1
|
Sedor SF, Shao S. Mechanism of ASF1 Inhibition by CDAN1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607204. [PMID: 39149339 PMCID: PMC11326237 DOI: 10.1101/2024.08.08.607204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Codanin-1 (CDAN1) is an essential and ubiquitous protein named after congenital dyserythropoietic anemia type I (CDA-I), an autosomal recessive disease that manifests from mutations in the CDAN1 or CDIN1 (CDAN1 interacting nuclease 1) gene. CDAN1 interacts with CDIN1 and the paralogous histone H3-H4 chaperones ASF1A (Anti-Silencing Function 1A) and ASF1B, but its function remains unclear. Here, we biochemically and structurally analyze CDAN1 complexes. We find that CDAN1 dimerizes and assembles into cytosolic complexes with CDIN1 and multiple copies of ASF1A/B. Single-particle cryogenic electron microscopy (cryo-EM) structures of CDAN1 complexes identify interactions with ASF1 mediated by two CDAN1 B-domains commonly found in ASF1 binding partners and two helices that mimic histone H3 binding. We additionally observe that one CDAN1 can recruit two ASF1 molecules and that ASF1A and ASF1B have different requirements for CDAN1 engagement. Our findings explain how CDAN1 sequesters and inhibits the chaperone function of ASF1A/B and provide new molecular-level insights into this enigmatic complex.
Collapse
Affiliation(s)
- Samantha F. Sedor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
2
|
Menon V, Slavinsky M, Hermine O, Ghaffari S. Mitochondrial regulation of erythropoiesis in homeostasis and disease. Br J Haematol 2024; 205:429-439. [PMID: 38946206 DOI: 10.1111/bjh.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Erythroid cells undergo a highly complex maturation process, resulting in dynamic changes that generate red blood cells (RBCs) highly rich in haemoglobin. The end stages of the erythroid cell maturation process primarily include chromatin condensation and nuclear polarization, followed by nuclear expulsion called enucleation and clearance of mitochondria and other organelles to finally generate mature RBCs. While healthy RBCs are devoid of mitochondria, recent evidence suggests that mitochondria are actively implicated in the processes of erythroid cell maturation, erythroblast enucleation and RBC production. However, the extent of mitochondrial participation that occurs during these ultimate steps is not completely understood. This is specifically important since abnormal RBC retention of mitochondria or mitochondrial DNA contributes to the pathophysiology of sickle cell and other disorders. Here we review some of the key findings so far that elucidate the importance of this process in various aspects of erythroid maturation and RBC production under homeostasis and disease conditions.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Slavinsky
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olivier Hermine
- Department Hematology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, University Paris Descartes, Paris, France
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Sorbonne Paris Cité, Paris, France
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
3
|
Ju H, Sohn Y, Nam Y, Rim YA. Progresses in overcoming the limitations of in vitro erythropoiesis using human induced pluripotent stem cells. Stem Cell Res Ther 2024; 15:142. [PMID: 38750578 PMCID: PMC11094930 DOI: 10.1186/s13287-024-03754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
Researchers have attempted to generate transfusable oxygen carriers to mitigate RBC supply shortages. In vitro generation of RBCs using stem cells such as hematopoietic stem and progenitor cells (HSPCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs) has shown promise. Specifically, the limited supplies of HSPCs and ethical issues with ESCs make iPSCs the most promising candidate for in vitro RBC generation. However, researchers have encountered some major challenges when using iPSCs to produce transfusable RBC products, such as enucleation and RBC maturation. In addition, it has proven difficult to manufacture these products on a large scale. In this review, we provide a brief overview of erythropoiesis and examine endeavors to recapitulate erythropoiesis in vitro using various cell sources. Furthermore, we explore the current obstacles and potential solutions aimed at enabling the large-scale production of transfusable RBCs in vitro.
Collapse
Affiliation(s)
- Hyeonwoo Ju
- Department of Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
- YiPSCELL Inc., L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Yeri Alice Rim
- YiPSCELL Inc., L2 Omnibus Park, Banpo-dearo 222, Seocho-gu, Seoul, 06591, Republic of Korea.
- CiSTEM laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
4
|
Tsoulia T, Sundaram AYM, Braaen S, Jørgensen JB, Rimstad E, Wessel Ø, Dahle MK. Transcriptomics of early responses to purified Piscine orthoreovirus-1 in Atlantic salmon ( Salmo salar L.) red blood cells compared to non-susceptible cell lines. Front Immunol 2024; 15:1359552. [PMID: 38420125 PMCID: PMC10899339 DOI: 10.3389/fimmu.2024.1359552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Piscine red blood cells (RBC) are nucleated and have been characterized as mediators of immune responses in addition to their role in gas exchange. Salmonid RBC are major target cells of Piscine orthoreovirus-1 (PRV-1), the etiological agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). PRV-1 replicates in RBC ex vivo, but no viral amplification has been possible in available A. salmon cell lines. To compare RBC basal transcripts and transcriptional responses to PRV-1 in the early phase of infection with non-susceptible cells, we exposed A. salmon RBC, Atlantic salmon kidney cells (ASK) and Salmon head kidney cells (SHK-1) to PRV-1 for 24 h. The RNA-seq analysis of RBC supported their previous characterization as pluripotent cells, as they expressed a wide repertoire of genes encoding pattern recognition receptors (PRRs), cytokine receptors, and genes implicated in antiviral activities. The comparison of RBC to ASK and SHK-1 revealed immune cell features exclusively expressed in RBC, such as genes involved in chemotactic activity in response to inflammation. Differential expression analysis of RBC exposed to PRV-1 showed 46 significantly induced genes (≥ 2-fold upregulation) linked to the antiviral response pathway, including RNA-specific PRRs and interferon (IFN) response factors. In SHK-1, PRV induced a more potent or faster antiviral response (213 genes induced). ASK cells showed a differential response pattern (12 genes induced, 18 suppressed) less characterized by the dsRNA-induced antiviral pathway. Despite these differences, the RIG-I-like receptor 3 (RLR3) in the family of cytosolic dsRNA receptors was significantly induced in all PRV-1 exposed cells. IFN regulatory factor 1 (IRF1) was significantly induced in RBC only, in contrast to IRF3/IRF7 induced in SHK-1. Differences in IRF expression and activity may potentially affect viral propagation.
Collapse
Affiliation(s)
- Thomais Tsoulia
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Arvind Y. M. Sundaram
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Stine Braaen
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B. Jørgensen
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Espen Rimstad
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Wessel
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Maria K. Dahle
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Okada Y, Chikura S, Kimoto T, Iijima T. CDK4/6 inhibitor-induced bone marrow micronuclei might be caused by cell cycle arrest during erythropoiesis. Genes Environ 2024; 46:3. [PMID: 38303098 PMCID: PMC10832093 DOI: 10.1186/s41021-024-00298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/14/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND A micronucleus test is generally used to evaluate the genotoxic potential of chemicals. Exaggerated erythropoiesis, as occurs following bleeding, may induce an unexpected increase in micronucleus frequency. This false positive result would be typical in a genotoxicity study due to the enhanced progression of the cell cycle that restores decreased blood cells. The cyclin-dependent kinase (CDK) family is known to play an essential role in preventing genomic instability. Conversely, a selective CDK4/6 inhibitor PD0332991, clinically named Palbociclib, is reported to have genotoxic potential, shown by positive results in both in vitro and in vivo micronucleus studies. To clarify the mechanism by which cell cycle arrest induced by a CDK4/6 inhibitor increases micronucleus frequency, we investigated the positive results of the bone marrow micronucleus test conducted with PD0332991. RESULTS Rats treated with PD0332991 exhibited increased micronucleus frequency in an in vivo bone marrow micronucleus test whereas it was not increased by treatment in human lymphoblastoid TK6 cells. In addition, all other genotoxicity tests including the Ames test and the comet assay showed negative results with PD0332991. Interestingly, PD0332991 treatment led to an increase in erythrocyte size in rats and affected the size distribution of erythrocytes, including the micronucleus. The mean corpuscular volume of reticulocytes (MCVr) in the PD0332991 treatment group was significantly increased compared to that of the vehicle control (83.8 fL in the PD0332991, and 71.6 fL in the vehicle control.). Further, the average micronucleated erythrocytes (MNE) size of the PD0332991 group and vehicle control was 8.2 and 7.3 µm, respectively. In the histogram, the vehicle control showed a monomodal distribution with a peak near 7.3 µm. In contrast, the PD0332991 group showed a bimodal distribution with peaks around 7.5 and 8.5 µm. Micronucleated erythrocytes in the PD0332991 group were significantly larger than those in the vehicle control. These results suggest that the increase in micronucleus frequency induced by the CDK4/6 inhibitor is not due to genotoxicity, but is attributable to disturbance of the cell cycle, differentiation, and enucleation of erythroblasts. CONCLUSIONS It was suggested that the positive outcome of the in vivo bone marrow micronucleus test resulting from treatment with PD0332991 could not be attributed to its genotoxicity. Further studies to clarify the mechanism of action can contribute to the development of drug candidate compounds lacking intrinsic genotoxic effects.
Collapse
Affiliation(s)
- Yuki Okada
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Satsuki Chikura
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Takafumi Kimoto
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan.
| | - Takeshi Iijima
- Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| |
Collapse
|
6
|
Sugimoto K, Nishikawa T, Sugiyama T. CD41 + extracellular vesicles produced by avian thrombocytes contain microRNAs. Genes Cells 2023; 28:915-928. [PMID: 37927115 DOI: 10.1111/gtc.13078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Avians have thrombocytes in their blood circulation rather than mammalian platelets. However, many details of thrombocyte characteristics have not been determined. Here, chicken thrombocytes were isolated, and extracellular vesicle (EV) production was investigated. The thrombocyte-specific markers cd41 and cd61 were expressed in the yolk sac at 24 h. According to the embryonic developmental stage, the cd41-expressing tissues changed from the yolk sac to the bone marrow and spleen. Accordingly, the bone marrow and spleen were the main tissues producing thrombocytes in adult chickens. Avian thrombocytes were separated from adult spleen cells through a combination of discontinuous density gradient centrifugation, phagocytic cell removal, and fluorescence-activated cell sorting. Isolated thrombocytes produced CD41+ EVs (CD41+ EVs), and the CD41+ EVs also expressed CD9. Microarray analysis revealed that CD41+ EVs contain many microRNAs. Macrophage lines (RAW264.7) phagocytosed CD41+ EVs, and their phagocytosis and migration activity were suppressed. Microarray analysis also revealed that EVs altered gene expression in macrophages. These data indicated that the CD41+ EV was a carrier of microRNAs produced from thrombocytes and affected the cell characteristics of the received cells. Therefore, the CD41+ EVs of avians worked as a communication tool.
