1
|
Herzog CMS, Goeminne LJE, Poganik JR, Barzilai N, Belsky DW, Betts-LaCroix J, Chen BH, Chen M, Cohen AA, Cummings SR, Fedichev PO, Ferrucci L, Fleming A, Fortney K, Furman D, Gorbunova V, Higgins-Chen A, Hood L, Horvath S, Justice JN, Kiel DP, Kuchel GA, Lasky-Su J, LeBrasseur NK, Maier AB, Schilling B, Sebastiano V, Slagboom PE, Snyder MP, Verdin E, Widschwendter M, Zhavoronkov A, Moqri M, Gladyshev VN. Challenges and recommendations for the translation of biomarkers of aging. NATURE AGING 2024; 4:1372-1383. [PMID: 39285015 DOI: 10.1038/s43587-024-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024]
Abstract
Biomarkers of aging (BOA) are quantitative parameters that predict biological age and ideally its changes in response to interventions. In recent years, many promising molecular and omic BOA have emerged with an enormous potential for translational geroscience and improving healthspan. However, clinical translation remains limited, in part due to the gap between preclinical research and the application of BOA in clinical research and other translational settings. We surveyed experts in these areas to better understand current challenges for the translation of aging biomarkers. We identified six key barriers to clinical translation and developed guidance for the field to overcome them. Core recommendations include linking BOA to clinically actionable insights, improving affordability and availability to broad populations and validation of biomarkers that are robust and responsive at the level of individuals. Our work provides key insights and practical recommendations to overcome barriers impeding clinical translation of BOA.
Collapse
Affiliation(s)
- Chiara M S Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
| | - Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Brian H Chen
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Steven R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | | | | | | | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford School of Medicine, Stanford, CA, USA
- The National Scientific and Research Council, Austral University, Buenos Aires, Argentina
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | | | - Lee Hood
- Buck Institute for Research on Aging, Novato, CA, USA
- Phenome Health, Seattle, WA, USA
| | | | - Jamie N Justice
- XPRIZE Foundation, Culver City, CA, USA
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - George A Kuchel
- University of Connecticut School of Medicine, @UConnAging, Farmington, CT, USA
| | - Jessica Lasky-Su
- Department of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - P Eline Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
- Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, UK
- Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | | | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sequeira L, Benfeito S, Fernandes C, Lima I, Peixoto J, Alves C, Machado CS, Gaspar A, Borges F, Chavarria D. Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now? Pharmaceutics 2024; 16:708. [PMID: 38931832 PMCID: PMC11206728 DOI: 10.3390/pharmaceutics16060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor functions. Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common NDs and represent an enormous burden both in terms of human suffering and economic cost. The available therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are unable to modify the diseases' progression. Over the last decades, research efforts have been focused on developing new pharmacological treatments for these NDs. However, to date, no breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or reverse the progression of NDs remains an unmet clinical need. This review summarizes the major hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and PD, describing as representative examples some advances in the development of drug candidates targeting oxidative stress and adenosine A2A receptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fernanda Borges
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS—Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Roversi C, Tavazzi E, Vettoretti M, Di Camillo B. A dynamic probabilistic model of the onset and interaction of cardio-metabolic comorbidities on an ageing adult population. Sci Rep 2024; 14:11514. [PMID: 38769364 PMCID: PMC11106085 DOI: 10.1038/s41598-024-61135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
Comorbidity is widespread in the ageing population, implying multiple and complex medical needs for individuals and a public health burden. Determining risk factors and predicting comorbidity development can help identify at-risk subjects and design prevention strategies. Using socio-demographic and clinical data from approximately 11,000 subjects monitored over 11 years in the English Longitudinal Study of Ageing, we develop a dynamic Bayesian network (DBN) to model the onset and interaction of three cardio-metabolic comorbidities, namely type 2 diabetes (T2D), hypertension, and heart problems. The DBN allows us to identify risk factors for developing each morbidity, simulate ageing progression over time, and stratify the population based on the risk of outcome occurrence. By applying hierarchical agglomerative clustering to the simulated, dynamic risk of experiencing morbidities, we identified patients with similar risk patterns and the variables contributing to their discrimination. The network reveals a direct joint effect of biomarkers and lifestyle on outcomes over time, such as the impact of fasting glucose, HbA1c, and BMI on T2D development. Mediated cross-relationships between comorbidities also emerge, showcasing the interconnected nature of these health issues. The model presents good calibration and discrimination ability, particularly in predicting the onset of T2D (iAUC-ROC = 0.828, iAUC-PR = 0.294) and survival (iAUC-ROC = 0.827, iAUC-PR = 0.311). Stratification analysis unveils two distinct clusters for all comorbidities, effectively discriminated by variables like HbA1c for T2D and age at baseline for heart problems. The developed DBN constitutes an effective, highly-explainable predictive risk tool for simulating and stratifying the dynamic risk of developing cardio-metabolic comorbidities. Its use could help identify the effects of risk factors and develop health policies that prevent the occurrence of comorbidities.
Collapse
Affiliation(s)
- Chiara Roversi
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo, 6/b, 35131, Padua, Italy
| | - Erica Tavazzi
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo, 6/b, 35131, Padua, Italy
| | - Martina Vettoretti
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo, 6/b, 35131, Padua, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padua, Via Giovanni Gradenigo, 6/b, 35131, Padua, Italy.
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis, Viale dell'Università, 16, 35020, Legnaro (PD), Italy.
| |
Collapse
|
4
|
Macip CC, Hasan R, Hoznek V, Kim J, Lu YR, Metzger LE, Sethna S, Davidsohn N. Gene Therapy-Mediated Partial Reprogramming Extends Lifespan and Reverses Age-Related Changes in Aged Mice. Cell Reprogram 2024; 26:24-32. [PMID: 38381405 PMCID: PMC10909732 DOI: 10.1089/cell.2023.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Aging is a complex progression of changes best characterized as the chronic dysregulation of cellular processes leading to deteriorated tissue and organ function. Although aging cannot currently be prevented, its impact on life- and healthspan in the elderly can potentially be minimized by interventions that aim to return these cellular processes to optimal function. Recent studies have demonstrated that partial reprogramming using the Yamanaka factors (or a subset; OCT4, SOX2, and KLF4; OSK) can reverse age-related changes in vitro and in vivo. However, it is still unknown whether the Yamanaka factors (or a subset) are capable of extending the lifespan of aged wild-type (WT) mice. In this study, we show that systemically delivered adeno-associated viruses, encoding an inducible OSK system, in 124-week-old male mice extend the median remaining lifespan by 109% over WT controls and enhance several health parameters. Importantly, we observed a significant improvement in frailty scores indicating that we were able to improve the healthspan along with increasing the lifespan. Furthermore, in human keratinocytes expressing exogenous OSK, we observed significant epigenetic markers of age reversal, suggesting a potential reregulation of genetic networks to a younger potentially healthier state. Together, these results may have important implications for the development of partial reprogramming interventions to reverse age-associated diseases in the elderly.
