1
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
2
|
El-Mansi S, Mitchell TP, Mobayen G, McKinnon TAJ, Miklavc P, Frick M, Nightingale TD. Myosin-1C augments endothelial secretion of von Willebrand factor by linking contractile actomyosin machinery to the plasma membrane. Blood Adv 2024; 8:4714-4726. [PMID: 38669344 PMCID: PMC11413703 DOI: 10.1182/bloodadvances.2024012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
ABSTRACT Blood endothelial cells control the hemostatic and inflammatory response by secreting von Willebrand factor (VWF) and P-selectin from storage organelles called Weibel-Palade bodies (WPBs). Actin-associated motor proteins regulate this secretory pathway at multiple points. Before fusion, myosin Va forms a complex that anchors WPBs to peripheral actin structures, allowing for the maturation of content. After fusion, an actomyosin ring/coat is recruited and compresses the WPB to forcibly expel the largest VWF multimers. Here, we provide, to our knowledge, the first evidence for the involvement of class I myosins during regulated VWF secretion. We show that the unconventional myosin-1C (Myo1c) is recruited after fusion via its pleckstrin homology domain in an actin-independent process. This provides a link between the actin ring and phosphatidylinositol 4,5-bisphosphate (PIP2) at the membrane of the fused organelle and is necessary to ensure maximal VWF secretion. This is an active process requiring Myo1c ATPase activity because inhibition of class I myosins using the inhibitor pentachloropseudilin or expression of an ATPase-deficient Myo1c rigor mutant perturbs the expulsion of VWF and alters the kinetics of the exocytic actin ring. These data offer a novel insight into the control of an essential physiological process and provide a new way in which it can be regulated.
Collapse
Affiliation(s)
- Sammy El-Mansi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tom P. Mitchell
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Golzar Mobayen
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Thomas A. J. McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, Hammersmith Hospital Campus, London, United Kingdom
| | - Pika Miklavc
- School of Science, Engineering & Environment, University of Salford, Manchester, United Kingdom
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Thomas D. Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
4
|
Heywood WE, Searle J, Collis R, Doykov I, Ashworth M, Sebire N, Bamber A, Gautel M, Eaton S, Coats CJ, Elliott PM, Mills K. A Proof of Principle 2D Spatial Proteome Mapping Analysis Reveals Distinct Regional Differences in the Cardiac Proteome. Life (Basel) 2024; 14:970. [PMID: 39202712 PMCID: PMC11355120 DOI: 10.3390/life14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Proteomics studies often explore phenotypic differences between whole organs and systems. Within the heart, more subtle variation exists. To date, differences in the underlying proteome are only described between whole cardiac chambers. This study, using the bovine heart as a model, investigates inter-regional differences and assesses the feasibility of measuring detailed, cross-tissue variance in the cardiac proteome. Using a bovine heart, we created a two-dimensional section through a plane going through two chambers. This plane was further sectioned into 4 × 4 mm cubes and analysed using label-free proteomics. We identified three distinct proteomes. When mapped to the extracted sections, the proteomes corresponded largely to the outer wall of the right ventricle and secondly to the outer wall of the left ventricle, right atrial appendage, tricuspid and mitral valves, modulator band, and parts of the left atrium. The third separate proteome corresponded to the inner walls of the left and right ventricles, septum, and left atrial appendage. Differential protein abundancies indicated differences in energy metabolism between regions. Data analyses of the mitochondrial proteins revealed a variable pattern of abundances of complexes I-V between the proteomes, indicating differences in the bioenergetics of the different cardiac sub-proteomes. Mapping of disease-associated proteins interestingly showed desmoglein-2, for which defects in this protein are known to cause Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy, which was present predominantly in the outer wall of the left ventricle. This study highlights that organs can have variable proteomes that do not necessarily correspond to anatomical features.
Collapse
Affiliation(s)
- Wendy E. Heywood
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Jon Searle
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Ivan Doykov
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Michael Ashworth
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Neil Sebire
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Andrew Bamber
- Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK (N.S.)
| | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King’s College, London WC2E 2LS, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| | - Caroline J. Coats
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
| | - Perry M. Elliott
- Institute of Cardiovascular Science, University College London, Gower Street, London WC1E 6BT, UK; (R.C.); (P.M.E.)
- Barts Heart Centre, and the Inherited Cardiovascular Diseases Unit, St Bartholomew’s Hospital, West Smithfield, London EC1A 7BE, UK
| | - Kevin Mills
- UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; (W.E.H.); (I.D.)
| |
Collapse
|
5
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
6
|
Assadsangabi A, Evans CA, Corfe BM, Lobo AJ. Exploring Predictive Biomarkers of Relapse in Ulcerative Colitis: A Proteomics Approach. Inflamm Bowel Dis 2024; 30:808-819. [PMID: 37889841 DOI: 10.1093/ibd/izad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 10/29/2023]
Abstract
INTRODUCTION AND AIMS Risk stratification of subjects with a history of inflammatory bowel disease (IBD) into those likely to relapse and those who will remain quiescent continues to be a significant challenge. The aim of this study was to investigate whether certain proteomic signature profiles or biomarkers during remission are associated with future disease relapse in patients with ulcerative colitis (UC). METHODS Endoscopic rectal samples from patients with UC in clinical, endoscopic, and histological remission at index endoscopy were collected, as well as samplers from normal control individuals. The patients were stratified to early relapsers (ERs) if they developed clinical signs of UC flare within 6 months of index endoscopy or nonrelapsers (NRs) if there was no relapse after 36 months of follow-up. The pooled rectal samples from ERs, NRs, and control individuals were subjected to nano-liquid chromatography and tandem mass spectrometry as per standard iTRAQ (isobaric tags for relative and absolute quantitation) workflow methodology. Selected proteomics-yielded candidates were subjected to orthogonal validation via immunoblotting, in a biomarker discovery exercise. RESULTS Sixty-one patients were included, of whom 8 had clinical relapse within 6 months from the index endoscopy, and 43 patients had no clinical symptoms of relapse within the 36-month follow-up period. Ten patients who had clinical signs of relapse between 6 and 36 months were excluded. Seventeen control individuals were also included. Soluble proteomics analyses between ERs, NRs, and control individuals revealed a series of upregulated and downregulated proteins. Following orthogonal validation, upregulated TRX (P = .001) and IGHA1 (P = .001) were observed in ERs relative to NRs. CONCLUSIONS Several novel candidate tissue biomarkers have been identified in this study, which could discriminate patients with UC at risk of early relapse from those in long-term sustained remission. Our findings may pave the way for pre-emptive UC disease monitoring and therapeutic decision making.
Collapse
Affiliation(s)
- Arash Assadsangabi
- Molecular Gastroenterology Research Group, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Gastroenterology Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
- Gastroenterology Department, Salford Royal NHS Foundation Trust, Salford, United Kingdom
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Caroline A Evans
- Molecular Gastroenterology Research Group, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Biological and Systems Engineering Group, ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Bernard M Corfe
- Molecular Gastroenterology Research Group, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alan J Lobo
- Molecular Gastroenterology Research Group, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
- Gastroenterology Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom
| |
Collapse
|
7
|
Zhang W, Fan Y, Chi J. The synergistic effect of multiple organic macromolecules on the formation of calcium oxalate raphides of Musa spp. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2470-2480. [PMID: 38243384 DOI: 10.1093/jxb/erae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Needle-like calcium oxalate crystals called raphides are unique structures in the plant kingdom. Multiple biomacromolecules work together in the regulatory and transportation pathways to form raphides; however, the mechanism by which this occurs remains unknown. Using banana (Musa spp.), this study combined in vivo methods including confocal microscopy, transmission electron microscopy, and Q Exactive mass spectrometry to identify the main biomolecules, such as vesicles, together with the compositions of lipids and proteins in the crystal chamber, which is the membrane compartment that surrounds each raphide during its formation. Simulations of the vesicle transportation process and the synthesis of elongated calcium oxalate crystals in vitro were then conducted, and the results suggested that the vesicles carrying amorphous calcium oxalate and proteins embedded in raphides are transported along actin filaments. These vesicles subsequently fuse with the crystal chamber, utilizing the proteins embedded in the raphides as a template for the final formation of the structure. Our findings contribute to the fundamental understanding of the regulation of the diverse biomacromolecules that are crucial for raphide formation. Moreover, the implications of these findings extend to other fields such as materials science, and particularly the synthesis of functionalized materials.