Collapse
Affiliation(s)
- Kenkichi Sugimoto
- Faculty of Graduate School of Science and Technology, Department of Cell Science, Niigata University, Niigata, Japan
| | - Takamasa Nishikawa
- Faculty of Graduate School of Science and Technology, Department of Cell Science, Niigata University, Niigata, Japan
| | - Toshie Sugiyama
- Faculty of Agriculture, Department of Agrobiology, Niigata University, Niigata, Japan
| |
Collapse
|
7
|
Amiri FA, Zhang J. Numerical analysis of oxygen uptake processes by red blood cells in stopped-flow measurements: Effects of cell shape, membrane permeability and unstirred layer. Med Eng Phys 2023; 121:104057. [PMID: 37985019 DOI: 10.1016/j.medengphy.2023.104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
The transport process of oxygen and other gas species across red blood cell (RBC) membrane is of great importance for better understanding the critical biological functions of RBCs, and the stopped-flow experiments have often been employed for such investigations. In previous stopped-flow analyses, the RBC had usually been represented by a spherical capsule based on the RBC volume, and an assumed unstirred layer (USL) thickness had been used to determine the membrane permeability. In this research, unlike these previous studies, we simulate the oxygen uptake process with different RBC shapes (shperical, ellipsoidal and biconcave) and examine the effects of USL thickness and membrane permeability over broad ranges based on literature values. Our results show that the excess membrane area can greatly improve the oxygen transport efficiency, and a same uptake half-time can be obtained using different combinations of USL thickness and membrane permeability. These findings raise concerns on the reliability and uncertainty for the results and conclusions in previous studies, and also call for more complete numerical models, for example, with the fluid flow and cell deformation considered, and more in-depth investigations on the oxygen transport processes.
Collapse
Affiliation(s)
- Farhad A Amiri
- Bharti School of Engineering and Computer Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada
| | - Junfeng Zhang
- Bharti School of Engineering and Computer Science, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario, P3E 2C6, Canada.
| |
Collapse
|
8
|
Li M, Liu D, Xue F, Zhang H, Yang Q, Sun L, Qu X, Wu X, Zhao H, Liu J, Kang Q, Wang T, An X, Chen L. Stage-specific dual function: EZH2 regulates human erythropoiesis by eliciting histone and non-histone methylation. Haematologica 2023; 108:2487-2502. [PMID: 37021526 PMCID: PMC10483364 DOI: 10.3324/haematol.2022.282016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the lysine methyltransferase of polycomb repressive complex 2 (PRC2) that catalyzes H3K27 tri-methylation. Aberrant expression and loss-of-function mutations of EZH2 have been demonstrated to be tightly associated with the pathogenesis of various myeloid malignancies characterized by ineffective erythropoiesis, such as myelodysplastic syndrome (MDS). However, the function and mechanism of EZH2 in human erythropoiesis still remains largely unknown. Here, we demonstrated that EZH2 regulates human erythropoiesis in a stage-specific, dual-function manner by catalyzing histone and non-histone methylation. During the early erythropoiesis, EZH2 deficiency caused cell cycle arrest in the G1 phase, which impaired cell growth and differentiation. Chromatin immunoprecipitation sequencing and RNA sequencing discovered that EZH2 knockdown caused a reduction of H3K27me3 and upregulation of cell cycle proteindependent kinase inhibitors. In contrast, EZH2 deficiency led to the generation of abnormal nuclear cells and impaired enucleation during the terminal erythropoiesis. Interestingly, EZH2 deficiency downregulated the methylation of HSP70 by directly interacting with HSP70. RNA-sequencing analysis revealed that the expression of AURKB was significantly downregulated in response to EZH2 deficiency. Furthermore, treatment with an AURKB inhibitor and small hairpin RNAmediated AURKB knockdown also led to nuclear malformation and decreased enucleation efficiency. These findings strongly suggest that EZH2 regulates terminal erythropoiesis through a HSP70 methylation-AURKB axis. Our findings have implications for improved understanding of ineffective erythropoiesis with EZH2 dysfunction.
Collapse
Affiliation(s)
- Mengjia Li
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Fumin Xue
- Department of Gastroenterology, Children's Hospital affiliated to Zhengzhou University, Zhengzhou, China 450000
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Qianqian Yang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Lei Sun
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Xiuyun Wu
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Jing Liu
- Molecular Biology Research Center and Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China 410078
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Ting Wang
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, 310 East, 67th Street, New York, NY 10065.
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Science Road 100, Zhengzhou, China 450001.
| |
Collapse
|
9
|
Liu H, Tsai H, Yang M, Li G, Bian Q, Ding G, Wu D, Dai J. Three-dimensional genome structure and function. MedComm (Beijing) 2023; 4:e326. [PMID: 37426677 PMCID: PMC10329473 DOI: 10.1002/mco2.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Linear DNA undergoes a series of compression and folding events, forming various three-dimensional (3D) structural units in mammalian cells, including chromosomal territory, compartment, topologically associating domain, and chromatin loop. These structures play crucial roles in regulating gene expression, cell differentiation, and disease progression. Deciphering the principles underlying 3D genome folding and the molecular mechanisms governing cell fate determination remains a challenge. With advancements in high-throughput sequencing and imaging techniques, the hierarchical organization and functional roles of higher-order chromatin structures have been gradually illuminated. This review systematically discussed the structural hierarchy of the 3D genome, the effects and mechanisms of cis-regulatory elements interaction in the 3D genome for regulating spatiotemporally specific gene expression, the roles and mechanisms of dynamic changes in 3D chromatin conformation during embryonic development, and the pathological mechanisms of diseases such as congenital developmental abnormalities and cancer, which are attributed to alterations in 3D genome organization and aberrations in key structural proteins. Finally, prospects were made for the research about 3D genome structure, function, and genetic intervention, and the roles in disease development, prevention, and treatment, which may offer some clues for precise diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Hao Liu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Hsiangyu Tsai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Maoquan Yang
- School of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Guozhi Li
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Qian Bian
- Shanghai Institute of Precision MedicineShanghaiChina
| | - Gang Ding
- School of StomatologyWeifang Medical UniversityWeifangChina
| | - Dandan Wu
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| | - Jiewen Dai
- Department of Oral and Cranio‐Maxillofacial SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineCollege of Stomatology, Shanghai Jiao Tong UniversityNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghaiChina
| |
Collapse
|
10
|
Penagos-Puig A, Claudio-Galeana S, Stephenson-Gussinye A, Jácome-López K, Aguilar-Lomas A, Chen X, Pérez-Molina R, Furlan-Magaril M. RNA polymerase II pausing regulates chromatin organization in erythrocytes. Nat Struct Mol Biol 2023; 30:1092-1104. [PMID: 37500929 DOI: 10.1038/s41594-023-01037-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/16/2023] [Indexed: 07/29/2023]
Abstract
Chicken erythrocytes are nucleated cells often considered to be transcriptionally inactive, although the epigenetic changes and chromatin remodeling that would mediate transcriptional repression and the extent of gene silencing during avian terminal erythroid differentiation are not fully understood. Here, we characterize the changes in gene expression, chromatin accessibility, genome organization and chromatin nuclear disposition during the terminal stages of erythropoiesis in chicken and uncover complex chromatin reorganization at different genomic scales. We observe a robust decrease in transcription in erythrocytes, but a set of genes maintains their expression, including genes involved in RNA polymerase II (Pol II) promoter-proximal pausing. Erythrocytes exhibit a reoriented nuclear architecture, with accessible chromatin positioned towards the nuclear periphery together with the paused RNA Pol II. In erythrocytes, chromatin domains are partially lost genome-wide, except at minidomains retained around paused promoters. Our results suggest that promoter-proximal pausing of RNA Pol II contributes to the transcriptional regulation of the erythroid genome and highlight the role of RNA polymerase in the maintenance of local chromatin organization.
Collapse
Affiliation(s)
- Andrés Penagos-Puig
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sherlyn Claudio-Galeana
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura Stephenson-Gussinye
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karina Jácome-López
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Amaury Aguilar-Lomas
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rosario Pérez-Molina
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mayra Furlan-Magaril
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
11
|
Zhao X, Alibhai D, Walsh TG, Tarassova N, Englert M, Birol SZ, Li Y, Williams CM, Neal CR, Burkard P, Cross SJ, Aitken EW, Waller AK, Beltrán JB, Gunning PW, Hardeman EC, Agbani EO, Nieswandt B, Hers I, Ghevaert C, Poole AW. Highly efficient platelet generation in lung vasculature reproduced by microfluidics. Nat Commun 2023; 14:4026. [PMID: 37419900 PMCID: PMC10329040 DOI: 10.1038/s41467-023-39598-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| | - Dominic Alibhai
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Tony G Walsh
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Nathalie Tarassova
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Maximilian Englert
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Semra Z Birol
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Yong Li
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Christopher M Williams
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Chris R Neal
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Philipp Burkard
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Stephen J Cross
- Wolfson BioimagingFacility, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Elizabeth W Aitken
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Amie K Waller
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - José Ballester Beltrán
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ejaife O Agbani
- Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Bernhard Nieswandt
- University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, D-97080, Germany
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Cedric Ghevaert
- University of Cambridge / NHS Blood and Transplant, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
12
|
Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol 2023; 123:1-17. [PMID: 37172755 PMCID: PMC10330572 DOI: 10.1016/j.exphem.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Erythropoiesis, the development of erythrocytes from hematopoietic stem cells, occurs through four phases: erythroid progenitor (EP) development, early erythropoiesis, terminal erythroid differentiation (TED), and maturation. According to the classical model that is based on immunophenotypic profiles of cell populations, each of these phases comprises multiple differentiation states that arise in a hierarchical manner. After segregation of lymphoid potential, erythroid priming begins during progenitor development and progresses through progenitor cell types that have multilineage potential. Complete separation of the erythroid lineage is achieved during early erythropoiesis with the formation of unipotent EPs: burst-forming unit-erythroid and colony-forming unit-erythroid. These erythroid-committed progenitors undergo TED and maturation, which involves expulsion of the nucleus and remodeling to form functional biconcave, hemoglobin-filled erythrocytes. In the last decade or so, many studies employing advanced techniques such as single-cell RNA-sequencing (scRNA-seq) as well as the conventional methods, including colony-forming cell assays and immunophenotyping, have revealed heterogeneity within the stem, progenitor, and erythroblast stages, and uncovered alternate paths for segregation of erythroid lineage potential. In this review, we provide an in-depth account of immunophenotypic profiles of all cell types within erythropoiesis, highlight studies that demonstrate heterogeneous erythroid stages, and describe deviations to the classical model of erythropoiesis. Overall, although scRNA-seq approaches have provided new insights, flow cytometry remains relevant and is the primary method for validation of novel immunophenotypes.