Collapse
Affiliation(s)
| | | | | | - Jihyun Kim
- Rejuvenate Bio, San Diego, California, USA
| | - Yuancheng Ryan Lu
- Department of Biology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
5
|
Statzer C, Park JYC, Ewald CY. Extracellular Matrix Dynamics as an Emerging yet Understudied Hallmark of Aging and Longevity. Aging Dis 2023; 14:670-693. [PMID: 37191434 DOI: 10.14336/ad.2022.1116] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/16/2022] [Indexed: 05/17/2023] Open
Abstract
The biomechanical properties of extracellular matrices (ECM) and their consequences for cellular homeostasis have recently emerged as a driver of aging. Here we review the age-dependent deterioration of ECM in the context of our current understanding of the aging processes. We discuss the reciprocal interactions of longevity interventions with ECM remodeling. And the relevance of ECM dynamics captured by the matrisome and the matreotypes associated with health, disease, and longevity. Furthermore, we highlight that many established longevity compounds promote ECM homeostasis. A large body of evidence for the ECM to qualify as a hallmark of aging is emerging, and the data in invertebrates is promising. However, direct experimental proof that activating ECM homeostasis is sufficient to slow aging in mammals is lacking. We conclude that further research is required and anticipate that a conceptual framework for ECM biomechanics and homeostasis will provide new strategies to promote health during aging.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
6
|
Sharma A, Chabloz S, Lapides RA, Roider E, Ewald CY. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023; 15:nu15020445. [PMID: 36678315 PMCID: PMC9861325 DOI: 10.3390/nu15020445] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Disrupted biological function, manifesting through the hallmarks of aging, poses one of the largest threats to healthspan and risk of disease development, such as metabolic disorders, cardiovascular ailments, and neurodegeneration. In recent years, numerous geroprotectors, senolytics, and other nutraceuticals have emerged as potential disruptors of aging and may be viable interventions in the immediate state of human longevity science. In this review, we focus on the decrease in nicotinamide adenine dinucleotide (NAD+) with age and the supplementation of NAD+ precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), in combination with other geroprotective compounds, to restore NAD+ levels present in youth. Furthermore, these geroprotectors may enhance the efficacy of NMN supplementation while concurrently providing their own numerous health benefits. By analyzing the prevention of NAD+ degradation through the inhibition of CD38 or supporting protective downstream agents of SIRT1, we provide a potential framework of the CD38/NAD+/SIRT1 axis through which geroprotectors may enhance the efficacy of NAD+ precursor supplementation and reduce the risk of age-related diseases, thereby potentiating healthspan in humans.
Collapse
Affiliation(s)
- Arastu Sharma
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- AVEA Life AG, Bahnhofplatz, 6300 Zug, Switzerland
| | | | - Rebecca A. Lapides
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Robert Larner, MD College of Medicine at the University of Vermont, Burlington, VT 05405, USA
| | - Elisabeth Roider
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
- Maximon AG, Bahnhofplatz, 6300 Zug, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zürich, 8603 Schwerzenbach, Switzerland
- Correspondence:
| |
Collapse
|
7
|
Trautman ME, Richardson NE, Lamming DW. Protein restriction and branched-chain amino acid restriction promote geroprotective shifts in metabolism. Aging Cell 2022; 21:e13626. [PMID: 35526271 PMCID: PMC9197406 DOI: 10.1111/acel.13626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 01/20/2023] Open
Abstract
The proportion of humans suffering from age‐related diseases is increasing around the world, and creative solutions are needed to promote healthy longevity. Recent work has clearly shown that a calorie is not just a calorie—and that low protein diets are associated with reduced mortality in humans and promote metabolic health and extended lifespan in rodents. Many of the benefits of protein restriction on metabolism and aging are the result of decreased consumption of the three branched‐chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we discuss the emerging evidence that BCAAs are critical modulators of healthy metabolism and longevity in rodents and humans, as well as the physiological and molecular mechanisms that may drive the benefits of BCAA restriction. Our results illustrate that protein quality—the specific composition of dietary protein—may be a previously unappreciated driver of metabolic dysfunction and that reducing dietary BCAAs may be a promising new approach to delay and prevent diseases of aging.
Collapse
Affiliation(s)
- Michaela E. Trautman
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Interdepartmental Graduate Program in Nutritional Sciences University of Wisconsin‐Madison Madison Wisconsin USA
| | - Nicole E. Richardson
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| | - Dudley W. Lamming
- Department of Medicine University of Wisconsin‐Madison Madison Wisconsin USA
- William S. Middleton Memorial Veterans Hospital Madison Wisconsin USA
- Endocrinology and Reproductive Physiology Graduate Training Program University of Wisconsin‐Madison Madison Wisconsin USA
| |
Collapse
|
8
|
Zhang Q, Kong WL, Yuan JJ, Chen Q, Gong CX, Liu L, Wang FX, Huang JC, Yang GQ, Zhou K, Xu R, Xiong XY, Yang QW. Redistribution of Histone Marks on Inflammatory Genes Associated With Intracerebral Hemorrhage-Induced Acute Brain Injury in Aging Rats. Front Neurosci 2022; 16:639656. [PMID: 35495024 PMCID: PMC9051396 DOI: 10.3389/fnins.2022.639656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The contribution of histone mark redistribution to the age-induced decline of endogenous neuroprotection remains unclear. In this study, we used an intracerebral hemorrhage (ICH)-induced acute brain injury rat model to study the transcriptional and chromatin responses in 13- and 22-month-old rats. Transcriptome analysis (RNA-seq) revealed that the expression of neuroinflammation-associated genes was systematically upregulated in ICH rat brains, irrespective of age. Further, we found that interferon-γ (IFN-γ) response genes were activated in both 13- and 22-month-old rats. Anti-IFN-γ treatment markedly reduced ICH-induced acute brain injury in 22-month-old rats. At the chromatin level, ICH induced the redistribution of histone modifications in the promoter regions, especially H3K4me3 and H3K27me3, in neuroinflammation-associated genes in 13- and 22-month-old rats, respectively. Moreover, ICH-induced histone mark redistribution and gene expression were found to be correlated. Collectively, these findings demonstrate that histone modifications related to gene expression are extensively regulated in 13- and 22-month-old rats and that anti-IFN-γ is effective for ICH treatment, highlighting the potential of developing therapies targeting histone modifications to cure age-related diseases, including brain injury and neuroinflammation.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei-lin Kong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Jun-Jie Yuan
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiong Chen
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Chang-Xiong Gong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Liang Liu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Fa-Xiang Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia-Cheng Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Guo-Qiang Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Kai Zhou
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Rui Xu
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao-Yi Xiong
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
- Acupuncture and Tuina School, Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Acupuncture and Chronobiology Key Laboratory of Sichuan, Chengdu, China
- Xiao-Yi Xiong ;
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, The Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Qing-Wu Yang
| |
Collapse
|
9
|
Huang J, Zhang F, Su M, Li J, Yi W, Hou L, Yang S, Liu J, Zhang H, Ma T, Wu D. MeCP2 prevents age-associated cognitive decline via restoring synaptic plasticity in a senescence-accelerated mouse model. Aging Cell 2021; 20:e13451. [PMID: 34363729 PMCID: PMC8441320 DOI: 10.1111/acel.13451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Age‐related cognitive decline in neurodegenerative diseases, such as Alzheimer's disease (AD), is associated with the deficits of synaptic plasticity. Therefore, exploring promising targets to enhance synaptic plasticity in neurodegenerative disorders is crucial. It has been demonstrated that methyl‐CpG binding protein 2 (MeCP2) plays a vital role in neuronal development and MeCP2 malfunction causes various neurodevelopmental disorders. However, the role of MeCP2 in neurodegenerative diseases has been less reported. In the study, we found that MeCP2 expression in the hippocampus was reduced in the hippocampus of senescence‐accelerated mice P8 (SAMP8) mice. Overexpression of hippocampal MeCP2 could elevate synaptic plasticity and cognitive function in SAMP8 mice, while knockdown of MeCP2 impaired synaptic plasticity and cognitive function in senescence accelerated‐resistant 1 (SAMR1) mice. MeCP2‐mediated regulation of synaptic plasticity may be associated with CREB1 pathway. These results suggest that MeCP2 plays a vital role in age‐related cognitive decline by regulating synaptic plasticity and indicate that MeCP2 may be promising targets for the treatment of age‐related cognitive decline in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin‐Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine Guangxi University of Chinese Medicine Nanning China
| | - Min Su
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Jiaxin Li
- Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Wen Yi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Li‐Xiang Hou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Si‐Man Yang
- Scientific research center of traditional Chinese medicine Guangxi University of Chinese Medicine Nanning China
| | - Jin‐Yuan Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Hao‐An Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| | - Tengfei Ma
- Institute for Stem Cell and Neural Regeneration School of Pharmacy Nanjing Medical University Nanjing China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Deng‐Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy Pharmacy School of Xuzhou Medical University Xuzhou China
| |
Collapse
|
10
|
Gómez-Linton DR, Alavez S, Navarro-Ocaña A, Román-Guerrero A, Pinzón-López L, Pérez-Flores LJ. Achiote (Bixa orellana) Lipophilic Extract, Bixin, and δ-tocotrienol Effects on Lifespan and Stress Resistance in Caenorhabditis elegans. PLANTA MEDICA 2021; 87:368-374. [PMID: 33124008 DOI: 10.1055/a-1266-6674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The onset of many degenerative diseases related to aging has been associated with a decrease in the activity of antistress systems, and pharmacological interventions increasing stress resistance could be effective to prevent the development of such diseases. Achiote is a valuable source of carotenoid and tocotrienols, which have antioxidant activity. In this work, we explore the capacity of an achiote seed extract and its main compounds to modulate the lifespan and antistress responses on Caenorhabditis elegans, as well as the mechanisms involved in these effects. Achiote lipophilic extract, bixin, and δ-tocotrienol were applied on nematodes to carry out lifespan, stress resistance, and fertility assays. The achiote seed extract increased the median and maximum lifespan up to 35% and 27% and increased resistance against oxidative and thermal stresses without adverse effects on fertility. The beneficial effects were mimicked by a bixin+δ-tocotrienol mixture. All the effects on lifespan and stress resistance were independent of caloric restriction but dependent on the insulin/insulin growth factor-1 pathway. This study could provide insights for further research on a new beneficial use of this important crop in health and nutraceutical applications beyond its use as a source of natural pigments.