Collapse
Affiliation(s)
- Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuke Fan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
8
|
Lulla AR, Akli S, Karakas C, Caruso JA, Warma LD, Fowlkes NW, Rao X, Wang J, Hunt KK, Watowich SS, Keyomarsi K. Neutrophil Elastase Remodels Mammary Tumors to Facilitate Lung Metastasis. Mol Cancer Ther 2024; 23:492-506. [PMID: 37796181 PMCID: PMC10987287 DOI: 10.1158/1535-7163.mct-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Metastatic disease remains the leading cause of death due to cancer, yet the mechanism(s) of metastasis and its timely detection remain to be elucidated. Neutrophil elastase (NE), a serine protease secreted by neutrophils, is a crucial mediator of chronic inflammation and tumor progression. In this study, we used the PyMT model (NE+/+ and NE-/-) of breast cancer to interrogate the tumor-intrinsic and -extrinsic mechanisms by which NE can promote metastasis. Our results showed that genetic ablation of NE significantly reduced lung metastasis and improved metastasis-free survival. RNA-sequencing analysis of primary tumors indicated differential regulation of tumor-intrinsic actin cytoskeleton signaling pathways by NE. These NE-regulated pathways are critical for cell-to-cell contact and motility and consistent with the delay in metastasis in NE-/- mice. To evaluate whether pharmacologic inhibition of NE inhibited pulmonary metastasis and phenotypically mimicked PyMT NE-/- mice, we utilized AZD9668, a clinically available and specific NE inhibitor. We found AZD9668 treated PyMT-NE+/+ mice showed significantly reduced lung metastases, improved recurrence-free, metastasis-free and overall survival, and their tumors showed similar molecular alterations as those observed in PyMT-NE-/- tumors. Finally, we identified a NE-specific signature that predicts recurrence and metastasis in patients with breast cancer. Collectively, our studies suggest that genetic ablation and pharmacologic inhibition of NE reduces metastasis and extends survival of mouse models of breast cancer, providing rationale to examine NE inhibitors as a treatment strategy for the clinical management of patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Amriti R. Lulla
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Said Akli
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph A. Caruso
- Department of Pathology and Helen Diller Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Lucas D. Warma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiayu Rao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Spegg V, Altmeyer M. Genome maintenance meets mechanobiology. Chromosoma 2024; 133:15-36. [PMID: 37581649 PMCID: PMC10904543 DOI: 10.1007/s00412-023-00807-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
Collapse
Affiliation(s)
- Vincent Spegg
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
11
|
A comparative study of S-nitrosylated myofibrillar proteins between red, firm and non-exudative (RFN) and pale, soft and exudative (PSE) pork by iodoTMT-based proteomics assay. Food Chem 2022; 395:133577. [DOI: 10.1016/j.foodchem.2022.133577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022]
|
12
|
Pisano A, Pera LL, Carletti R, Cerbelli B, Pignataro MG, Pernazza A, Ferre F, Lombardi M, Lazzeroni D, Olivotto I, Rimoldi OE, Foglieni C, Camici PG, d'Amati G. RNA-seq profiling reveals different pathways between remodeled vessels and myocardium in hypertrophic cardiomyopathy. Microcirculation 2022; 29:e12790. [PMID: 36198058 PMCID: PMC9787970 DOI: 10.1111/micc.12790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/01/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Coronary microvascular dysfunction (CMD) is a key pathophysiological feature of hypertrophic cardiomyopathy (HCM), contributing to myocardial ischemia and representing a critical determinant of patients' adverse outcome. The molecular mechanisms underlying the morphological and functional changes of CMD are still unknown. Aim of this study was to obtain insights on the molecular pathways associated with microvessel remodeling in HCM. METHODS Interventricular septum myectomies from patients with obstructive HCM (n = 20) and donors' hearts (CTRL, discarded for technical reasons, n = 7) were collected. Remodeled intramyocardial arterioles and cardiomyocytes were microdissected by laser capture and next-generation sequencing was used to delineate the transcriptome profile. RESULTS We identified 720 exclusive differentially expressed genes (DEGs) in cardiomyocytes and 1315 exclusive DEGs in remodeled arterioles of HCM. Performing gene ontology and pathway enrichment analyses, we identified selectively altered pathways between remodeled arterioles and cardiomyocytes in HCM patients and controls. CONCLUSIONS We demonstrate the existence of distinctive pathways between remodeled arterioles and cardiomyocytes in HCM patients and controls at the transcriptome level.
Collapse
Affiliation(s)
- Annalinda Pisano
- Department of Radiological, Oncological and Pathological SciencesSapienza University of RomeRomeItaly
| | - Loredana Le Pera
- Italian National Institute of Health (ISS), Core FacilitiesRomeItaly
- National Research Council (IBIOM‐CNR)Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesBariItaly
| | - Raffaella Carletti
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Bruna Cerbelli
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Maria G. Pignataro
- Department of Chemistry and Drug TechnologiesSapienza University of RomeRomeItaly
| | - Angelina Pernazza
- Department of Medico‐Surgical Sciences and BiotechnologiesSapienza University of RomeLatinaItaly
| | - Fabrizio Ferre
- Department of Pharmacy and Biotechnology (FABIT)University of BolognaBolognaItaly
| | - Maria Lombardi
- Cardiovascular Research CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Davide Lazzeroni
- Cardiovascular Research CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | | | - Ornella E. Rimoldi
- National Research Council (IBFM‐CNR)Institute of Molecular Bioimaging and PhysiologyMilanItaly
| | - Chiara Foglieni
- Cardiovascular Research CenterIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Paolo G. Camici
- Cardiovascular Research CenterIRCCS San Raffaele Scientific InstituteMilanItaly
- Faculty of Medicine and SurgeryVita‐Salute UniversityMilanItaly
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological SciencesSapienza University of RomeRomeItaly
| |
Collapse
|
13
|
Spirandelli da Costa M, Borges BC, Marques IT, de Oliveira RC, Teixeira TL, de Gouveia Santos J, Silva CVD. Pentachloropseudilin treatment impairs host cell invasion by Trypanosoma cruzi. Chembiochem 2022; 23:e202200349. [PMID: 35839379 DOI: 10.1002/cbic.202200349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Indexed: 11/08/2022]
Abstract
Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of type 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T. cruzi or host cell. Moreover, treatment of T. cruzi with PClP inhbited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T. cruzi infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudio Vieira da Silva
- Universidade Federal de Uberlândia, Imunologia, Rua Piauí, Bloco 2B sala 200, 38400096, Uberlândia, BRAZIL
| |
Collapse
|
14
|
Wu Y, Zhang Y, Xu X, Wang W. Effect of Ca 2+ binding states of calmodulin on the conformational dynamics and force responses of myosin lever arm. J Chem Phys 2022; 157:035101. [DOI: 10.1063/5.0095842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanochemical coupling and biological function of myosin motors are regulated by Ca2+ concentrations. As one of the regulation pathways, Ca2+ binding induces conformational change of the light chain calmodulin and its binding modes with myosin lever arm, which can affect the stiffness of the lever arm and force transmission. However, the underlying molecular mechanism of the Ca2+ regulated stiffness change is not fully understood. Here we study the effect of Ca2+ binding on the conformational dynamics and stiffness of the myosin VIIa lever arm bound with calmodulin by performing molecular dynamics simulations and dynamic correlation network analysis. The results showed that the calmodulin bound lever arm at apo state can sample three different conformations. In addition to the conformation observed in crystal structure, calmodulin bound lever arm at apo condition can also adopt another two conformations featured by different extents of small-angle bending of the lever arm. However, large-angle bending is strongly prohibited. Such results suggest that the calmodulin bound lever arm without Ca2+ binding is plastic for small-angle deformation but shows high stiffness for large-angle deformation. In comparison, after the binding of Ca2+, although the calmodulin bound lever arm is locally more rigid, it can adopt largely deformed or even unfolded conformations, which may render the lever arm incompetent for force transmission. The conformational plasticity of the lever arm for small-angle deformation at apo condition may be utilized as force buffer to prevent the lever arm from unfolding during the power stroke action of the motor domain.