Collapse
Affiliation(s)
- Natascha Schippel
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.
| |
Collapse
|
13
|
Cervellera CF, Mazziotta C, Di Mauro G, Iaquinta MR, Mazzoni E, Torreggiani E, Tognon M, Martini F, Rotondo JC. Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application. Stem Cell Res Ther 2023; 14:139. [PMID: 37226267 PMCID: PMC10210309 DOI: 10.1186/s13287-023-03367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Blood transfusions represent common medical procedures, which provide essential supportive therapy. However, these procedures are notoriously expensive for healthcare services and not without risk. The potential threat of transfusion-related complications, such as the development of pathogenic infections and the occurring of alloimmunization events, alongside the donor's dependence, strongly limits the availability of transfusion units and represents significant concerns in transfusion medicine. Moreover, a further increase in the demand for donated blood and blood transfusion, combined with a reduction in blood donors, is expected as a consequence of the decrease in birth rates and increase in life expectancy in industrialized countries. MAIN BODY An emerging and alternative strategy preferred over blood transfusion is the in vitro production of blood cells from immortalized erythroid cells. The high survival capacity alongside the stable and longest proliferation time of immortalized erythroid cells could allow the generation of a large number of cells over time, which are able to differentiate into blood cells. However, a large-scale, cost-effective production of blood cells is not yet a routine clinical procedure, as being dependent on the optimization of culture conditions of immortalized erythroid cells. CONCLUSION In our review, we provide an overview of the most recent erythroid cell immortalization approaches, while also describing and discussing related advancements of establishing immortalized erythroid cell lines.
Collapse
Affiliation(s)
- Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Torreggiani
- Department of Chemical, Pharmaceutical and Agricultural Sciences-DOCPAS, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
14
|
May A, Ventura T, Fidanza A, Volmer H, Taylor H, Romanò N, D’Souza SL, Bieker JJ, Forrester LM. Modelling the erythroblastic island niche of dyserythropoietic anaemia type IV patients using induced pluripotent stem cells. Front Cell Dev Biol 2023; 11:1148013. [PMID: 37113767 PMCID: PMC10126837 DOI: 10.3389/fcell.2023.1148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Congenital dyserythropoietic anaemia (CDA) type IV has been associated with an amino acid substitution, Glu325Lys (E325K), in the transcription factor KLF1. These patients present with a range of symptoms, including the persistence of nucleated red blood cells (RBCs) in the peripheral blood which reflects the known role for KLF1 within the erythroid cell lineage. The final stages of RBCs maturation and enucleation take place within the erythroblastic island (EBI) niche in close association with EBI macrophages. It is not known whether the detrimental effects of the E325K mutation in KLF1 are restricted to the erythroid lineage or whether deficiencies in macrophages associated with their niche also contribute to the disease pathology. Methods: To address this question, we generated an in vitro model of the human EBI niche using induced pluripotent stem cells (iPSCs) derived from one CDA type IV patient as well as two iPSC lines genetically modified to express an KLF1-E325K-ERT2 protein that could be activated with 4OH-tamoxifen. The one patient iPSC line was compared to control lines from two healthy donors and the KLF1-E325K-ERT2 iPSC line to one inducible KLF1-ERT2 line generated from the same parental iPSCS. Results: The CDA patient-derived iPSCs and iPSCs expressing the activated KLF1-E325K-ERT2 protein showed significant deficiencies in the production of erythroid cells with associated disruption of some known KLF1 target genes. Macrophages could be generated from all iPSC lines but when the E325K-ERT2 fusion protein was activated, we noted the generation of a slightly less mature macrophage population marked by CD93. A subtle trend in their reduced ability to support RBC enucleation was also associated with macrophages carrying the E325K-ERT2 transgene. Discussion: Taken together these data support the notion that the clinically significant effects of the KLF1-E325K mutation are primarily associated with deficiencies in the erythroid lineage but it is possible that deficiencies in the niche might have the potential to exacerbate the condition. The strategy we describe provides a powerful approach to assess the effects of other mutations in KLF1 as well as other factors associated with the EBI niche.
Collapse
Affiliation(s)
- Alisha May
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Telma Ventura
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Helena Volmer
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Helen Taylor
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Nicola Romanò
- Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Sunita L. D’Souza
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - James J. Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, United States
| | - Lesley M. Forrester
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
15
|
Heterochromatin rewiring and domain disruption-mediated chromatin compaction during erythropoiesis. Nat Struct Mol Biol 2023; 30:463-474. [PMID: 36914797 DOI: 10.1038/s41594-023-00939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
Mammalian erythropoiesis involves progressive chromatin compaction and subsequent enucleation in terminal differentiation, but the mechanisms underlying the three-dimensional chromatin reorganization remain obscure. Here, we systematically analyze the higher-order chromatin in purified populations of primary human erythroblasts. Our results reveal that heterochromatin regions undergo substantial compression, with H3K9me3 markers relocalizing to the nuclear periphery and forming a significant number of long-range interactions, and that ~58% of the topologically associating domain (TAD) boundaries are disrupted, while certain TADs enriched for markers of the active transcription state and erythroid master regulators, GATA1 and KLF1, are selectively maintained during terminal erythropoiesis. Finally, we demonstrate that GATA1 is involved in safeguarding selected essential chromatin domains during terminal erythropoiesis. Our study therefore delineates the molecular characteristics of a development-driven chromatin compaction process, which reveals transcription competence as a key indicator of the selected domain maintenance to ensure appropriate gene expression during the extreme compaction of chromatin.
Collapse
|
16
|
Shoaib A, Darraj A, Khan ME, Azmi L, Alalwan A, Alamri O, Tabish M, Khan AU. A Nanotechnology-Based Approach to Biosensor Application in Current Diabetes Management Practices. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:867. [PMID: 36903746 PMCID: PMC10005622 DOI: 10.3390/nano13050867] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Diabetes mellitus is linked to both short-term and long-term health problems. Therefore, its detection at a very basic stage is of utmost importance. Research institutes and medical organizations are increasingly using cost-effective biosensors to monitor human biological processes and provide precise health diagnoses. Biosensors aid in accurate diabetes diagnosis and monitoring for efficient treatment and management. Recent attention to nanotechnology in the fast-evolving area of biosensing has facilitated the advancement of new sensors and sensing processes and improved the performance and sensitivity of current biosensors. Nanotechnology biosensors detect disease and track therapy response. Clinically efficient biosensors are user-friendly, efficient, cheap, and scalable in nanomaterial-based production processes and thus can transform diabetes outcomes. This article is more focused on biosensors and their substantial medical applications. The highlights of the article consist of the different types of biosensing units, the role of biosensors in diabetes, the evolution of glucose sensors, and printed biosensors and biosensing systems. Later on, we were engrossed in the glucose sensors based on biofluids, employing minimally invasive, invasive, and noninvasive technologies to find out the impact of nanotechnology on the biosensors to produce a novel device as a nano-biosensor. In this approach, this article documents major advances in nanotechnology-based biosensors for medical applications, as well as the hurdles they must overcome in clinical practice.
Collapse
Affiliation(s)
- Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Ali Darraj
- Department of Medicine, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Lubna Azmi
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Lucknow, Lucknow 226025, India
| | - Abdulaziz Alalwan
- University Family Medicine Center, Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, Riyadh 2925, Saudi Arabia
| | - Osamah Alamri
- Consultant of Family Medicine, Ministry of Health, Second Health Cluster, Riyadh 2925, Saudi Arabia
| | - Mohammad Tabish
- Department of Pharmacology, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Anwar Ulla Khan
- Department of Electrical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
17
|
Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. Hum Cell 2023; 36:894-907. [PMID: 36754940 PMCID: PMC9908308 DOI: 10.1007/s13577-023-00872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Blood transfusions are now an essential part of modern medicine. Transfusable red blood cells (RBCs) are employed in various therapeutic strategies; however, the processes of blood donation, collection, and administration still involve many limitations. Notably, a lack of donors, the risk of transfusion-transmitted disease, and recent pandemics such as COVID-19 have prompted us to search for alternative therapeutics to replace this resource. Originally, RBC production was attempted via the ex vivo differentiation of stem cells. However, a more approachable and effective cell source is now required for broader applications. As a viable alternative, pluripotent stem cells have been actively used in recent research. In this review, we discuss the basic concepts related to erythropoiesis, as well as early research using hematopoietic stem cells ex vivo, and discuss the current trend of in vitro erythropoiesis using human-induced pluripotent stem cells.
Collapse
Affiliation(s)
- Heeju Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, , Seoul, Republic of Korea ,Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
18
|
The accumulation of miR-125b-5p is indispensable for efficient erythroblast enucleation. Cell Death Dis 2022; 13:886. [PMID: 36270980 PMCID: PMC9586935 DOI: 10.1038/s41419-022-05331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Erythroblast enucleation is a precisely regulated but not clearly understood process. Polycythemia shows pathological erythroblast enucleation, and we discovered a low miR-125b-5p level in terminal erythroblasts of patients with polycythemia vera (PV) compared to those of healthy controls. Exogenous upregulation of miR-125b-5p levels restored the enucleation rate to normal levels. Direct downregulation of miR-125b-5p in mouse erythroblasts simulated the enucleation issue found in patients with PV, and miR-125b-5p accumulation was found in enucleating erythroblasts, collectively suggesting the importance of miR-125b-5p accumulation for erythroblast enucleation. To elucidate the role of miR-125b-5p in enucleation, gain- and loss-of-function studies were performed. Overexpression of miR-125b-5p improved the enucleation of erythroleukemia cells and primary erythroblasts. Infused erythroblasts with higher levels of miR-125b-5p also exhibited accelerated enucleation. In contrast, miR-125b-5p inhibitors significantly suppressed erythrocyte enucleation. Intracellular imaging revealed that in addition to cytoskeletal assembly and nuclear condensation, miR-125b-5p overexpression resulted in mitochondrial reduction and depolarization. Real-time PCR, western blot analysis, luciferase reporter assays, small molecule inhibitor supplementation and gene rescue assays revealed that Bcl-2, as a direct target of miR-125b-5p, was one of the key mediators of miR-125b-5p during enucleation. Following suppression of Bcl-2, the activation of caspase-3 and subsequent activation of ROCK-1 resulted in cytoskeletal rearrangement and enucleation. In conclusion, this study is the first to reveal the pivotal role of miR-125b-5p in erythroblast enucleation.
