José State University, San José, California 95192
| |
Collapse
|
28
|
Serotonergic neurosecretory synapse targeting is controlled by netrin-releasing guidepost neurons in Caenorhabditis elegans. J Neurosci 2013; 33:1366-76. [PMID: 23345213 DOI: 10.1523/jneurosci.3471-12.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurosecretory release sites lack distinct postsynaptic partners, yet target to specific circuits. This targeting specificity regulates local release of neurotransmitters and modulation of adjacent circuits. How neurosecretory release sites target to specific regions is not understood. Here we identify a molecular mechanism that governs the spatial specificity of extrasynaptic neurosecretory terminal (ENT) formation in the serotonergic neurosecretory-motor (NSM) neurons of Caenorhabditis elegans. We show that postembryonic arborization and neurosecretory terminal targeting of the C. elegans NSM neuron is dependent on the Netrin receptor UNC-40/DCC. We observe that UNC-40 localizes to specific neurosecretory terminals at the time of axon arbor formation. This localization is dependent on UNC-6/Netrin, which is expressed by nerve ring neurons that act as guideposts to instruct local arbor and release site formation. We find that both UNC-34/Enabled and MIG-10/Lamellipodin are required downstream of UNC-40 to link the sites of ENT formation to nascent axon arbor extensions. Our findings provide a molecular link between release site development and axon arborization and introduce a novel mechanism that governs the spatial specificity of serotonergic ENTs in vivo.
Collapse
|
29
|
Abstract
The culturing of neurons results in formation of the layer of neurons with random extensive overlapping outgrowth. To understand specific roles of somas, axons, and dendrites in complex function of neurons and to identify molecular mechanisms of biological processes in these cellular compartments various methods were developed. We utilized AXon Investigation System (AXIS™) manufactured by Millipore. This device provides an opportunity to orient neuronal outgrowth and spatially isolate neuronal processes from neuronal bodies. AXIS device is a slide-mounted microfluidic system, which consists of four wells. Two of the wells are connected by a channel on each side of the device. Channels are connected by microgrooves (approximately 120). The size of microgrooves (10 μm in width and 5 μm in height) do not permit passage of cell through while allowing extension of neurites. The microfluidic design also allows an establishment of a hydrostatic gradient when the volume in one chamber is greater than that in the other (Park et al. Nat Protocols 1: 2128-2136, 2006). This feature allows studying of the effect of specific compounds on selected compartments of neurons.
Collapse
|
30
|
Stavoe AKH, Nelson JC, Martínez-Velázquez LA, Klein M, Samuel ADT, Colón-Ramos DA. Synaptic vesicle clustering requires a distinct MIG-10/Lamellipodin isoform and ABI-1 downstream from Netrin. Genes Dev 2012; 26:2206-21. [PMID: 23028145 DOI: 10.1101/gad.193409.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The chemotrophic factor Netrin can simultaneously instruct different neurodevelopmental programs in individual neurons in vivo. How neurons correctly interpret the Netrin signal and undergo the appropriate neurodevelopmental response is not understood. Here we identify MIG-10 isoforms as critical determinants of individual cellular responses to Netrin. We determined that distinct MIG-10 isoforms, varying only in their N-terminal motifs, can localize to specific subcellular domains and are differentially required for discrete neurodevelopmental processes in vivo. We identified MIG-10B as an isoform uniquely capable of localizing to presynaptic regions and instructing synaptic vesicle clustering in response to Netrin. MIG-10B interacts with Abl-interacting protein-1 (ABI-1)/Abi1, a component of the WAVE complex, to organize the actin cytoskeleton at presynaptic sites and instruct vesicle clustering through SNN-1/Synapsin. We identified a motif in the MIG-10B N-terminal domain that is required for its function and localization to presynaptic sites. With this motif, we engineered a dominant-negative MIG-10B construct that disrupts vesicle clustering and animal thermotaxis behavior when expressed in a single neuron in vivo. Our findings indicate that the unique N-terminal domains confer distinct MIG-10 isoforms with unique capabilities to localize to distinct subcellular compartments, organize the actin cytoskeleton at these sites, and instruct distinct Netrin-dependent neurodevelopmental programs.