Collapse
Affiliation(s)
- Yichao Wu
- Department of Physics, Nanjing University, China
| | | | | | - Wei Wang
- Department of Physics, Nanjing University, China
| |
Collapse
|
15
|
An Q, Dong Y, Cao Y, Pan X, Xue Y, Zhou Y, Zhang Y, Ma F. Myh9 Plays an Essential Role in the Survival and Maintenance of Hematopoietic Stem/Progenitor Cells. Cells 2022; 11:cells11121865. [PMID: 35740994 PMCID: PMC9221478 DOI: 10.3390/cells11121865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/05/2023] Open
Abstract
Myosin heavy chain 9 (MYH9) gene encodes a protein named non-muscle heavy chain IIA (NMHC IIA), interacting with actin and participating in various biological processes. Mutations in MYH9 cause an array of autosomal dominant disorders, known as MYH9-related diseases (MYH9-RD). However, the role of MYH9 in normal hematopoiesis remains largely unexplored. By using Mx1-cre Myh9 conditional knockout mice, we established an inducible system to precisely inactivate Myh9 function in hematopoietic cells in vivo. The results showed that deletion of Myh9 led to severe defects in hematopoiesis, characterized by pancytopenia, drastic decreases of hematopoietic stem/progenitor cells (HSPC), and bone marrow failure, causing early lethality in mice. The defect in hematopoiesis caused by Myh9 ablation is cell autonomous. In addition, Myh9 deletion impairs HSPC repopulation capacity and increases apoptosis. RNA sequencing results revealed significant alterations in the expression of genes related to HSC self-renewal and maintenance, while multiple signal pathways were also involved, including genes for HSC and myeloid cell development, intrinsic apoptosis, targets of mTOR signaling, and maturity of hematopoietic cells. Our present study suggests an essential role for Myh9 in the survival and maintenance of HSPC in normal hematopoiesis.
Collapse
Affiliation(s)
- Quanming An
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yang Cao
- Institute of Molecular Medicine, School of Future Technology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China;
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yuan Xue
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Chengdu 610025, China; (Q.A.); (Y.D.); (X.P.); (Y.X.); (Y.Z.)
- Correspondence: (Y.Z.); (F.M.)
| |
Collapse
|
16
|
Gawor A, Ruszczyńska A, Konopka A, Wryk G, Czauderna M, Bulska E. Label-Free Mass Spectrometry-Based Proteomic Analysis in Lamb Tissues after Fish Oil, Carnosic Acid, and Inorganic Selenium Supplementation. Animals (Basel) 2022; 12:ani12111428. [PMID: 35681892 PMCID: PMC9179315 DOI: 10.3390/ani12111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Advances in proteomics and bioinformatics analysis offer the potential to investigate nutrients’ influence on protein expression profiles, and consequently on biological processes, molecular functions, and cellular components. However, knowledge in this area, particular about the exact way selenium modulates protein expression, remains limited. Therefore, in this project, global differential proteomic experiments were carried out in order to identify changes in the expression of proteins in animal tissues obtained from lambs on a specific diet involving the addition of a combination of different supplements, namely, inorganic selenium compounds, fish oil, and carnosic acid. Following inorganic selenium supplementation, a protein-protein interaction network analysis of forty differentially-expressed proteins indicated two significant clusters. Abstract Selenium is an essential nutrient, building twenty five identified selenoproteins in humans known to perform several important biological functions. The small amount of selenium in the earth’s crust in certain regions along with the risk of deficiency in organisms have resulted in increasingly popular dietary supplementation in animals, implemented via, e.g., inorganic selenium compounds. Even though selenium is included in selenoproteins in the form of selenocysteine, the dietary effect of selenium may result in the expression of other proteins or genes. Very little is known about the expression effects modulated by selenium. The present study aimed to examine the significance of protein expression in lamb tissues obtained after dietary supplementation with selenium (sodium selenate) and two other feed additives, fish oil and carnosic acid. Label-free mass spectrometry-based proteomic analysis was successfully applied to examine the animal tissues. Protein-protein interaction network analysis of forty differently-expressed proteins following inorganic selenium supplementation indicated two significant clusters which are involved in cell adhesion, heart development, actin filament-based movement, plasma membrane repair, and establishment of organelle localization.
Collapse
Affiliation(s)
- Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Ruszczyńska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Anna Konopka
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Grzegorz Wryk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (A.G.); (A.R.); (A.K.); (G.W.)
- Correspondence:
| |
Collapse
|
17
|
Pospich S, Sweeney HL, Houdusse A, Raunser S. High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism. eLife 2021; 10:e73724. [PMID: 34812732 PMCID: PMC8735999 DOI: 10.7554/elife.73724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding are only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin.
Collapse
Affiliation(s)
- Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| | - H Lee Sweeney
- Department of Pharmacology and Therapeutics and the Myology Institute, University of FloridaGainesvilleUnited States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche ScientifiqueParisFrance
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
18
|
Rutkowski DM, Vavylonis D. Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes. PLoS Comput Biol 2021; 17:e1009506. [PMID: 34662335 PMCID: PMC8553091 DOI: 10.1371/journal.pcbi.1009506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mechanical forces, actin filament turnover, and adhesion to the extracellular environment regulate lamellipodial protrusions. Computational and mathematical models at the continuum level have been used to investigate the molecular clutch mechanism, calculating the stress profile through the lamellipodium and around focal adhesions. However, the forces and deformations of individual actin filaments have not been considered while interactions between actin networks and actin bundles is not easily accounted with such methods. We develop a filament-level model of a lamellipodial actin network undergoing retrograde flow using 3D Brownian dynamics. Retrograde flow is promoted in simulations by pushing forces from the leading edge (due to actin polymerization), pulling forces (due to molecular motors), and opposed by viscous drag in cytoplasm and focal adhesions. Simulated networks have densities similar to measurements in prior electron micrographs. Connectivity between individual actin segments is maintained by permanent and dynamic crosslinkers. Remodeling of the network occurs via the addition of single actin filaments near the leading edge and via filament bond severing. We investigated how several parameters affect the stress distribution, network deformation and retrograde flow speed. The model captures the decrease in retrograde flow upon increase of focal adhesion strength. The stress profile changes from compression to extension across the leading edge, with regions of filament bending around focal adhesions. The model reproduces the observed reduction in retrograde flow speed upon exposure to cytochalasin D, which halts actin polymerization. Changes in crosslinker concentration and dynamics, as well as in the orientation pattern of newly added filaments demonstrate the model's ability to generate bundles of filaments perpendicular (actin arcs) or parallel (microspikes) to the protruding direction.
Collapse
|
19
|
POLArIS, a versatile probe for molecular orientation, revealed actin filaments associated with microtubule asters in early embryos. Proc Natl Acad Sci U S A 2021; 118:2019071118. [PMID: 33674463 DOI: 10.1073/pnas.2019071118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Biomolecular assemblies govern the physiology of cells. Their function often depends on the changes in molecular arrangements of constituents, both in the positions and orientations. While recent advancements of fluorescence microscopy including super-resolution microscopy have enabled us to determine the positions of fluorophores with unprecedented accuracy, monitoring the orientation of fluorescently labeled molecules within living cells in real time is challenging. Fluorescence polarization microscopy (FPM) reports the orientation of emission dipoles and is therefore a promising solution. For imaging with FPM, target proteins need labeling with fluorescent probes in a sterically constrained manner, but because of difficulties in the rational three-dimensional design of protein connection, a universal method for constrained tagging with fluorophore was not available. Here, we report POLArIS, a genetically encoded and versatile probe for molecular orientation imaging. Instead of using a direct tagging approach, we used a recombinant binder connected to a fluorescent protein in a sterically constrained manner that can target specific biomolecules of interest by combining with phage display screening. As an initial test case, we developed POLArISact, which specifically binds to F-actin in living cells. We confirmed that the orientation of F-actin can be monitored by observing cells expressing POLArISact with FPM. In living starfish early embryos expressing POLArISact, we found actin filaments radially extending from centrosomes in association with microtubule asters during mitosis. By taking advantage of the genetically encoded nature, POLArIS can be used in a variety of living specimens, including whole bodies of developing embryos and animals, and also be expressed in a cell type/tissue specific manner.