Collapse
Affiliation(s)
- Darío R Gómez-Linton
- Programa de Doctorado en Biotecnología, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-L, Lerma de Villada, Estado de México, México
| | - Arturo Navarro-Ocaña
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| | | | - Laura J Pérez-Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| |
Collapse
|
11
|
Caprara G. Mediterranean-Type Dietary Pattern and Physical Activity: The Winning Combination to Counteract the Rising Burden of Non-Communicable Diseases (NCDs). Nutrients 2021; 13:429. [PMID: 33525638 PMCID: PMC7910909 DOI: 10.3390/nu13020429] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Non-communicable diseases (NCDs) (mainly cardiovascular diseases, cancers, chronic respiratory diseases and type 2 diabetes) are the main causes of death worldwide. Their burden is expected to rise in the future, especially in less developed economies and among the poor spread across middle- and high-income countries. Indeed, the treatment and prevention of these pathologies constitute a crucial challenge for public health. The major non-communicable diseases share four modifiable behavioral risk factors: unhealthy diet, physical inactivity, tobacco usage and excess of alcohol consumption. Therefore, the adoption of healthy lifestyles, which include not excessive alcohol intake, no smoking, a healthy diet and regular physical activity, represents a crucial and economical strategy to counteract the global NCDs burden. This review summarizes the latest evidence demonstrating that Mediterranean-type dietary pattern and physical activity are, alone and in combination, key interventions to both prevent and control the rise of NCDs.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, IEO, European Institute of Oncology, IRCCS, 20139 Milano, Italy
| |
Collapse
|
12
|
Huang J, Yang G, Xiong X, Wang M, Yuan J, Zhang Q, Gong C, Qiu Z, Meng Z, Xu R, Chen Q, Chen R, Xie L, Xie Q, Zi W, Jiang G, Zhou Y, Yang Q. Age-related CCL12 Aggravates Intracerebral Hemorrhage-induced Brain Injury via Recruitment of Macrophages and T Lymphocytes. Aging Dis 2020; 11:1103-1115. [PMID: 33014526 PMCID: PMC7505273 DOI: 10.14336/ad.2019.1229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2019] [Indexed: 11/29/2022] Open
Abstract
Circulating factors associated with aging have been shown to be involved in the development of age-related chronic and acute brain diseases. Here, we aimed to investigate the roles and mechanisms of CCL12, a circulating factor that is highly expressed in the plasma of aged rodents after intracerebral hemorrhage (ICH) using parabiosis and ICH models. Neurological deficit score (NDS), mortality rate, brain water content (BWC), and levels of inflammatory factors were determined to assess the degree of ICH-induced brain injury. Peripheral inflammatory cell infiltration was examined using immunofluorescence and flow cytometry. After confirming that acute brain injury after ICH was aggravated with age, we found that brain and plasma CCL12 levels were markedly higher in old mice than in young mice after ICH, and that plasma CCL12 was able to enter the brain. Using CCL12-/- mice, we showed that the degree of damage in the brain—as determined by NDS, mortality rate, BWC, levels of inflammatory factors, and numbers of degenerative and apoptotic neural cells and surviving neurons was significantly attenuated compared to that observed in old wild-type (WT) mice. These effects were reversed in CCL12-treated old mice. The detrimental effects caused by CCL12 may involve its ability to recruit macrophages and T cells. Finally, the administration of an anti-CCL12 antibody markedly improved the outcomes of ICH mice. Our results are the first to indicate that elevated peripheral CCL12 levels in old mice aggravates ICH-induced brain injury by recruiting macrophages and T cells. Thus, CCL12 may be a new target for ICH treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Guoqiang Yang
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Xiaoyi Xiong
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Maolin Wang
- 1Central Laboratory, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Junjie Yuan
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qin Zhang
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Changxiong Gong
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zhongming Qiu
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Zhaoyou Meng
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China.,1Central Laboratory, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Rui Xu
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qiong Chen
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Ru Chen
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Lexing Xie
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qi Xie
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Wenjie Zi
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Guohui Jiang
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yu Zhou
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Qingwu Yang
- 1Department of Neurology, Xinqiao Hospital, the Army Medical University (Third Military Medical University), Chongqing 400037, China
| |
Collapse
|
13
|
Wang S, Pan D, Su M, Huang G, Sun G. Moderately high folate level may offset the effects of aberrant DNA methylation of P16 and P53 genes in esophageal squamous cell carcinoma and precancerous lesions. GENES AND NUTRITION 2020; 15:18. [PMID: 32993492 PMCID: PMC7526188 DOI: 10.1186/s12263-020-00677-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND This study evaluated gene-nutrition interactions between folate and the aberrant DNA methylation of tumor suppressor genes in different stages of carcinogenesis of esophageal squamous cell carcinoma (ESCC). METHODS Two hundred ESCC cases, 200 esophageal precancerous lesion (EPL) cases, and 200 controls matched by age (± 2 years) and gender were used for this study. Baseline data and dietary intake information was collected via questionnaire. The serum folate levels and methylation status of promoter regions of p16 and p53 were detected. RESULTS The interactions of increased serum folate level with unmethylated p16 and p53 promoter regions were significantly associated with a reduced risk of both EPL and ESCC (p for interaction < 0.05). The interactions of the lowest quartile of serum folate level with p16 or p53 methylation was significantly associated with an increased risk of ESCC (OR = 2.96, 95% CI, 1.45-6.05; OR = 2.34, 95% CI, 1.15-4.75). An increased serum folate level was also related to a decreasing trend of EPL and ESCC risks when p16 or p53 methylation occurred. The interaction of spinach, Chinese cabbage, liver and bean intake with unmethylated p16 and p53 was significantly associated with a reduced risk of EPL or ESCC (p for interaction < 0.05). CONCLUSIONS The interactions between a high folate level and unmethylated p16 and p53 promoter regions may have a strong preventive effect on esophageal carcinogenesis. Additionally, a high folate level may offset the tumor-promoting effects of aberrant DNA methylation of the genes, but it is also noteworthy that a very high level of folate may not have a protective effect on EPL in some cases.
Collapse
Affiliation(s)
- Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P. R. China.
