1
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
2
|
Lin Y, Lu Y, Wang Y, Lv C, Chen J, Luo Y, Quan H, Yu W, Chen L, Huang Z, Hao Y, Wang Q, Luo Q, Yan J, Li Y, Zhang W, Du M, He J, Ren F, Guo H. The Regeneration of Intestinal Stem Cells Is Driven by miR-29-Induced Metabolic Reprogramming. ENGINEERING 2024; 42:39-58. [DOI: 10.1016/j.eng.2024.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Imada S, Khawaled S, Shin H, Meckelmann SW, Whittaker CA, Corrêa RO, Alquati C, Lu Y, Tie G, Pradhan D, Calibasi-Kocal G, Nascentes Melo LM, Allies G, Rösler J, Wittenhofer P, Krystkiewicz J, Schmitz OJ, Roper J, Vinolo MAR, Ricciardiello L, Lien EC, Vander Heiden MG, Shivdasani RA, Cheng CW, Tasdogan A, Yilmaz ÖH. Short-term post-fast refeeding enhances intestinal stemness via polyamines. Nature 2024; 633:895-904. [PMID: 39169180 DOI: 10.1038/s41586-024-07840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
For over a century, fasting regimens have improved health, lifespan and tissue regeneration in diverse organisms, including humans1-6. However, how fasting and post-fast refeeding affect adult stem cells and tumour formation has yet to be explored in depth. Here we demonstrate that post-fast refeeding increases intestinal stem cell (ISC) proliferation and tumour formation; post-fast refeeding augments the regenerative capacity of Lgr5+ ISCs, and loss of the tumour suppressor gene Apc in post-fast-refed ISCs leads to a higher tumour incidence in the small intestine and colon than in the fasted or ad libitum-fed states, demonstrating that post-fast refeeding is a distinct state. Mechanistically, we discovered that robust mTORC1 induction in post-fast-refed ISCs increases protein synthesis via polyamine metabolism to drive these changes, as inhibition of mTORC1, polyamine metabolite production or protein synthesis abrogates the regenerative or tumorigenic effects of post-fast refeeding. Given our findings, fast-refeeding cycles must be carefully considered and tested when planning diet-based strategies for regeneration without increasing cancer risk, as post-fast refeeding leads to a burst in stem-cell-driven regeneration and tumorigenicity.
Collapse
Affiliation(s)
- Shinya Imada
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Saleh Khawaled
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Heaji Shin
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Charles A Whittaker
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Renan Oliveira Corrêa
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Chiara Alquati
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Yixin Lu
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Guodong Tie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Dikshant Pradhan
- Barbara K. Ostrom (1978) Bioinformatics and Computing Core Facility, Swanson Biotechnology Center, Koch Institute at the MIT, Cambridge, MA, USA
| | - Gizem Calibasi-Kocal
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Department of Translational Oncology, Institute of Oncology, Dokuz Eylul University, Izmir-Turkey, Turkey
| | | | - Gabriele Allies
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Jonas Rösler
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Pia Wittenhofer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jonathan Krystkiewicz
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jatin Roper
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marco Aurelio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, São Paulo, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX, USA
| | - Evan C Lien
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Matthew G Vander Heiden
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chia-Wei Cheng
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium, Essen, Germany.
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Pathology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Ho J, Puoplo N, Pokharel N, Hirdaramani A, Hanyaloglu AC, Cheng CW. Nutrigenomic underpinnings of intestinal stem cells in inflammatory bowel disease and colorectal cancer development. Front Genet 2024; 15:1349717. [PMID: 39280096 PMCID: PMC11393785 DOI: 10.3389/fgene.2024.1349717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Food-gene interaction has been identified as a leading risk factor for inflammatory bowel disease (IBD) and colorectal cancer (CRC). Accordingly, nutrigenomics emerges as a new approach to identify biomarkers and therapeutic targets for these two strongly associated gastrointestinal diseases. Recent studies in stem cell biology have further shown that diet and nutrition signal to intestinal stem cells (ISC) by altering nutrient-sensing transcriptional activities, thereby influencing barrier integrity and susceptibility to inflammation and tumorigenesis. This review recognizes the dietary factors related to both CRC and IBD and investigates their impact on the overlapping transcription factors governing stem cell activities in homeostasis and post-injury responses. Our objective is to provide a framework to study the food-gene regulatory network of disease-contributing cells and inspire new nutrigenomic approaches for detecting and treating diet-related IBD and CRC.