Collapse
|
20
|
Solanki AK, Biswal MR, Walterhouse S, Martin R, Kondkar AA, Knölker HJ, Rahman B, Arif E, Husain S, Montezuma SR, Nihalani D, Lobo GP. Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells 2021; 10:cells10061322. [PMID: 34073294 PMCID: PMC8229726 DOI: 10.3390/cells10061322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
Collapse
Affiliation(s)
- Ashish K. Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Manas R. Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Stephen Walterhouse
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 516 Delaware Street S.E., 9th Floor, Minneapolis, MN 55455, USA;
| | - Deepak Nihalani
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bldg. 2DEM, Room 6085, 6707 Democracy Blvd., Bethesda, MD 20817, USA
- Correspondence: (D.N.); (G.P.L.)
| | - Glenn Prazere Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Ophthalmology and Visual Neurosciences, Lions Research Building, University of Minnesota, 2001 6th Street S.E., Room 225, Minneapolis, MN 55455, USA
- Correspondence: (D.N.); (G.P.L.)
| |
Collapse
|
21
|
Genome-Wide Identification, Characterization and Expression Profiling of myosin Family Genes in Sebastes schlegelii. Genes (Basel) 2021; 12:genes12060808. [PMID: 34070681 PMCID: PMC8228858 DOI: 10.3390/genes12060808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly expanded, which was driven by tandem duplication events. The up-regulation of five representative genes of myo2 in the skeletal muscle during fast-growth stages of juvenile and adult S. schlegelii revealed their active role in skeletal muscle fiber synthesis. Moreover, the expression regulation of myosin during the process of myoblast differentiation in vitro suggested that they contribute to skeletal muscle growth by involvement of both myoblast proliferation and differentiation. Taken together, our work characterized myosin genes systemically and demonstrated their diverse functions in a marine teleost species. This lays foundation for the further studies of muscle growth regulation and molecular mechanisms of indeterminate skeletal muscle growth of large teleost fishes.
Collapse
|
22
|
Silva-Lima AW, Froes AM, Garcia GD, Tonon LAC, Swings J, Cosenza CAN, Medina M, Penn K, Thompson JR, Thompson CC, Thompson FL. Mussismilia braziliensis White Plague Disease Is Characterized by an Affected Coral Immune System and Dysbiosis. MICROBIAL ECOLOGY 2021; 81:795-806. [PMID: 33000311 DOI: 10.1007/s00248-020-01588-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Infectious diseases are one of the major drivers of coral reef decline worldwide. White plague-like disease (WPL) is a widespread disease with a complex etiology that infects several coral species, including the Brazilian endemic species Mussismilia braziliensis. Gene expression profiles of healthy and WPL-affected M. braziliensis were analyzed in winter and summer seasons. The de novo assembly of the M. braziliensis transcriptome from healthy and white plague samples produced a reference transcriptome containing 119,088 transcripts. WPL-diseased samples were characterized by repression of immune system and cellular defense processes. Autophagy and cellular adhesion transcripts were also repressed in WPL samples, suggesting exhaustion of the coral host defenses. Seasonal variation leads to plasticity in transcription with upregulation of intracellular signal transduction, apoptosis regulation, and oocyte development in the summer. Analysis of the active bacterial rRNA indicated that Pantoea bacteria were more abundant in WPL corals, while Tistlia, Fulvivirga, and Gammaproteobacteria Ga0077536 were more abundant in healthy samples. Cyanobacteria proliferation was also observed in WPL, mostly in the winter. These results indicate a scenario of dysbiosis in WPL-affected M. braziliensis, with the loss of potentially symbiotic bacteria and proliferation of opportunistic microbes after the start of the infection process.
Collapse
Affiliation(s)
- A W Silva-Lima
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
| | - A M Froes
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
| | - G D Garcia
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - L A C Tonon
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - J Swings
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - C A N Cosenza
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - M Medina
- Pennsylvania State University, 324 Mueller Lab, University Park, PA, 16802, USA
| | - K Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C C Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil
| | - F L Thompson
- Laboratório de Microbiologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. S/N-CCS-IB-Lab de Microbiologia-BLOCO A (Anexo) A3-sl 102, Cidade Universitária, Rio de Janeiro, RJ, 21941-599, Brazil.
- Sage/Coppe, Centro de Gestão Tecnológica-CT2, Rua Moniz de Aragão, no. 360-Bloco 2, Ilha do Fundão-Cidade Universitária, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
23
|
Spectrum of MYO7A Mutations in an Indigenous South African Population Further Elucidates the Nonsyndromic Autosomal Recessive Phenotype of DFNB2 to Include Both Homozygous and Compound Heterozygous Mutations. Genes (Basel) 2021; 12:genes12020274. [PMID: 33671976 PMCID: PMC7919343 DOI: 10.3390/genes12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022] Open
Abstract
MYO7A gene encodes unconventional myosin VIIA, which, when mutated, causes a phenotypic spectrum ranging from recessive hearing loss DFNB2 to deaf-blindness, Usher Type 1B (USH1B). MYO7A mutations are reported in nine DFNB2 families to date, none from sub-Saharan Africa.In DNA, from a cohort of 94 individuals representing 92 families from the Limpopo province of South Africa, eight MYO7A variations were detected among 10 individuals. Family studies identified homozygous and compound heterozygous mutations in 17 individuals out of 32 available family members. Four mutations were novel, p.Gly329Asp, p.Arg373His, p.Tyr1780Ser, and p.Pro2126Leufs*5. Two variations, p.Ser617Pro and p.Thr381Met, previously listed as of uncertain significance (ClinVar), were confirmed to be pathogenic. The identified mutations are predicted to interfere with the conformational properties of myosin VIIA through interruption or abrogation of multiple interactions between the mutant and neighbouring residues. Specifically, p.Pro2126Leufs*5, is predicted to abolish the critical site for the interactions between the tail and the motor domain essential for the autoregulation, leaving a non-functional, unregulated protein that causes hearing loss. We have identified MYO7A as a possible key deafness gene among indigenous sub-Saharan Africans. The spectrum of MYO7A mutations in this South African population points to DFNB2 as a specific entity that may occur in a homozygous or in a compound heterozygous state.
Collapse
|
24
|
Gupta CM, Ambaru B, Bajaj R. Emerging Functions of Actins and Actin Binding Proteins in Trypanosomatids. Front Cell Dev Biol 2020; 8:587685. [PMID: 33163497 PMCID: PMC7581878 DOI: 10.3389/fcell.2020.587685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/20/2023] Open
Abstract
Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
Collapse
Affiliation(s)
- Chhitar M Gupta
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Bindu Ambaru
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| | - Rani Bajaj
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India.,Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
25
|
Whatley M, Francis A, Ng ZY, Khoh XE, Atlas MD, Dilley RJ, Wong EYM. Usher Syndrome: Genetics and Molecular Links of Hearing Loss and Directions for Therapy. Front Genet 2020; 11:565216. [PMID: 33193648 PMCID: PMC7642844 DOI: 10.3389/fgene.2020.565216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive (AR) disorder that permanently and severely affects the senses of hearing, vision, and balance. Three clinically distinct types of USH have been identified, decreasing in severity from Type 1 to 3, with symptoms of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP), and vestibular dysfunction. There are currently nine confirmed and two suspected USH-causative genes, and a further three candidate loci have been mapped. The proteins encoded by these genes form complexes that play critical roles in the development and maintenance of cellular structures within the inner ear and retina, which have minimal capacity for repair or regeneration. In the cochlea, stereocilia are located on the apical surface of inner ear hair cells (HC) and are responsible for transducing mechanical stimuli from sound pressure waves into chemical signals. These signals are then detected by the auditory nerve fibers, transmitted to the brain and interpreted as sound. Disease-causing mutations in USH genes can destabilize the tip links that bind the stereocilia to each other, and cause defects in protein trafficking and stereocilia bundle morphology, thereby inhibiting mechanosensory transduction. This review summarizes the current knowledge on Usher syndrome with a particular emphasis on mutations in USH genes, USH protein structures, and functional analyses in animal models. Currently, there is no cure for USH. However, the genetic therapies that are rapidly developing will benefit from this compilation of detailed genetic information to identify the most effective strategies for restoring functional USH proteins.