Collapse
Affiliation(s)
- Andrea K H Stavoe
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | |
Collapse
|
31
|
Xu Y, Quinn CC. MIG-10 functions with ABI-1 to mediate the UNC-6 and SLT-1 axon guidance signaling pathways. PLoS Genet 2012; 8:e1003054. [PMID: 23209429 PMCID: PMC3510047 DOI: 10.1371/journal.pgen.1003054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Extracellular guidance cues steer axons towards their targets by eliciting morphological changes in the growth cone. A key part of this process is the asymmetric recruitment of the cytoplasmic scaffolding protein MIG-10 (lamellipodin). MIG-10 is thought to asymmetrically promote outgrowth by inducing actin polymerization. However, the mechanism that links MIG-10 to actin polymerization is not known. We have identified the actin regulatory protein ABI-1 as a partner for MIG-10 that can mediate its outgrowth-promoting activity. The SH3 domain of ABI-1 binds to MIG-10, and loss of function of either of these proteins causes similar axon guidance defects. Like MIG-10, ABI-1 functions in both the attractive UNC-6 (netrin) pathway and the repulsive SLT-1 (slit) pathway. Dosage sensitive genetic interactions indicate that MIG-10 functions with ABI-1 and WVE-1 to mediate axon guidance. Epistasis analysis reveals that ABI-1 and WVE-1 function downstream of MIG-10 to mediate its outgrowth-promoting activity. Moreover, experiments with cultured mammalian cells suggest that the interaction between MIG-10 and ABI-1 mediates a conserved mechanism that promotes formation of lamellipodia. Together, these observations suggest that MIG-10 interacts with ABI-1 and WVE-1 to mediate the UNC-6 and SLT-1 guidance pathways. To form neural circuits, axons must navigate through the developing nervous system to reach their correct targets. Axon navigation is led by the growth cone, a structure at the tip of the growing axon that responds to extracellular guidance cues. Many of these guidance cues and their receptors have been identified. However, much less is known about the internal signaling events that give rise to the structural changes required for growth cone steering. A key component of the internal response is MIG-10, a protein that becomes asymmetrically localized in response to the extracellular cues. MIG-10 is thought to serve as a scaffold that can spatially control outgrowth-promoting proteins within the growth cone. However, we do not know the identity of the outgrowth-promoting proteins that associate with MIG-10. Here we report that MIG-10 associates physically with the actin regulatory protein ABI-1. We present genetic evidence indicating that ABI-1 functions downstream of MIG-10 to mediate its outgrowth-promoting activity. Additional genetic evidence indicates that these proteins function in both attractive and repulsive guidance signaling pathways. We also present evidence suggesting that the connection between MIG-10 and ABI-1 represents a phylogenetically conserved mechanism for the control of cellular outgrowth.
Collapse
Affiliation(s)
| | - Christopher C. Quinn
- Department of Biological Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
32
|
Abstract
Semaphorin3A (Sema3A) exerts a wide variety of biological functions by regulating reorganization of actin and tubulin cytoskeletal proteins through signaling pathways including sequential phosphorylation of collapsin response mediator protein 1 (CRMP1) and CRMP2 by cyclin-dependent kinase-5 and glycogen synthase kinase-3β (GSK3β). To delineate how GSK3β mediates Sema3A signaling, we here determined the substrates of GSK3β involved. Introduction of either GSK3β mutants, GSK3β-R96A, L128A, or K85M into chick dorsal root ganglion (DRG) neurons suppressed Sema3A-induced growth cone collapse, thereby suggesting that unprimed as well as primed substrates are involved in Sema3A signaling. Axin-1, a key player in Wnt signaling, is an unprimed substrate of GSK3β. The phosphorylation of Axin-1 by GSK3β accelerates the association of Axin-1 with β-catenin. Immunocytochemical studies revealed that Sema3A induced an increase in the intensity levels of β-catenin in the DRG growth cones. Axin-1 siRNA knockdown suppressed Sema3A-induced growth cone collapse. The reintroduction of RNAi-resistant Axin-1 (rAxin-1)-wt rescued the responsiveness to Sema3A, while that of nonphosphorylated mutants, rAxin S322A/S326A/S330A and T485A/S490A/S497A, did not. Sema3A also enhanced the colocalization of GSK3β, Axin-1, and β-catenin in the growth cones. The increase of β-catenin in the growth cones was suppressed by the siRNA knockdown of Axin-1. Furthermore, either Axin-1 or β-catenin RNAi knockdown suppressed the internalization of Sema3A. These results suggest that Sema3A induces the formation of GSK3β/Axin-1/β-catenin complex, which regulates signaling cascade of Sema3A via an endocytotic mechanism. This finding should provide clue for understanding of mechanisms of a wide variety of biological functions of Sema3A.