Collapse
|
19
|
Modepalli S, Martinez-Morilla S, Venkatesan S, Fasano J, Paulsen K, Görlich D, Hattangadi S, Kupfer GM. An In Vivo Model for Elucidating the Role of an Erythroid-Specific Isoform of Nuclear Export Protein Exportin 7 (Xpo7) in Murine Erythropoiesis. Exp Hematol 2022; 114:22-32. [PMID: 35973480 PMCID: PMC10165728 DOI: 10.1016/j.exphem.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/04/2022]
Abstract
Erythroid nuclear condensation is a complex process in which compaction to one-tenth its original size occurs in an active nucleus simultaneously undergoing transcription and cell division. We previously found that the nuclear exportin Exportin7 (Xpo7), which is erythroid- specific and highly induced during terminal erythropoiesis, facilitates nuclear condensation. We also identified a previously unannotated, erythroid-specific isoform of Xpo7 (Xpo7B) containing a novel first exon Xpo7-1b expressed only in late Ter119+ erythroblasts. To better understand the functional difference between the erythroid Xpo7B isoform and the ubiquitous isoform (Xpo7A) containing the original first exon Xpo7-1a, we created gene-targeted mouse models lacking either exon Xpo7-1a or Xpo7-1b, or both exons 4 and 5, which are completely null for Xpo7 expression. We found that deficiency in Xpo7A does not affect steady-state nor stress erythropoiesis. In contrast, mice lacking the erythroid isoform, Xpo7B, exhibit a mild anemia as well as altered stress erythropoiesis. Complete Xpo7 deficiency resulted in partially penetrant embryonic lethality at the stage when definitive erythropoiesis is prominent in the fetal liver. Inducible complete knockdown of Xpo7 confirms that both steady-state erythropoiesis and stress erythropoiesis are affected. We also observe that Xpo7 deficiency downregulates the expression of important stress response factors, such as Gdf15 and Smad3. We conclude that the erythroid-specific isoform of Xpo7 is important for both steady-state and stress erythropoiesis in mice.
Collapse
Affiliation(s)
- Susree Modepalli
- Department of Molecular Oncology, Georgetown University, Washington DC
| | | | - Srividhya Venkatesan
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - James Fasano
- Department of Pediatric Hematology-Oncology, Yale School of Medicine, New Haven, CT
| | - Katerina Paulsen
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Shilpa Hattangadi
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, Bethesda, MD.
| | - Gary M Kupfer
- Department of Molecular Oncology, Georgetown University, Washington DC.
| |
Collapse
|
20
|
Eaton N, Boyd EK, Biswas R, Lee-Sundlov MM, Dlugi TA, Ramsey HE, Zheng S, Burns RT, Sola-Visner MC, Hoffmeister KM, Falet H. Endocytosis of the thrombopoietin receptor Mpl regulates megakaryocyte and erythroid maturation in mice. Front Oncol 2022; 12:959806. [PMID: 36110936 PMCID: PMC9468709 DOI: 10.3389/fonc.2022.959806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022] Open
Abstract
Dnm2fl/fl Pf4-Cre (Dnm2Plt-/- ) mice lacking the endocytic GTPase dynamin 2 (DNM2) in platelets and megakaryocytes (MKs) develop hallmarks of myelofibrosis. At the cellular level, the tyrosine kinase JAK2 is constitutively active but decreased in expression in Dnm2Plt-/- platelets. Additionally, Dnm2Plt-/- platelets cannot endocytose the thrombopoietin (TPO) receptor Mpl, leading to elevated circulating TPO levels. Here, we assessed whether the hyperproliferative phenotype of Dnm2Plt-/- mice was due to JAK2 constitutive activation or to elevated circulating TPO levels. In unstimulated Dnm2Plt-/- platelets, STAT3 and, to a lower extent, STAT5 were phosphorylated, but their phosphorylation was slowed and diminished upon TPO stimulation. We further crossed Dnm2Plt-/- mice in the Mpl-/- background to generate Mpl-/-Dnm2Plt-/- mice lacking Mpl ubiquitously and DNM2 in platelets and MKs. Mpl-/- Dnm2Plt-/- platelets had severely reduced JAK2 and STAT3 but normal STAT5 expression. Mpl-/- Dnm2Plt-/- mice had severely reduced bone marrow MK and hematopoietic stem and progenitor cell numbers. Additionally, Mpl-/- Dnm2Plt-/- mice had severe erythroblast (EB) maturation defects, decreased expression of hemoglobin and heme homeostasis genes and increased expression of ribosome biogenesis and protein translation genes in spleen EBs, and developed anemia with grossly elevated plasma erythropoietin (EPO) levels, leading to early fatality by postnatal day 25. Mpl-/- Dnm2Plt+/+ mice had impaired EB development at three weeks of age, which normalized with adulthood. Together, the data shows that DNM2-dependent Mpl-mediated endocytosis in platelets and MKs is required for steady-state hematopoiesis and provides novel insights into a developmentally controlled role for Mpl in normal erythropoiesis, regulating hemoglobin and heme production.
Collapse
Affiliation(s)
- Nathan Eaton
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Emily K. Boyd
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ratnashree Biswas
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Melissa M. Lee-Sundlov
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Theresa A. Dlugi
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Haley E. Ramsey
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Shikan Zheng
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Robert T. Burns
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
| | - Martha C. Sola-Visner
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Karin M. Hoffmeister
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Departments of Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hervé Falet
- Translational Glycomics Center, Versiti Blood Research Institute, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Lu Z, Xu G, Li Y, Lu C, Shen Y, Zhao B. Discovery of N-arylcinnamamides as novel erythroblast enucleation inducers. Bioorg Chem 2022; 128:106105. [PMID: 36031698 DOI: 10.1016/j.bioorg.2022.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Derivation of mature red blood cells (RBCs) from stem cells in vitro is a promising solution to the current shortage of blood supply, in which terminal enucleation is the rate-limiting step. Here we discovered two cinnamamides B8 and B16 showed potential activities of enhancing the enucleation of erythroblasts through the screening of "in-house" compound library. Subsequently, twenty-four N-arylcinnamamides were rationally designed and synthesized on the basis of the structure of B8 and B16, in which N-(9H-carbazol-2-yl)cinnamamide (KS-2) significantly elevated the percentage of reticulocytes in the cultured mouse fetal liver cells in vitro (relative enucleation = 2.43). The underlying mechanism of KS-2 in promoting mouse erythroid enucleation is accelerating the process of cell cycle exit via p53 activation in late stage erythrocytes. These results strongly suggest that compound KS-2 is worthy of further study as a potential erythrocyte enucleation inducer.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanxia Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
22
|
Tu Z, Fan C, Davis AK, Hu M, Wang C, Dandamudi A, Seu KG, Kalfa TA, Lu QR, Zheng Y. Autism-associated chromatin remodeler CHD8 regulates erythroblast cytokinesis and fine-tunes the balance of Rho GTPase signaling. Cell Rep 2022; 40:111072. [PMID: 35830790 PMCID: PMC9302451 DOI: 10.1016/j.celrep.2022.111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
CHD8 is an ATP-dependent chromatin-remodeling factor whose monoallelic mutation defines a subtype of autism spectrum disorders (ASDs). Previous work found that CHD8 is required for the maintenance of hematopoiesis by integrating ATM-P53-mediated survival of hematopoietic stem/progenitor cells (HSPCs). Here, by using Chd8F/FMx1-Cre combined with a Trp53F/F mouse model that suppresses apoptosis of Chd8−/− HSPCs, we identify CHD8 as an essential regulator of erythroid differentiation. Chd8−/−P53−/− mice exhibited severe anemia conforming to congenital dyserythropoietic anemia (CDA) phenotypes. Loss of CHD8 leads to drastically decreased numbers of orthochromatic erythroblasts and increased binucleated and multinucleated basophilic erythroblasts with a cytokinesis failure in erythroblasts. CHD8 binds directly to the gene bodies of multiple Rho GTPase signaling genes in erythroblasts, and loss of CHD8 results in their dysregulated expression, leading to decreased RhoA and increased Rac1 and Cdc42 activities. Our study shows that autism-associated CHD8 is essential for erythroblast cytokinesis. Tu et al. report that CHD8, an autism-related chromatin remodeler, is essential for erythroid differentiation. Loss of CHD8 leads to unbalanced Rho GTPase signaling and defective erythroblast cytokinesis, mimicking that of congenital dyserythropoietic anemia.
