1
|
Yue W, Zhang HY, Schatten H, Meng TG, Sun QY. CtIP regulates G2/M transition and bipolar spindle assembly during mouse oocyte meiosis. J Genet Genomics 2024:S1673-8527(24)00242-X. [PMID: 39277031 DOI: 10.1016/j.jgg.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
CtBP-interacting protein (CtIP) is known for its multifaceted roles in DNA repair and genomic stability, directing the homologous recombination-mediated DNA double-stranded break (DSBs) repair pathway via DNA end resection, an essential error-free repair process vital for genome stability. Mammalian oocytes are highly prone to DNA damage accumulation due to prolonged G2/prophase arrest. Here, we explore the functions of CtIP in meiotic cell cycle regulation via a mouse oocyte model. Depletion of CtIP by siRNA injection results in delayed germinal vesicle breakdown and failed polar body extrusion. Mechanistically, CtIP deficiency increases DNA damage and decreases the expression and nuclear entry of CCNB1, resulting in marked impairment of meiotic resumption, which can be rescued by exogenous CCNB1 overexpression. Furthermore, depletion of CtIP disrupts MTOCs coalescence at spindle poles as indicated by failed accumulation of γ-tubulin, p-Aurora kinase A, Kif2A, and TPX2, leading to abnormal spindle assembly and prometaphase arrest. These results provide valuable insights into the important roles of CtIP in the G2/M checkpoint and spindle assembly in mouse oocyte meiotic cell cycle regulation.
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Tie-Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.
| |
Collapse
|
2
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
3
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Leu YL, Cheng SF, Wang TH, Feng CH, Chen YJ, Hsieh YC, Lan YH, Chen CC. Increasing DNA damage sensitivity through corylin-mediated inhibition of homologous recombination. Biomed Pharmacother 2024; 176:116864. [PMID: 38865847 DOI: 10.1016/j.biopha.2024.116864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.
Collapse
Affiliation(s)
- Yann-Lii Leu
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Shu-Fang Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC
| | - Chun-Hao Feng
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yu-Ju Chen
- Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA
| | - Yu-Hsuan Lan
- Department of Pharmacy, College of Pharmacy, China Medical University, No.100, Section 1, Jingmao Rd., Beitun Dist., Taichung City 406040, Taiwan, ROC.
| | - Chin-Chuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, Taiwan, ROC; Graduate Institute of Natural products, College of Medicine, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Healthy Aging Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan, ROC; Biobank, Chang Gung Memorial Hospital, No. 5, Fuxing St., Guishan Dist., Taoyuan City 33305, Taiwan, ROC.
| |
Collapse
|
5
|
Waters KL, Spratt DE. New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways. Int J Mol Sci 2024; 25:1676. [PMID: 38338953 PMCID: PMC10855619 DOI: 10.3390/ijms25031676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated.
Collapse
Affiliation(s)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
6
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
7
|
Wang T, Ji M, Liu W, Sun J. Development and validation of a novel DNA damage repair-related long non-coding RNA signature in predicting prognosis, immunity, and drug sensitivity in uterine corpus endometrial carcinoma. Comput Struct Biotechnol J 2023; 21:4944-4959. [PMID: 37876625 PMCID: PMC10590872 DOI: 10.1016/j.csbj.2023.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Background DNA damage response (DDR) confer resistance to chemoradiotherapy in cancer cells. However, the role of DDR-related lncRNAs (DRLs) in uterine corpus endometrial carcinoma (UCEC) is poorly understood. In this study, we aimed to identify a DRL-related prognostic signature that could guide the clinical treatment of UCEC. Methods We extracted transcriptome and clinical data of patients with UCEC from The Cancer Genome Atlas (TCGA) database and identified DRLs using Spearman correlation analysis. Univariate and multivariate Cox analyses were used to determine candidate prognostic DRLs. The samples were randomly divided into training and test cohorts in a 1:1 ratio. A DRL-related risk signature was constructed from the training cohort data using the least absolute shrinkage and selection operator (LASSO) algorithm, and validated using the test and entire cohorts. Subsequently, a prognostic nomogram was developed using a multivariate Cox regression analysis. The functional annotation, immune microenvironment, tumor mutation burden (TMB), immune checkpoint blockade (ICB) efficacy, and drug sensitivity were also comprehensively analyzed between different risk groups. Finally, the function of AC019069.1 was validated in vitro. Results A novel risk signature was developed based on nine DRLs. The risk score efficiently predicted the prognosis of patients with UCEC. Based on the median risk score, two subgroups were identified. The DDR-related pathways were upregulated in the high-risk group. Additionally, high-risk patients have low immune activity, poor response to ICB, and weak sensitivity to chemotherapeutic agents, possibly because of the proficient DDR system. Finally, we demonstrated AC019069.1 could promote cell proliferation, decrease apoptosis and maintain genome stability of UCEC cells. Conclusions The developed DRL-related signature can predict the prognosis, immune microenvironment, immunotherapy, and chemoradiotherapy responsiveness of UCEC. Our study also revealed the potential value of DDR-targeted therapy in treating high-risk patients with UCEC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Mei Ji
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenwen Liu
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Sun JKL, Wong GCN, Chow KHM. Cross-talk between DNA damage response and the central carbon metabolic network underlies selective vulnerability of Purkinje neurons in ataxia-telangiectasia. J Neurochem 2023; 166:654-677. [PMID: 37319113 DOI: 10.1111/jnc.15881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
Cerebellar ataxia is often the first and irreversible outcome in the disease of ataxia-telangiectasia (A-T), as a consequence of selective cerebellar Purkinje neuronal degeneration. A-T is an autosomal recessive disorder resulting from the loss-of-function mutations of the ataxia-telangiectasia-mutated ATM gene. Over years of research, it now becomes clear that functional ATM-a serine/threonine kinase protein product of the ATM gene-plays critical roles in regulating both cellular DNA damage response and central carbon metabolic network in multiple subcellular locations. The key question arises is how cerebellar Purkinje neurons become selectively vulnerable when all other cell types in the brain are suffering from the very same defects in ATM function. This review intended to comprehensively elaborate the unexpected linkages between these two seemingly independent cellular functions and the regulatory roles of ATM involved, their integrated impacts on both physical and functional properties, hence the introduction of selective vulnerability to Purkinje neurons in the disease will be addressed.
Collapse
Affiliation(s)
- Jacquelyne Ka-Li Sun
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Genper Chi-Ngai Wong
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Koo SY, Park EJ, Noh HJ, Jo SM, Ko BK, Shin HJ, Lee CW. Ubiquitination Links DNA Damage and Repair Signaling to Cancer Metabolism. Int J Mol Sci 2023; 24:ijms24098441. [PMID: 37176148 PMCID: PMC10179089 DOI: 10.3390/ijms24098441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Changes in the DNA damage response (DDR) and cellular metabolism are two important factors that allow cancer cells to proliferate. DDR is a set of events in which DNA damage is recognized, DNA repair factors are recruited to the site of damage, the lesion is repaired, and cellular responses associated with the damage are processed. In cancer, DDR is commonly dysregulated, and the enzymes associated with DDR are prone to changes in ubiquitination. Additionally, cellular metabolism, especially glycolysis, is upregulated in cancer cells, and enzymes in this metabolic pathway are modulated by ubiquitination. The ubiquitin-proteasome system (UPS), particularly E3 ligases, act as a bridge between cellular metabolism and DDR since they regulate the enzymes associated with the two processes. Hence, the E3 ligases with high substrate specificity are considered potential therapeutic targets for treating cancer. A number of small molecule inhibitors designed to target different components of the UPS have been developed, and several have been tested in clinical trials for human use. In this review, we discuss the role of ubiquitination on overall cellular metabolism and DDR and confirm the link between them through the E3 ligases NEDD4, APC/CCDH1, FBXW7, and Pellino1. In addition, we present an overview of the clinically important small molecule inhibitors and implications for their practical use.