Collapse
|
33
|
McShea MA, Schmidt KL, Dubuke ML, Baldiga CE, Sullender ME, Reis AL, Zhang S, O'Toole SM, Jeffers MC, Warden RM, Kenney AH, Gosselin J, Kuhlwein M, Hashmi SK, Stringham EG, Ryder EF. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell migrations and process outgrowth in C. elegans. Dev Biol 2012; 373:1-13. [PMID: 23022657 DOI: 10.1016/j.ydbio.2012.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 11/19/2022]
Abstract
Directed cell migration and process outgrowth are vital to proper development of many metazoan tissues. These processes are dependent on reorganization of the actin cytoskeleton in response to external guidance cues. During development of the nervous system, the MIG-10/RIAM/Lamellipodin (MRL) signaling proteins are thought to transmit positional information from surface guidance cues to the actin polymerization machinery, and thus to promote polarized outgrowth of axons. In C. elegans, mutations in the MRL family member gene mig-10 result in animals that have defects in axon guidance, neuronal migration, and the outgrowth of the processes or 'canals' of the excretory cell, which is required for osmoregulation in the worm. In addition, mig-10 mutant animals have recently been shown to have defects in clustering of vesicles at the synapse. To determine additional molecular partners of MIG-10, we conducted a yeast two-hybrid screen using isoform MIG-10A as bait and isolated Abelson-interactor protein-1 (ABI-1). ABI-1, a downstream target of Abl non-receptor tyrosine kinase, is a member of the WAVE regulatory complex (WRC) involved in the initiation of actin polymerization. Further analysis using a co-immunoprecipitation system confirmed the interaction of MIG-10 and ABI-1 and showed that it requires the SH3 domain of ABI-1. Single mutants for mig-10 and abi-1 displayed similar phenotypes of incomplete migration of the ALM neurons and truncated outgrowth of the excretory cell canals, suggesting that the ABI-1/MIG-10 interaction is relevant in vivo. Cell autonomous expression of MIG-10 isoforms rescued both the neuronal migration and the canal outgrowth defects, showing that MIG-10 functions autonomously in the ALM neurons and the excretory cell. These results suggest that MIG-10 and ABI-1 interact physically to promote cell migration and process outgrowth in vivo. In the excretory canal, ABI-1 is thought to act downstream of UNC-53/NAV2, linking this large scaffolding protein to actin polymerization during excretory canal outgrowth. abi-1(RNAi) enhanced the excretory canal truncation observed in mig-10 mutants, while double mutant analysis between unc-53 and mig-10 showed no increased truncation of the posterior canal beyond that observed in mig-10 mutants. Morphological analysis of mig-10 and unc-53 mutants showed that these genes regulate canal diameter as well as its length, suggesting that defective lumen formation may be linked to the ability of the excretory canal to grow out longitudinally. Taken together, our results suggest that MIG-10, UNC-53, and ABI-1 act sequentially to mediate excretory cell process outgrowth.
Collapse
Affiliation(s)
- Molly A McShea
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
This review is focusing on a critical mediator of embryonic and postnatal development with multiple implications in inflammation, neoplasia, and other pathological situations in brain and peripheral tissues. These morphogenetic guidance and dependence processes are involved in several malignancies targeting the epithelial and immune systems including the progression of human colorectal cancers. We consider the most important findings and their impact on basic, translational, and clinical cancer research. Expected information can bring new cues for innovative, efficient, and safe strategies of personalized medicine based on molecular markers, protagonists, signaling networks, and effectors inherent to the Netrin axis in pathophysiological states.