Collapse
Affiliation(s)
- Zhaowei Tu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases, Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Cuiqing Fan
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Ashely K Davis
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Chen Wang
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Akhila Dandamudi
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Katie G Seu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| |
Collapse
|
23
|
Han X, Ji P. Carbon dots for the treatment of cancer-related anemia. BLOOD SCIENCE 2022; 4:174-175. [PMID: 36518596 PMCID: PMC9742109 DOI: 10.1097/bs9.0000000000000120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/15/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Xu Han
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| |
Collapse
|
24
|
Wang P, Zhao W, Cao H. Development of a Platelet-Related Prognostic Model for Colorectal Cancer. Front Genet 2022; 13:904168. [PMID: 35719389 PMCID: PMC9198283 DOI: 10.3389/fgene.2022.904168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) represents one of the most common malignancies with high morbidity worldwide. Growing evidence has suggested that platelets are a fundamental component of the tumor microenvironment and play crucial roles in driving tumor biological behavior. The construction of a platelet-related prognostic model that can reliably predict CRC prognosis is of great clinical significance. The 1427 CRC-specific platelet-related genes were collected and mainly enriched in the ribosome and immune-related pathways. Based on platelet-related genes, three subtypes of TCGA CRC samples were identified by consensus clustering and characterized by differences in angiogenesis, epithelial–mesenchymal transition, immune infiltration, and prognosis. A total of 100 prognostic platelet-related genes were identified by univariate Cox regression. LASSO Cox regression further shrank those genes and constructed a 10-gene prognostic model. The patients with higher risk scores had significantly worse disease-specific survival than those with lower scores in both TCGA and validation cohorts. The risk score demonstrated good predictive performance for prognosis by receiver operating characteristic (ROC) curves. Furthermore, multivariate Cox regression analysis showed that the risk score was independent of TNM stage, sex, and age, and a graphic nomogram based on the risk score and clinical factors was developed to predict survival probability of CRC patients. Patients from the high-risk group were characterized by higher infiltration of immunosuppressive cells such as MDSC and Treg and higher expression of checkpoints CTLA4, CD86, and PDCD1LG2. Taken together, we identified three platelet-related subtypes and specifically constructed a promising 10-gene prognostic model in CRC. Our results highlighted the potential survival effects of platelet-related genes and provided evidence about their roles in regulating tumor immunity.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital, Taiyuan, China
| | - Wei Zhao
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hailei Cao
- Department of Colorectal and Anal Surgery, Shanxi Province Cancer Hospital, Taiyuan, China
| |
Collapse
|
25
|
Niide T, Asari S, Kawabata K, Hara Y. Specificity of Nuclear Size Scaling in Frog Erythrocytes. Front Cell Dev Biol 2022; 10:857862. [PMID: 35663388 PMCID: PMC9159806 DOI: 10.3389/fcell.2022.857862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
In eukaryotes, the cell has the ability to modulate the size of the nucleus depending on the surrounding environment, to enable nuclear functions such as DNA replication and transcription. From previous analyses of nuclear size scaling in various cell types and species, it has been found that eukaryotic cells have a conserved scaling rule, in which the nuclear size correlates with both cell size and genomic content. However, there are few studies that have focused on a certain cell type and systematically analyzed the size scaling properties in individual species (intra-species) and among species (inter-species), and thus, the difference in the scaling rules among cell types and species is not well understood. In the present study, we analyzed the size scaling relationship among three parameters, nuclear size, cell size, and genomic content, in our measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers. In the datasets of isolated erythrocytes from individual frogs, we found a very weak correlation between the measured nuclear and cell cross-sectional areas. Within the erythrocytes of individual species, the correlation of the nuclear area with the cell area showed a very low hypoallometric relationship, in which the relative nuclear size decreased when the cell size increased. These scaling trends in intra-species erythrocytes are not comparable to the known general correlation in other cell types. When comparing parameters across species, the nuclear areas correlated with both cell areas and genomic contents among the five frogs and the collected datasets in each species class. However, the contribution of genomic content to nuclear size determination was smaller than that of the cell area in all species classes. In particular, the estimated degree of the contribution of genomic content was greater in the amphibian class than in other classes. Together with our imaging analysis of structural components in nuclear membranes, we hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog erythrocytes.
Collapse
Affiliation(s)
| | | | | | - Yuki Hara
- Evolutionary Cell Biology Laboratory, Faculty of Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
26
|
Ren K, Li E, Ji P. Proteome remodeling and organelle clearance in mammalian terminal erythropoiesis. Curr Opin Hematol 2022; 29:137-143. [PMID: 35441599 DOI: 10.1097/moh.0000000000000707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The differentiation from colony forming unit-erythroid (CFU-E) cells to mature enucleated red blood cells is named terminal erythropoiesis in mammals. Apart from enucleation, several unique features during these developmental stages include proteome remodeling and organelle clearance that are important to achieve hemoglobin enrichment. Here, we review the recent advances in the understanding of novel regulatory mechanisms in these processes, focusing on the master regulators that link these major events during terminal erythropoiesis. RECENT FINDINGS Comprehensive proteomic studies revealed a mismatch of protein abundance to their corresponding transcript abundance, which indicates that the proteome remodeling is regulated in a complex way from transcriptional control to posttranslational modifications. Key regulators in organelle clearance were also found to play critical roles in proteome remodeling. SUMMARY These studies demonstrate that the complexity of terminal erythropoiesis is beyond the conventional transcriptomic centric perspective. Posttranslational modifications such as ubiquitination are critical in terminal erythroid proteome remodeling that is also closely coupled with organelle clearance.
Collapse
Affiliation(s)
- Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
27
|
Xu Y, Wang B, Zhang M, Zhang J, Li Y, Jia P, Zhang H, Duan L, Li Y, Li Y, Qu X, Wang S, Liu D, Zhou W, Zhao H, Zhang H, Chen L, An X, Lu S, Zhang S. Carbon Dots as a Potential Therapeutic Agent for the Treatment of Cancer-Related Anemia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200905. [PMID: 35294781 DOI: 10.1002/adma.202200905] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Due to the adverse effects of erythropoietin (EPO) on cancer patient survival, it is necessary to develop new agents that can be used to efficiently manage and treat cancer-related anemia. In this study, novel distinctive carbon dots, J-CDs, derived from jujube are designed, synthesized, and characterized. Based on the obtained results, this material comprises sp2 and sp3 carbon atoms, as well as oxygen/nitrogen-based groups, and it specifically promotes the proliferation of erythroid cells by stimulating the self-renewal of erythroid progenitor cells in vitro and in vivo. Moreover, J-CDs have no discernible effects on tumor proliferation and metastasis, unlike EPO. Transcriptome profiling suggests that J-CDs upregulate the molecules involved in hypoxia response, and they also significantly increase the phosphorylation levels of STAT5, the major transducer of signals for erythroid progenitor cell proliferation. Overall, this study demonstrates that J-CDs effectively promote erythrocyte production without affecting tumor proliferation and metastasis; thus, they may be promising agents for the treatment of cancer-related anemia.
Collapse
Affiliation(s)
- Yuanlin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 45001, China
| | - Boyang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yudong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, 10065, USA
| | - Lulu Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yating Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shihui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenping Zhou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 45001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, 10065, USA
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
28
|
Wells M, Steiner L. Epigenetic and Transcriptional Control of Erythropoiesis. Front Genet 2022; 13:805265. [PMID: 35330735 PMCID: PMC8940284 DOI: 10.3389/fgene.2022.805265] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022] Open
Abstract
Erythropoiesis is a process of enormous magnitude, with the average person generating two to three million red cells every second. Erythroid progenitors start as large cells with large nuclei, and over the course of three to four cell divisions they undergo a dramatic decrease in cell size accompanied by profound nuclear condensation, which culminates in enucleation. As maturing erythroblasts are undergoing these dramatic phenotypic changes, they accumulate hemoglobin and express high levels of other erythroid-specific genes, while silencing much of the non-erythroid transcriptome. These phenotypic and gene expression changes are associated with distinct changes in the chromatin landscape, and require close coordination between transcription factors and epigenetic regulators, as well as precise regulation of RNA polymerase II activity. Disruption of these processes are associated with inherited anemias and myelodysplastic syndromes. Here, we review the epigenetic mechanisms that govern terminal erythroid maturation, and their role in human disease.
Collapse
Affiliation(s)
- Maeve Wells
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| |
Collapse
|
29
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
30
|
Wang S, Zhao H, Zhang H, Gao C, Guo X, Chen L, Lobo C, Yazdanbakhsh K, Zhang S, An X. Analyses of erythropoiesis from embryonic stem cell‐CD34
+
and cord blood‐CD34
+
cells reveal mechanisms for defective expansion and enucleation of embryomic stem cell‐erythroid cells. J Cell Mol Med 2022; 26:2404-2416. [PMID: 35249258 PMCID: PMC8995447 DOI: 10.1111/jcmm.17263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self‐renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS‐derived erythroid cells is limited and the enucleation of ES/iPS‐derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell‐derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell‐derived orthochromatic erythroblasts (ES‐ortho), we found the chromatin of ES‐ortho was less condensed than that of CB CD34+ cell‐derived orthochromatic erythroblasts (CB‐ortho). At the molecular level, both RNA‐seq and ATAC‐seq analyses revealed that pathways involved in chromatin modification were down‐regulated in ES‐ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES‐ortho compared to that in CB‐ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell‐derived erythroid cells and may help to improve ex vivo RBC production from stem cells.
Collapse
Affiliation(s)
- Shihui Wang
- School of Life Sciences Zhengzhou University Zhengzhou China
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Huizhi Zhao
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Huan Zhang
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Chengjie Gao
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Xinhua Guo
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| | - Lixiang Chen
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Cheryl Lobo
- Laboratory of Blood Borne Parasites New York Blood Center New York New York USA
| | - Karina Yazdanbakhsh
- Laboratory of Complement Biology New York Blood Center New York New York USA
| | - Shijie Zhang
- School of Life Sciences Zhengzhou University Zhengzhou China
| | - Xiuli An
- Laboratory of Membrane Biology New York Blood Center New York New York USA
| |
Collapse
|
31
|
Multi-Omics Analysis in β-Thalassemia Using an HBB Gene-Knockout Human Erythroid Progenitor Cell Model. Int J Mol Sci 2022; 23:ijms23052807. [PMID: 35269949 PMCID: PMC8911073 DOI: 10.3390/ijms23052807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
β-thalassemia is a hematologic disease that may be associated with significant morbidity and mortality. Increased expression of HBG1/2 can ameliorate the severity of β-thalassemia. Compared to the unaffected population, some β-thalassemia patients display elevated HBG1/2 expression levels in their red blood cells. However, the magnitude of up-regulation does not reach the threshold of self-healing, and thus, the molecular mechanism underlying HBG1/2 expression in the context of HBB-deficiency requires further elucidation. Here, we performed a multi-omics study examining chromatin accessibility, transcriptome, proteome, and phosphorylation patterns in the HBB homozygous knockout of the HUDEP2 cell line (HBB-KO). We found that up-regulation of HBG1/2 in HBB-KO cells was not induced by the H3K4me3-mediated genetic compensation response. Deletion of HBB in human erythroid progenitor cells resulted in increased ROS levels and production of oxidative stress, which led to an increased rate of apoptosis. Furthermore, in response to oxidative stress, slower cell cycle progression and proliferation were observed. In addition, stress erythropoiesis was initiated leading to increased intracellular HBG1/2 expression. This molecular model was also validated in the single-cell transcriptome of hematopoietic stem cells from β-hemoglobinopathy patients. These findings further the understanding of HBG1/2 gene regulatory networks and provide novel clinical insights into β-thalassemia phenotypic diversity.
Collapse
|
32
|
Ring K, Couper LI, Sapiro AL, Yarza F, Yang XF, Clay K, Mateusiak C, Chou S, Swei A. Host blood meal identity modifies vector gene expression and competency. Mol Ecol 2022; 31:2698-2711. [PMID: 35231145 PMCID: PMC9314864 DOI: 10.1111/mec.16413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
A vector's susceptibility and ability to transmit a pathogen—termed vector competency—determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb‐infected mice. We found that lizard‐fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse‐fed larvae. We also conducted the first RNA‐seq analysis on whole‐bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard‐fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector‐borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.