Collapse
Affiliation(s)
- Jennifer Ho
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY, United States
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Nicholas Puoplo
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Division of Neonatology-Perinatology, Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, United States
| | - Namrata Pokharel
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
| | - Aanya Hirdaramani
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Aylin C Hanyaloglu
- Department of Metabolism, Digestion and Reproduction, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York City, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
5
|
Cotton MJ, Ariel P, Chen K, Walcott VA, Dixit M, Breau KA, Hinesley CM, Kedziora KM, Tang CY, Zheng A, Magness ST, Burclaff J. An in vitro platform for quantifying cell cycle phase lengths in primary human intestinal epithelial cells. Sci Rep 2024; 14:15195. [PMID: 38956443 PMCID: PMC11219882 DOI: 10.1038/s41598-024-66042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
The intestinal epithelium dynamically controls cell cycle, yet no experimental platform exists for directly analyzing cell cycle phases in non-immortalized human intestinal epithelial cells (IECs). Here, we present two reporters and a complete platform for analyzing cell cycle phases in live primary human IECs. We interrogate the transcriptional identity of IECs grown on soft collagen, develop two fluorescent cell cycle reporter IEC lines, design and 3D print a collagen press to make chamber slides for optimal imaging while supporting primary human IEC growth, live image cell cycle dynamics, then assemble a computational pipeline building upon free-to-use programs for semi-automated analysis of cell cycle phases. The PIP-FUCCI construct allows for assigning cell cycle phase from a single image of living cells, and our PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths using our publicly available computational pipeline. Treating PIP-FUCCI IECs with oligomycin demonstrates that inhibiting mitochondrial respiration lengthens G1 phase, and PIP-H2A cells allow us to measure that oligomycin differentially lengthens S and G2/M phases across heterogeneous IECs. These platforms provide opportunities for future studies on pharmaceutical effects on the intestinal epithelium, cell cycle regulation, and more.
Collapse
Affiliation(s)
- Michael J Cotton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaiwen Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Vanessa A Walcott
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michelle Dixit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Katarzyna M Kedziora
- Department of Cell Biology, Center for Biologic Imaging (CBI), University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Cynthia Y Tang
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Zheng
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Nagao I, Ambrosini YM. High-fat diet enhances cell proliferation and compromises intestinal permeability in a translational canine intestinal organoid model. BMC Mol Cell Biol 2024; 25:14. [PMID: 38689222 PMCID: PMC11059635 DOI: 10.1186/s12860-024-00512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Emerging evidence underscores the responsiveness of the mammalian intestine to dietary cues, notably through the involvement of LGR5 + intestinal stem cells in orchestrating responses to diet-driven signals. However, the effects of high-fat diet (HFD) on these cellular dynamics and their impact on gut integrity remain insufficiently understood. Our study aims to assess the multifaceted interactions between palmitic acid (PA), cell proliferation, and the intestinal epithelial barrier using a canine colonoid model. Canine models, due to their relevance in simulating human intestinal diseases, offer a unique platform to explore the molecular mechanisms underlying HFD derived intestinal dysfunction. RESULTS Canine colonoids were subjected to PA exposure, a surrogate for the effects of HFD. This intervention revealed a remarkable augmentation of cell proliferative activity. Furthermore, we observed a parallel reduction in transepithelial electrical resistance (TEER), indicating altered epithelium barrier integrity. While E-cadherin exhibited consistency, ZO-1 displayed a noteworthy reduction in fluorescence intensity within the PA-exposed group. CONCLUSIONS By employing canine intestinal organoid systems, we provide compelling insights into the impact of PA on intestinal physiology. These findings underscore the importance of considering both cell proliferative activity and epithelial integrity in comprehending the repercussions of HFDs on intestinal health. Our study contributes to a deeper understanding of the consequences of HFD on intestinal homeostasis, utilizing valuable translational in vitro models derived from dogs.
Collapse
Affiliation(s)
- Itsuma Nagao
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoko M Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
7
|
Chen XY, Li YY, Lv L, Xiong YM, Qin ZF. The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) as well as hexabromocyclododecane lead to lipid disorders in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122895. [PMID: 37949162 DOI: 10.1016/j.envpol.2023.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
The brominated flame retardant tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether) (TBBPA-DBMPE) is a recommended substitute for hexabromocyclododecane (HBCD), a banned persistent organic pollutant, yet its potential toxicities remains largely unexplored. Here, we investigated the effects of a long-term exposure to TBBPA-DBMPE at nominal doses of 50 and 1000 μg/kg/d on lipid homeostasis in CD-1 mice, in comparison with 50 μg/kg/d HBCD as a positive control. Male pups received chemical treatments through maternal administration via drinking water from postnatal day 0-21, followed by direct administration through drinking water after weaning. On the 23rd week after treatment, the oral lipid tolerance test revealed that low-dose TBBPA-DBMPE as well as HBCD affected lipid tolerance, although the fasting serum triglyceride (TG) levels were not altered. When chemical treatment was extended to the 32nd week, TBBPA-DBMPE-treated animals displayed adipocyte hypertrophy in both white adipose tissue (eWAT) and brown adipose tissue (BAT) and hepatic steatosis, which was largely consistent with the effects of HBCD. These findings indicate that like HBCD, TBBPA-DBMPE led to increased lipid load in mice. Interestingly, we also observed intestinal histological changes, coupled with increased expression of lipid absorption-related genes in both HBCD and TBBPA-DBMPE treatments, suggesting increased lipid absorption. This was supported by in vitro findings that both HBCD and TBBPA-DBMPE promoted lipid accumulation in IEC-6 cells under the stress of oleic acid for 6 h, implying that altered lipid absorption by the intestine may partly contributed to increased lipid load in mice. Overall, the effects of 50 μg/kg/d TBBPA-DBMPE in terms of some parameters were comparable with 50 μg/kg/d HBCD, suggesting that TBBPA-DBMPE may not be an ideal substitute of HBCD.