Collapse
|
35
|
Coló GP, Lafuente EM, Teixidó J. The MRL proteins: adapting cell adhesion, migration and growth. Eur J Cell Biol 2012; 91:861-8. [PMID: 22555291 DOI: 10.1016/j.ejcb.2012.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 11/19/2022] Open
Abstract
MIG-10, RIAM and Lamellipodin (Lpd) are the founding members of the MRL family of multi-adaptor molecules. These proteins have common domain structures but display distinct functions in cell migration and adhesion, signaling, and in cell growth. The binding of RIAM with active Rap1 and with talin provides these MRL molecules with important regulatory roles on integrin-mediated cell adhesion and migration. Furthermore, RIAM and Lpd can regulate actin dynamics through their binding to actin regulatory Ena/VASP proteins. Recent data generated with the Drosophila MRL ortholog called Pico and with RIAM in melanoma cells indicate that these proteins can also regulate cell growth. As MRL proteins represent a relatively new family, many questions on their structure-function relationships remain unanswered, including regulation of their expression, post-translational modifications, new interactions, involvement in signaling and their knockout mice phenotype.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Madrid, Spain
| | | | | |
Collapse
|
36
|
Stavoe AKH, Colón-Ramos DA. Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton. ACTA ACUST UNITED AC 2012; 197:75-88. [PMID: 22451697 PMCID: PMC3317799 DOI: 10.1083/jcb.201110127] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Netrin is a chemotrophic factor known to regulate a number of neurodevelopmental processes, including cell migration, axon guidance, and synaptogenesis. Although the role of Netrin in synaptogenesis is conserved throughout evolution, the mechanisms by which it instructs synapse assembly are not understood. Here we identify a mechanism by which the Netrin receptor UNC-40/DCC instructs synaptic vesicle clustering in vivo. UNC-40 localized to presynaptic regions in response to Netrin. We show that UNC-40 interacted with CED-5/DOCK180 and instructed CED-5 presynaptic localization. CED-5 in turn signaled through CED-10/Rac1 and MIG-10/Lamellipodin to organize the actin cytoskeleton in presynaptic regions. Localization of this signaling pathway to presynaptic regions was necessary for synaptic vesicle clustering during synapse assembly but not for the subcellular localization of active zone proteins. Thus, vesicle clustering and localization of active zone proteins are instructed by separate pathways downstream of Netrin. Our data indicate that signaling modules known to organize the actin cytoskeleton during guidance can be co-opted to instruct synaptic vesicle clustering.
Collapse
Affiliation(s)
- Andrea K H Stavoe
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
37
|
Furuta D, Yamane M, Tsujiuchi T, Moriyama R, Fukushima N. Lysophosphatidic acid induces neurite branch formation through LPA3. Mol Cell Neurosci 2012; 50:21-34. [PMID: 22465231 DOI: 10.1016/j.mcn.2012.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/03/2012] [Accepted: 03/14/2012] [Indexed: 01/13/2023] Open
Abstract
Although neurite branching is crucial for neuronal network formation after birth, its underlying mechanisms remain unclear. Here, we demonstrate that lysophosphatidic acid (LPA) stimulates neurite branching through a novel signaling pathway. Treatment of neuronal cell lines with LPA resulted in neurite branch formation when LPA(3) receptor was introduced. The effects of LPA were blocked by inhibition of G(q) signaling. Furthermore, expression of inhibitory mutants of the small GTPase Rnd2/Rho7 or an Rnd2 effector rapostlin abolished LPA(3)-mediated neurite branching. The LPA(3) agonist 2(S)-OMPT or LPA also induced axonal branch formation in hippocampal neurons, which was blocked by G(q) and Rnd2 pathway inhibition or LPA(3) knockdown. These findings suggest that the novel signaling pathway involving LPA(3), G(q), and Rnd2 may play an important role in neuronal network formation.