Collapse
Affiliation(s)
- Kacie Ring
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, 93106
| | - Lisa I Couper
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, 94305
| | - Anne L Sapiro
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, 94158
| | - Fauna Yarza
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, 94158
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, 635, Barnhill Drive, MS409J, 46202
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, 6823 Charles Avenue, New Orleans, 70118
| | - Chase Mateusiak
- Center for Genome Science and Systems Biology, 4515 McKinley Ave, St. Louis, 63110
| | - Seemay Chou
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, 94158.,Chan Zuckerberg Biohub, San Francisco, 94158
| | - Andrea Swei
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, 94132
| |
Collapse
|
33
|
Nano/Micromotors in Active Matter. MICROMACHINES 2022; 13:mi13020307. [PMID: 35208431 PMCID: PMC8878230 DOI: 10.3390/mi13020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Nano/micromotors (NMMs) are tiny objects capable of converting energy into mechanical motion. Recently, a wealth of active matter including synthetic colloids, cytoskeletons, bacteria, and cells have been used to construct NMMs. The self-sustained motion of active matter drives NMMs out of equilibrium, giving rise to rich dynamics and patterns. Alongside the spontaneous dynamics, external stimuli such as geometric confinements, light, magnetic field, and chemical potential are also harnessed to control the movements of NMMs, yielding new application paradigms of active matter. Here, we review the recent advances, both experimental and theoretical, in exploring biological NMMs. The unique dynamical features of collective NMMs are focused on, along with some possible applications of these intriguing systems.
Collapse
|
34
|
Epigenomic analysis of KLF1 haploinsufficiency in primary human erythroblasts. Sci Rep 2022; 12:336. [PMID: 35013432 PMCID: PMC8748495 DOI: 10.1038/s41598-021-04126-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Haploinsufficiency for the erythroid-specific transcription factor KLF1 is associated with hereditary persistence of fetal hemoglobin (HPFH). Increased HbF ameliorates the symptoms of β-hemoglobinopathies and downregulation of KLF1 activity has been proposed as a potential therapeutic strategy. However, the feasibility of this approach has been challenged by the observation that KLF1 haploinsufficient individuals with the same KLF1 variant, within the same family, display a wide range of HbF levels. This phenotypic variability is not readily explained by co-inheritance of known HbF-modulating variants in the HBB, HBS1L-MYB and/or BCL11A loci. We studied cultured erythroid progenitors obtained from Maltese individuals in which KLF1 p.K288X carriers display HbF levels ranging between 1.3 and 12.3% of total Hb. Using a combination of gene expression analysis, chromatin accessibility assays and promoter activity tests we find that variation in expression of the wildtype KLF1 allele may explain a significant part of the variability in HbF levels observed in KLF1 haploinsufficiency. Our results have general bearing on the variable penetrance of haploinsufficiency phenotypes and on conflicting interpretations of pathogenicity of variants in other transcriptional regulators such as EP300, GATA2 and RUNX1.
Collapse
|
35
|
Lu Z, Huang L, Li Y, Xu Y, Zhang R, Zhou Q, Sun Q, Lu Y, Chen J, Shen Y, Li J, Zhao B. Fine-Tuning of Cholesterol Homeostasis Controls Erythroid Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102669. [PMID: 34739188 PMCID: PMC8805577 DOI: 10.1002/advs.202102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Lipid metabolism is essential for stemness maintenance, self-renewal, and differentiation of stem cells, however, the regulatory function of cholesterol metabolism in erythroid differentiation is poorly studied. In the present study, a critical role for cholesterol homeostasis in terminal erythropoiesis is uncovered. The master transcriptional factor GATA1 binds to Sterol-regulatory element binding protein 2 (SREBP2) to downregulate cholesterol biosynthesis, leading to a gradual reduction in intracellular cholesterol levels. It is further shown that reduced cholesterol functions to block erythroid proliferation via the cholesterol/mTORC1/ribosome biogenesis axis, which coordinates cell cycle exit in the late stages of erythroid differentiation. The interaction of GATA1 and SREBP2 also provides a feedback loop for regulating globin expression through the transcriptional control of NFE2 by SREBP2. Importantly, it is shown that disrupting intracellular cholesterol hemostasis resulted in defect of terminal erythroid differentiation in vivo. These findings demonstrate that fine-tuning of cholesterol homeostasis emerges as a key mechanism for regulating erythropoiesis.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Lixia Huang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yan Xu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ruihao Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qi Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yi Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Junjie Chen
- Analysis and Measurement CenterSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361001China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jian Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Department of PharmacologySchool of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
36
|
Wang G, Zhou Q, Xu Y, Zhao B. Emerging Roles of Pleckstrin-2 Beyond Cell Spreading. Front Cell Dev Biol 2021; 9:768238. [PMID: 34869363 PMCID: PMC8637889 DOI: 10.3389/fcell.2021.768238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Pleckstrin-2 is a member of pleckstrin family with well-defined structural features that was first identified in 1999. Over the past 20 years, our understanding of PLEK2 biology has been limited to cell spreading. Recently, increasing evidences support that PLEK2 plays important roles in other cellular events beyond cell spreading, such as erythropoiesis, tumorigenesis and metastasis. It serves as a potential diagnostic and prognostic biomarker as well as an attractive target for the treatment of cancers. Herein, we summary the protein structure and molecular interactions of pleckstrin-2, with an emphasis on its regulatory roles in tumorigenesis.
Collapse
Affiliation(s)
- Gengchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
37
|
Vesicular formation regulated by ERK/MAPK pathway mediates human erythroblast enucleation. Blood Adv 2021; 5:4648-4661. [PMID: 34551066 PMCID: PMC8759143 DOI: 10.1182/bloodadvances.2021004859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/17/2021] [Indexed: 11/20/2022] Open
Abstract
ERK pathway plays a key role in enucleation of human orthochromatic erythroblasts. ERK regulates human erythroblast enucleation by affecting vesicular formation.
Enucleation is a key event in mammalian erythropoiesis responsible for the generation of enucleated reticulocytes. Although progress is being made in developing mechanistic understanding of enucleation, our understanding of mechanisms for enucleation is still incomplete. The MAPK pathway plays diverse roles in biological processes, but its role in erythropoiesis has yet to be fully defined. Analysis of RNA-sequencing data revealed that the MAPK pathway is significantly upregulated during human terminal erythroid differentiation. The MAPK pathway consists of 3 major signaling cassettes: MEK/ERK, p38, and JNK. In the present study, we show that among these 3 cassettes, only ERK was significantly upregulated in late-stage human erythroblasts. The increased expression of ERK along with its increased phosphorylation suggests a potential role for ERK activation in enucleation. To explore this hypothesis, we treated sorted populations of human orthochromatic erythroblasts with the MEK/ERK inhibitor U0126 and found that U0126 inhibited enucleation. In contrast, inhibitors of either p38 or JNK had no effect on enucleation. Mechanistically, U0126 selectively inhibited formation/accumulation of cytoplasmic vesicles and endocytosis of the transferrin receptor without affecting chromatin condensation, nuclear polarization, or enucleosome formation. Treatment with vacuolin-1 that induces vacuole formation partially rescued the blockage of enucleation by U0126. Moreover, phosphoproteomic analysis revealed that inactivation of the ERK pathway led to downregulation of the endocytic recycling pathway. Collectively, our findings uncovered a novel role of ERK activation in human erythroblast enucleation by modulating vesicle formation and have implications for understanding anemia associated with defective enucleation.
Collapse
|
38
|
Murphy ZC, Murphy K, Myers J, Getman M, Couch T, Schulz VP, Lezon-Geyda K, Palumbo C, Yan H, Mohandas N, Gallagher PG, Steiner LA. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation. Blood 2021; 138:1740-1756. [PMID: 34075391 PMCID: PMC8569412 DOI: 10.1182/blood.2020009903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
The terminal maturation of human erythroblasts requires significant changes in gene expression in the context of dramatic nuclear condensation. Defects in this process are associated with inherited anemias and myelodysplastic syndromes. The progressively dense appearance of the condensing nucleus in maturing erythroblasts led to the assumption that heterochromatin accumulation underlies this process, but despite extensive study, the precise mechanisms underlying this essential biologic process remain elusive. To delineate the epigenetic changes associated with the terminal maturation of human erythroblasts, we performed mass spectrometry of histone posttranslational modifications combined with chromatin immunoprecipitation coupled with high-throughput sequencing, Assay for Transposase Accessible Chromatin, and RNA sequencing. Our studies revealed that the terminal maturation of human erythroblasts is associated with a dramatic decline in histone marks associated with active transcription elongation, without accumulation of heterochromatin. Chromatin structure and gene expression were instead correlated with dynamic changes in occupancy of elongation competent RNA polymerase II, suggesting that terminal erythroid maturation is controlled largely at the level of transcription. We further demonstrate that RNA polymerase II "pausing" is highly correlated with transcriptional repression, with elongation competent RNA polymerase II becoming a scare resource in late-stage erythroblasts, allocated to erythroid-specific genes. Functional studies confirmed an essential role for maturation stage-specific regulation of RNA polymerase II activity during erythroid maturation and demonstrate a critical role for HEXIM1 in the regulation of gene expression and RNA polymerase II activity in maturing erythroblasts. Taken together, our findings reveal important insights into the mechanisms that regulate terminal erythroid maturation and provide a novel paradigm for understanding normal and perturbed erythropoiesis.
Collapse
Affiliation(s)
| | | | - Jacquelyn Myers
- Department of Pediatrics and
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | | - Cal Palumbo
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | |
Collapse
|
39
|
Wu S, Chen K, Xu T, Ma K, Gao L, Fu C, Zhang W, Jing C, Ren C, Deng M, Chen Y, Zhou Y, Pan W, Jia X. Tpr Deficiency Disrupts Erythroid Maturation With Impaired Chromatin Condensation in Zebrafish Embryogenesis. Front Cell Dev Biol 2021; 9:709923. [PMID: 34722501 PMCID: PMC8548687 DOI: 10.3389/fcell.2021.709923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Vertebrate erythropoiesis involves nuclear and chromatin condensation at the early stages of terminal differentiation, which is a unique process to distinguish mature erythrocytes from erythroblasts. However, the underlying mechanisms of chromatin condensation during erythrocyte maturation remain elusive. Here, we reported a novel zebrafish mutant cas7 with erythroid maturation deficiency. Positional cloning showed that a single base mutation in tprb gene, which encodes nucleoporin translocated promoter region (Tpr), is responsible for the disrupted erythroid maturation and upregulation of erythroid genes, including ae1-globin and be1-globin. Further investigation revealed that deficient erythropoiesis in tprb cas7 mutant was independent on HIF signaling pathway. The proportion of euchromatin was significantly increased, whereas the percentage of heterochromatin was markedly decreased in tprb cas7 mutant. In addition, TPR knockdown in human K562 cells also disrupted erythroid differentiation and dramatically elevated the expression of globin genes, which suggests that the functions of TPR in erythropoiesis are highly conserved in vertebrates. Taken together, this study revealed that Tpr played vital roles in chromatin condensation and gene regulation during erythroid maturation in vertebrates.