Collapse
Affiliation(s)
- Xuan-Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Burclaff J. Transcriptional regulation of metabolism in the intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2023; 325:G501-G507. [PMID: 37786942 PMCID: PMC10894668 DOI: 10.1152/ajpgi.00147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Epithelial metabolism in the intestine is increasingly known to be important for stem cell maintenance and activity while also affecting weight gain and diseases. This review compiles studies from recent years which describe major transcription factors controlling metabolic activity across the intestinal epithelium as well as transcriptional and epigenetic networks controlling the factors themselves. Recent studies show that transcriptional regulators serve as the link between signals from the microbiota and diet and epithelial metabolism. Studies have advanced this paradigm to identify druggable targets to block weight gain or disease progression in mice. As such, there is great potential that a better understanding of these regulatory networks will improve our knowledge of intestinal physiology and promote discoveries to benefit human health.
Collapse
Affiliation(s)
- Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, United States
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States
| |
Collapse
|
9
|
Martinelli S, Lamminpää I, Dübüş EN, Sarıkaya D, Niccolai E. Synergistic Strategies for Gastrointestinal Cancer Care: Unveiling the Benefits of Immunonutrition and Microbiota Modulation. Nutrients 2023; 15:4408. [PMID: 37892482 PMCID: PMC10610426 DOI: 10.3390/nu15204408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Eda Nur Dübüş
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Dilara Sarıkaya
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| |
Collapse
|
10
|
Cotton MJ, Ariel P, Chen K, Walcott VA, Dixit M, Breau KA, Hinesley CM, Kedziora K, Tang CY, Zheng A, Magness ST, Burclaff J. An in vitro platform for quantifying cell cycle phase lengths in primary human intestinal stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.561410. [PMID: 37873351 PMCID: PMC10592697 DOI: 10.1101/2023.10.09.561410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background and Aims The intestinal epithelium exhibits dynamic control of cell cycle phase lengths, yet no experimental platform exists for directly analyzing cell cycle phases in living human intestinal stem cells (ISCs). Here, we develop primary human ISC lines with two different reporter constructs to provide fluorescent readouts to analyze cell cycle phases in cycling ISCs. Methods 3D printing was used to construct a collagen press for making chamber slides that support primary human ISC growth and maintenance within the working distance of a confocal microscope objective. The PIP-FUCCI fluorescent cell cycle reporter and a variant with H2A-mScarlet that allows for automated tracking of cell cycle phases (PIP-H2A) were used in human ISCs along with live imaging and EdU pulsing. An analysis pipeline combining free-to-use programs and publicly available code was compiled to analyze live imaging results. Results Chamber slides with soft collagen pressed to a thickness of 0.3 mm concurrently support ISC cycling and confocal imaging. PIP-FUCCI ISCs were found to be optimal for snapshot analysis wherein all nuclei are assigned to a cell cycle phase from a single image. PIP-H2A ISCs were better suited for live imaging since constant nuclear signal allowed for more automated analysis. CellPose2 and TrackMate were used together to track cycling cells. Conclusions We present two complete platforms for analyzing cell cycle phases in living primary human ISCs. The PIP-FUCCI construct allows for cell cycle phase assignment from one image of living cells, the PIP-H2A construct allows for semi-automated direct quantification of cell cycle phase lengths in human ISCs using our computational pipeline. These platforms hold great promise for future studies on how pharmaceutical agents affect the intestinal epithelium, how cell cycle is regulated in human ISCs, and more.