Collapse
Affiliation(s)
- Meg Whatley
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Abbie Francis
- Ear Science Institute Australia, Nedlands, WA, Australia
- Emergency Medicine, The University of Western Australia, Nedlands, WA, Australia
| | - Zi Ying Ng
- Ear Science Institute Australia, Nedlands, WA, Australia
| | - Xin Ee Khoh
- Ear Science Institute Australia, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Marcus D. Atlas
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Rodney J. Dilley
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, Australia
| | - Elaine Y. M. Wong
- Ear Science Institute Australia, Nedlands, WA, Australia
- Ear Sciences Centre, The University of Western Australia, Nedlands, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
26
|
Li JL, Wang ZQ, Sun XL. MYL6B drives the capabilities of proliferation, invasion, and migration in rectal adenocarcinoma through the EMT process. Open Life Sci 2020; 15:522-531. [PMID: 33817240 PMCID: PMC7874597 DOI: 10.1515/biol-2020-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective This study was designed to explore the biological significance of myosin light chain 6B (MYL6B) in rectal adenocarcinoma. Methods Profiles on the Oncomine dataset, GEPIA website, and UALCAN-TCGA database were searched to assess the MYL6B expression level in rectal adenocarcinoma tissues and normal tissues. After MYL6B knockdown using siRNA strategy, cell counting kit-8 (CCK-8) and transwell assays were conducted to measure cell proliferation, migration and invasion, respectively. Flow cytometry analysis was conducted to assess cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot were performed to detect the expression level of mRNAs and proteins. Results The data showed that overexpression of MYL6B was observed in rectal adenocarcinoma tissues and correlated with a poor prognosis of patients. Functional in vitro experiments revealed that MYL6B knockdown could inhibit proliferation, migration, and invasion of rectal adenocarcinoma cells, while promote cell apoptosis. Moreover, western blot analysis suggested that increased expression of E-cadherin and decreased expression of N-cadherin and Vimentin were induced by si-MYL6B. Conclusion In summary, this study elaborated on the promoting effect of MYL6B in rectal adenocarcinoma progression, thus providing novel insight for strategies of clinical diagnosis and drug application in the future clinical study.
Collapse
Affiliation(s)
- Jin-Liang Li
- Department of Anus & Intestine Surgery, The First People's Hospital of Jining, Jining, Shandong, 272100, P.R. China
| | - Zai-Qiu Wang
- Department of Anorectal Surgery, Yantai Yuhuangding Hospital, Yantai, 264000, P.R. China
| | - Xiao-Li Sun
- Department of Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, P.R. China
| |
Collapse
|
27
|
Alzahofi N, Welz T, Robinson CL, Page EL, Briggs DA, Stainthorp AK, Reekes J, Elbe DA, Straub F, Kallemeijn WW, Tate EW, Goff PS, Sviderskaya EV, Cantero M, Montoliu L, Nedelec F, Miles AK, Bailly M, Kerkhoff E, Hume AN. Rab27a co-ordinates actin-dependent transport by controlling organelle-associated motors and track assembly proteins. Nat Commun 2020; 11:3495. [PMID: 32661310 PMCID: PMC7359353 DOI: 10.1038/s41467-020-17212-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Cell biologists generally consider that microtubules and actin play complementary roles in long- and short-distance transport in animal cells. On the contrary, using melanosomes of melanocytes as a model, we recently discovered that the motor protein myosin-Va works with dynamic actin tracks to drive long-range organelle dispersion in opposition to microtubules. This suggests that in animals, as in yeast and plants, myosin/actin can drive long-range transport. Here, we show that the SPIRE-type actin nucleators (predominantly SPIRE1) are Rab27a effectors that co-operate with formin-1 to generate actin tracks required for myosin-Va-dependent transport in melanocytes. Thus, in addition to melanophilin/myosin-Va, Rab27a can recruit SPIREs to melanosomes, thereby integrating motor and track assembly activity at the organelle membrane. Based on this, we suggest a model in which organelles and force generators (motors and track assemblers) are linked, forming an organelle-based, cell-wide network that allows their collective activity to rapidly disperse the population of organelles long-distance throughout the cytoplasm.
Collapse
Affiliation(s)
- Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Tobias Welz
- University Hospital Regensburg, Regensburg, Germany
| | | | - Emma L Page
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Amy K Stainthorp
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - James Reekes
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - David A Elbe
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Felix Straub
- University Hospital Regensburg, Regensburg, Germany
| | - Wouter W Kallemeijn
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 0BZ, UK
| | - Philip S Goff
- Cell Biology and Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Elena V Sviderskaya
- Cell Biology and Genetics Research Centre, St. George's, University of London, London, SW17 0RE, UK
| | - Marta Cantero
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, 28049, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, 28049, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Francois Nedelec
- Sainsbury Laboratory, Cambridge University, Cambridge, CB2 1LR, UK
| | - Amanda K Miles
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Maryse Bailly
- UCL Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | | | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
28
|
Non-Muscle Myosin 2A (NM2A): Structure, Regulation and Function. Cells 2020; 9:cells9071590. [PMID: 32630196 PMCID: PMC7408548 DOI: 10.3390/cells9071590] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/30/2022] Open
Abstract
Non-muscle myosin 2A (NM2A) is a motor cytoskeletal enzyme with crucial importance from the early stages of development until adulthood. Due to its capacity to convert chemical energy into force, NM2A powers the contraction of the actomyosin cytoskeleton, required for proper cell division, adhesion and migration, among other cellular functions. Although NM2A has been extensively studied, new findings revealed that a lot remains to be discovered concerning its spatiotemporal regulation in the intracellular environment. In recent years, new functions were attributed to NM2A and its activity was associated to a plethora of illnesses, including neurological disorders and infectious diseases. Here, we provide a concise overview on the current knowledge regarding the structure, the function and the regulation of NM2A. In addition, we recapitulate NM2A-associated diseases and discuss its potential as a therapeutic target.
Collapse
|
29
|
Bajaj R, Ambaru B, Gupta CM. Deciphering the role of UBA-like domains in intraflagellar distribution and functions of myosin XXI in Leishmania. PLoS One 2020; 15:e0232116. [PMID: 32343719 PMCID: PMC7188243 DOI: 10.1371/journal.pone.0232116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Myosin XXI (Myo21) is a novel class of myosin present in all kinetoplastid parasites, such as Trypanosoma and Leishmania. This protein in Leishmania promastigotes is predominantly localized to the proximal region of the flagellum, and is involved in the flagellum assembly, cell motility and intracellular vesicle transport. As Myo21 contains two ubiquitin associated (UBA)-like domains (UBLD) in its amino acid sequence, we considered it of interest to analyze the role of these domains in the intracellular distribution and functions of this protein in Leishmania cells. In this context, we created green fluorescent protein (GFP)-conjugates of Myo21 constructs lacking one of the two UBLDs at a time or both the UBLDs as well as GFP-conjugates of only the two UBLDs and Myo21 tail lacking the two UBLDs and separately expressed them in the Leishmania cells. Our results show that unlike Myo21-GFP, Myo21-GFP constructs lacking either one or both the UBLDs failed to concentrate and co-distribute with actin in the proximal region of the flagellum. Nevertheless, the GFP conjugate of only the two UBLDs was found to predominantly localize to the flagellum base. Additionally, the cells that expressed only one or both the UBLDs-deleted Myo21-GFP constructs possessed shorter flagellum and displayed slower motility, compared to Myo21-GFP expressing cells. Further, the intracellular vesicle transport and cell growth were severely impaired in the cells that expressed both the UBLDs deleted Myo21-GFP construct, but in contrast, virtually no effect was observed on the intracellular vesicle transport and growth in the cells that expressed single UBLD deleted mutant proteins. Moreover, the observed slower growth of both the UBLDs-deleted Myo21-GFP expressing cells was primarily due to delayed G2/M phase caused by aberrant nuclear and daughter cell segregation during their cell division process. These results taken together clearly reveal that the presence of UBLDs in Myo21 are essentially required for its predominant localization to the flagellum base, and perhaps also in its involvement in the flagellum assembly and cell division. Possible role of UBLDs in involvement of Myo21 during Leishmania flagellum assembly and cell cycle is discussed.
Collapse
Affiliation(s)
- Rani Bajaj
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bindu Ambaru
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chhitar M. Gupta
- Institute of Bioinformatics & Applied Biotechnology, Bengaluru, Karnataka, India
| |
Collapse
|
30
|
Navinés-Ferrer A, Martín M. Long-Tailed Unconventional Class I Myosins in Health and Disease. Int J Mol Sci 2020; 21:ijms21072555. [PMID: 32272642 PMCID: PMC7177449 DOI: 10.3390/ijms21072555] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/21/2023] Open
Abstract
Long-tailed unconventional class I myosin, Myosin 1E (MYO1E) and Myosin 1F (MYO1F) are motor proteins that use chemical energy from the hydrolysis of adenosine triphosphate (ATP) to produce mechanical work along the actin cytoskeleton. On the basis of their motor properties and structural features, myosins perform a variety of essential roles in physiological processes such as endocytosis, exocytosis, cell adhesion, and migration. The long tailed unconventional class I myosins are characterized by having a conserved motor head domain, which binds actin and hydrolyzes ATP, followed by a short neck with an isoleucine-glutamine (IQ) motif, which binds calmodulin and is sensitive to calcium, and a tail that contains a pleckstrin homology domain (PH), a tail homology 1 domain (TH1), wherein these domains allow membrane binding, a tail homology 2 domain (TH2), an ATP-insensitive actin-binding site domain, and a single Src homology 3 domain (SH3) susceptible to binding proline rich regions in other proteins. Therefore, these motor proteins are able to bind actin, plasma membrane, and other molecules (adaptor, kinases, membrane proteins) that contribute to their function, ranging from increasing membrane tension to molecular trafficking and cellular adhesion. MYO1E and MYO1F function in host self-defense, with a better defined role in innate immunity in cell migration and phagocytosis. Impairments of their function have been identified in patients suffering pathologies ranging from tumoral processes to kidney diseases. In this review, we summarize our current knowledge of specific features and functions of MYO1E and MYO1F in various tissues, as well as their involvement in disease.