Collapse
Affiliation(s)
- Daisuke Furuta
- Division of Molecular Neurobiology, Department of Life Science, Kinki University, Higashiosaka, Japan
| | | | | | | | | |
Collapse
|
38
|
Abstract
The genes do not control everything that happens in a cell or an organism, because thermally induced molecular movements and conformation changes are beyond genetic control. The importance of uncontrolled events has been argued from the differences between isogenic organisms reared in virtually identical environments, but these might alternatively be attributed to subtle, undetected differences in the environment. The present review focuses on the uncontrolled events themselves in the context of the developing brain. These are considered at cellular and circuit levels because even if cellular physiology was perfectly controlled by the genes (which it is not), the interactions between different cells might still be uncoordinated. A further complication is that the brain contains mechanisms that buffer noise and others that amplify it. The final resultant of the battle between these contrary mechanisms is that developmental stochasticity is sufficiently low to make neurobehavioural defects uncommon, but a chance component of neural development remains. Thus, our brains and behaviour are not entirely determined by a combination of genes-plus-environment.
Collapse
Affiliation(s)
- Peter G H Clarke
- Département de Biologie Cellulaire et de Morphologie, Université de Lausanne, Rue du Bugnon 9, Lausanne 1005, Switzerland.
| |
Collapse
|
39
|
Steketee MB, Goldberg JL. Signaling endosomes and growth cone motility in axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 106:35-73. [PMID: 23211459 DOI: 10.1016/b978-0-12-407178-0.00003-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development and regeneration, growth cones guide neurites to their targets by altering their motility in response to extracellular guidance cues. One class of cues critical to nervous system development is the neurotrophins. Neurotrophin binding to their cognate receptors stimulates their endocytosis into signaling endosomes. Current data indicate that the spatiotemporal localization of signaling endosomes can direct diverse processes regulating cell motility, including membrane trafficking, cytoskeletal remodeling, adhesion dynamics, and local translation. Recent experiments manipulating signaling endosome localization in neuronal growth cones support these views and place the neurotrophin signaling endosome in a central role regulating growth cone motility during axon growth and regeneration.
Collapse
|
40
|
The microtubule-associated C-I subfamily of TRIM proteins and the regulation of polarized cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:105-18. [PMID: 23631003 DOI: 10.1007/978-1-4614-5398-7_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TRIM proteins are multidomain proteins that typically assemble into large molecular complexes, the composition of which likely explains the diverse functions that have been attributed to this group of proteins. Accumulating data on the roles of many TRIM proteins supports the notion that those that share identical C-terminal domain architectures participate in the regulation of similar cellular processes. At least nine different C-terminal domain compositions have been identified. This chapter will focus on one subgroup that possess a COS motif, FNIII and SPRY/B30.2 domain as their C-terminal domain arrangement. This C-terminal domain architecture plays a key role in the interaction of all six members of this subgroup with the microtubule cytoskeleton. Accumulating evidence on the functions of some of these proteins will be discussed to highlight the emerging similarities in the cellular events in which they participate.
Collapse
|
41
|
Teulière J, Gally C, Garriga G, Labouesse M, Georges-Labouesse E. MIG-15 and ERM-1 promote growth cone directional migration in parallel to UNC-116 and WVE-1. Development 2011; 138:4475-85. [PMID: 21937599 DOI: 10.1242/dev.061952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.
Collapse
Affiliation(s)
- Jérôme Teulière
- IGBMC, CNRS/Université de Strasbourg UMR7104, INSERM U964, 1 rue Laurent Fries, BP10142, Illkirch, 67400 France.
| | | | | | | | | |
Collapse
|
42
|
Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:17708-13. [PMID: 22006307 DOI: 10.1073/pnas.1108494108] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Caenorhabditis elegans embryo is a powerful model for studying neural development, but conventional imaging methods are either too slow or phototoxic to take full advantage of this system. To solve these problems, we developed an inverted selective plane illumination microscopy (iSPIM) module for noninvasive high-speed volumetric imaging of living samples. iSPIM is designed as a straightforward add-on to an inverted microscope, permitting conventional mounting of specimens and facilitating SPIM use by development and neurobiology laboratories. iSPIM offers a volumetric imaging rate 30× faster than currently used technologies, such as spinning-disk confocal microscopy, at comparable signal-to-noise ratio. This increased imaging speed allows us to continuously monitor the development of C, elegans embryos, scanning volumes every 2 s for the 14-h period of embryogenesis with no detectable phototoxicity. Collecting ∼25,000 volumes over the entirety of embryogenesis enabled in toto visualization of positions and identities of cell nuclei. By merging two-color iSPIM with automated lineaging techniques we realized two goals: (i) identification of neurons expressing the transcription factor CEH-10/Chx10 and (ii) visualization of their neurodevelopmental dynamics. We found that canal-associated neurons use somal translocation and amoeboid movement as they migrate to their final position in the embryo. We also visualized axon guidance and growth cone dynamics as neurons circumnavigate the nerve ring and reach their targets in the embryo. The high-speed volumetric imaging rate of iSPIM effectively eliminates motion blur from embryo movement inside the egg case, allowing characterization of dynamic neurodevelopmental events that were previously inaccessible.