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Ming Su
- Huai'an District Center for Disease Control and Prevention, Huai'an, 223200, P. R. China
| | - Guiling Huang
- Jiangsu Research Center for Primary Health Development and General Practice Education, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
14
|
Khan N, Kim SK, Gagneux P, Dugan L, Varki A. Maximum reproductive lifespan correlates with CD33rSIGLEC gene number: Implications for NADPH oxidase-derived reactive oxygen species in aging. FASEB J 2020; 34:1928-1938. [PMID: 31907986 PMCID: PMC7018541 DOI: 10.1096/fj.201902116r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Abstract
Humans and orcas are among the very rare species that have a prolonged post-reproductive lifespan (PRLS), during which the aging process continues. Reactive oxygen species (ROS) derived from mitochondria and from the NADPH oxidase (NOX) enzymes of innate immune cells are known to contribute to aging, with the former thought to be dominant. CD33-related-Siglecs are immune receptors that recognize self-associated-molecular-patterns and modulate NOX-derived-ROS. We herewith demonstrate a strong correlation of lifespan with CD33rSIGLEC gene number in 26 species, independent of body weight or phylogeny. The correlation is stronger when considering total CD33rSIGLEC gene number rather than those encoding inhibitory and activating subsets, suggesting that lifetime balancing of ROS is important. Combining independent lines of evidence including the short half-life and spontaneous activation of neutrophils, we calculate that even without inter-current inflammation, a major source of lifetime ROS exposure may actually be neutrophil NOX-derived. However, genomes of human supercentenarians (>110 years) do not harbor a significantly higher number of functional CD33rSIGLEC genes. Instead, lifespan correlation with CD33rSIGLEC gene number was markedly strengthened by excluding the post-reproductive lifespan of humans and orcas (R2 = 0.83; P < .0001). Thus, CD33rSIGLEC modulation of ROS likely contributes to maximum reproductive lifespan, but other unknown mechanisms could be important to PRLS.
Collapse
Affiliation(s)
- Naazneen Khan
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University Medical Center, Stanford, California, 94305, United States
| | - Pascal Gagneux
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| | - Laura Dugan
- VA Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Nashville, TN, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Center for Academic Research and Training in Anthropogeny, Departments of Medicine, Pathology, Anthropology and Cellular & Molecular Medicine, UC San Diego, La Jolla, California, 92093-0687, United States
| |
Collapse
|
15
|
Early sirtuin 2 inhibition prevents age-related cognitive decline in a senescence-accelerated mouse model. Neuropsychopharmacology 2020; 45:347-357. [PMID: 31471557 PMCID: PMC6901465 DOI: 10.1038/s41386-019-0503-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The senescence-accelerated mouse prone-8 (SAMP8) model has been considered as a good model for aged-related cognitive decline and Alzheimer's disease (AD). Since epigenetic alterations represent a crucial mechanism during aging, in the present study we tested whether the inhibition of the histone deacetylase sirtuin 2 (SIRT2) could ameliorate the age-dependent cognitive impairments and associated neuropathology shown by SAMP8 mice. To this end, the potent SIRT2-selective inhibitor, 33i (5 mg/kg i.p. 8 weeks) was administered to 5-month-old (early treatment) and 8-month-old (late treatment) SAMP8 and aged matched control, senescence-accelerated mouse resistant-1 (SAMR1) mice. 33i administration to 5-month-old SAMP8 mice improved spatial learning and memory impairments shown by this strain in the Morris water maze. SAMP8 showed hyperphosphorylation of tau protein and decrease levels of SIRT1 in the hippocampus, which were not altered by 33i treatment. However, this treatment upregulated the glutamate receptor subunits GluN2A, GluN2B, and GluA1 in both SAMR1 and SAMP8. Moreover, early SIRT2 inhibition prevented neuroinflammation evidenced by reduced levels of GFAP, IL-1β, Il-6, and Tnf-α, providing a plausible explanation for the improvement of cognitive deficits shown by 33i-treated SAMP8 mice. When 33i was administered to 8-month-old SAMP8 with a severe established pathology, increases in GluN2A, GluN2B, and GluA1 were observed; however, it was not able to reverse the cognitive decline or the neuroinflammation. These results suggest that early SIRT2 inhibition might be beneficial in preventing age-related cognitive deficits, neuroinflammation, and AD progression and could be an emerging candidate for the treatment of other diseases linked to dementia.
Collapse
|
16
|
Manzano-Crespo M, Atienza M, Cantero JL. Lower serum expression of miR-181c-5p is associated with increased plasma levels of amyloid-beta 1-40 and cerebral vulnerability in normal aging. Transl Neurodegener 2019; 8:34. [PMID: 31700619 PMCID: PMC6827222 DOI: 10.1186/s40035-019-0174-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Previous studies have shown that expression levels of miR-181c are downregulated by amyloid-β (Aβ) deposition and chronic cerebral hypoperfusion, both factors largely associated with the development of AD. Moreover, reduced 2-[18F]fluoro-2-deoxy-D-glucose (FDG)-PET brain metabolism and volume loss of regions of the medial temporal lobe have been generally recognized as hallmarks of AD. Based on this evidence, we have here investigated potential associations between serum levels of miR-181c-5p and these AD signatures in asymptomatic elderly subjects. Methods Ninety-five normal elderly subjects underwent clinical, cognitive, structural MRI, and FDG-PET explorations. Serum expression levels of miR-181c-5p and plasma Aβ concentrations were further analyzed in this cohort. Regression analyses were performed to assess associations between serum miR-181c-5p levels and cognitive functioning, plasma Aβ, structural and metabolic brain changes. Results Decreased serum expression of miR-181c-5p was associated with increased plasma levels of Aβ1–40, deficits in cortical glucose metabolism, and volume reduction of the entorhinal cortex. No significant associations were found between lower miR-181c-5p levels and cognitive deficits or cortical thinning. Conclusions These findings suggest that deregulation of serum miR-181c-5p may indicate cerebral vulnerability in late life.
Collapse
Affiliation(s)
- Marta Manzano-Crespo
- 1Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain
| | - Mercedes Atienza
- 1Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain.,2CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031, Madrid, Spain
| | - Jose L Cantero
- 1Laboratory of Functional Neuroscience, Pablo de Olavide University, Ctra. de Utrera Km 1, 41013 Seville, Spain.,2CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031, Madrid, Spain
| |
Collapse
|
17
|
Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. Eur J Med Chem 2019; 185:111770. [PMID: 31711793 DOI: 10.1016/j.ejmech.2019.111770] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 02/02/2023]
Abstract
Piperine has been associated with neuroprotective effects and monoamine oxidase (MAO) inhibition, thus being an attractive scaffold to develop new antiparkinsonian agents. Accordingly, we prepared a small library of piperine derivatives and screened the inhibitory activities towards human MAO isoforms (hMAO-A and hMAO-B). Structure-activity relationship (SAR) studies pointed out that the combination of α-cyano and benzyl ester groups increased both potency and selectivity towards hMAO-B. Kinetic experiments with compounds 7, 10 and 15 indicated a competitive hMAO-B inhibition mechanism. Compounds 15 and 16, at 10 μM, caused a small but significant decrease in P-gp efflux activity in Caco-2 cells. Compound 15 stands out as the most potent piperine-based hMAO-B inhibitor (IC50 = 47.4 nM), displaying favourable drug-like properties and a broad safety window. Compound 15 is thus a suitable candidate for lead optimization and the development of multitarget-directed ligands.
Collapse
|
18
|
Maruzs T, Simon-Vecsei Z, Kiss V, Csizmadia T, Juhász G. On the Fly: Recent Progress on Autophagy and Aging in Drosophila. Front Cell Dev Biol 2019; 7:140. [PMID: 31396511 PMCID: PMC6667644 DOI: 10.3389/fcell.2019.00140] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023] Open
Abstract
Autophagy ensures the lysosome-mediated breakdown and recycling of self-material, as it not only degrades obsolete or damaged intracellular constituents but also provides building blocks for biosynthetic and energy producing reactions. Studies in animal models including Drosophila revealed that autophagy defects lead to the rapid decline of neuromuscular function, neurodegeneration, sensitivity to stress (such as starvation or oxidative damage), and stem cell loss. Of note, recently identified human Atg gene mutations cause similar symptoms including ataxia and mental retardation. Physiologically, autophagic degradation (flux) is known to decrease during aging, and this defect likely contributes to the development of such age-associated diseases. Many manipulations that extend lifespan (including dietary restriction, reduced TOR kinase signaling, exercise or treatment with various anti-aging substances) require autophagy for their beneficial effect on longevity, pointing to the key role of this housekeeping process. Importantly, genetic (e.g., Atg8a overexpression in either neurons or muscle) or pharmacological (e.g., feeding rapamycin or spermidine to animals) promotion of autophagy has been successfully used to extend lifespan in Drosophila, suggesting that this intracellular degradation pathway can rejuvenate cells and organisms. In this review, we highlight key discoveries and recent progress in understanding the relationship of autophagy and aging in Drosophila.