Collapse
Affiliation(s)
- Seo-Young Koo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eun-Ji Park
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Ji Noh
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Su-Mi Jo
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Bo-Kyoung Ko
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Hyun-Jin Shin
- Team of Radiation Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Du G, Yang R, Qiu J, Xia J. Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:231-243. [PMID: 36406320 PMCID: PMC9647118 DOI: 10.14218/jcth.2022.00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related mortality worldwide, but its pathogenesis remains largely unknown. Nevertheless, genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity. Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects, which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression. Histone deacetylases (HDACs) have been shown to impair a variety of cellular processes of genome stability, including the regulation of DNA damage and repair, reactive oxygen species generation and elimination, and progression to mitosis. In this review, we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Gan Du
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ruizhe Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| |
Collapse
|
11
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
12
|
Oh W, Wu TT, Jeong SY, You HJ, Lee JH. CtIP Regulates Mitotic Spindle Assembly by Modulating the TPX2-Aurora A Signaling Axis. Cells 2022; 11:cells11182814. [PMID: 36139389 PMCID: PMC9497199 DOI: 10.3390/cells11182814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
CtBP-interacting protein (CtIP) plays a critical role in controlling the homologous recombination-mediated DNA double-stranded break (DSB) repair pathway through DNA end resection, and recent studies suggest that it also plays a role in mitosis. However, the mechanism by which CtIP contributes to mitosis regulation remains elusive. Here, we show that depletion of CtIP leads to a delay in anaphase progression resulting in misaligned chromosomes, an aberrant number of centrosomes, and defects in chromosome segregation. Additionally, we demonstrate that CtIP binds and colocalizes with Targeting protein for Xklp2 (TPX2) during mitosis to regulate the recruitment of TPX2 to the spindle poles. Furthermore, depletion of CtIP resulted in both a lower concentration of Aurora A, its downstream target, and very low microtubule intensity at the spindle poles, suggesting an important role for the CtIP-TPX2-Auroa A complex in microtubule dynamics at the centrosomal spindles. Our findings reveal a novel function of CtIP in regulating spindle dynamics through interactions with TPX2 and indicate that CtIP is involved in the proper execution of the mitotic program, where deregulation may lead to chromosomal instability.
Collapse
Affiliation(s)
- Wonkyung Oh
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Pharmacology, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
13
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Schreier HK, Wiehe RS, Ricchetti M, Wiesmüller L. Polymerase ζ is Involved in Mitochondrial DNA Maintenance Processes in Concert with APE1 Activity. Genes (Basel) 2022; 13:genes13050879. [PMID: 35627264 PMCID: PMC9141751 DOI: 10.3390/genes13050879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial DNA (mtDNA) damaged by reactive oxygen species (ROS) triggers so far poorly understood processes of mtDNA maintenance that are coordinated by a complex interplay among DNA repair, DNA degradation, and DNA replication. This study was designed to identify the proteins involved in mtDNA maintenance by applying a special long-range PCR, reflecting mtDNA integrity in the minor arc. A siRNA screening of literature-based candidates was performed under conditions of enforced oxidative phosphorylation revealing the functional group of polymerases and therein polymerase ζ (POLZ) as top hits. Thus, POLZ knockdown caused mtDNA accumulation, which required the activity of the base excision repair (BER) nuclease APE1, and was followed by compensatory mtDNA replication determined by the single-cell mitochondrial in situ hybridization protocol (mTRIP). Quenching reactive oxygen species (ROS) in mitochondria unveiled an additional, ROS-independent involvement of POLZ in the formation of a typical deletion in the minor arc region. Together with data demonstrating the localization of POLZ in mitochondria, we suggest that POLZ plays a significant role in mtDNA turnover, particularly under conditions of oxidative stress.
Collapse
Affiliation(s)
- Heike Katrin Schreier
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
| | - Rahel Stefanie Wiehe
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institute Pasteur, CEDEX 15, 75724 Paris, France;
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, 89075 Ulm, Germany; (H.K.S.); (R.S.W.)
- Correspondence:
| |
Collapse
|
15
|
Fitieh A, Locke AJ, Mashayekhi F, Khaliqdina F, Sharma AK, Ismail IH. BMI-1 regulates DNA end resection and homologous recombination repair. Cell Rep 2022; 38:110536. [PMID: 35320715 DOI: 10.1016/j.celrep.2022.110536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 11/03/2022] Open
Abstract
BMI-1 is an essential regulator of transcriptional silencing during development. Recently, the role of BMI-1 in the DNA damage response has gained much attention, but the exact mechanism of how BMI-1 participates in the process is unclear. Here, we establish a role for BMI-1 in the repair of DNA double-strand breaks by homologous recombination (HR), where it promotes DNA end resection. Mechanistically, BMI-1 mediates DNA end resection by facilitating the recruitment of CtIP, thus allowing RPA and RAD51 accumulation at DNA damage sites. Interestingly, treatment with transcription inhibitors rescues the DNA end resection defects of BMI-1-depleted cells, suggesting BMI-1-dependent transcriptional silencing mediates DNA end resection. Moreover, we find that H2A ubiquitylation at K119 (H2AK119ub) promotes end resection. Taken together, our results identify BMI-1-mediated transcriptional silencing and promotion of H2AK119ub deposition as essential regulators of DNA end resection and thus the progression of HR.
Collapse
Affiliation(s)
- Amira Fitieh
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Andrew J Locke
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fatemeh Mashayekhi
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Fajr Khaliqdina
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ajit K Sharma
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ismail Hassan Ismail
- Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt; Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada.
| |
Collapse
|
16
|
Interactions between miRNAs and Double-Strand Breaks DNA Repair Genes, Pursuing a Fine-Tuning of Repair. Int J Mol Sci 2022; 23:ijms23063231. [PMID: 35328651 PMCID: PMC8954595 DOI: 10.3390/ijms23063231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
The repair of DNA damage is a crucial process for the correct maintenance of genetic information, thus, allowing the proper functioning of cells. Among the different types of lesions occurring in DNA, double-strand breaks (DSBs) are considered the most harmful type of lesion, which can result in significant loss of genetic information, leading to diseases, such as cancer. DSB repair occurs through two main mechanisms, called non-homologous end joining (NHEJ) and homologous recombination repair (HRR). There is evidence showing that miRNAs play an important role in the regulation of genes acting in NHEJ and HRR mechanisms, either through direct complementary binding to mRNA targets, thus, repressing translation, or by targeting other genes involved in the transcription and activity of DSB repair genes. Therefore, alteration of miRNA expression has an impact on the ability of cells to repair DSBs, which, in turn, affects cancer therapy sensitivity. This latter gives account of the importance of miRNAs as regulators of NHEJ and HRR and places them as a promising target to improve cancer therapy. Here, we review recent reports demonstrating an association between miRNAs and genes involved in NHEJ and HRR. We employed the Web of Science search query TS (“gene official symbol/gene aliases*” AND “miRNA/microRNA/miR-”) and focused on articles published in the last decade, between 2010 and 2021. We also performed a data analysis to represent miRNA–mRNA validated interactions from TarBase v.8, in order to offer an updated overview about the role of miRNAs as regulators of DSB repair.