Collapse
|
43
|
Involvement of caspase-6 and caspase-8 in neuronal apoptosis and the regenerative failure of injured retinal ganglion cells. J Neurosci 2011; 31:10494-505. [PMID: 21775595 DOI: 10.1523/jneurosci.0148-11.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To promote functional recovery after CNS injuries, it is crucial to develop strategies that enhance both neuronal survival and regeneration. Here, we report that caspase-6 is upregulated in injured retinal ganglion cells and that its inhibition promotes both survival and regeneration in these adult CNS neurons. Treatment of rat retinal whole mounts with Z-VEID-FMK, a selective inhibitor of caspase-6, enhanced ganglion cell survival. Moreover, retinal explants treated with this drug extended neurites on myelin. We also show that caspase-6 inhibition resulted in improved ganglion cell survival and robust axonal regeneration following optic nerve injury in adult rats. The effects of Z-VEID-FMK were similar to other caspase inhibitory peptides including Z-LEHD-FMK and Z-VAD-FMK. In searching for downstream effectors for caspase-6, we identified caspase-8, whose expression pattern resembled that of caspase-6 in the injured eye. We then showed that caspase-8 is activated downstream of caspase-6 in the injured adult retina. Furthermore, we investigated the role of caspase-8 in RGC apoptosis and regenerative failure both in vitro and in vivo. We observed that caspase-8 inhibition by Z-IETD-FMK promoted survival and regeneration to an extent similar to that obtained with caspase-6 inhibition. Our results indicate that caspase-6 and caspase-8 are components of a cellular pathway that prevents neuronal survival and regeneration in the adult mammalian CNS.
Collapse
|
44
|
Norris AD, Lundquist EA. UNC-6/netrin and its receptors UNC-5 and UNC-40/DCC modulate growth cone protrusion in vivo in C. elegans. Development 2011; 138:4433-42. [PMID: 21880785 DOI: 10.1242/dev.068841] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The UNC-6/netrin guidance cue functions in axon guidance in vertebrates and invertebrates, mediating attraction via UNC-40/DCC family receptors and repulsion via by UNC-5 family receptors. The growth cone reads guidance cues and extends lamellipodia and filopodia, actin-based structures that sense the extracellular environment and power the forward motion of the growth cone. We show that UNC-6/netrin, UNC-5 and UNC-40/DCC modulated the extent of growth cone protrusion that correlated with attraction versus repulsion. Loss-of-function unc-5 mutants displayed increased protrusion in repelled growth cones, whereas loss-of-function unc-6 or unc-40 mutants caused decreased protrusion. In contrast to previous studies, our work suggests that the severe guidance defects in unc-5 mutants may be due to latent UNC-40 attractive signaling that steers the growth cone back towards the ventral source of UNC-6. UNC-6/Netrin signaling also controlled polarity of growth cone protrusion and F-actin accumulation that correlated with attraction versus repulsion. However, filopodial dynamics were affected independently of polarity of protrusion, indicating that the extent versus polarity of protrusion are at least in part separate mechanisms. In summary, we show here that growth cone guidance in response to UNC-6/netrin involves a combination of polarized growth cone protrusion as well as a balance between stimulation and inhibition of growth cone (e.g. filopodial) protrusion.