Collapse
Affiliation(s)
- Tamás Maruzs
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsófia Simon-Vecsei
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Viktória Kiss
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
19
|
Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging. Biogerontology 2019; 20:583-603. [DOI: 10.1007/s10522-019-09817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
|
20
|
Cleland C, Reis RS, Ferreira Hino AA, Hunter R, Fermino RC, Koller de Paiva H, Czestschuk B, Ellis G. Built environment correlates of physical activity and sedentary behaviour in older adults: A comparative review between high and low-middle income countries. Health Place 2019; 57:277-304. [PMID: 31132718 DOI: 10.1016/j.healthplace.2019.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Claire Cleland
- Queen's University Belfast, Centre for Public Health, Belfast, United Kingdom.
| | - Rodrigo Siqueira Reis
- Washington University in St. Louis, Brown School, Prevention Research Center, St. Louis, MO, United States of America; Pontificia Universidade Catolica Do Parana, Research Group in Physical Activity and Quality of Life, Curitiba, Parana, Brazil; Pontificia Universidade Catolica Do Parana, Graduate Program in Urban Management, Curitiba, Parana, Brazil.
| | - Adriano Akira Ferreira Hino
- Pontificia Universidade Catolica Do Parana, Research Group in Physical Activity and Quality of Life, Curitiba, Parana, Brazil; Federal University of Technology - Parana, Research Group in Environment, Physical Activity and Health, Post-Graduate Program in Physical Education, Curitiba, PR, Brazil.
| | - Ruth Hunter
- Queen's University Belfast, Centre for Public Health, Belfast, United Kingdom; Queen's University Belfast, UKCRC Centre of Excellence for Public Health, Belfast, United Kingdom.
| | - Rogério César Fermino
- Pontificia Universidade Catolica Do Parana, Research Group in Physical Activity and Quality of Life, Curitiba, Parana, Brazil; Federal University of Technology - Parana, Research Group in Environment, Physical Activity and Health, Post-Graduate Program in Physical Education, Curitiba, PR, Brazil.
| | - Hermes Koller de Paiva
- Pontificia Universidade Catolica Do Parana, Research Group in Physical Activity and Quality of Life, Curitiba, Parana, Brazil; Federal University of Parana, Post-Graduate Program in Physical Education, Curitiba, Parana, Brazil.
| | - Bruno Czestschuk
- Pontificia Universidade Catolica Do Parana, Research Group in Physical Activity and Quality of Life, Curitiba, Parana, Brazil; Federal University of Parana, Post-Graduate Program in Physical Education, Curitiba, Parana, Brazil.
| | - Geraint Ellis
- Queen's University Belfast, School of Natural and Built Environment, Belfast, United Kingdom.
| |
Collapse
|
21
|
Young plasma ameliorates aging-related acute brain injury after intracerebral hemorrhage. Biosci Rep 2019; 39:BSR20190537. [PMID: 31040201 PMCID: PMC6522807 DOI: 10.1042/bsr20190537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Aging has been shown to contribute to both the declined biofunctions of aging brain and aggravation of acute brain damage, and the former could be reversed by young plasma. These results suggest that young plasma treatment may also reduce the acute brain damage induced by intracerebral hemorrhage (ICH). In the present study, we first found that the administration of young plasma significantly reduced the mortality and neurological deficit score in aging ICH rodents, which might be due to the decreased brain water content, damaged neural cells, and increased survival neurons around the perihematomal brain tissues. Then, proteomics analysis was used to screen out the potential neuroprotective circulating factors and the results showed that many factors were changed in health human plasma among young, adult, and old population. Among these significantly changed factors, the plasma insulin-like growth factor 1 (IGF-1) level was significantly decreased with age, which was further confirmed both in human and rats detected by ELISA. Additionally, the brain IGF-1 protein level in aging ICH rats was markedly decreased when compared with young rats. Interestingly, the relative decreased brain IGF-1 level was reversed by the treatment of young plasma in aging ICH rats, while the mRNA level was non-significantly changed. Furthermore, the IGF-1 administration significantly ameliorated the acute brain injury in aging ICH rats. These results indicated that young circulating factors, like IGF-1, may enter brain tissues to exert neuroprotective effects, and young plasma may be considered as a novel therapeutic approach for the clinical treatment of aging-related acute brain injury.
Collapse
|
22
|
Nolte ED, Nolte KA, Yan SS. Anxiety and task performance changes in an aging mouse model. Biochem Biophys Res Commun 2019; 514:246-251. [PMID: 31029428 DOI: 10.1016/j.bbrc.2019.04.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
Due to the increasing focus on aging as an important risk factor for many serious diseases and an emphasis on animal models that have translational value, an increasing number of animal models are being aged. Animal behavior tests can be used to assess effects of aging in mouse models. Female mice begin exhibiting anxiety-like behaviors at 12 months of age which become more serious at 24 months, while males exhibit no age-induced anxiety-like behaviors. Males and females equally demonstrate a failure of daily task performance at 24 months. Despite these cognitive changes, the mice do not show changes in gross motor function. These results suggest cognitive impairment in non-genetically modified aging mice.
Collapse
Affiliation(s)
- Erika D Nolte
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Keith A Nolte
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
23
|
Zhang M, Yang X, Xu W, Cai X, Wang M, Xu Y, Yu P, Zhang J, Zheng Y, Chen J, Yang J, Zhu X. Evaluation of the effects of three sulfa sweeteners on the lifespan and intestinal fat deposition in C. elegans. Food Res Int 2019; 122:66-76. [PMID: 31229125 DOI: 10.1016/j.foodres.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 02/01/2023]
Abstract
High sugar content in beverage or food can affect the aging process, and thus natural/artificial sweeteners are widely used as substitutes. However, whether sweeteners have such adverse effects as sugar remains to be clarified. Therefore, in the current study, three sulfa sweeteners, namely, saccharin sodium salt hydrate (SAC2), sodium cyclamate (CYC3) and acesulfame potassium (AceK4) were evaluated for their effects on the lifespan, deposition of lipofuscin, exercise activity, food intake, and intestinal fat deposition (IFD5) of Caenorhabditis elegans (C. elegans6). It was shown that SAC at 0.3 and 10 mg/mL shortened the lifespan of C. elegans and impaired the exercise capacity, while at other concentrations no significant effects were observed. In contrast, CYC at 0.1, 1 and 10 mg/mL prolonged the lifespan of C. elegans. On the other hand, AceK at 1 mg/mL increased the lifespan of C. elegans, and could decrease both lipofuscin deposition and IFD in a dose-dependent manner. Taken together, these results indicated that although SAC, CYC, and AceK all belong to the sulfa sweeteners, each has distinct effects on different physiological activities associated with aging, at least in C. elegans.
Collapse
Affiliation(s)
- Mohan Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China; Wenzhou Center for Disease Control and Prevention, Wenzhou, Zhejiang 325000, China
| | - Xin Yang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Wan Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Xiaobo Cai
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Mingxiang Wang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yuying Xu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Peilin Yu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Jun Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Yifan Zheng
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China
| | - Jiang Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China.