Collapse
Affiliation(s)
- A. Navinés-Ferrer
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, IDIBAPS, 08036 Barcelona, Spain
| | - M. Martín
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- Laboratory of Clinic and Experimental Respiratory Immunoallergy, IDIBAPS, 08036 Barcelona, Spain
- ARADyAL research network, Carlos III Health Institute, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-93-4024541; Fax: +34-93-4035882
| |
Collapse
|
31
|
Roles of Myosin-Mediated Membrane Trafficking in TGF-β Signaling. Int J Mol Sci 2019; 20:ijms20163913. [PMID: 31408934 PMCID: PMC6719161 DOI: 10.3390/ijms20163913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Recent findings have revealed the role of membrane traffic in the signaling of transforming growth factor-β (TGF-β). These findings originate from the pivotal function of TGF-β in development, cell proliferation, tumor metastasis, and many other processes essential in malignancy. Actin and unconventional myosin have crucial roles in subcellular trafficking of receptors; research has also revealed a growing number of unconventional myosins that have crucial roles in TGF-β signaling. Unconventional myosins modulate the spatial organization of endocytic trafficking and tether membranes or transport them along the actin cytoskeletons. Current models do not fully explain how membrane traffic forms a bridge between TGF-β and the downstream effectors that produce its functional responsiveness, such as cell migration. In this review, we present a brief overview of the current knowledge of the TGF-β signaling pathway and the molecular components that comprise the core pathway as follows: ligands, receptors, and Smad mediators. Second, we highlight key role(s) of myosin motor-mediated protein trafficking and membrane domain segregation in the modulation of the TGF-β signaling pathway. Finally, we review future challenges and provide future prospects in this field.
Collapse
|
32
|
Abstract
Sensitization of the transient receptor potential ion channel vanilloid 1 (TRPV1) is critically involved in inflammatory pain. To date, manifold signaling cascades have been shown to converge onto TRPV1 and enhance its sensitization. However, many of them also play a role for nociceptive pain, which limits their utility as targets for therapeutic intervention. Here, we show that the vesicle transport through interaction with t-SNAREs homolog 1B (Vti1b) protein promotes TRPV1 sensitization upon inflammation in cell culture but leaves normal functioning of TRPV1 intact. Importantly, the effect of Vti1b can be recapitulated in vivo: Virus-mediated knockdown of Vti1b in sensory neurons attenuated thermal hypersensitivity during inflammatory pain without affecting mechanical hypersensitivity or capsaicin-induced nociceptive pain. Interestingly, TRPV1 and Vti1b are localized in close vicinity as indicated by proximity ligation assays and are likely to bind to each other, either directly or indirectly, as suggested by coimmunoprecipitations. Moreover, using a mass spectrometry-based quantitative interactomics approach, we show that Vti1b is less abundant in TRPV1 protein complexes during inflammatory conditions compared with controls. Alongside, we identify numerous novel and pain state-dependent binding partners of native TRPV1 in dorsal root ganglia. These data represent a unique resource on the dynamics of the TRPV1 interactome and facilitate mechanistic insights into TRPV1 regulation. We propose that inflammation-related differences in the TRPV1 interactome identified here could be exploited to specifically target inflammatory pain in the future.
Collapse
|
33
|
Zhang X, Yuan J, Zhang X, Liu C, Li F, Xiang J. Genome-Wide Identification and Expression Profiles of Myosin Genes in the Pacific White Shrimp, Litopenaeus vannamei. Front Physiol 2019; 10:610. [PMID: 31178751 PMCID: PMC6537884 DOI: 10.3389/fphys.2019.00610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
As the main structural protein of muscle fiber, myosin is essential for multiple cellular processes or functions, especially for muscle composition and development. Although the shrimp possess a well-developed muscular system, the knowledge about the myosin family in shrimp is far from understood. In this study, we performed comprehensive analysis on the myosin genes in the genome of the Pacific white shrimp, Litopenaeus vannamei. A total of 29 myosin genes were identified, which were classified into 14 subfamilies. Among them, Myo2 subfamily was significantly expanded in the penaeid shrimp genome. Most of the Myo2 subfamily genes were primarily expressed in abdominal muscle, which suggested that Myo2 subfamily genes might be responsible for the well-developed muscular system of the penaeid shrimp. In situ hybridization detection showed that the slow-type muscle myosin gene was mainly localized in pleopod muscle and superficial ventral muscle of the shrimp. This study provides valuable insights into the evolutionary and functional characterization of myosin genes in shrimps, which provides clues for us to understand the well-developed muscular system of shrimp.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianbo Yuan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chengzhang Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
34
|
Grimes KM, Prasad V, McNamara JW. Supporting the heart: Functions of the cardiomyocyte's non-sarcomeric cytoskeleton. J Mol Cell Cardiol 2019; 131:187-196. [PMID: 30978342 DOI: 10.1016/j.yjmcc.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The non-contractile cytoskeleton in cardiomyocytes is comprised of cytoplasmic actin, microtubules, and intermediate filaments. In addition to providing mechanical support to these cells, these structures are important effectors of tension-sensing and signal transduction and also provide networks for the transport of proteins and organelles. The majority of our knowledge on the function and structure of these cytoskeletal networks comes from research on proliferative cell types. However, in recent years, researchers have begun to show that there are important cardiomyocyte-specific functions of the cytoskeleton. Here we will discuss the current state of cytoskeletal biology in cardiomyocytes, as well as research from other cell types, that together suggest there is a wealth of knowledge on cardiac health and disease waiting to be uncovered through exploration of the complex signaling networks of cardiomyocyte non-sarcomeric cytoskeletal proteins.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
35
|
Myosin II in Cancer Cells Shapes the Immune Microenvironment. Trends Mol Med 2019; 25:257-259. [PMID: 30871808 DOI: 10.1016/j.molmed.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/24/2019] [Indexed: 12/15/2022]
Abstract
Tumor migration is driven by actomyosin contractility. A recent publication by Georgouli et al. (Cell 2019;176:757-774) describes how crosstalk between the cell migration machinery and tumor-associated macrophages (TAMs) shapes the microenvironment to promote tumor growth. Indirectly targeting TAMs by inhibiting the motility of tumor cells could hinder metastatic spread.
Collapse
|
36
|
EhFP10: A FYVE family GEF interacts with myosin IB to regulate cytoskeletal dynamics during endocytosis in Entamoeba histolytica. PLoS Pathog 2019; 15:e1007573. [PMID: 30779788 PMCID: PMC6396940 DOI: 10.1371/journal.ppat.1007573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/01/2019] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
Motility and phagocytosis are key processes that are involved in invasive amoebiasis disease caused by intestinal parasite Entamoeba histolytica. Previous studies have reported unconventional myosins to play significant role in membrane based motility as well as endocytic processes. EhMyosin IB is the only unconventional myosin present in E. histolytica, is thought to be involved in both of these processes. Here, we report an interaction between the SH3 domain of EhMyosin IB and c-terminal domain of EhFP10, a Rho guanine nucleotide exchange factor. EhFP10 was found to be confined to Entamoeba species only, and to contain a c-terminal domain that binds and bundles actin filaments. EhFP10 was observed to localize in the membrane ruffles, phagocytic and macropinocytic cups of E. histolytica trophozoites. It was also found in early pinosomes but not early phagosomes. A crystal structure of the c-terminal SH3 domain of EhMyosin IB (EhMySH3) in complex with an EhFP10 peptide and co-localization studies established the interaction of EhMySH3 with EhFP10. This interaction was shown to lead to inhibition of actin bundling activity and to thereby regulate actin dynamics during endocytosis. We hypothesize that unique domain architecture of EhFP10 might be compensating the absence of Wasp and related proteins in Entamoeba, which are known partners of myosin SH3 domains in other eukaryotes. Our findings also highlights the role of actin bundling during endocytosis.