Collapse
Affiliation(s)
- Shuang Wu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Tao Xu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Central Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Ke Ma
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Lei Gao
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Cong Fu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Zhang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Changbin Jing
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Chunguang Ren
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Min Deng
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhou
- Stem Cell Program, Hematology/Oncology Program at Children’s Hospital Boston, Harvard Medical School, Boston, MA, United States
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoe Jia
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| |
Collapse
|
40
|
Zhang C, Xu Z, Yang S, Sun G, Jia L, Zheng Z, Gu Q, Tao W, Cheng T, Li C, Cheng H. tagHi-C Reveals 3D Chromatin Architecture Dynamics during Mouse Hematopoiesis. Cell Rep 2021; 32:108206. [PMID: 32997998 DOI: 10.1016/j.celrep.2020.108206] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/08/2020] [Accepted: 09/08/2020] [Indexed: 01/10/2023] Open
Abstract
Spatiotemporal chromatin reorganization during hematopoietic differentiation has not been comprehensively characterized, mainly because of the large numbers of starting cells required for current chromatin conformation capture approaches. Here, we introduce a low-input tagmentation-based Hi-C (tagHi-C) method to capture the chromatin structures of hundreds of cells. Using tagHi-C, we are able to map the spatiotemporal dynamics of chromatin structure in ten primary hematopoietic stem, progenitor, and differentiated cell populations from mouse bone marrow. Our results reveal that changes in compartment dynamics and the Rabl configuration occur during hematopoietic cell differentiation. We identify gene-body-associating domains (GADs) as general structures for highly expressed genes. Moreover, we extend the body of knowledge regarding genes influenced by genome-wide association study (GWAS) loci through spatial chromatin looping. Our study provides the tagHi-C method for studying the three-dimensional (3D) genome of a small number of cells and maps the comprehensive 3D chromatin landscape of bone marrow hematopoietic cells.
Collapse
Affiliation(s)
- Chao Zhang
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China; Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; PKU-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Zihan Xu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Shangda Yang
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guohuan Sun
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lumeng Jia
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China
| | - Zhaofeng Zheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Quan Gu
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei Tao
- Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking University, Beijing, China.
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences, Tianjin, China; National Clinical Research Center for Blood Diseases, Tianjin, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| |
Collapse
|
41
|
Yap KN, Zhang Y. Revisiting the question of nucleated versus enucleated erythrocytes in birds and mammals. Am J Physiol Regul Integr Comp Physiol 2021; 321:R547-R557. [PMID: 34378417 DOI: 10.1152/ajpregu.00276.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Erythrocyte enucleation is thought to have evolved in mammals to support their energetic cost of high metabolic activities. However, birds face similar selection pressure yet possess nucleated erythrocytes. Current hypotheses on the mammalian erythrocyte enucleation claim that the absence of cell organelles allows erythrocytes to 1) pack more hemoglobin into the cells to increase oxygen carrying capacity and 2) decrease erythrocyte size for increased surface area-to-volume ratio, and improved ability to traverse small capillaries. In this article, we first empirically tested current hypotheses using both conventional and phylogenetically informed analysis comparing literature values of mean cell hemoglobin concentration (MCHC) and mean cell volume (MCV) between 181 avian and 194 mammalian species. We found no difference in MCHC levels between birds and mammals using both conventional and phylogenetically corrected analysis. MCV was higher in birds than mammals according to conventional analysis, but the difference was lost when we controlled for phylogeny. These results suggested that avian and mammalian erythrocytes may employ different strategies to solve a common problem. To further investigate existing hypotheses or develop new hypothesis, we need to understand the functions of various organelles in avian erythrocytes. Consequently, we covered potential physiological functions of various cell organelles in avian erythrocytes based on current knowledge, while making explicit comparisons to their mammalian counterparts. Finally, we proposed by taking an integrative and comparative approach, using tools from molecular biology to evolutionary biology, would allow us to better understand the fundamental physiological functions of various components of avian and mammalian erythrocytes.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, Auburn, AL, United States
| | - Yufeng Zhang
- School of Health Studies, University of Memphis, Memphis, TN, United States
| |
Collapse
|
42
|
Jeffery NN, Davidson C, Peslak SA, Kingsley PD, Nakamura Y, Palis J, Bulger M. Histone H2A.X phosphorylation and Caspase-Initiated Chromatin Condensation in late-stage erythropoiesis. Epigenetics Chromatin 2021; 14:37. [PMID: 34330317 PMCID: PMC8325214 DOI: 10.1186/s13072-021-00408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Background Condensation of chromatin prior to enucleation is an essential component of terminal erythroid maturation, and defects in this process are associated with inefficient erythropoiesis and anemia. However, the mechanisms involved in this phenomenon are not well understood. Here, we describe a potential role for the histone variant H2A.X in erythropoiesis. Results We find in multiple model systems that this histone is essential for normal maturation, and that the loss of H2A.X in erythroid cells results in dysregulation in expression of erythroid-specific genes as well as a nuclear condensation defect. In addition, we demonstrate that erythroid maturation is characterized by phosphorylation at both S139 and Y142 on the C-terminal tail of H2A.X during late-stage erythropoiesis. Knockout of the kinase BAZ1B/WSTF results in loss of Y142 phosphorylation and a defect in nuclear condensation, but does not replicate extensive transcriptional changes to erythroid-specific genes observed in the absence of H2A.X. Conclusions We relate these findings to Caspase-Initiated Chromatin Condensation (CICC) in terminal erythroid maturation, where aspects of the apoptotic pathway are invoked while apoptosis is specifically suppressed. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00408-5.
Collapse
Affiliation(s)
- Nazish N Jeffery
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Christina Davidson
- Wilmot Cancer Institute, Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Scott A Peslak
- Department of Medicine, Division of Hematology/Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - James Palis
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Michael Bulger
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
43
|
N-Glycomics of Human Erythrocytes. Int J Mol Sci 2021; 22:ijms22158063. [PMID: 34360826 PMCID: PMC8347577 DOI: 10.3390/ijms22158063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan. Although several proteomic studies have been carried out, the glycosylation of RBC membrane proteins has not been systematically investigated. This work aims at exploring the human RBC N-glycome by high-sensitivity MALDI-MS techniques to outline a fingerprint of RBC N-glycans. To this purpose, the MALDI-TOF spectra of healthy subjects harboring different blood groups were acquired. Results showed the predominant occurrence of neutral and sialylated complex N-glycans with bisected N-acetylglucosamine and core- and/or antennary fucosylation. In the higher mass region, these species presented with multiple N-acetyllactosamine repeating units. Amongst the detected glycoforms, the presence of glycans bearing ABO(H) antigens allowed us to define a distinctive spectrum for each blood group. For the first time, advanced glycomic techniques have been applied to a comprehensive exploration of human RBC N-glycosylation, providing a new tool for the early detection of distinct glycome changes associated with disease conditions as well as for understanding the molecular recognition of pathogens.
Collapse
|
44
|
Xin Z, Zhang W, Gong S, Zhu J, Li Y, Zhang Z, Fang X. Mapping Human Pluripotent Stem Cell-derived Erythroid Differentiation by Single-cell Transcriptome Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:358-376. [PMID: 34284135 PMCID: PMC8864192 DOI: 10.1016/j.gpb.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/22/2021] [Accepted: 03/06/2021] [Indexed: 10/28/2022]
Abstract
There is an imbalance between the supply and demand of functional red blood cells (RBCs) in clinical applications. This imbalance can be addressed by regenerating RBCs using several in vitro methods. Induced pluripotent stem cells (iPSCs) can handle the low supply of cord blood and the ethical issues in embryonic stem cell research and provide a promising strategy to eliminate immune rejection. However, no complete single-cell level differentiation pathway exists for the iPSC-derived RBC differentiation system. In this study, we used iPSC line BC1 to establish a RBCs regeneration system. The 10× genomics single-cell transcriptome platform was used to map the cell lineage and differentiation trajectories on day 14 of the regeneration system. We observed that iPSCs differentiation was not synchronized during embryoid body (EB) culture. The cells (day 14) mainly consisted of mesodermal and various blood cells, similar to the yolk sac hematopoiesis. We identified six cell classifications and characterized the regulatory transcription factors (TFs) networks and cell-cell contacts underlying the system. iPSCs undergo two transformations during the differentiation trajectory, accompanied by the dynamic expression of cell adhesion molecules and estrogen-responsive genes. We identified different stages of erythroid cells, such as burst-forming unit erythroid (BFU-E) and orthochromatic erythroblasts (ortho-E), and found that the regulation of TFs (e.g., TFDP1 and FOXO3) is erythroid-stage specific. Immune erythroid cells were identified in our system. This study provides systematic theoretical guidance for optimizing the iPSCs-derived RBCs differentiation system, and this system is a useful model for simulating in vivo hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Zijuan Xin
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Zhu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Yanming Li
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
45
|
Ryzhkova A, Battulin N. Genome Reorganization during Erythroid Differentiation. Genes (Basel) 2021; 12:genes12071012. [PMID: 34208866 PMCID: PMC8306769 DOI: 10.3390/genes12071012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
Hematopoiesis is a convenient model to study how chromatin dynamics plays a decisive role in regulation of cell fate. During erythropoiesis a population of stem and progenitor cells becomes increasingly lineage restricted, giving rise to terminally differentiated progeny. The concerted action of transcription factors and epigenetic modifiers leads to a silencing of the multipotent transcriptome and activation of the transcriptional program that controls terminal differentiation. This article reviews some aspects of the biology of red blood cells production with the focus on the extensive chromatin reorganization during differentiation.