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang 311121, China.; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research, Hangzhou, Zhejiang 310006, China.
| | - Xinqiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang 310058, China; The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| |
Collapse
|
24
|
Lazarus NR, Harridge SDR. The Inherent Human Aging Process and the Facilitating Role of Exercise. Front Physiol 2018; 9:1135. [PMID: 30349481 PMCID: PMC6186798 DOI: 10.3389/fphys.2018.01135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/30/2018] [Indexed: 01/15/2023] Open
Abstract
Arguably the best available depictions of the global physiological changes produced by age are the profiles of world record performance times in swimming, athletics, and cycling, depicting the trajectory of decline in maximal integrated physiological performance capability. The curves suggest that the aging process produces a synchronized, controlled decrease in physiological performance over the human lifespan. The shape of the performance profile by age is essentially independent of discipline, distance, or phenotype. Importantly, the specific times of performance are not the driving force in the production of the shape of the declining performance profile. We suggest that in these highly trained individuals the shape of the curve is generated by the aging process operating on a physiology optimized for any given age. We hypothesize that with adequate training this same profile and trajectory, but with lower performance times, would be generated by all individuals who engage in sufficient physical activity/exercise. Unlike performance, data obtained from examining individual physiological systems or tissues do not give information on the unceasing and changing global integrating functions of the aging process. However, these data do give valuable information about the integrity of physiological systems at a particular age and allow a direct comparison to be made between the effects of inactivity and physical activity/exercise. Being physically active has been shown to have global protective effects on physiological systems and thus facilitates the aging process by maintaining physiological integrity. There is emerging evidence which suggests that physiological regulation of aging may be multi-compartmentalized. We do not advocate exercise as a panacea, but all the evidence indicates that being physically active and exercising is far superior to any other alternative for achieving optimal aging.
Collapse
Affiliation(s)
- Norman R Lazarus
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stephen D R Harridge
- Centre for Human & Applied Physiological Sciences, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Ellis G, Hunter RF, Hino AAF, Cleland CL, Ferguson S, Murtagh B, Anez CRR, Melo S, Tully M, Kee F, Sengupta U, Reis R. Study protocol: healthy urban living and ageing in place (HULAP): an international, mixed methods study examining the associations between physical activity, built and social environments for older adults the UK and Brazil. BMC Public Health 2018; 18:1135. [PMID: 30241475 PMCID: PMC6150980 DOI: 10.1186/s12889-018-6018-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/04/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The ability to 'age in place' is dependent on a range of inter-personal, social and built environment attributes, with the latter being a key area for potential intervention. There is an emerging body of evidence that indicates the type of built environment features that may best support age friendly communities, but there is a need to expand and consolidate this, while generating a better understanding of how on how research findings can be most effectively be translated in to policy and practice. METHODS The study is based on two case study cities, Curtiba (Brazil) and Belfast (UK), which have highly contrasting physical, social and policy environments. The study deploys a mix methods approach, mirrored in each city. This includes the recruitment of 300 participants in each city to wear GPS and accelerometers, a survey capturing physical functioning and other personal attributes, as well as their perception of their local environment using NEWS-A. The study will also measure the built environments of the cities using GIS and develop a tool for auditing the routes used by participants around their neighbourhoods. The study seeks to comparatively map the policy actors and resources involved in healthy ageing in the two cities through interviews, focus groups and discourse analysis. Finally, the study has a significant knowledge exchange component, including the development of a tool to assess the capacities of both researchers and research users to maximise the impact of the research findings. DISCUSSION The HULAP study has been designed and implemented by a multi-disciplinary team and integrates differing methodologies to purposefully impact on policy and practice on healthy ageing in high and low-middle income countries. It has particular strengths in its combination of objective and self-reported measures using validated tools and the integration of GPS, accelerometer and GIS data to provide a robust assessment of 'spatial energetics'. The strong knowledge exchange strand means that the study is expected to also contribute to our understanding of how to maximise research impact in this field and create effective evidence for linking older adult's physical activity with the social, built and policy environments.
Collapse
Affiliation(s)
- Geraint Ellis
- School of Natural and Built Environment, David Keir Building, Stranmillis Road, Belfast, BT9 5AG UK
| | - Ruth F. Hunter
- UKCRC Centre of Excellence for Public Health (NI), Queen’s University Belfast, Belfast, BT12 6BA UK
| | - Adriano Akira F. Hino
- Postgraduate in Health Technology, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Claire L. Cleland
- School of Natural and Built Environment, David Keir Building, Stranmillis Road, Belfast, BT9 5AG UK
| | - Sara Ferguson
- School of Natural and Built Environment, David Keir Building, Stranmillis Road, Belfast, BT9 5AG UK
| | - Brendan Murtagh
- School of Natural and Built Environment, David Keir Building, Stranmillis Road, Belfast, BT9 5AG UK
| | | | - Sara Melo
- Queen’s Management School, Queen’s University Belfast, Belfast, BT9 5EE UK
| | - Mark Tully
- UKCRC Centre of Excellence for Public Health (NI), Queen’s University Belfast, Belfast, BT12 6BA UK
| | - Frank Kee
- UKCRC Centre of Excellence for Public Health (NI), Queen’s University Belfast, Belfast, BT12 6BA UK
| | - Urmi Sengupta
- School of Natural and Built Environment, David Keir Building, Stranmillis Road, Belfast, BT9 5AG UK
| | - Rodrigo Reis
- Prevention Research Center, Brown School, Washington University in St. Louis, St Louis, USA
- Research Group in Physical Actity and Quality of Life (GPAQ), Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Postgraduate Program in Urban Management (PPGTU), Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
26
|
Caprara G. Diet and longevity: The effects of traditional eating habits on human lifespan extension. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2018. [DOI: 10.3233/mnm-180225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the dawn of time human beings have been trying to improve the quality of the existence and extend their lifespan. Genetic, environmental, behavioral and dietary factors influence the pathways that regulate aging and life expectancy, thus rendering longevity a very complex phenomenon. Although a long-lived elixir has not yet been found, physicians and scientists agree that nutrition has a major impact on the overall mortality and morbidity, hence becoming the subject of a widespread scientific research. This review describes, analyzes and compares the effects of different types of diets in reducing the onset of typical Western countries non-communicable diseases (NCDs) (cardiovascular diseases, tumors, chronic respiratory diseases, diabetes, etc.), thus increasing the average lifespan. It will first depict the most relevant characteristics, nutraceutical properties and effects on the populations of the Mediterranean, Japanese, Vegetarian and New Nordic Diet. Finally, it will describe the impact of different dietary restrictions in modulating the genetic pathways that regulate metabolism and aging. Overall, this work reinforces the evidence that specific eating habits, in addition to healthy and active lifestyles, are crucial to increase people’s health span and to achieve an optimal longevity.
Collapse
Affiliation(s)
- Greta Caprara
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
27
|
Macedo JC, Vaz S, Bakker B, Ribeiro R, Bakker PL, Escandell JM, Ferreira MG, Medema R, Foijer F, Logarinho E. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat Commun 2018; 9:2834. [PMID: 30026603 PMCID: PMC6053425 DOI: 10.1038/s41467-018-05258-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy, an abnormal chromosome number, has been linked to aging and age-associated diseases, but the underlying molecular mechanisms remain unknown. Here we show, through direct live-cell imaging of young, middle-aged, and old-aged primary human dermal fibroblasts, that aneuploidy increases with aging due to general dysfunction of the mitotic machinery. Increased chromosome mis-segregation in elderly mitotic cells correlates with an early senescence-associated secretory phenotype (SASP) and repression of Forkhead box M1 (FoxM1), the transcription factor that drives G2/M gene expression. FoxM1 induction in elderly and Hutchison–Gilford progeria syndrome fibroblasts prevents aneuploidy and, importantly, ameliorates cellular aging phenotypes. Moreover, we show that senescent fibroblasts isolated from elderly donors’ cultures are often aneuploid, and that aneuploidy is a key trigger into full senescence phenotypes. Based on this feedback loop between cellular aging and aneuploidy, we propose modulation of mitotic efficiency through FoxM1 as a potential strategy against aging and progeria syndromes. Evidence for mitotic decline in aged cells and for aneuploidy-driven progression into full senescence is limited. Here, the authors find that in aged cells, mitotic gene repression leads to increased chromosome mis-segregation and aneuploidy that triggers permanent cell cycle arrest and full senescence.