Collapse
Affiliation(s)
- Michael J Cotton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kaiwen Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Vanessa A Walcott
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michelle Dixit
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| | - Keith A Breau
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Caroline M Hinesley
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kasia Kedziora
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia Y Tang
- Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri
| | - Anna Zheng
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott T Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Ghorbanian B, Wong A, Iranpour A. The effect of dietary carbohydrate restriction and aerobic exercise on retinol binding protein 4 (RBP4) and fatty acid binding protein 5 (FABP5) in middle-aged men with metabolic syndrome. Br J Nutr 2023; 130:553-563. [PMID: 36373560 DOI: 10.1017/s0007114522003580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exercise and dietary interventions have been described to positively affect metabolic syndrome (MetS) via molecular-induced changes. The purpose of this study was to investigate the effects of dietary carbohydrate restriction and aerobic exercise (AE) on retinol binding protein 4 (RBP4) and fatty acid binding protein 5 (FABP5) in middle-aged men with MetS. The study had a randomised, double-blinded, parallel-controlled design. Forty middle-aged men with MetS (age: 53·97 ± 2·85 years, BMI = 31·09 ± 1·04 kg/m2) were randomly assigned to four groups, AE (n 10), ketogenic diet (KD; n 10), AE combined with KD (AE + KD; n 10) or control (C; n 10). RBP4, FABP5, body composition (body mass, BMI and body fat), insulin resistance, insulin sensitivity and MetS factors were evaluated prior to and after the 12-week intervention. AE + KD significantly decreased the body fat percentage (P = 0·006), BMI (P = 0·001), Zmets (P = 0·017), RBP4 (P = 0·017) and the homeostasis model of insulin resistance (HOMA-IR) (P = 0·001) as compared with control group and marginally significantly decreased the Zmets as compared with exercise group (P = 0·086). KD significantly decreased RBP4 levels as compared with control group (P = 0·041). Only the AE intervention (P = 0·045) significantly decreased FABP5 levels. Combining intervention of carbohydrate restriction with AE compared with carbohydrate restriction and AE alone improved RBP4, HOMA-IR as well as different body composition and MetS factors in middle-aged men with MetS.
Collapse
Affiliation(s)
- Bahloul Ghorbanian
- Department of Physical Education, Faculty of Educational Sciences and Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA, USA
| | - Asgar Iranpour
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
12
|
Gong D, Adomako-Bonsu AG, Wang M, Li J. Three specific gut bacteria in the occurrence and development of colorectal cancer: a concerted effort. PeerJ 2023; 11:e15777. [PMID: 37554340 PMCID: PMC10405800 DOI: 10.7717/peerj.15777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Colorectal cancer (CRC), which develops from the gradual evolution of tubular adenomas and serrated polyps in the colon and rectum, has a poor prognosis and a high mortality rate. In addition to genetics, lifestyle, and chronic diseases, intestinal integrity and microbiota (which facilitate digestion, metabolism, and immune regulation) could promote CRC development. For example, enterotoxigenic Bacteroides fragilis, genotoxic Escherichia coli (pks+ E. coli), and Fusobacterium nucleatum, members of the intestinal microbiota, are highly correlated in CRC. This review describes the roles and mechanisms of these three bacteria in CRC development. Their interaction during CRC initiation and progression has also been proposed. Our view is that in the precancerous stage of colorectal cancer, ETBF causes inflammation, leading to potential changes in intestinal ecology that may provide the basic conditions for pks+ E. coli colonization and induction of oncogenic mutations, when cancerous intestinal epithelial cells can further recruit F. nucleatum to colonise the lesion site and F. nucleatum may contribute to CRC advancement by primarily the development of cancer cells, stemization, and proliferation, which could create new and tailored preventive, screening and therapeutic interventions. However, there is the most dominant microbiota in each stage of CRC development, not neglecting the possibility that two or even all three bacteria could be engaged at any stage of the disease. The relationship between the associated gut microbiota and CRC development may provide important information for therapeutic strategies to assess the potential use of the associated gut microbiota in CRC studies, antibiotic therapy, and prevention strategies.
Collapse
Affiliation(s)
- Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Amma G Adomako-Bonsu
- Institute of Toxicology and Pharmacology, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Maijian Wang
- Gastrointestinal Surgery, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Moraitis I, Guiu J, Rubert J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab 2023:S1043-2760(23)00108-X. [PMID: 37336645 DOI: 10.1016/j.tem.2023.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain.
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, Netherlands; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708, WG, Netherlands.