Collapse
|
17
|
Roman-Trufero M, Dillon N. The UBE2D ubiquitin conjugating enzymes: Potential regulatory hubs in development, disease and evolution. Front Cell Dev Biol 2022; 10:1058751. [PMID: 36578786 PMCID: PMC9790923 DOI: 10.3389/fcell.2022.1058751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination of cellular proteins plays critical roles in key signalling pathways and in the regulation of protein turnover in eukaryotic cells. E2 ubiquitin conjugating enzymes function as essential intermediates in ubiquitination reactions by acting as ubiquitin donors for the E3 ubiquitin ligase enzymes that confer substrate specificity. The members of the UBE2D family of E2 enzymes are involved in regulating signalling cascades through ubiquitination of target proteins that include receptor tyrosine kinases (RTKs) and components of the Hedgehog, TGFβ and NFκB pathways. UBE2D enzymes also function in transcriptional control by acting as donors for ubiquitination of histone tails by the Polycomb protein Ring1B and the DNA methylation regulator UHRF1 as well as having roles in DNA repair and regulation of the level of the tumour suppressor p53. Here we review the functional roles and mechanisms of regulation of the UBE2D proteins including recent evidence that regulation of the level of UBE2D3 is critical for controlling ubiquitination of specific targets during development. Cellular levels of UBE2D3 have been shown to be regulated by phosphorylation, which affects folding of the protein, reducing its stability. Specific variations in the otherwise highly conserved UBE2D3 protein sequence in amniotes and in a subgroup of teleost fishes, the Acanthomorpha, suggest that the enzyme has had important roles during vertebrate evolution.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Niall Dillon
- MRC London Institute of Medical Sciences, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
18
|
Banerjee D, Langberg K, Abbas S, Odermatt E, Yerramothu P, Volaric M, Reidenbach MA, Krentz KJ, Rubinstein CD, Brautigan DL, Abbas T, Gelfand BD, Ambati J, Kerur N. A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nat Commun 2021; 12:6207. [PMID: 34707113 PMCID: PMC8551335 DOI: 10.1038/s41467-021-26240-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.
Collapse
Affiliation(s)
- Daipayan Banerjee
- Aravind Medical Research Foundation, Madurai, 625020, India
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kurt Langberg
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Salar Abbas
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Eric Odermatt
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Martin Volaric
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kathy J Krentz
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - C Dustin Rubinstein
- Genome Editing & Animal Models Core, University of Wisconsin Biotechnology Center, Madison, WI, USA
| | - David L Brautigan
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Bradley D Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
19
|
ZGRF1 promotes end resection of DNA homologous recombination via forming complex with BRCA1/EXO1. Cell Death Discov 2021; 7:260. [PMID: 34552057 PMCID: PMC8458317 DOI: 10.1038/s41420-021-00633-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic stability, the mammalian cells has evolved a coordinated response to DNA damage, including activation of DNA repair and cell cycle checkpoint processes. Exonuclease 1 (EXO1)-dependent excision of DNA ends is important for the initiation of homologous recombination (HR) repair of DNA breaks, which is thought to play a key role in activating the ATR-CHK1 pathway to induce G2/M cell cycle arrest. But the mechanism is still not fully understood. Here, we report that ZGRF1 forms complexes with EXO1 as well as other repair proteins and promotes DNA repair through HR. ZGRF1 is recruited to DNA damage sites in a MDC1-RNF8-BRCA1 dependent manner. Furthermore, ZGRF1 is important for the recruitment of RPA2 to DNA damage sites and the following ATR-CHK1 mediated G2/M checkpoint in response to irradiation. ZGRF1 null cells show increased sensitivity to many DNA-damaging agents, especially PARPi and irradiation. Collectively,our findings identify ZGRF1 as a novel regulator of DNA end resection and G2/M checkpoint. ZGRF1 is a potential target of radiation and PARPi cancer therapy.
Collapse
|
20
|
Wang XS, Menolfi D, Wu-Baer F, Fangazio M, Meyer SN, Shao Z, Wang Y, Zhu Y, Lee BJ, Estes VM, Cupo OM, Gautier J, Pasqualucci L, Dalla-Favera R, Baer R, Zha S. DNA damage-induced phosphorylation of CtIP at a conserved ATM/ATR site T855 promotes lymphomagenesis in mice. Proc Natl Acad Sci U S A 2021; 118:e2105440118. [PMID: 34521752 PMCID: PMC8463888 DOI: 10.1073/pnas.2105440118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Marco Fangazio
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Jean Gautier
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032;
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
21
|
Tessier TM, Dodge MJ, MacNeil KM, Evans AM, Prusinkiewicz MA, Mymryk JS. Almost famous: Human adenoviruses (and what they have taught us about cancer). Tumour Virus Res 2021; 12:200225. [PMID: 34500123 PMCID: PMC8449131 DOI: 10.1016/j.tvr.2021.200225] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Papillomaviruses, polyomaviruses and adenoviruses are collectively categorized as the small DNA tumour viruses. Notably, human adenoviruses were the first human viruses demonstrated to be able to cause cancer, albeit in non-human animal models. Despite their long history, no human adenovirus is a known causative agent of human cancers, unlike a subset of their more famous cousins, including human papillomaviruses and human Merkel cell polyomavirus. Nevertheless, seminal research using human adenoviruses has been highly informative in understanding the basics of cell cycle control, gene expression, apoptosis and cell differentiation. This review highlights the contributions of human adenovirus research in advancing our knowledge of the molecular basis of cancer.
Collapse
Affiliation(s)
- Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
22
|
WEE1 inhibition reverses trastuzumab resistance in HER2-positive cancers. Gastric Cancer 2021; 24:1003-1020. [PMID: 33723720 DOI: 10.1007/s10120-021-01176-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND To date, many efforts have been made to understand the resistance mechanism of trastuzumab in human epidermal growth factor receptor 2 (HER2)-positive breast and gastric cancer. However, there is still a huge unmet medical need for patients with trastuzumab resistance. METHODS In our study, we generated four trastuzumab-resistant (HR) cancer cell lines from ERBB2-amplified gastric and biliary tract cancer cell lines (SNU-216, NCI-N87, SNU-2670, and SNU-2773). RESULTS Here, we found higher PD-L1 expression in trastuzumab-resistant (HR) HER2-positive cancer cells than in parental cells, and blocking PD-L1 reversed the resistance to trastuzumab in HR cells. Trastuzumab upregulated PD-L1 expression via NF-κB activation in both parental and HR cells, however, led to DNA damage only in parental cells. The WEE1 inhibitor adavosertib, which downregulates PD-L1 expression, enhanced trastuzumab efficacy by blocking BRCA1-CMTM6-PD-L1 signals and the HER2-CDCP-1-SRC axis. Additionally, the levels of galectin-9, CD163, FoxP3, and CTLA-4 were diminished by blocking WEE1 in the presence of human PBMCs in vitro. CONCLUSION Taken together, the strategy of co-targeting HER2 and WEE1 could overcome resistance to trastuzumab in HER2-positive cancers, supporting further clinical development in HER2-positive cancer patients.