Collapse
Affiliation(s)
- Adam D Norris
- Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | | |
Collapse
|
45
|
Andersen EF, Asuri NS, Halloran MC. In vivo imaging of cell behaviors and F-actin reveals LIM-HD transcription factor regulation of peripheral versus central sensory axon development. Neural Dev 2011; 6:27. [PMID: 21619654 PMCID: PMC3121664 DOI: 10.1186/1749-8104-6-27] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/27/2011] [Indexed: 02/01/2023] Open
Abstract
Background Development of specific neuronal morphology requires precise control over cell motility processes, including axon formation, outgrowth and branching. Dynamic remodeling of the filamentous actin (F-actin) cytoskeleton is critical for these processes; however, little is known about the mechanisms controlling motile axon behaviors and F-actin dynamics in vivo. Neuronal structure is specified in part by intrinsic transcription factor activity, yet the molecular and cellular steps between transcription and axon behavior are not well understood. Zebrafish Rohon-Beard (RB) sensory neurons have a unique morphology, with central axons that extend in the spinal cord and a peripheral axon that innervates the skin. LIM homeodomain (LIM-HD) transcription factor activity is required for formation of peripheral RB axons. To understand how neuronal morphogenesis is controlled in vivo and how LIM-HD transcription factor activity differentially regulates peripheral versus central axons, we used live imaging of axon behavior and F-actin distribution in vivo. Results We used an F-actin biosensor containing the actin-binding domain of utrophin to characterize actin rearrangements during specific developmental processes in vivo, including axon initiation, consolidation and branching. We found that peripheral axons initiate from a specific cellular compartment and that F-actin accumulation and protrusive activity precede peripheral axon initiation. Moreover, disruption of LIM-HD transcriptional activity has different effects on the motility of peripheral versus central axons; it inhibits peripheral axon initiation, growth and branching, while increasing the growth rate of central axons. Our imaging revealed that LIM-HD transcription factor activity is not required for F-actin based protrusive activity or F-actin accumulation during peripheral axon initiation, but can affect positioning of F-actin accumulation and axon formation. Conclusion Our ability to image the dynamics of F-actin distribution during neuronal morphogenesis in vivo is unprecedented, and our experiments provide insight into the regulation of cell motility as neurons develop in the intact embryo. We identify specific motile cell behaviors affected by LIM-HD transcription factor activity and reveal how transcription factors differentially control the formation and growth of two axons from the same neuron.
Collapse
Affiliation(s)
- Erica F Andersen
- Genetics Training Program, University of Wisconsin, 1117 W, Johnson Street, Madison, WI 53706, USA
| | | | | |
Collapse
|
46
|
Mittelmeier TM, Boyd JS, Lamb MR, Dieckmann CL. Asymmetric properties of the Chlamydomonas reinhardtii cytoskeleton direct rhodopsin photoreceptor localization. J Cell Biol 2011; 193:741-53. [PMID: 21555459 PMCID: PMC3166873 DOI: 10.1083/jcb.201009131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 04/06/2011] [Indexed: 11/22/2022] Open
Abstract
The eyespot of the unicellular green alga Chlamydomonas reinhardtii is a photoreceptive organelle required for phototaxis. Relative to the anterior flagella, the eyespot is asymmetrically positioned adjacent to the daughter four-membered rootlet (D4), a unique bundle of acetylated microtubules extending from the daughter basal body toward the posterior of the cell. Here, we detail the relationship between the rhodopsin eyespot photoreceptor Channelrhodopsin 1 (ChR1) and acetylated microtubules. In wild-type cells, ChR1 was observed in an equatorial patch adjacent to D4 near the end of the acetylated microtubules and along the D4 rootlet. In cells with cytoskeletal protein mutations, supernumerary ChR1 patches remained adjacent to acetylated microtubules. In mlt1 (multieyed) mutant cells, supernumerary photoreceptor patches were not restricted to the D4 rootlet, and more anterior eyespots correlated with shorter acetylated microtubule rootlets. The data suggest a model in which photoreceptor localization is dependent on microtubule-based trafficking selective for the D4 rootlet, which is perturbed in mlt1 mutant cells.