| |
Collapse
|
14
|
Corrêa RO, Castro PR, Fachi JL, Nirello VD, El-Sahhar S, Imada S, Pereira GV, Pral LP, Araújo NVP, Fernandes MF, Matheus VA, de Souza Felipe J, Dos Santos Pereira Gomes AB, de Oliveira S, de Rezende Rodovalho V, de Oliveira SRM, de Assis HC, Oliveira SC, Dos Santos Martins F, Martens E, Colonna M, Varga-Weisz P, Vinolo MAR. Inulin diet uncovers complex diet-microbiota-immune cell interactions remodeling the gut epithelium. MICROBIOME 2023; 11:90. [PMID: 37101209 PMCID: PMC10131329 DOI: 10.1186/s40168-023-01520-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/16/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND The continuous proliferation of intestinal stem cells followed by their tightly regulated differentiation to epithelial cells is essential for the maintenance of the gut epithelial barrier and its functions. How these processes are tuned by diet and gut microbiome is an important, but poorly understood question. Dietary soluble fibers, such as inulin, are known for their ability to impact the gut bacterial community and gut epithelium, and their consumption has been usually associated with health improvement in mice and humans. In this study, we tested the hypothesis that inulin consumption modifies the composition of colonic bacteria and this impacts intestinal stem cells functions, thus affecting the epithelial structure. METHODS Mice were fed with a diet containing 5% of the insoluble fiber cellulose or the same diet enriched with an additional 10% of inulin. Using a combination of histochemistry, host cell transcriptomics, 16S microbiome analysis, germ-free, gnotobiotic, and genetically modified mouse models, we analyzed the impact of inulin intake on the colonic epithelium, intestinal bacteria, and the local immune compartment. RESULTS We show that the consumption of inulin diet alters the colon epithelium by increasing the proliferation of intestinal stem cells, leading to deeper crypts and longer colons. This effect was dependent on the inulin-altered gut microbiota, as no modulations were observed in animals deprived of microbiota, nor in mice fed cellulose-enriched diets. We also describe the pivotal role of γδ T lymphocytes and IL-22 in this microenvironment, as the inulin diet failed to induce epithelium remodeling in mice lacking this T cell population or cytokine, highlighting their importance in the diet-microbiota-epithelium-immune system crosstalk. CONCLUSION This study indicates that the intake of inulin affects the activity of intestinal stem cells and drives a homeostatic remodeling of the colon epithelium, an effect that requires the gut microbiota, γδ T cells, and the presence of IL-22. Our study indicates complex cross kingdom and cross cell type interactions involved in the adaptation of the colon epithelium to the luminal environment in steady state. Video Abstract.
Collapse
Affiliation(s)
- Renan Oliveira Corrêa
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA.
| | - Pollyana Ribeiro Castro
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - José Luís Fachi
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Vinícius Dias Nirello
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Salma El-Sahhar
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Shinya Imada
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, 02139, USA
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Gabriel Vasconcelos Pereira
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Laís Passariello Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Nathália Vitoria Pereira Araújo
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Mariane Font Fernandes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Valquíria Aparecida Matheus
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Jaqueline de Souza Felipe
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Arilson Bernardo Dos Santos Pereira Gomes
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sarah de Oliveira
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Vinícius de Rezende Rodovalho
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Samantha Roberta Machado de Oliveira
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Helder Carvalho de Assis
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Flaviano Dos Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Eric Martens
- University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Patrick Varga-Weisz
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- São Paulo Excellence Chair, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- International Laboratory for Microbiome Host Epigenetics, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, SP, 13083-862, Brazil.
- Experimental Medicine Research Cluster, Campinas, SP, 13083-862, Brazil.
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
15
|
Xie WJ, Li J. Obesity and cancer stem cells: Roles in cancer initiation, progression and therapy resistance. World J Stem Cells 2023; 15:120-135. [PMID: 37181008 PMCID: PMC10173809 DOI: 10.4252/wjsc.v15.i4.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 03/17/2023] [Indexed: 04/26/2023] Open
Abstract
Obesity, the global pandemic since industrialization, is the number one lifestyle-related risk factor for premature death, which increases the incidence and mortality of various diseases and conditions, including cancer. In recent years, the theory of cancer stem cells (CSCs), which have the capacity for self-renewal, metastasis and treatment resistance, has been bolstered by increasing evidence. However, research on how obesity affects CSCs to facilitate cancer initiation, progression and therapy resistance is still in its infancy, although evidence has already begun to accumulate. Regarding the ever-increasing burden of obesity and obesity-related cancer, it is pertinent to summarize evidence about the effects of obesity on CSCs, as elucidating these effects will contribute to the improvement in the management of obesity-related cancers. In this review, we discuss the association between obesity and CSCs, with a particular focus on how obesity promotes cancer initiation, progression and therapy resistance through CSCs and the mechanisms underlying these effects. In addition, the prospect of preventing cancer and targeting the mechanisms linking obesity and CSCs to reduce cancer risk or to improve the survival of patients with cancer is considered.