Collapse
|
23
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
24
|
Morton CR, Rzechorzek NJ, Maman JD, Kuramochi M, Sekiguchi H, Rambo R, Sasaki YC, Davies OR, Pellegrini L. Structural basis for the coiled-coil architecture of human CtIP. Open Biol 2021; 11:210060. [PMID: 34129781 PMCID: PMC8205527 DOI: 10.1098/rsob.210060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The DNA repair factor CtIP has a critical function in double-strand break (DSB) repair by homologous recombination, promoting the assembly of the repair apparatus at DNA ends and participating in DNA-end resection. However, the molecular mechanisms of CtIP function in DSB repair remain unclear. Here, we present an atomic model for the three-dimensional architecture of human CtIP, derived from a multi-disciplinary approach that includes X-ray crystallography, small-angle X-ray scattering (SAXS) and diffracted X-ray tracking (DXT). Our data show that CtIP adopts an extended dimer-of-dimers structure, in agreement with a role in bridging distant sites on chromosomal DNA during the recombinational repair. The zinc-binding motif in the CtIP N-terminus alters dynamically the coiled-coil structure, with functional implications for the long-range interactions of CtIP with DNA. Our results provide a structural basis for the three-dimensional arrangement of chains in the CtIP tetramer, a key aspect of CtIP function in DNA DSB repair.
Collapse
Affiliation(s)
- C R Morton
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - N J Rzechorzek
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - J D Maman
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - M Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - H Sekiguchi
- Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - R Rambo
- Diamond Light Source, Didcot, Oxfordshire OX11 0DE, UK
| | - Y C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan.,Centre for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - O R Davies
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - L Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
25
|
Vietri MT, D’Elia G, Caliendo G, Resse M, Casamassimi A, Passariello L, Albanese L, Cioffi M, Molinari AM. Hereditary Prostate Cancer: Genes Related, Target Therapy and Prevention. Int J Mol Sci 2021; 22:ijms22073753. [PMID: 33916521 PMCID: PMC8038462 DOI: 10.3390/ijms22073753] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is globally the second most diagnosed cancer type and the most common cause of cancer-related deaths in men. Family history of PCa, hereditary breast and ovarian cancer (HBOC) and Lynch syndromes (LS), are among the most important risk factors compared to age, race, ethnicity and environmental factors for PCa development. Hereditary prostate cancer (HPCa) has the highest heritability of any major cancer in men. The proportion of PCa attributable to hereditary factors has been estimated in the range of 5–15%. To date, the genes more consistently associated to HPCa susceptibility include mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) and homologous recombination genes (BRCA1/2, ATM, PALB2, CHEK2). Additional genes are also recommended to be integrated into specific research, including HOXB13, BRP1 and NSB1. Importantly, BRCA1/BRCA2 and ATM mutated patients potentially benefit from Poly (ADP-ribose) polymerase PARP inhibitors, through a mechanism of synthetic lethality, causing selective tumor cell cytotoxicity in cell lines. Moreover, the detection of germline alterations in MMR genes has therapeutic implications, as it may help to predict immunotherapy benefits. Here, we discuss the current knowledge of the genetic basis for inherited predisposition to PCa, the potential target therapy, and the role of active surveillance as a management strategy for patients with low-risk PCa. Finally, the current PCa guideline recommendations are reviewed.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (A.C.); (A.M.M.)
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
- Correspondence: ; Tel.: +39-081-566-7639; Fax: +39-081-450-169
| | - Giovanna D’Elia
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| | - Gemma Caliendo
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| | - Marianna Resse
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (A.C.); (A.M.M.)
| | - Luana Passariello
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| | - Luisa Albanese
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| | - Michele Cioffi
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (A.C.); (A.M.M.)
- U.O.C. Clinical and Molecular Pathology, A.O.U. University of Campania “Luigi Vanvitelli”, 80138 Naple, Italy; (G.D.); (G.C.); (M.R.); (L.P.); (L.A.); (M.C.)
| |
Collapse
|
26
|
Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors? J Pers Med 2021; 11:jpm11040245. [PMID: 33800556 PMCID: PMC8066561 DOI: 10.3390/jpm11040245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
The homologous recombination repair (HRR) pathway repairs double-strand DNA breaks, mostly by BRCA1 and BRCA2, although other proteins such as ATM, CHEK2, and PALB2 are also involved. BRCA1/2 germline mutations are targeted by PARP inhibitors. The aim of this commentary is to explore whether germline mutations in HRR-related genes other than BRCA1/2 have to be considered as prognostic factors or predictive to therapies by discussing the results of two articles published in December 2020. The TBCRC 048 trial published by Tung et al. showed an impressive objective response rate to olaparib in metastatic breast cancer patients with germline PALB2 mutation compared to germline ATM and CHEK2 mutation carriers. Additionally, Yadav et al. observed a significantly longer overall survival in pancreatic adenocarcinoma patients with germline HRR mutations compared to non-carriers. In our opinion, assuming that PALB2 is a high-penetrant gene with a key role in the HRR system, PALB2 mutations are predictive factors for response to treatment. Moreover, germline mutations in the ATM gene provide a better outcome in pancreatic adenocarcinoma, being more often associated to wild-type KRAS. In conclusion, sequencing of HRR-related genes other than BRCA1/2 should be routinely offered as part of a biological characterization of pancreatic and breast cancers.
Collapse
|
27
|
Baughan S, Tainsky MA. K3326X and Other C-Terminal BRCA2 Variants Implicated in Hereditary Cancer Syndromes: A Review. Cancers (Basel) 2021; 13:447. [PMID: 33503928 PMCID: PMC7865497 DOI: 10.3390/cancers13030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Whole genome analysis and the search for mutations in germline and tumor DNAs is becoming a major tool in the evaluation of risk as well as the management of hereditary cancer syndromes. Because of the identification of cancer predisposition gene panels, thousands of such variants have been catalogued yet many remain unclassified, presenting a clinical challenge for the management of hereditary cancer syndromes. Although algorithms exist to estimate the likelihood of a variant being deleterious, these tools are rarely used for clinical decision-making. Here, we review the progress in classifying K3326X, a rare truncating variant on the C-terminus of BRCA2 and review recent literature on other novel single nucleotide polymorphisms, SNPs, on the C-terminus of the protein, defined in this review as the portion after the final BRC repeat (amino acids 2058-3418).
Collapse
Affiliation(s)
- Scott Baughan
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
28
|
Shen W, Ma Y, Qi H, Wang W, He J, Xiao F, Zhu H, He S. Kinetics model of DNA double-strand break repair in eukaryotes. DNA Repair (Amst) 2021; 100:103035. [PMID: 33618125 DOI: 10.1016/j.dnarep.2020.103035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 11/26/2022]
Abstract
This manuscript outlines the kinetics of two main repair pathways of DNA double-strand break (DSB) in eukaryotes: non-homologous end joining (NHEJ) and homologous recombination repair (HRR). In this review, we discuss the precise study of recruitment kinetics of repair proteins based on the latest technologies in the past two decades. Then we simulate the theoretical description of the DNA repair process by mathematical models. In our study, the consecutive reactions chain (CRC) model and continuous-time random walk (CTRW) model have been unified by us, so that we can obtain the function of the number of intermediates with time in the same framework of equations, overcome the incompatibility between the two models. On this basis, we propose a data fitting workflow using these both models. Finally, we give an overview of different real-time quantitative methods and the new mechanism complexity that can be found from the corresponding dynamic models.