Collapse
|
37
|
Abstract
Cell's elasticity is an integrative parameter summarizing the biophysical outcome of many known and unknown cellular processes. This includes intracellular signaling, cytoskeletal activity, changes of cell volume and morphology, and many others. Not only intracellular processes defines a cell's elasticity but also environmental factors like their biochemical and biophysical surrounding. Therefore, cell mechanics represents a comprehensive variable of life. A cell in its standard conditions shows variabilities of biochemical and biophysical processes resulting in a certain range of cell's elasticity. Changes of the standard conditions, endogenously or exogenously induced, are frequently paralleled by changes of cell elasticity. Therefore cell elasticity could serve as parameter to characterize different states of a cell. Atomic force microscopy (AFM) combines high spatial resolution with very high force sensitivity and allows investigating mechanical properties of living cells under physiological conditions. However, elastic moduli reported in the literature showed a large variability, sometimes by an order of magnitude (or even more) for the same cell type assessed in different labs. Clearly, a prerequisite for the use of cell elasticity to describe the actual cell status is a standardized procedure that allows obtaining comparable values of a cell independent from the instrument, from the lab and operator. Biologically derived variations of elasticity could not be reduced due to the nature of living cells but technically and methodologically derived variations could be minimized by a standardized procedure.This chapter provides a Standardized Nanomechanical AFM Procedure (SNAP) that reduces strongly the variability of results obtained on soft samples and living cells by a reliable method to calibrate AFM cantilevers.
Collapse
Affiliation(s)
- Hermann Schillers
- Institute of Physiology II, University of Münster, Münster, Germany.
| |
Collapse
|
38
|
Myosins in Osteoclast Formation and Function. Biomolecules 2018; 8:biom8040157. [PMID: 30467281 PMCID: PMC6317158 DOI: 10.3390/biom8040157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/16/2023] Open
Abstract
Skeletal quantity and quality are determined by processes of bone modeling and remodeling, which are undertaken by cells that build and resorb bone as they respond to mechanical, hormonal, and other external and internal signals. As the sole bone resorptive cell type, osteoclasts possess a remarkably dynamic actin cytoskeleton that drives their function in this enterprise. Actin rearrangements guide osteoclasts’ capacity for precursor fusion during differentiation, for migration across bone surfaces and sensing of their composition, and for generation of unique actin superstructures required for the resorptive process. In this regard, it is not surprising that myosins, the superfamily of actin-based motor proteins, play key roles in osteoclast physiology. This review briefly summarizes current knowledge of the osteoclast actin cytoskeleton and describes myosins’ roles in osteoclast differentiation, migration, and actin superstructure patterning.
Collapse
|
39
|
Ritt M, Sivaramakrishnan S. Engaging myosin VI tunes motility, morphology and identity in endocytosis. Traffic 2018; 19:10.1111/tra.12583. [PMID: 29869361 PMCID: PMC6437008 DOI: 10.1111/tra.12583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
While unconventional myosins interact with different stages of the endocytic pathway, they are ascribed a transport function that is secondary to the protein complexes that control organelle identity. Endosomes are subject to a dynamic, continuous flux of proteins that control their characteristic properties, including their motility within the cell. Efforts to describe the changes in identity of this compartment have largely focused on the adaptors present on the compartment and not on the motile properties of the compartment itself. In this study, we use a combination of optogenetic and chemical-dimerization strategies to target exogenous myosin VI to early endosomes, and probe its influence on organelle motility, morphology and identity. Our analysis across timescales suggests a model wherein the artificial engagement of myosin VI motility on early endosomes restricts microtubule-based motion, followed by morphological changes characterized by the rapid condensation and disintegration of organelles, ultimately leading to the enhanced overlap of markers that demarcate endosomal compartments. Together, our findings show that synthetic engagement of myosin VI motility is sufficient to alter organelle homeostasis in the endocytic pathway.
Collapse
Affiliation(s)
- Michael Ritt
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
40
|
Abstract
Microtubules act as "railways" for motor-driven intracellular transport, interact with accessory proteins to assemble into larger structures such as the mitotic spindle, and provide an organizational framework to the rest of the cell. Key to these functions is the fact that microtubules are "dynamic." As with actin, the polymer dynamics are driven by nucleotide hydrolysis and influenced by a host of specialized regulatory proteins, including microtubule-associated proteins. However, microtubule turnover involves a surprising behavior-termed dynamic instability-in which individual polymers switch stochastically between growth and depolymerization. Dynamic instability allows microtubules to explore intracellular space and remodel in response to intracellular and extracellular cues. Here, we review how such instability is central to the assembly of many microtubule-based structures and to the robust functioning of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
41
|
Yue Y, Blasius TL, Zhang S, Jariwala S, Walker B, Grant BJ, Cochran JC, Verhey KJ. Altered chemomechanical coupling causes impaired motility of the kinesin-4 motors KIF27 and KIF7. J Cell Biol 2018; 217:1319-1334. [PMID: 29351996 PMCID: PMC5881503 DOI: 10.1083/jcb.201708179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
Kinesin-4 motors play important roles in cell division, microtubule organization, and signaling. Understanding how motors perform their functions requires an understanding of their mechanochemical and motility properties. We demonstrate that KIF27 can influence microtubule dynamics, suggesting a conserved function in microtubule organization across the kinesin-4 family. However, kinesin-4 motors display dramatically different motility characteristics: KIF4 and KIF21 motors are fast and processive, KIF7 and its Drosophila melanogaster homologue Costal2 (Cos2) are immotile, and KIF27 is slow and processive. Neither KIF7 nor KIF27 can cooperate for fast processive transport when working in teams. The mechanistic basis of immotile KIF7 behavior arises from an inability to release adenosine diphosphate in response to microtubule binding, whereas slow processive KIF27 behavior arises from a slow adenosine triphosphatase rate and a high affinity for both adenosine triphosphate and microtubules. We suggest that evolutionarily selected sequence differences enable immotile KIF7 and Cos2 motors to function not as transporters but as microtubule-based tethers of signaling complexes.
Collapse
Affiliation(s)
- Yang Yue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - T Lynne Blasius
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie Zhang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Shashank Jariwala
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Benjamin Walker
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Barry J Grant
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Jared C Cochran
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
42
|
Liu Y, Wei X, Guan L, Xu S, Yuan Y, Lv D, He X, Zhan J, Kong Y, Guo J, Zhang H. Unconventional myosin VIIA promotes melanoma progression. J Cell Sci 2018; 131:jcs.209924. [PMID: 29361540 DOI: 10.1242/jcs.209924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/11/2018] [Indexed: 11/20/2022] Open
Abstract
Unconventional myosin VIIA (Myo7a) is an actin-based motor molecule that normally functions in the cochlear hair cells of the inner ear. Mutations of MYO7A/Myo7a have been implicated in inherited deafness in both humans and mice. However, there is limited information about the functions of Myo7a outside of the specialized cells of the ears. Herein, we report a previously unidentified function of Myo7a by demonstrating that it plays an important role in melanoma progression. We found that silencing Myo7a by means of RNAi inhibited melanoma cell growth through upregulation of cell cycle regulator p21 (also known as CDKN1A) and suppressed melanoma cell migration and invasion through downregulation of RhoGDI2 (also known as ARHGDIB) and MMP9. Furthermore, Myo7a depletion suppressed melanoma cell metastases to the lung, kidney and bone in mice. In contrast, overexpression of Myo7a promoted melanoma xenograft growth and lung metastasis. Importantly, Myo7a levels are remarkably elevated in human melanoma patients. Collectively, we demonstrated for the first time that Myo7a is able to function in non-specialized cells, a finding that reveals the complicated disease-related roles of Myo7a, especially in melanomas.