Collapse
Affiliation(s)
- Wen-Jie Xie
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China
| | - Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang 621000, Sichuan Province, China
| |
Collapse
|
16
|
Rubert J, Gatto P, Pancher M, Sidarovich V, Curti C, Mena P, Del Rio D, Quattrone A, Mattivi F. A Screening of Native (Poly)phenols and Gut-Related Metabolites on 3D HCT116 Spheroids Reveals Gut Health Benefits of a Flavan-3-ol Metabolite. Mol Nutr Food Res 2022; 66:e2101043. [PMID: 35394679 PMCID: PMC9787721 DOI: 10.1002/mnfr.202101043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/19/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Epidemiological evidence suggests that a reduced risk of colorectal cancer (CRC) is correlated with high consumption of fruits and vegetables, which are major sources of fiber and phytochemicals, such as flavan-3-ols. However, it remains unknown how these phytochemicals and their specific gut-related metabolites may alter cancer cell behavior. METHODS AND RESULTS A focused screening using native (poly)phenols and gut microbial metabolites (GMMs) on 3D HCT116 spheroids is carried out using a high-throughput imaging approach. Dose-responses, IC50 , and long-term exposure are calculated for the most promising native (poly)phenols and GMMs. As a result, this research shows that (poly)phenol catabolites may play a key role in preventing cancer propagation. Indeed, µM concentration levels of (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone significantly decrease spheroid size at early stages of spheroid aggregation and gene expression of matrix metalloproteinases. CONCLUSION A chronic exposure to (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactone may lead to a reduced CRC risk. Daily intake of monomeric, oligomeric, and polymeric flavan-3-ols may increase the colonic concentrations of this metabolite, and, in turn, this compound may act locally interacting with intestinal epithelial cells, precancerous and cancer cells.
Collapse
Affiliation(s)
- Josep Rubert
- Food Quality and DesignWageningen University & ResearchBornse Weilanden 9Wageningen6708 WGThe Netherlands
- Division of Human Nutrition and HealthWageningen University & ResearchStippeneng 4Wageningen6708 WEThe Netherlands
| | - Pamela Gatto
- HTS and Validation Core FacilityDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Michael Pancher
- HTS and Validation Core FacilityDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Viktoryia Sidarovich
- HTS and Validation Core FacilityDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Claudio Curti
- Department of Food and DrugUniversity of ParmaParco Area delle Scienze, 27/AParma43124Italy
| | - Pedro Mena
- Human Nutrition UnitDepartment of Food and DrugUniversity of ParmaMedical School Building C, Via Volturno, 39Parma43125Italy
- Microbiome Research HubUniversity of ParmaParma43124Italy
| | - Daniele Del Rio
- Human Nutrition UnitDepartment of Food and DrugUniversity of ParmaMedical School Building C, Via Volturno, 39Parma43125Italy
- Microbiome Research HubUniversity of ParmaParma43124Italy
- School of Advanced Studies on Food and NutritionUniversity of ParmaParma43126Italy
| | - Alessandro Quattrone
- Laboratory of Translational GenomicsDept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
| | - Fulvio Mattivi
- Dept. CIBIO ‐ Department of CellularComputational and Integrative BiologyUniversity of TrentoVia Sommarive 9Trento38123Italy
- Metabolomics UnitDepartment of Food Quality and NutritionFondazione Edmund Mach ‐ FEMResearch and Innovation CentreVia Mach 1San Michele all'Adige38098Italy
| |
Collapse
|
17
|
Nutrition influences nervous system development by regulating neural stem cell homeostasis. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|
19
|
Messina-Pacheco J, Gregorieff A. A gut feeling: diet-sensing mesenchymal cells regulate intestinal stem cell function. Cell Res 2022; 32:605-606. [PMID: 35388145 PMCID: PMC9252993 DOI: 10.1038/s41422-022-00658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Julia Messina-Pacheco
- Department of Pathology, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill Regenerative Medicine Network, McGill University, Montreal, QC, Canada
| | - Alex Gregorieff
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- McGill Regenerative Medicine Network, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Ceylani T, Teker HT, Samgane G, Gurbanov R. Intermittent fasting-induced biomolecular modifications in rat tissues detected by ATR-FTIR spectroscopy and machine learning algorithms. Anal Biochem 2022; 654:114825. [DOI: 10.1016/j.ab.2022.114825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 12/16/2022]
|
21
|
Ma N, Chen X, Liu C, Sun Y, Johnston LJ, Ma X. Dietary nutrition regulates intestinal stem cell homeostasis. Crit Rev Food Sci Nutr 2022; 63:11263-11274. [PMID: 35694795 DOI: 10.1080/10408398.2022.2087052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intestinal stem cells (ISCs), which locate at the base of intestinal crypts, are key determinants of governing proliferation and differentiation of the intestinal epithelium. The surrounding cells of ISCs and their related growth factors form ISC niche, supporting ISC function and self-renewal. ISC has an underappreciated but emerging role as a sensor of dietary nutrients, which fate decisions is adjusted in response to nutritional states to regulate gut homeostasis. Here, we review endogenous and exogenous factors, such as caloric restriction, fasting, fat, glucose and trace element. They instruct ISCs via mTORC1, PPAR/CPT1α, PPARγ/β-catenin, Wnt/GSK-3β pathway, respectively, jointly affect intestinal homeostasis. These dietary responses regulate ISC regenerative capacity and may be a potential target for cancer prevention. However, without precise definitions of nutrition intervene, it will be difficult to generate sufficient data to extending our knowledge of the biological response of ISC on nutrients. More accurately modeling organoids or high-throughput automated organoid culture in microcavity arrays have provided unprecedented opportunities for modeling diet-host interactions. These major advances collectively provide new insights into nutritional regulation of ISC proliferation and differentiation and drive us ever closer to breakthroughs for regenerative medicine and disease treatment by nutrition intervention in the clinic.