Collapse
Affiliation(s)
- Wangtao Shen
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yun Ma
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China.
| | - Huizhou Qi
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Function Laboratory Center, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Wuzhou Wang
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Junyan He
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Fangzhu Xiao
- Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China
| | - Hui Zhu
- Institute of Engineering Mathematics, Mathematics and Physics College, University of South China, Hengyang, 421001, China
| | - Shuya He
- Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, 421001, China; Hengyang Key Laboratory for Biological Effects of Nuclear Radiation, University of South China, Hengyang, 421001, China.
| |
Collapse
|
29
|
Xu A, Huang MF, Zhu D, Gingold JA, Bazer DA, Chang B, Wang D, Lai CC, Lemischka IR, Zhao R, Lee DF. LncRNA H19 Suppresses Osteosarcomagenesis by Regulating snoRNAs and DNA Repair Protein Complexes. Front Genet 2021; 11:611823. [PMID: 33519915 PMCID: PMC7844330 DOI: 10.3389/fgene.2020.611823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Osteosarcoma is one of the most frequent common primary malignant tumors in childhood and adolescence. Long non-coding RNAs (lncRNAs) have been reported to regulate the initiation and progression of tumors. However, the exact molecular mechanisms involving lncRNA in osteosarcomagenesis remain largely unknown. Li-Fraumeni syndrome (LFS) is a familial cancer syndrome caused by germline p53 mutation. We investigated the tumor suppressor function of lncRNA H19 in LFS-associated osteosarcoma. Analyzing H19-induced transcriptome alterations in LFS induced pluripotent stem cell (iPSC)-derived osteoblasts, we unexpectedly discovered a large group of snoRNAs whose expression was significantly affected by H19. We identified SNORA7A among the H19-suppressed snoRNAs. SNORA7A restoration impairs H19-mediated osteogenesis and tumor suppression, indicating an oncogenic role of SNORA7A. TCGA analysis indicated that SNORA7A expression is associated with activation of oncogenic signaling and poor survival in cancer patients. Using an optimized streptavidin-binding RNA aptamer designed from H19 lncRNA, we revealed that H19-tethered protein complexes include proteins critical for DNA damage response and repair, confirming H19's tumor suppressor role. In summary, our findings demonstrate a critical role of H19-modulated SNORA7A expression in LFS-associated osteosarcomas.
Collapse
Affiliation(s)
- An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Julian A Gingold
- Department of Obstetrics and Gynecology and Women's Health, Einstein/Montefiore Medical Center, Bronx, NY, United States
| | - Danielle A Bazer
- Department of Neurology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Betty Chang
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Donghui Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Center for Precision Health, School of Biomedical Informatics and School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
30
|
Wang J, Dubiel D, Wu Y, Cheng Y, Wolf DA, Dubiel W. CSN7B defines a variant COP9 signalosome complex with distinct function in DNA damage response. Cell Rep 2021; 34:108662. [PMID: 33503427 DOI: 10.1016/j.celrep.2020.108662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Mammalian COP9 signalosome (CSN) exists as two variant complexes containing either CSN7A or CSN7B paralogs of unknown functional specialization. Constructing knockout cells, we found that CSN7A and CSN7B have overlapping functions in the deneddylation of cullin-RING ubiquitin ligases. Nevertheless, CSNCSN7B has a unique function in DNA double-strand break (DSB) sensing, being selectively required for ataxia telangiectasia mutated (ATM)-dependent formation of NBS1S343p and γH2AX as well as DNA-damage-induced apoptosis triggered by mitomycin C and ionizing radiation. Live-cell microscopy revealed rapid recruitment of CSN7B but not CSN7A to DSBs. Resistance of CSN7B knockout cells to DNA damage is explained by the failure to deneddylate an upstream DSB signaling component, causing a switch in DNA repair pathway choice with increased utilization of non-homologous end joining over homologous recombination. In mice, CSN7B knockout tumors are resistant to DNA-damage-inducing chemotherapy, thus providing an explanation for the poor prognosis of tumors with low CSN7B expression.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dawadschargal Dubiel
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Yanmeng Wu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Yabin Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China
| | - Dieter A Wolf
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China.
| | - Wolfgang Dubiel
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen 361102, Fujian, China; Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
31
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
32
|
McPherson MT, Holub AS, Husbands AY, Petreaca RC. Mutation Spectra of the MRN (MRE11, RAD50, NBS1/NBN) Break Sensor in Cancer Cells. Cancers (Basel) 2020; 12:cancers12123794. [PMID: 33339169 PMCID: PMC7765586 DOI: 10.3390/cancers12123794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary A DNA double strand break cuts a chromosome in two and is one of the most dangerous forms of DNA damage. Improper repair can lead to various chromosomal re-arrangements that have been detected in almost all cancer cells. A complex of three proteins (MRE11, RAD50, NBS1 or NBN) detects chromosome breaks and orchestrates repair processes. Mutations in these “break sensor” genes have been described in a multitude of cancers. Here, we provide a comprehensive analysis of reported mutations from data deposited on the Catalogue of Somatic Mutations in Cancer (COSMIC) archive. We also undertake an evolutionary analysis of these genes with the aim to understand whether these mutations preferentially accumulate in conserved residues. Interestingly, we find that mutations are overrepresented in evolutionarily conserved residues of RAD50 and NBS1/NBN but not MRE11. Abstract The MRN complex (MRE11, RAD50, NBS1/NBN) is a DNA double strand break sensor in eukaryotes. The complex directly participates in, or coordinates, several activities at the break such as DNA resection, activation of the DNA damage checkpoint, chromatin remodeling and recruitment of the repair machinery. Mutations in components of the MRN complex have been described in cancer cells for several decades. Using the Catalogue of Somatic Mutations in Cancer (COSMIC) database, we characterized all the reported MRN mutations. This analysis revealed several hotspot frameshift mutations in all three genes that introduce premature stop codons and truncate large regions of the C-termini. We also found through evolutionary analyses that COSMIC mutations are enriched in conserved residues of NBS1/NBN and RAD50 but not in MRE11. Given that all three genes are important to carcinogenesis, we propose these differential enrichment patterns may reflect a more severe pleiotropic role for MRE11.
Collapse
|
33
|
Kumari S, Mukherjee S, Sinha D, Abdisalaam S, Krishnan S, Asaithamby A. Immunomodulatory Effects of Radiotherapy. Int J Mol Sci 2020; 21:E8151. [PMID: 33142765 PMCID: PMC7663574 DOI: 10.3390/ijms21218151] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy (RT), an integral component of curative treatment for many malignancies, can be administered via an increasing array of techniques. In this review, we summarize the properties and application of different types of RT, specifically, conventional therapy with x-rays, stereotactic body RT, and proton and carbon particle therapies. We highlight how low-linear energy transfer (LET) radiation induces simple DNA lesions that are efficiently repaired by cells, whereas high-LET radiation causes complex DNA lesions that are difficult to repair and that ultimately enhance cancer cell killing. Additionally, we discuss the immunogenicity of radiation-induced tumor death, elucidate the molecular mechanisms by which radiation mounts innate and adaptive immune responses and explore strategies by which we can increase the efficacy of these mechanisms. Understanding the mechanisms by which RT modulates immune signaling and the key players involved in modulating the RT-mediated immune response will help to improve therapeutic efficacy and to identify novel immunomodulatory drugs that will benefit cancer patients undergoing targeted RT.