Collapse
Affiliation(s)
- Yuqing Liu
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China.,Department of Molecular Neuropathology, Beijing Neurosurgical Institute and Chinese Glioma Cooperative Group (CGCG), Capital Medical University, Beijing 100050, China
| | - Xiaofan Wei
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Lizhao Guan
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Sidi Xu
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yuan
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Danyu Lv
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Xiaokun He
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, People's Republic of China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, People's Republic of China
| | - Hongquan Zhang
- Laboratory of Molecular Cell Biology and Tumor Biology, Department of Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
43
|
Xie X, Wang X, Liao W, Fei R, Wu N, Cong X, Chen Q, Wei L, Wang Y, Chen H. MYL6B, a myosin light chain, promotes MDM2-mediated p53 degradation and drives HCC development. J Exp Clin Cancer Res 2018; 37:28. [PMID: 29439719 PMCID: PMC5812214 DOI: 10.1186/s13046-018-0693-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Identification of novel MDM2 or p53 binding proteins may reveal undefined oncogenes, tumor suppressors, signaling pathways and possible treatment targets. METHODS By means of immunoprecipitation and Mass Spectrometry analysis, we aimed to identify novel regulators of the MDM2-p53 pathway. We further clarified the impact of MYL6B on the p53 protein level and on the process of apoptosis. We also investigated the role of MYL6B in hepatocellular carcinoma by clone formation assay and by determining the correlation between its expression and prognosis of HCC patients. RESULTS We identified a novel MDM2 and p53 binding protein, MYL6B. It is a myosin light chain that could bind myosin II heavy chains to form non-muscle myosin II holoenzymes (NMII). We found that MYL6B could facilitate the binding of MDM2 to p53, which consequently promotes the ubiquitination and degradation of p53 protein. We further proved that MYL6B exerts the suppression effect on p53 as part of NMII holoenzymes because inhibiting the ATPase activity of myosin II heavy chain largely blocked this effect. We also discovered that MYL6B is overexpressed in HCC tissues and linked to the bad prognosis of HCC patients. Knocking out of MYL6B dramatically suppressed the clonogenic ability and increased the apoptosis level of HCC cell lines. CONCLUSIONS To summary, our results demonstrate that MYL6B is a putative tumor driver gene in HCC which could promote the degradation of p53 by enhancing its' MDM2-mediated ubiquitination.
Collapse
Affiliation(s)
- Xingwang Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xueyan Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ran Fei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China
| | - Nan Wu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China
| | - Xu Cong
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China
| | - Qian Chen
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lai Wei
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China
| | - Yu Wang
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Hongsong Chen
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, China.
| |
Collapse
|
44
|
de Souza DAS, Pavoni DP, Krieger MA, Ludwig A. Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization. Sci Rep 2018; 8:1376. [PMID: 29358582 PMCID: PMC5778035 DOI: 10.1038/s41598-017-18865-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are motor proteins that comprise a large and diversified family important for a broad range of functions. Two myosin classes, I and XIII, were previously assigned in Trypanosomatids, based mainly on the studies of Trypanosoma cruzi, T. brucei and Leishmania major, and important human pathogenic species; seven orphan myosins were identified in T. cruzi. Our results show that the great variety of T. cruzi myosins is also present in some closely related species and in Bodo saltans, a member of an early divergent branch of Kinetoplastida. Therefore, these myosins should no longer be considered "orphans". We proposed the classification of a kinetoplastid-specific myosin group into a new class, XXXVI. Moreover, our phylogenetic data suggest that a great repertoire of myosin genes was present in the last common ancestor of trypanosomatids and B. saltans, mainly resulting from several gene duplications. These genes have since been predominantly maintained in synteny in some species, and secondary losses explain the current distribution. We also found two interesting genes that were clearly derived from myosin genes, demonstrating that possible redundant or useless genes, instead of simply being lost, can serve as raw material for the evolution of new genes and functions.
Collapse
Affiliation(s)
- Denise Andréa Silva de Souza
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Daniela Parada Pavoni
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Marco Aurélio Krieger
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| |
Collapse
|
45
|
Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol 2018; 20:175-185. [DOI: 10.1038/s41556-017-0018-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022]
|
46
|
Zhang N, Yao LL, Li XD. Regulation of class V myosin. Cell Mol Life Sci 2018; 75:261-273. [PMID: 28730277 PMCID: PMC11105390 DOI: 10.1007/s00018-017-2599-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5's motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head-GTD interactions, GTD-GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.
Collapse
Affiliation(s)
- Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Robinson CL, Evans RD, Briggs DA, Ramalho JS, Hume AN. Inefficient recruitment of kinesin-1 to melanosomes precludes it from facilitating their transport. J Cell Sci 2017; 130:2056-2065. [PMID: 28490438 PMCID: PMC5482976 DOI: 10.1242/jcs.186064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/03/2017] [Indexed: 12/25/2022] Open
Abstract
Microtubules and F-actin, and their associated motor proteins, are considered to play complementary roles in long- and short-range organelle transport. However, there is growing appreciation that myosin/F-actin networks can drive long-range transport. In melanocytes, myosin-Va and kinesin-1 have both been proposed as long-range centrifugal transporters moving melanosomes into the peripheral dendrites. Here, we investigated the role of kinesin-1 heavy chain (Kif5b) and its suggested targeting factor Rab1a in transport. We performed confocal microscopy and subcellular fractionation, but did not detect Kif5b or Rab1a on melanosomes. Meanwhile functional studies, using siRNA knockdown and dominant negative mutants, did not support a role for Kif5b or Rab1a in melanosome transport. To probe the potential of Kif5b to function in transport, we generated fusion proteins that target active Kif5b to melanosomes and tested their ability to rescue perinuclear clustering in myosin-Va-deficient cells. Expression of these chimeras, but not full-length Kif5b, dispersed melanosomes with similar efficiency to myosin-Va. Our data indicate that kinesin and microtubules can compensate for defects in myosin-Va and actin-based transport in mammals, but that endogenous Kif5b does not have an important role in transport of melanocytes due to its inefficient recruitment to melanosomes. Highlighted Article: We show that Kif5b can compensate for defects in myosin-Va-based transport in mammals, but that endogenous Kif5b plays a minimal role in transport in melanocytes due to inefficient recruitment to melanosomes.
Collapse
Affiliation(s)
| | - Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Jose S Ramalho
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
48
|
Abstract
Striated cardiac and skeletal muscles play very different roles in the body, but they are similar at the molecular level. In particular, contraction, regardless of the type of muscle, is a precise and complex process involving the integral protein myofilaments and their associated regulatory components. The smallest functional unit of muscle contraction is the sarcomere. Within the sarcomere can be found a sophisticated ensemble of proteins associated with the thick filaments (myosin, myosin binding protein-C, titin, and obscurin) and thin myofilaments (actin, troponin, tropomyosin, nebulin, and nebulette). These parallel thick and thin filaments slide across one another, pulling the two ends of the sarcomere together to regulate contraction. More specifically, the regulation of both timing and force of contraction is accomplished through an intricate network of intra- and interfilament interactions belonging to each myofilament. This review introduces the sarcomere proteins involved in striated muscle contraction and places greater emphasis on the more recently identified and less well-characterized myofilaments: cardiac myosin binding protein-C, titin, nebulin, and obscurin. © 2017 American Physiological Society. Compr Physiol 7:675-692, 2017.
Collapse
Affiliation(s)
- Brian Leei Lin
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA
| | - Taejeong Song
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois, USA.,Department of Internal Medicine, Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
49
|
MYO5A Gene Is a Target of MITF in Melanocytes. J Invest Dermatol 2016; 137:985-989. [PMID: 27939378 DOI: 10.1016/j.jid.2016.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022]
|
50
|
Houdusse A, Sweeney HL. How Myosin Generates Force on Actin Filaments. Trends Biochem Sci 2016; 41:989-997. [PMID: 27717739 DOI: 10.1016/j.tibs.2016.09.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
How myosin interacts with actin to generate force is a subject of considerable controversy. The major debate centers on understanding at what point in force generation the inorganic phosphate is released with respect to the lever arm swing, or powerstroke. Resolving the controversy is essential for understanding how force is produced as well as the mechanisms underlying disease-causing mutations in myosin. Recent structural insights into the powerstroke have come from a high-resolution structure of myosin in a previously unseen state and from an electron cryomicroscopy (cryo-EM) 3D reconstruction of the actin-myosin-MgADP complex. Here, we argue that seemingly contradictory data from time-resolved fluorescence resonance energy transfer (FRET) studies can be reconciled, and we put forward a model for myosin force generation on actin.
Collapse
Affiliation(s)
- Anne Houdusse
- Structural Motility, Institut Curie, PSL Research University, CNRS, UMR 144, F-75005, Paris, France; Sorbonne Universités, UPMC Univ Paris06, Sorbonne Universités, IFD, 4 Place Jussieu, 75252 Paris cedex 05, France.
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, FL 32610-0267, USA.
| |
Collapse
|