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiyue Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chunchen Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiwei Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Neophytou C, Pitsouli C. How Gut Microbes Nurture Intestinal Stem Cells: A Drosophila Perspective. Metabolites 2022; 12:169. [PMID: 35208243 PMCID: PMC8878600 DOI: 10.3390/metabo12020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Host-microbiota interactions are key modulators of host physiology and behavior. Accumulating evidence suggests that the complex interplay between microbiota, diet and the intestine controls host health. Great emphasis has been given on how gut microbes have evolved to harvest energy from the diet to control energy balance, host metabolism and fitness. In addition, many metabolites essential for intestinal homeostasis are mainly derived from gut microbiota and can alleviate nutritional imbalances. However, due to the high complexity of the system, the molecular mechanisms that control host-microbiota mutualism, as well as whether and how microbiota affects host intestinal stem cells (ISCs) remain elusive. Drosophila encompasses a low complexity intestinal microbiome and has recently emerged as a system that might uncover evolutionarily conserved mechanisms of microbiota-derived nutrient ISC regulation. Here, we review recent studies using the Drosophila model that directly link microbiota-derived metabolites and ISC function. This research field provides exciting perspectives for putative future treatments of ISC-related diseases based on monitoring and manipulating intestinal microbiota.
Collapse
Affiliation(s)
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia, Nicosia 2109, Cyprus;
| |
Collapse
|
23
|
Lin S, Zhang H, Wang X, Lin T, Chen Z, Liu J, Wang J. Abundance of Lipopolysaccharide Heptosyltransferase I in Human Gut Microbiome and Its Association With Cardiovascular Disease and Liver Cirrhosis. Front Microbiol 2021; 12:756976. [PMID: 34917047 PMCID: PMC8669917 DOI: 10.3389/fmicb.2021.756976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS) is a potent endotoxin on the outer membrane of gram-negative bacteria. Heptosyltransferase I (HpeI) takes part in the synthesis of LPS. In this study, we first collected the protein sequences of HpeI homologs from the human microbiome. The collected HpeI sequences was classified based on sequence similarity, and seven clusters of HpeI were obtained. Among these clusters, proteins from Cluster 3 were abundant in the human mouth, while Clusters 1, 6, and 7 were abundant in the human gut. In addition, proteins from Cluster 1 were mainly from the order of Enterobacterales, while Cluster 6 and 7 were from Burkholderiales. The correlation analysis indicated that the total abundance of HpeIs was increased in patients with cardiovascular disease and liver cirrhosis, and HpeI in Cluster 1 contributed to this increase. These data suggest that HpeI homologs in Cluster 1 can be recognized as biomarkers for cardiovascular disease and liver cirrhosis, and that reducing the bacterial load in Cluster 1 may contribute to disease therapy.
Collapse
Affiliation(s)
- Shujin Lin
- Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Hui Zhang
- Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xueke Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ting Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Zihan Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jingfeng Liu
- Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Jianmin Wang
- Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
24
|
Gebert N, Rahman S, Lewis CA, Ori A, Cheng CW. Identifying Cell-Type-Specific Metabolic Signatures Using Transcriptome and Proteome Analyses. Curr Protoc 2021; 1:e245. [PMID: 34516047 PMCID: PMC8722675 DOI: 10.1002/cpz1.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Studies in various tissues have revealed a central role of metabolic pathways in regulating adult stem cell function in tissue regeneration and tumor initiation. The unique metabolic dependences or preferences of adult stem cells, therefore, are emerging as a new category of therapeutic target. Recently, advanced methods including high-resolution metabolomics, proteomics, and transcriptomics have been developed to address the growing interest in stem cell metabolism. A practical framework integrating the omics analyses is needed to systematically perform metabolic characterization in a cell-type-specific manner. Here, we leverage recent advances in transcriptomics and proteomics research to identify cell-type-specific metabolic features by reconstructing cell identity using genes and the encoded enzymes involved in major metabolic pathways. We provide protocols for cell isolation, transcriptome and proteome analyses, and metabolite profiling and measurement. The workflow for mapping cell-type-specific metabolic signatures presented here, although initially developed for intestinal crypt cells, can be easily implemented for cell populations in other tissues, and is highly compatible with most public datasets. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Intestinal crypt isolation and cell population purification Basic Protocol 2: Transcriptome analyses for cell-type-specific metabolic gene expression Basic Protocol 3: Proteome analyses for cell-type-specific metabolic enzyme levels Basic Protocol 4: Metabolite profiling and measurement.