Collapse
Affiliation(s)
- Sharda Kumari
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Shibani Mukherjee
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Debapriya Sinha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Salim Abdisalaam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL 32224, USA;
| | - Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (S.K.); (D.S.); (S.A.)
| |
Collapse
|
34
|
USP52 regulates DNA end resection and chemosensitivity through removing inhibitory ubiquitination from CtIP. Nat Commun 2020; 11:5362. [PMID: 33097710 PMCID: PMC7584643 DOI: 10.1038/s41467-020-19202-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human C-terminal binding protein (CtBP)–interacting protein (CtIP) is a central regulator to initiate DNA end resection and homologous recombination (HR). Several studies have shown that post-translational modifications control the activity or expression of CtIP. However, it remains unclear whether and how cells restrain CtIP activity in unstressed cells and activate CtIP when needed. Here, we identify that USP52 directly interacts with and deubiquitinates CtIP, thereby promoting DNA end resection and HR. Mechanistically, USP52 removes the ubiquitination of CtIP to facilitate the phosphorylation and activation of CtIP at Thr-847. In addition, USP52 is phosphorylated by ATM at Ser-1003 after DNA damage, which enhances the catalytic activity of USP52. Furthermore, depletion of USP52 sensitizes cells to PARP inhibition in a CtIP-dependent manner in vitro and in vivo. Collectively, our findings reveal the key role of USP52 and the regulatory complexity of CtIP deubiquitination in DNA repair. C-terminal binding protein (CtBP) interacting protein (CtIP) is a fundamental factor for the initiation of DNA end resection to initiate DNA repair. Here the authors reveal mechanistic insights into the regulation of CtIP via the deubiquitinase USP52.
Collapse
|
35
|
Polymerase δ promotes chromosomal rearrangements and imprecise double-strand break repair. Proc Natl Acad Sci U S A 2020; 117:27566-27577. [PMID: 33077594 DOI: 10.1073/pnas.2014176117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent studies have implicated DNA polymerases θ (Pol θ) and β (Pol β) as mediators of alternative nonhomologous end-joining (Alt-NHEJ) events, including chromosomal translocations. Here we identify subunits of the replicative DNA polymerase δ (Pol δ) as promoters of Alt-NHEJ that results in more extensive intrachromosomal mutations at a single double-strand break (DSB) and more frequent translocations between two DSBs. Depletion of the Pol δ accessory subunit POLD2 destabilizes the complex, resulting in degradation of both POLD1 and POLD3 in human cells. POLD2 depletion markedly reduces the frequency of translocations with sequence modifications but does not affect the frequency of translocations with exact joins. Using separation-of-function mutants, we show that both the DNA synthesis and exonuclease activities of the POLD1 subunit contribute to translocations. As described in yeast and unlike Pol θ, Pol δ also promotes homology-directed repair. Codepletion of POLD2 with 53BP1 nearly eliminates translocations. POLD1 and POLD2 each colocalize with phosphorylated H2AX at ionizing radiation-induced DSBs but not with 53BP1. Codepletion of POLD2 with either ligase 3 (LIG3) or ligase 4 (LIG4) does not further reduce translocation frequency compared to POLD2 depletion alone. Together, these data support a model in which Pol δ promotes Alt-NHEJ in human cells at DSBs, including translocations.
Collapse
|
36
|
Mozaffari NL, Pagliarulo F, Sartori AA. Human CtIP: A 'double agent' in DNA repair and tumorigenesis. Semin Cell Dev Biol 2020; 113:47-56. [PMID: 32950401 DOI: 10.1016/j.semcdb.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Human CtIP was originally identified as an interactor of the retinoblastoma protein and BRCA1, two bona fide tumour suppressors frequently mutated in cancer. CtIP is renowned for its role in the resection of DNA double-strand breaks (DSBs) during homologous recombination, a largely error-free DNA repair pathway crucial in maintaining genome integrity. However, CtIP-dependent DNA end resection is equally accountable for alternative end-joining, a mutagenic DSB repair mechanism implicated in oncogenic chromosomal translocations. In addition, CtIP contributes to transcriptional regulation of G1/S transition, DNA damage checkpoint signalling, and replication fork protection pathways. In this review, we present a perspective on the current state of knowledge regarding the tumour-suppressive and oncogenic properties of CtIP and provide an overview of their relevance for cancer development, progression, and therapy.
Collapse
Affiliation(s)
- Nour L Mozaffari
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Fabio Pagliarulo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Alessandro A Sartori
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Albert E, Laimins L. Regulation of the Human Papillomavirus Life Cycle by DNA Damage Repair Pathways and Epigenetic Factors. Viruses 2020; 12:E744. [PMID: 32664381 PMCID: PMC7412114 DOI: 10.3390/v12070744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023] Open
Abstract
Human papillomaviruses are the causative agents of cervical and other anogenital cancers along with approximately 60% of oropharyngeal cancers. These small double-stranded DNA viruses infect stratified epithelia and link their productive life cycles to differentiation. HPV proteins target cellular factors, such as those involved in DNA damage repair, as well as epigenetic control of host and viral transcription to regulate the productive life cycle. HPVs constitutively activate the ATM and ATR DNA repair pathways and preferentially recruit these proteins to viral genomes to facilitate productive viral replication. In addition, the sirtuin deacetylases along with histone acetyltransferases, including Tip60, are targeted in HPV infections to regulate viral transcription and replication. These pathways provide potential targets for drug therapy to treat HPV-induced disease.
Collapse
Affiliation(s)
| | - Laimonis Laimins
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA;
| |
Collapse
|
38
|
Mita P, Sun X, Fenyö D, Kahler DJ, Li D, Agmon N, Wudzinska A, Keegan S, Bader JS, Yun C, Boeke JD. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat Struct Mol Biol 2020; 27:179-191. [PMID: 32042152 PMCID: PMC7082080 DOI: 10.1038/s41594-020-0374-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022]
Abstract
Long interspersed element-1 (LINE-1 or L1) is the only autonomous retrotransposon active in human cells. Different host factors have been shown to influence L1 mobility however, systematic analyses of these factors are limited. Here, we developed a high-throughput microscopy-based retrotransposition assay that identified the Double-Stranded Break (DSB) repair and Fanconi Anemia factors active in the S/G2 phase as potent inhibitors and regulators of L1 activity. In particular BRCA1, an E3 ubiquitin ligase with a key role in several DNA repair pathways, directly affects L1 retrotransposition frequency and structure and also plays a distinct role in controlling L1 ORF2 protein translation through L1 mRNA binding. These results suggest the existence of a “battleground” at the DNA replication fork between HR factors and L1 retrotransposons, and revealing a potential role for L1 in the genotypic evolution of tumors characterized by BRCA1 and HR repair deficiencies.