Collapse
Affiliation(s)
- Joana Catarina Macedo
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sara Vaz
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bjorn Bakker
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Rui Ribeiro
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Petra Lammigje Bakker
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Jose Miguel Escandell
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901, Oeiras, Portugal
| | - Miguel Godinho Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901, Oeiras, Portugal.,Telomere Shortening and Cancer Laboratory, Institute for Research on Cancer and Aging (IRCAN), UMR7284, U1081, UNS, 06107, Nice, France
| | - René Medema
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Elsa Logarinho
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal. .,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Cell Division Unit, Faculty of Medicine, Department of Experimental Biology, Universidade do Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
28
|
Zhai Y, Wei R, Liu J, Wang H, Cai W, Zhao M, Hu Y, Wang S, Yang T, Liu X, Yang J, Liu S. Drug-induced premature senescence model in human dental follicle stem cells. Oncotarget 2018; 8:7276-7293. [PMID: 28030852 PMCID: PMC5352320 DOI: 10.18632/oncotarget.14085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022] Open
Abstract
Aging is identified by a progressive decline of physiological integrity leading to age-related degenerative diseases, but its causes is unclear. Human dental pulp stem cells (hDPSCs) has a remarkable rejuvenated capacity that relies on its resident stem cells. However, because of the lack of proper senescence models, exploration of the underlying molecular mechanisms has been hindered. Here, we established a cellular model utilizing a hydroxyurea (HU) treatment protocol and effectively induced Human dental pulp stem cells to undergo cellular senescence. Age-related phenotypic changes were identified by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, declined proliferation and differentiation capacity, elevated G0/G1 cell cycle arrest, increased apoptosis and reactive oxygen species levels. Furthermore, we tested the expression of key genes in various DNA repair pathways including nonhomologous end-joining (NHEJ) and homologous recombination (HR) pathways. In addition, our results showed that Dental pulp stem cells from young donors are more resistant to apoptosis and exhibit increased non-homologous end joining activity compared to old donors. Further transcriptome analysis demonstrate that multiple pathways are involved in the HU-induced Dental pulp stem cells ageing, including genes associated with DNA damage and repair, mitochondrial dysfunction and increased reactive oxygen species levels. Taken together, the cellular model have important implications for understanding the molecular exploration of Dental pulp stem cells senescence and aging.
Collapse
Affiliation(s)
- Yuanfen Zhai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Rongbin Wei
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Junjun Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Huihui Wang
- Department of Pediatric Dentistry, School of Stomatology, Tongji University, Shanghai Engineering Research Center, Shanghai, P. R. China
| | - Wenping Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Mengmeng Zhao
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yongguang Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Shuwei Wang
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Tianshu Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Xiaodong Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Jianhua Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Shangfeng Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China.,Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
29
|
Najar RA, Wani NA, Bhat JA, Dar NJ, Rahat B, Gupta AP, Kaur J, Kaur J, Hamid A. Modulation of dietary folate with age confers selective hepatocellular epigenetic imprints through DNA methylation. J Nutr Biochem 2018; 53:121-132. [PMID: 29220669 DOI: 10.1016/j.jnutbio.2017.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/15/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
Abstract
The present study has been designed to determine the effect of folate modulation (deficiency/supplementation) with aging on the promoter methylation of tumor suppressor and proto-oncogenes to understand the underlying mechanism of epigenetic alterations. Folate deficiency was induced for 3 and 5 months in weanling, young and adult groups, and after 3 months of folate deficiency, they were repleted with physiological folate (2 mg/kg diet) and folate oversupplementation (8 mg/kg diet) for another 2 months. The methylation facet in the present study revealed that the combined effect of folate deficiency and aging decreased the methylation index. Folate deficiency with age resulted in the up-regulation of proto-oncogenes (C-MYC and C-JUN) and cell cycle regulator gene Cyclin E as a result of promoter hypomethylation. However, in case of tumor suppressor genes (p53, p15ink4b and p16ink4a), the expression levels were found to be decreased at transcriptional level due to promoter hypermethylation. Upon repletion with physiological folate and folate oversupplementation, we found down-regulation of proto-oncogenes and up-regulation of tumor suppressor genes as a result of promoter hypermethylation and hypomethylation, respectively. Deregulation of these important genes due to folate deficiency may contribute toward the pathogenesis at cellular level.
Collapse
Affiliation(s)
- Rauf Ahmad Najar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Nissar Ahmad Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Javeed Ahmad Bhat
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Nawab John Dar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ajai Prakash Gupta
- Quality Control and Quality Assurance Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jaspreet Kaur
- University Institute of Engineering and Technology, Panjab University, Chandigarh 160016, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| |
Collapse
|
30
|
Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget 2017; 7:16542-66. [PMID: 26918729 PMCID: PMC4941334 DOI: 10.18632/oncotarget.7665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.
Collapse
|
31
|
Gender difference of metabolic syndrome and its association with dietary diversity at different ages. Oncotarget 2017; 8:73568-73578. [PMID: 29088727 PMCID: PMC5650282 DOI: 10.18632/oncotarget.20625] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous research indicated that dietary diversity had favorable association with metabolic syndrome (MetS), and it has not been investigated in China. METHODS Adults (aged 18+) with complete dietary and biochemical data were collected from 2009 China Health and Nutrition Survey (n=4308). Dietary diversity was measured by modified Dietary Diversity Score (DDS). MetS was defined by the harmonized criteria. The association between DDS and MetS was investigated by multivariable adjusted logistic regression. RESULTS An inverse-U shape relationship between MetS risk and age was detected for both genders, and female were more vulnerable than male at old times. More diversified diet decreased the risk of MetS for young female (≥18 & ≤45), similar trends were detected in serum TGs, abdominal adiposity, blood pressure, and fasting blood glucose (all P<0.05). However, this association reversed for old female (>60) and male adults (>45&≤60). Greater DDS was associated with higher serum TGs, and lower HDL-C level for male adults, higher blood pressure for old men, but lower blood pressure and fasting blood glucose in young men (all P<0.05). CONCLUSION Male adults and old female had the highest risk of getting MetS. More diversified diet decreased MetS risk for young female, but increased the risk for male adults and old female.
Collapse
|
32
|
Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, Araoka T, Vazquez-Ferrer E, Donoso D, Roman JL, Xu J, Rodriguez Esteban C, Nuñez G, Nuñez Delicado E, Campistol JM, Guillen I, Guillen P, Izpisua Belmonte JC. In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell 2017; 167:1719-1733.e12. [PMID: 27984723 DOI: 10.1016/j.cell.2016.11.052] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/14/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022]
Abstract
Aging is the major risk factor for many human diseases. In vitro studies have demonstrated that cellular reprogramming to pluripotency reverses cellular age, but alteration of the aging process through reprogramming has not been directly demonstrated in vivo. Here, we report that partial reprogramming by short-term cyclic expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) ameliorates cellular and physiological hallmarks of aging and prolongs lifespan in a mouse model of premature aging. Similarly, expression of OSKM in vivo improves recovery from metabolic disease and muscle injury in older wild-type mice. The amelioration of age-associated phenotypes by epigenetic remodeling during cellular reprogramming highlights the role of epigenetic dysregulation as a driver of mammalian aging. Establishing in vivo platforms to modulate age-associated epigenetic marks may provide further insights into the biology of aging.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Aida Platero-Luengo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Fumiyuki Hatanaka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tomoaki Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mo Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Lam
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Masakazu Kurita
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, 30107 Guadalupe, Murcia, Spain
| | - Ergin Beyret
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Toshikazu Araoka
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, 30107 Guadalupe, Murcia, Spain
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Donoso
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jose Luis Roman
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jinna Xu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Gabriel Nuñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Estrella Nuñez Delicado
- Universidad Católica San Antonio de Murcia (UCAM) Campus de los Jerónimos, 30107 Guadalupe, Murcia, Spain
| | - Josep M Campistol
- Hospital Clinic, University of Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Isabel Guillen
- Fundación Dr. Pedro Guillén, Clínica Cemtro, 28035 Madrid, Spain
| | - Pedro Guillen
- Fundación Dr. Pedro Guillén, Clínica Cemtro, 28035 Madrid, Spain
| | | |
Collapse
|
33
|
Reddy GB, Reddy PY, Surolia A. Alzheimer's and Danish dementia peptides induce cataract and perturb retinal architecture in rats. Biomol Concepts 2017; 8:45-84. [PMID: 28222009 DOI: 10.1515/bmc-2016-0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/08/2016] [Indexed: 02/08/2023] Open
Abstract
Familial Danish dementias (FDDs) are autosomal dominant neurodegenerative disorders that are associated with visual defects. In some aspects, FDD is similar to Alzheimer's disease (AD)- the amyloid deposits in FDD and AD are made of short peptides: amyloid β (Aβ) in AD and ADan in FDD. Previously, we demonstrated an interaction between the dementia peptides and α-crystallin leading to lens opacification in organ culture due to impaired chaperone activity of α-crystallin. Herein, we report the in vivo effects of ADan and Aβ on the eye. ADan [reduced (ADan-red) and oxidized (ADan-oxi)] and Aβ (Aβ1-40 and Aβ1-42) were injected intravitreally in rats. The onset of cataract was seen after injection of all the peptides, but the cataract matured by 2 weeks in the case of ADan-red, 5 weeks for ADan-oxi and 6 weeks for Aβ1-40, while Aβ1-42 had minimal effect on cataract progression. The severity of cataract is associated with insolubilization and alterations in crystallins and loss of chaperone activity of α-crystallin. Further, disruption of the architecture of the retina was evident from a loss of rhodopsin, increased gliosis, and the thinning of the retina. These results provide a basis for the dominant heredo-otoophthalmo-encephalopathy (HOOE)/FDD syndrome and indicate that ADan peptides are more potent than Aβpeptides in inflicting visual impairment.