Collapse
Affiliation(s)
- Nadja Gebert
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
- Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin-Buch, Germany
| | - Shahadat Rahman
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Chia-Wei Cheng
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
25
|
Rando TA, Jones DL. Regeneration, Rejuvenation, and Replacement: Turning Back the Clock on Tissue Aging. Cold Spring Harb Perspect Biol 2021; 13:a040907. [PMID: 34187808 PMCID: PMC8411956 DOI: 10.1101/cshperspect.a040907] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While some animals, such as planaria and hydra, appear to be capable of seemingly endless cycles of regeneration, most animals experience a gradual decline in fitness and ultimately die. The progressive loss of cell and tissue function, leading to senescence and death, is generally referred to as aging. Adult ("tissue") stem cells maintain tissue homeostasis and facilitate repair; however, age-related changes in stem cell function over time are major contributors to loss of organ function or disease in older individuals. Therefore, considerable effort is being invested in restoring stem cell function to counter degenerative diseases and age-related tissue dysfunction. Here, we will review strategies that could be used to restore stem cell function, including the use of environmental interventions, such as diet and exercise, heterochronic approaches, and cellular reprogramming. Maintaining optimal stem cell function and tissue homeostasis into late life will likely extend the amount of time older adults are able to be independent and lead healthy lives.
Collapse
Affiliation(s)
- Thomas A Rando
- Department of Neurology and Neurological Sciences
- Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, California 94305, USA
- Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - D Leanne Jones
- Departments of Anatomy
- Department of Medicine, Division of Geriatrics, University of California, San Francisco, California 94143, USA
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, California 94143, USA
| |
Collapse
|
26
|
Sphyris N, Hodder MC, Sansom OJ. Subversion of Niche-Signalling Pathways in Colorectal Cancer: What Makes and Breaks the Intestinal Stem Cell. Cancers (Basel) 2021; 13:1000. [PMID: 33673710 PMCID: PMC7957493 DOI: 10.3390/cancers13051000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium fulfils pleiotropic functions in nutrient uptake, waste elimination, and immune surveillance while also forming a barrier against luminal toxins and gut-resident microbiota. Incessantly barraged by extraneous stresses, the intestine must continuously replenish its epithelial lining and regenerate the full gamut of specialized cell types that underpin its functions. Homeostatic remodelling is orchestrated by the intestinal stem cell (ISC) niche: a convergence of epithelial- and stromal-derived cues, which maintains ISCs in a multipotent state. Following demise of homeostatic ISCs post injury, plasticity is pervasive among multiple populations of reserve stem-like cells, lineage-committed progenitors, and/or fully differentiated cell types, all of which can contribute to regeneration and repair. Failure to restore the epithelial barrier risks seepage of toxic luminal contents, resulting in inflammation and likely predisposing to tumour formation. Here, we explore how homeostatic niche-signalling pathways are subverted in tumorigenesis, enabling ISCs to gain autonomy from niche restraints ("ISC emancipation") and transform into cancer stem cells capable of driving tumour initiation, progression, and therapy resistance. We further consider the implications of the pervasive plasticity of the intestinal epithelium for the trajectory of colorectal cancer, the emergence of distinct molecular subtypes, the propensity to metastasize, and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Nathalie Sphyris
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
| | - Michael C. Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; (N.S.); (M.C.H.)
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
27
|
Armstrong H, Bording-Jorgensen M, Wine E. The Multifaceted Roles of Diet, Microbes, and Metabolites in Cancer. Cancers (Basel) 2021; 13:cancers13040767. [PMID: 33673140 PMCID: PMC7917909 DOI: 10.3390/cancers13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Many studies performed to date have implicated select microbes and dietary factors in a variety of cancers, yet the complexity of both these diseases and the relationship between these factors has limited the ability to translate findings into therapies and preventative guidelines. Here we begin by discussing recently published studies relating to dietary factors, such as vitamins and chemical compounds used as ingredients, and their contribution to cancer development. We further review recent studies, which display evidence of the microbial-diet interaction in the context of cancer. The field continues to advance our understanding of the development of select cancers and how dietary factors are related to the development, prevention, and treatment of these cancers. Finally, we highlight the science available in the discussion of common misconceptions with regards to cancer and diet. We conclude this review with thoughts on where we believe future research should focus in order to provide the greatest impact towards human health and preventative medicine.
Collapse
Affiliation(s)
- Heather Armstrong
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| | - Michael Bording-Jorgensen
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Eytan Wine
- CEGIIR, University of Alberta, Edmonton, AB T6G 2X8, Canada;
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Correspondence: (H.A.); (E.W.)
| |
Collapse
|