Collapse
Affiliation(s)
- Paolo Mita
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| | - Xiaoji Sun
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.,Cellarity Inc., Cambridge, MA, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - David J Kahler
- High Throughput Biology Core, NYU Langone Health, New York, NY, USA.,Planet Pharma, Boston, MA, USA
| | - Donghui Li
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.,Flagship VL58, Inc., Cambridge, MA, USA
| | - Neta Agmon
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleksandra Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chi Yun
- High Throughput Biology Core, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
39
|
Interplay between BRCA1 and GADD45A and Its Potential for Nucleotide Excision Repair in Breast Cancer Pathogenesis. Int J Mol Sci 2020; 21:ijms21030870. [PMID: 32013256 PMCID: PMC7037490 DOI: 10.3390/ijms21030870] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
A fraction of breast cancer cases are associated with mutations in the BRCA1 (BRCA1 DNA repair associated, breast cancer type 1 susceptibility protein) gene, whose mutated product may disrupt the repair of DNA double-strand breaks as BRCA1 is directly involved in the homologous recombination repair of such DNA damage. However, BRCA1 can stimulate nucleotide excision repair (NER), the most versatile system of DNA repair processing a broad spectrum of substrates and playing an important role in the maintenance of genome stability. NER removes carcinogenic adducts of diol-epoxy derivatives of benzo[α]pyrene that may play a role in breast cancer pathogenesis as their accumulation is observed in breast cancer patients. NER deficiency was postulated to be intrinsic in stage I of sporadic breast cancer. BRCA1 also interacts with GADD45A (growth arrest and DNA damage-inducible protein GADD45 alpha) that may target NER machinery to actively demethylate genome sites in order to change the expression of genes that may be important in breast cancer. Therefore, the interaction between BRCA1 and GADD45 may play a role in breast cancer pathogenesis through the stimulation of NER, increasing the genomic stability, removing carcinogenic adducts, and the local active demethylation of genes important for cancer transformation.
Collapse
|
40
|
Serrano-Benítez A, Cortés-Ledesma F, Ruiz JF. "An End to a Means": How DNA-End Structure Shapes the Double-Strand Break Repair Process. Front Mol Biosci 2020; 6:153. [PMID: 31998749 PMCID: PMC6965357 DOI: 10.3389/fmolb.2019.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Endogenously-arising DNA double-strand breaks (DSBs) rarely harbor canonical 5′-phosphate, 3′-hydroxyl moieties at the ends, which are, regardless of the pathway used, ultimately required for their repair. Cells are therefore endowed with a wide variety of enzymes that can deal with these chemical and structural variations and guarantee the formation of ligatable termini. An important distinction is whether the ends are directly “unblocked” by specific enzymatic activities without affecting the integrity of the DNA molecule and its sequence, or whether they are “processed” by unspecific nucleases that remove nucleotides from the termini. DNA end structure and configuration, therefore, shape the repair process, its requirements, and, importantly, its final outcome. Thus, the molecular mechanisms that coordinate and integrate the cellular response to blocked DSBs, although still largely unexplored, can be particularly relevant for maintaining genome integrity and avoiding malignant transformation and cancer.
Collapse
Affiliation(s)
- Almudena Serrano-Benítez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain
| | - Felipe Cortés-Ledesma
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Topology and DNA breaks Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Jose F Ruiz
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Department of Plant Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| |
Collapse
|
41
|
Stroik S, Kurtz K, Hendrickson EA. CtIP is essential for telomere replication. Nucleic Acids Res 2019; 47:8927-8940. [PMID: 31378812 PMCID: PMC6755089 DOI: 10.1093/nar/gkz652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 01/10/2023] Open
Abstract
The maintenance of telomere length is critical to longevity and survival. Specifically, the failure to properly replicate, resect, and/or form appropriate telomeric structures drives telomere shortening and, in turn, genomic instability. The endonuclease CtIP is a DNA repair protein that is well-known to promote genome stability through the resection of endogenous DNA double-stranded breaks. Here, we describe a novel role for CtIP. We show that in the absence of CtIP, human telomeres shorten rapidly to non-viable lengths. This telomere dysfunction results in an accumulation of fusions, breaks, and frank telomere loss. Additionally, CtIP suppresses the generation of circular, extrachromosomal telomeric DNA. These latter structures appear to arise from arrested DNA replication forks that accumulate in the absence of CtIP. Hence, CtIP is required for faithful replication through telomeres via its roles at stalled replication tracts. Our findings demonstrate a new role for CtIP as a protector of human telomere integrity.
Collapse
Affiliation(s)
- Susanna Stroik
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Kevin Kurtz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Lin Y, Bai L, Cupello S, Hossain MA, Deem B, McLeod M, Raj J, Yan S. APE2 promotes DNA damage response pathway from a single-strand break. Nucleic Acids Res 2019; 46:2479-2494. [PMID: 29361157 PMCID: PMC5861430 DOI: 10.1093/nar/gky020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
Abstract
As the most common type of DNA damage, DNA single-strand breaks (SSBs) are primarily repaired by the SSB repair mechanism. If not repaired properly or promptly, unrepaired SSBs lead to genome stability and have been implicated in cancer and neurodegenerative diseases. However, it remains unknown how unrepaired SSBs are recognized by DNA damage response (DDR) pathway, largely because of the lack of a feasible experimental system. Here, we demonstrate evidence showing that an ATR-dependent checkpoint signaling is activated by a defined plasmid-based site-specific SSB structure in Xenopus HSS (high-speed supernatant) system. Notably, the distinct SSB signaling requires APE2 and canonical checkpoint proteins, including ATR, ATRIP, TopBP1, Rad9 and Claspin. Importantly, the SSB-induced ATR DDR is essential for SSB repair. We and others show that APE2 interacts with PCNA via its PIP box and preferentially interacts with ssDNA via its C-terminus Zf–GRF domain, a conserved motif found in >100 proteins involved in DNA/RNA metabolism. Here, we identify a novel mode of APE2–PCNA interaction via APE2 Zf–GRF and PCNA C-terminus. Mechanistically, the APE2 Zf–GRF–PCNA interaction facilitates 3′-5′ SSB end resection, checkpoint protein complex assembly, and SSB-induced DDR pathway. Together, we propose that APE2 promotes ATR–Chk1 DDR pathway from a single-strand break.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Liping Bai
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Steven Cupello
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Md Akram Hossain
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bradley Deem
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Melissa McLeod
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jude Raj
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
43
|
Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol 2019; 13:681-700. [PMID: 30714316 PMCID: PMC6441925 DOI: 10.1002/1878-0261.12467] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Therapies that take advantage of defects in DNA repair pathways have been explored in the context of breast, ovarian, and other tumor types, but not yet systematically in CRC. At present, only immune checkpoint blockade therapies have been FDA approved for use in mismatch repair-deficient colorectal tumors. Here, we discuss how systematic identification of alterations in DNA repair genes could provide new therapeutic opportunities for CRCs. Analysis of The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) and Rectal Adenocarcinoma (TCGA-READ) PanCancer Atlas datasets identified 141 (out of 528) cases with putative driver mutations in 29 genes associated with DNA damage response and repair, including the mismatch repair and homologous recombination pathways. Genetic defects in these pathways might confer repair-deficient characteristics, such as genomic instability in the absence of homologous recombination, which can be exploited. For example, inhibitors of poly(ADP)-ribose polymerase are effectively used to treat cancers that carry mutations in BRCA1 and/or BRCA2 and have shown promising results in CRC preclinical studies. HR deficiency can also occur in cells with no detectable BRCA1/BRCA2 mutations but exhibiting BRCA-like phenotypes. DNA repair-targeting therapies, such as ATR and CHK1 inhibitors (which are most effective against cancers carrying ATM mutations), can be used in combination with current genotoxic chemotherapies in CRCs to further improve therapy response. Finally, therapies that target alternative DNA repair mechanisms, such as thiopurines, also have the potential to confer increased sensitivity to current chemotherapy regimens, thus expanding the spectrum of therapy options and potentially improving clinical outcomes for CRC patients.