Collapse
Affiliation(s)
- Telsa M. Mittelmeier
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Joseph S. Boyd
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Mary Rose Lamb
- Department of Biology, University of Puget Sound, Tacoma, WA 98416
| | - Carol L. Dieckmann
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
47
|
Wang Y, Yang F, Fu Y, Huang X, Wang W, Jiang X, Gritsenko MA, Zhao R, Monore ME, Pertz OC, Purvine SO, Orton DJ, Jacobs JM, Camp DG, Smith RD, Klemke RL. Spatial phosphoprotein profiling reveals a compartmentalized extracellular signal-regulated kinase switch governing neurite growth and retraction. J Biol Chem 2011; 286:18190-201. [PMID: 21454597 DOI: 10.1074/jbc.m111.236133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Pathology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fang M, Xi ZQ, Wu Y, Wang XF. A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses 2011; 76:871-6. [PMID: 21429675 DOI: 10.1016/j.mehy.2011.02.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/16/2011] [Accepted: 02/20/2011] [Indexed: 01/16/2023]
Abstract
Drug refractory is an important clinical problem in epilepsy, affecting a substantial number of patients globally. Mechanisms underlying drug refractory need to be understood to develop rational therapies. Current two prevailing theories on drug refractory epilepsy (DRE) include the target hypothesis and the transporter hypothesis. However, those hypotheses could not be adequate to explain the mechanisms of all the DRE. Thus, we propose another possible mechanism of DRE, which is neural network hypothesis. It is hypothesized that seizure-induced alterations of brain plasticity including axonal sprouting, synaptic reorganization, neurogenesis and gliosis could contribute to the formation of abnormal neural network, which has not only avoided the inhibitory effect of endogenous antiepileptic system but also prevented the traditional antiepileptic drugs from entering their targets, eventually leading to DRE. We will illustrate this hypothesis at molecular and structural level based on our recent studies and other related researches.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 You Yi Road, Chongqing 400016, China
| | | | | | | |
Collapse
|
49
|
Yee CS, Sybingco SS, Serdetchania V, Kholkina G, Bueno de Mesquita M, Naqvi Z, Park SH, Lam K, Killeen MT. ENU-3 is a novel motor axon outgrowth and guidance protein in C. elegans. Dev Biol 2011; 352:243-53. [PMID: 21295567 DOI: 10.1016/j.ydbio.2011.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 11/30/2022]
Abstract
During the development of the nervous system, the migration of many cells and axons is guided by extracellular molecules. These molecules bind to receptors at the tips of the growth cones of migrating axons and trigger intracellular signaling to steer the axons along the correct trajectories. We have identified a novel mutant, enu-3 (enhancer of Unc), that enhances the motor neuron axon outgrowth defects observed in strains of Caenorhabditis elegans that lack either the UNC-5 receptor or its ligand UNC-6/Netrin. Specifically, the double-mutant strains have enhanced axonal outgrowth defects mainly in DB4, DB5 and DB6 motor neurons. enu-3 single mutants have weak motor neuron axon migration defects. Both outgrowth defects of double mutants and axon migration defects of enu-3 mutants were rescued by expression of the H04D03.1 gene product. ENU-3/H04D03.1 encodes a novel predicted putative trans-membrane protein of 204 amino acids. It is a member of a family of highly homologous proteins of previously unknown function in the C. elegans genome. ENU-3 is expressed in the PVT interneuron and is weakly expressed in many cell bodies along the ventral cord, including those of the DA and DB motor neurons. We conclude that ENU-3 is a novel C. elegans protein that affects both motor axon outgrowth and guidance.
Collapse
Affiliation(s)
- Callista S Yee
- Graduate Program in Molecular Sciences, Ryerson University, Canada M5B 2K3
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factor system plays multiple roles in the function of the nervous system during development and postnatal physiology. In the developing nervous system, neurite outgrowth could be regulated by both canonical and alternative NF-kappaB signaling pathways. The degree and site of NF-kappaB activation could promote or inhibit neuronal survival in a complex, signal and subunit-dependent manner. The significance and mechanistic basis of some of NF-kappaB activity in neurons have remained controversial. We discuss our current understanding and recent findings with regard to the roles of NF-kappaB in the neurite outgrowth and neuronal survival, and how NF-kappaB activation is associated with the pathophysiology of ischemic/ traumatic injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Felicia Yu Hsuan Teng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, National University ofSingapore, 8 Medical Drive, Singapore 117597
| | | |
Collapse
|