Collapse
Affiliation(s)
- Anastasia Ryzhkova
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Laboratory of Developmental Genetics, 630090 Novosibirsk, Russia;
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
46
|
Soboleva S, Kurita R, Ek F, Åkerstrand H, Silvério-Alves R, Olsson R, Nakamura Y, Miharada K. Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Commun Biol 2021; 4:677. [PMID: 34083702 PMCID: PMC8175573 DOI: 10.1038/s42003-021-02202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Immortalized erythroid cell lines are expected to be a promising source of ex vivo manufactured red blood cells (RBCs), however the induction of enucleation in these cell lines is inefficient at present. We utilized an imaging-based high-throughput system to identify chemical compounds that trigger enucleation of human erythroid cell lines. Among >3,300 compounds, we identified multiple histone deacetylase inhibitors (HDACi) inducing enucleated cells from the cell line, although an increase in membrane fragility of enucleated cells was observed. Gene expression profiling revealed that HDACi treatment increased the expression of cytoskeletal genes, while an erythroid-specific cell membrane protein, SPTA1, was significantly down-regulated. Restoration of SPTA1 expression using CRISPR-activation partially rescued the fragility of cells and thereby improved the enucleation efficiency. Our observations provide a potential solution for the generation of mature cells from erythroid cell lines, contributing to the future realization of the use of immortalized cell lines for transfusion therapies. In an imaging-based screen of >3,300 compounds compounds, Soboleva et al identify HDAC inhibitors as mediators of erythroid cell enucleation. They further show that the erythroid-specific cell membrane protein, SPTA1, is downregulated in HDAC inhibited cells and that restoration of SPTA1 expression using CRISPR-activation partially rescues the fragility of cells, improving enucleation efficiency.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rita Silvério-Alves
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
47
|
Liang R, Menon V, Qiu J, Arif T, Renuse S, Lin M, Nowak R, Hartmann B, Tzavaras N, Benson DL, Chipuk JE, Fribourg M, Pandey A, Fowler V, Ghaffari S. Mitochondrial localization and moderated activity are key to murine erythroid enucleation. Blood Adv 2021; 5:2490-2504. [PMID: 34032849 PMCID: PMC8152511 DOI: 10.1182/bloodadvances.2021004259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Mammalian red blood cells (RBCs), which primarily contain hemoglobin, exemplify an elaborate maturation process, with the terminal steps of RBC generation involving extensive cellular remodeling. This encompasses alterations of cellular content through distinct stages of erythroblast maturation that result in the expulsion of the nucleus (enucleation) followed by the loss of mitochondria and all other organelles and a transition to anaerobic glycolysis. Whether there is any link between erythroid removal of the nucleus and the function of any other organelle, including mitochondria, remains unknown. Here we demonstrate that mitochondria are key to nuclear clearance. Using live and confocal microscopy and high-throughput single-cell imaging, we show that before nuclear polarization, mitochondria progressively move toward one side of maturing erythroblasts and aggregate near the nucleus as it extrudes from the cell, a prerequisite for enucleation to proceed. Although we found active mitochondrial respiration is required for nuclear expulsion, levels of mitochondrial activity identify distinct functional subpopulations, because terminally maturing erythroblasts with low relative to high mitochondrial membrane potential are at a later stage of maturation, contain greatly condensed nuclei with reduced open chromatin-associated acetylation histone marks, and exhibit higher enucleation rates. Lastly, to our surprise, we found that late-stage erythroblasts sustain mitochondrial metabolism and subsequent enucleation, primarily through pyruvate but independent of in situ glycolysis. These findings demonstrate the critical but unanticipated functions of mitochondria during the erythroblast enucleation process. They are also relevant to the in vitro production of RBCs as well as to disorders of the erythroid lineage.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental and Regenerative Biology
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences
| | - Vijay Menon
- Department of Cell, Developmental and Regenerative Biology
| | - Jiajing Qiu
- Department of Cell, Developmental and Regenerative Biology
| | - Tasleem Arif
- Department of Cell, Developmental and Regenerative Biology
| | - Santosh Renuse
- Institute of Genetic Medicine, and
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Miao Lin
- Department of Cell, Developmental and Regenerative Biology
| | - Roberta Nowak
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, CA; and
| | | | | | | | - Jerry E Chipuk
- Department of Oncological Sciences
- Tisch Cancer Institute
| | | | | | - Velia Fowler
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Saghi Ghaffari
- Department of Cell, Developmental and Regenerative Biology
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences
- Department of Oncological Sciences
- Tisch Cancer Institute
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
48
|
Impairment of human terminal erythroid differentiation by histone deacetylase 5 deficiency. Blood 2021; 138:1615-1627. [PMID: 34036344 DOI: 10.1182/blood.2020007401] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
Histone deacetylases (HDACs) are a group of enzymes catalyzing the removal of acetyl groups from histone and non-histone proteins. HDACs have been shown to play diverse functions in a wide range of biological processes. However, their roles in mammalian erythropoiesis remain to be fully defined. We show here that of the eleven classic HDAC family members, six of them (HDAC 1,2,3 and HDAC 5,6,7) are expressed in human erythroid cells with HDAC5 most significantly up regulated during terminal erythroid differentiation. Knockdown of HDAC5 by either shRNA or siRNA in human CD34+ cells followed by erythroid cell culture led to increased apoptosis, decreased chromatin condensation, and impaired enucleation of erythroblasts. Biochemical analyses revealed that HDAC5 deficiency resulted in activation of p53 in association with increased acetylation of p53. Furthermore, while acetylation of histone 4 (H4) is decreased during normal terminal erythroid differentiation, HDAC5 deficiency led to increased acetylation of H4 (K12) in late stage erythroblasts. This increased acetylation was accompanied by decreased chromatin condensation, implying a role for H4 (K12) deacetylation in chromatin condensation. ATAC-seq and RNA-seq analyses revealed that HDAC5 knockdown leads to increased chromatin accessibility genome wide and global changes in gene expression. Moreover, pharmacological inhibition of HDAC5 by the inhibitor LMK235 also led to increased H4 acetylation, impaired chromatin condensation and enucleation. Taken together, our findings have uncovered previously unrecognized roles and molecular mechanisms of action for HDAC5 in human erythropoiesis. These results may provide insights into understanding the anemia associated with HDAC inhibitor treatment.
Collapse
|
49
|
Naarmann-de Vries IS, Senatore R, Moritz B, Marx G, Urlaub H, Niessing D, Ostareck DH, Ostareck-Lederer A. Methylated HNRNPK acts on RPS19 to regulate ALOX15 synthesis in erythropoiesis. Nucleic Acids Res 2021; 49:3507-3523. [PMID: 33660773 PMCID: PMC8034617 DOI: 10.1093/nar/gkab116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control is essential to safeguard structural and metabolic changes in enucleated reticulocytes during their terminal maturation to functional erythrocytes. The timely synthesis of arachidonate 15-lipoxygenase (ALOX15), which initiates mitochondria degradation at the final stage of reticulocyte maturation is regulated by the multifunctional protein HNRNPK. It constitutes a silencing complex at the ALOX15 mRNA 3′ untranslated region that inhibits translation initiation at the AUG by impeding the joining of ribosomal 60S subunits to 40S subunits. To elucidate how HNRNPK interferes with 80S ribosome assembly, three independent screens were applied. They consistently demonstrated a differential interaction of HNRNPK with RPS19, which is localized at the head of the 40S subunit and extends into its functional center. During induced erythroid maturation of K562 cells, decreasing arginine dimethylation of HNRNPK is linked to a reduced interaction with RPS19 in vitro and in vivo. Dimethylation of residues R256, R258 and R268 in HNRNPK affects its interaction with RPS19. In noninduced K562 cells, RPS19 depletion results in the induction of ALOX15 synthesis and mitochondria degradation. Interestingly, residue W52 in RPS19, which is frequently mutated in Diamond-Blackfan Anemia (DBA), participates in specific HNRNPK binding and is an integral part of a putative aromatic cage.
Collapse
Affiliation(s)
| | - Roberta Senatore
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Bodo Moritz
- Institute of Pharmacy, Faculty of Natural Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry Group, Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital, RWTH Aachen University, Aachen Germany
| |
Collapse
|
50
|
Feola M, Zamperone A, Moskop D, Chen H, Casu C, Lama D, Di Martino J, Djedaini M, Papa L, Martinez MR, Choesang T, Bravo-Cordero JJ, MacKay M, Zumbo P, Brinkman N, Abrams CS, Rivella S, Hattangadi S, Mason CE, Hoffman R, Ji P, Follenzi A, Ginzburg YZ. Pleckstrin-2 is essential for erythropoiesis in β-thalassemic mice, reducing apoptosis and enhancing enucleation. Commun Biol 2021; 4:517. [PMID: 33941818 PMCID: PMC8093212 DOI: 10.1038/s42003-021-02046-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Erythropoiesis involves complex interrelated molecular signals influencing cell survival, differentiation, and enucleation. Diseases associated with ineffective erythropoiesis, such as β-thalassemias, exhibit erythroid expansion and defective enucleation. Clear mechanistic determinants of what make erythropoiesis effective are lacking. We previously demonstrated that exogenous transferrin ameliorates ineffective erythropoiesis in β-thalassemic mice. In the current work, we utilize transferrin treatment to elucidate a molecular signature of ineffective erythropoiesis in β-thalassemia. We hypothesize that compensatory mechanisms are required in β-thalassemic erythropoiesis to prevent apoptosis and enhance enucleation. We identify pleckstrin-2-a STAT5-dependent lipid binding protein downstream of erythropoietin-as an important regulatory node. We demonstrate that partial loss of pleckstrin-2 leads to worsening ineffective erythropoiesis and pleckstrin-2 knockout leads to embryonic lethality in β-thalassemic mice. In addition, the membrane-associated active form of pleckstrin-2 occurs at an earlier stage during β-thalassemic erythropoiesis. Furthermore, membrane-associated activated pleckstrin-2 decreases cofilin mitochondrial localization in β-thalassemic erythroblasts and pleckstrin-2 knockdown in vitro induces cofilin-mediated apoptosis in β-thalassemic erythroblasts. Lastly, pleckstrin-2 enhances enucleation by interacting with and activating RacGTPases in β-thalassemic erythroblasts. This data elucidates the important compensatory role of pleckstrin-2 in β-thalassemia and provides support for the development of targeted therapeutics in diseases of ineffective erythropoiesis.
Collapse
Affiliation(s)
- Maria Feola
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Andrea Zamperone
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Daniel Moskop
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huiyong Chen
- Erythropoiesis Laboratory, New York Blood Center, New York, NY, USA
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Carla Casu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dechen Lama
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Di Martino
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansour Djedaini
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luena Papa
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Ruiz Martinez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tenzin Choesang
- Erythropoiesis Laboratory, New York Blood Center, New York, NY, USA
| | | | | | - Paul Zumbo
- Weill Cornell Medical College, New York, NY, USA
| | | | - Charles S Abrams
- Perelman Center for Advanced Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Ji
- Northwestern University, Chicago, IL, USA
| | - Antonia Follenzi
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Yelena Z Ginzburg
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|