Collapse
Affiliation(s)
- G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad 500007, Telangana, India
| | - P Yadagiri Reddy
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| |
Collapse
|
34
|
Arlia-Ciommo A, Svistkova V, Mohtashami S, Titorenko VI. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget 2017; 7:5204-25. [PMID: 26636650 PMCID: PMC4868681 DOI: 10.18632/oncotarget.6440] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023] Open
Abstract
A recently conducted chemical genetic screen for pharmaceuticals that can extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also a selective anti-tumor chemical compound; it kills different types of cultured cancer cells if used at concentrations that do not compromise the viability of non-cancerous cells. These studies have revealed that yeast can be successfully used as a model organism for high-throughput screens aimed at the discovery of selectively acting anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of cancer cells. The mechanisms underlying these key metabolic features of cancer cells and fermenting yeast have been established; such mechanisms are discussed in this review. We also suggest how a yeast-based chemical genetic screen can be used for the high-throughput development of selective anti-tumor pharmaceuticals that kill only cancer cells. This screen consists of searching for chemical compounds capable of increasing the abundance of membrane lipids enriched in unsaturated fatty acids that would therefore be toxic only to rapidly proliferating cells, such as cancer cells and fermenting yeast.
Collapse
Affiliation(s)
| | | | - Sadaf Mohtashami
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | |
Collapse
|
35
|
Wahl D, Cogger VC, Solon-Biet SM, Waern RVR, Gokarn R, Pulpitel T, Cabo RD, Mattson MP, Raubenheimer D, Simpson SJ, Le Couteur DG. Nutritional strategies to optimise cognitive function in the aging brain. Ageing Res Rev 2016; 31:80-92. [PMID: 27355990 PMCID: PMC5035589 DOI: 10.1016/j.arr.2016.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 12/15/2022]
Abstract
Old age is the greatest risk factor for most neurodegenerative diseases. During recent decades there have been major advances in understanding the biology of aging, and the development of nutritional interventions that delay aging including calorie restriction (CR) and intermittent fasting (IF), and chemicals that influence pathways linking nutrition and aging processes. CR influences brain aging in many animal models and recent findings suggest that dietary interventions can influence brain health and dementia in older humans. The role of individual macronutrients in brain aging also has been studied, with conflicting results about the effects of dietary protein and carbohydrates. A new approach known as the Geometric Framework (GF) has been used to unravel the complex interactions between macronutrients (protein, fat, and carbohydrate) and total energy on outcomes such as aging. These studies have shown that low-protein, high-carbohydrate (LPHC) diets are optimal for lifespan in ad libitum fed animals, while total calories have minimal effect once macronutrients are taken into account. One of the primary purposes of this review is to explore the notion that macronutrients may have a more translational potential than CR and IF in humans, and therefore there is a pressing need to use GF to study the impact of diet on brain aging. Furthermore, given the growing recognition of the role of aging biology in dementia, such studies might provide a new approach for dietary interventions for optimizing brain health and preventing dementia in older people.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Rosilene V R Waern
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Rahul Gokarn
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Faculty of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006 Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord, 2139 Australia.
| |
Collapse
|
36
|
Regenerative decline of stem cells in sarcopenia. Mol Aspects Med 2016; 50:109-17. [DOI: 10.1016/j.mam.2016.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 01/27/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
|
37
|
Fuellen G, Schofield P, Flatt T, Schulz RJ, Boege F, Kraft K, Rimbach G, Ibrahim S, Tietz A, Schmidt C, Köhling R, Simm A. Living Long and Well: Prospects for a Personalized Approach to the Medicine of Ageing. Gerontology 2015; 62:409-16. [PMID: 26675034 DOI: 10.1159/000442746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/25/2015] [Indexed: 11/19/2022] Open
Abstract
Research into ageing and its underlying molecular basis enables us to develop and implement targeted interventions to ameliorate or cure its consequences. However, the efficacy of interventions often differs widely between individuals, suggesting that populations should be stratified or even individualized. Large-scale cohort studies in humans, similar systematic studies in model organisms as well as detailed investigations into the biology of ageing can provide individual validated biomarkers and mechanisms, leading to recommendations for targeted interventions. Human cohort studies are already ongoing, and they can be supplemented by in silico simulations. Systematic studies in animal models are made possible by the use of inbred strains or genetic reference populations of mice. Combining the two, a comprehensive picture of the various determinants of ageing and 'health span' can be studied in detail, and an appreciation of the relevance of results from model organisms to humans is emerging. The interactions between genotype and environment, particularly the psychosocial environment, are poorly studied in both humans and model organisms, presenting serious challenges to any approach to a personalized medicine of ageing. To increase the success of preventive interventions, we argue that there is a pressing need for an individualized evaluation of interventions such as physical exercise, nutrition, nutraceuticals and calorie restriction mimetics as well as psychosocial and environmental factors, separately and in combination. The expected extension of the health span enables us to refocus health care spending on individual prevention, starting in late adulthood, and on the brief period of morbidity at very old age.
Collapse
Affiliation(s)
- Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine und Ageing Research (IBIMA), Rostock University Medical Center, Rostock, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol 2015; 226:R17-28. [PMID: 26021555 PMCID: PMC4490104 DOI: 10.1530/joe-15-0173] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to be robust across a wide range of species. However, the relationship between nutrition, health and aging is still not fully understood. Caloric restriction is the most studied dietary intervention known to extend life in many organisms, but recently the balance of macronutrients has been shown to play a critical role. In this review, we discuss the current understanding regarding the impact of calories and macronutrient balance in mammalian health and longevity, and highlight the key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - Sarah J Mitchell
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - Rafael de Cabo
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - David G Le Couteur
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Sousa-Victor P, García-Prat L, Serrano AL, Perdiguero E, Muñoz-Cánoves P. Muscle stem cell aging: regulation and rejuvenation. Trends Endocrinol Metab 2015; 26:287-96. [PMID: 25869211 DOI: 10.1016/j.tem.2015.03.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
Abstract
Aging is characterized by a progressive decline of physiological integrity leading to the loss of tissue function and vulnerability to disease, but its causes remain poorly understood. Skeletal muscle has an outstanding regenerative capacity that relies on its resident stem cells (satellite cells). This capacity declines with aging, and recent discoveries have redefined our view of why this occurs. Here, we discuss how an interconnection of extrinsic changes in the systemic and local environment and cell-intrinsic mechanisms might provoke failure of normal muscle stem cell functions with aging. We focus particularly on the emergent biology of rejuvenation of old satellite cells, including cells of geriatric age, by restoring traits of youthfulness, with the final goal of improving human health during aging.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Buck Institute for Research on Aging, Novato, CA, USA; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Laura García-Prat
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative diseases (CIBERNED), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
40
|
Longevity extension by phytochemicals. Molecules 2015; 20:6544-72. [PMID: 25871373 PMCID: PMC6272139 DOI: 10.3390/molecules20046544] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Collapse
|