Collapse
Affiliation(s)
- Nicole M. Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUSCandioloItaly
| | - Luca Novara
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Federica Di Nicolantonio
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| | - Alberto Bardelli
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| |
Collapse
|
44
|
Situ Y, Chung L, Lee CS, Ho V. MRN (MRE11-RAD50-NBS1) Complex in Human Cancer and Prognostic Implications in Colorectal Cancer. Int J Mol Sci 2019; 20:E816. [PMID: 30769804 PMCID: PMC6413120 DOI: 10.3390/ijms20040816] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex has been studied in multiple cancers. The identification of MRN complex mutations in mismatch repair (MMR)-defective cancers has sparked interest in its role in colorectal cancer (CRC). To date, there is evidence indicating a relationship of MRN expression with reduced progression-free survival, although the significance of the MRN complex in the clinical setting remains controversial. In this review, we present an overview of the function of the MRN complex, its role in cancer progression, and current evidence in colorectal cancer. The evidence indicates that the MRN complex has potential utilisation as a biomarker and as a putative treatment target to improve outcomes of colorectal cancer.
Collapse
Affiliation(s)
- Yiling Situ
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Liping Chung
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia.
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia.
- Discipline of Pathology, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia.
- Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia.
- Faculty of Medicine and Health, Central Clinical School, University of Sydney, Camperdown, NSW 2050, Australia.
| | - Vincent Ho
- School of Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
45
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
46
|
Lamarche BJ, Orazio NI, Goben B, Meisenhelder J, You Z, Weitzman MD, Hunter T. Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair (Amst) 2018; 74:80-90. [PMID: 30583959 DOI: 10.1016/j.dnarep.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Brittany Goben
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| |
Collapse
|
47
|
Chen H, Shan J, Chen D, Wang R, Qi W, Wang H, Ke Y, Liu W, Zeng X. CtIP promotes G2/M arrest in etoposide-treated HCT116 cells in a p53-independent manner. J Cell Physiol 2018; 234:11871-11881. [PMID: 30478995 DOI: 10.1002/jcp.27824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.
Collapse
Affiliation(s)
- Hongyu Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jin Shan
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dandan Chen
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ruoxi Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wenjing Qi
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.,Department of Bioscience, Changchun Normal University, Changchun, China
| | - Hailong Wang
- College of Life Science and Beijing Key Laboratory of DNA Damage Response, Capital Normal University, Beijing, China
| | - Yueshuang Ke
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wenguang Liu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xianlu Zeng
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
48
|
Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, Dong MM, Cai Z, Lin H, Cai XJ, Xie AY. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol 2018; 19:170. [PMID: 30340517 PMCID: PMC6195759 DOI: 10.1186/s13059-018-1518-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Many applications of CRISPR/Cas9-mediated genome editing require Cas9-induced non-homologous end joining (NHEJ), which was thought to be error prone. However, with directly ligatable ends, Cas9-induced DNA double strand breaks may be repaired preferentially by accurate NHEJ. Results In the repair of two adjacent double strand breaks induced by paired Cas9-gRNAs at 71 genome sites, accurate NHEJ accounts for about 50% of NHEJ events. This paired Cas9-gRNA approach underestimates the level of accurate NHEJ due to frequent + 1 templated insertions, which can be avoided by the predefined Watson/Crick orientation of protospacer adjacent motifs (PAMs). The paired Cas9-gRNA strategy also provides a flexible, reporter-less approach for analyzing both accurate and mutagenic NHEJ in cells and in vivo, and it has been validated in cells deficient for XRCC4 and in mouse liver. Due to high frequencies of precise deletions of defined “3n”-, “3n + 1”-, or “3n + 2”-bp length, accurate NHEJ is used to improve the efficiency and homogeneity of gene knockouts and targeted in-frame deletions. Compared to “3n + 1”-bp, “3n + 2”-bp can overcome + 1 templated insertions to increase the frequency of out-of-frame mutations. By applying paired Cas9-gRNAs to edit MDC1 and key 53BP1 domains, we are able to generate predicted, precise deletions for functional analysis. Lastly, a Plk3 inhibitor promotes NHEJ with bias towards accurate NHEJ, providing a chemical approach to improve genome editing requiring precise deletions. Conclusions NHEJ is inherently accurate in repair of Cas9-induced DNA double strand breaks and can be harnessed to improve CRISPR/Cas9 genome editing requiring precise deletion of a defined length. Electronic supplementary material The online version of this article (10.1186/s13059-018-1518-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Guo
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Yi-Li Feng
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Jing-Jing Xiao
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Qian Liu
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Xiu-Na Sun
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Ji-Feng Xiang
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.,Department of General Surgery, Chongqing General Hospital, Chongqing, 400013, China
| | - Na Kong
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Si-Cheng Liu
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Guo-Qiao Chen
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Yue Wang
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Meng-Meng Dong
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Zhen Cai
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China
| | - Xiu-Jun Cai
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.
| | - An-Yong Xie
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.
| |
Collapse
|
49
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
50
|
Cornforth MN, Anur P, Wang N, Robinson E, Ray FA, Bedford JS, Loucas BD, Williams ES, Peto M, Spellman P, Kollipara R, Kittler R, Gray JW, Bailey SM. Molecular Cytogenetics Guides Massively Parallel Sequencing of a Radiation-Induced Chromosome Translocation in Human Cells. Radiat Res 2018; 190:88-97. [PMID: 29749794 PMCID: PMC6055522 DOI: 10.1667/rr15053.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chromosome rearrangements are large-scale structural variants that are recognized drivers of oncogenic events in cancers of all types. Cytogenetics allows for their rapid, genome-wide detection, but does not provide gene-level resolution. Massively parallel sequencing (MPS) promises DNA sequence-level characterization of the specific breakpoints involved, but is strongly influenced by bioinformatics filters that affect detection efficiency. We sought to characterize the breakpoint junctions of chromosomal translocations and inversions in the clonal derivatives of human cells exposed to ionizing radiation. Here, we describe the first successful use of DNA paired-end analysis to locate and sequence across the breakpoint junctions of a radiation-induced reciprocal translocation. The analyses employed, with varying degrees of success, several well-known bioinformatics algorithms, a task made difficult by the involvement of repetitive DNA sequences. As for underlying mechanisms, the results of Sanger sequencing suggested that the translocation in question was likely formed via microhomology-mediated non-homologous end joining (mmNHEJ). To our knowledge, this represents the first use of MPS to characterize the breakpoint junctions of a radiation-induced chromosomal translocation in human cells. Curiously, these same approaches were unsuccessful when applied to the analysis of inversions previously identified by directional genomic hybridization (dGH). We conclude that molecular cytogenetics continues to provide critical guidance for structural variant discovery, validation and in "tuning" analysis filters to enable robust breakpoint identification at the base pair level.
Collapse
Affiliation(s)
- Michael N. Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555
- KromaTiD Inc., Fort Collins, Colorado 80523
| | - Pavana Anur
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Nicholas Wang
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | | | - F. Andrew Ray
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Joel S. Bedford
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Bradford D. Loucas
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Eli S. Williams
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Myron Peto
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Paul Spellman
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Rahul Kollipara
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Ralf Kittler
- McDermott Center, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Joe W. Gray
- Departments of Molecular and Medical Genetics, Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97201
| | - Susan M. Bailey
- KromaTiD Inc., Fort Collins, Colorado 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|