1
|
Sathisaran I. 3D printing and bioprinting in the battle against diabetes and its chronic complications. Front Bioeng Biotechnol 2024; 12:1363483. [PMID: 38863489 PMCID: PMC11165705 DOI: 10.3389/fbioe.2024.1363483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetes is a metabolic disorder characterized by high blood sugar. Uncontrolled blood glucose affects the circulatory system in an organism by intervening blood circulation. The high blood glucose can lead to macrovascular (large blood vessels) and microvascular (small blood vessels) complications. Due to this, the vital organs (notably brain, eyes, feet, heart, kidneys, lungs and nerves) get worsen in diabetic patients if not treated at the earliest. Therefore, acquiring treatment at an appropriate time is very important for managing diabetes and other complications that are caused due to diabetes. The root cause for the occurrence of various health complications in diabetic patients is the uncontrolled blood glucose levels. This review presents a consolidated account of the applications of various types of three-dimensional (3D) printing and bioprinting technologies in treating diabetes as well as the complications caused due to impaired blood glucose levels. Herein, the development of biosensors (for the diagnosis), oral drug formulations, transdermal drug carriers, orthotic insoles and scaffolds (for the treatment) are discussed. Next to this, the fabrication of 3D bioprinted organs and cell-seeded hydrogels (pancreas engineering for producing insulin and bone engineering for managing bone defects) are explained. As the final application, 3D bioprinting of diabetic disease models for high-throughput screening of ant-diabetic drugs are discussed. Lastly, the challenges and future perspective associated with the use of 3D printing and bioprinting technologies against diabetes and its related chronic complications have been put forward.
Collapse
Affiliation(s)
- Indumathi Sathisaran
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India
| |
Collapse
|
2
|
Ho BX, Teo AKK, Ng NHJ. Innovations in bio-engineering and cell-based approaches to address immunological challenges in islet transplantation. Front Immunol 2024; 15:1375177. [PMID: 38650946 PMCID: PMC11033429 DOI: 10.3389/fimmu.2024.1375177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- BetaLife Pte Ltd, Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Natasha Hui Jin Ng
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
3
|
Guan H, Tian J, Wang Y, Niu P, Zhang Y, Zhang Y, Fang X, Miao R, Yin R, Tong X. Advances in secondary prevention mechanisms of macrovascular complications in type 2 diabetes mellitus patients: a comprehensive review. Eur J Med Res 2024; 29:152. [PMID: 38438934 PMCID: PMC10910816 DOI: 10.1186/s40001-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.
Collapse
Affiliation(s)
- Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ping Niu
- Rehabilitation Department, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
4
|
Keshi E, Tang P, Lam T, Moosburner S, Haderer L, Reutzel-Selke A, Kloke L, Pratschke J, Sauer IM, Hillebrandt KH. Toward a 3D Printed Perfusable Islet Embedding Structure: Technical Notes and Preliminary Results. Tissue Eng Part C Methods 2023; 29:469-478. [PMID: 37528629 DOI: 10.1089/ten.tec.2023.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
To date, islet transplantation to treat type 1 diabetes mellitus remains unsuccessful in long-term follow-up, mainly due to failed engraftment and reconstruction of the islet niche. Alternative approaches, such as islet embedding structures (IESs) based on 3D printing have been developed. However, most of them have been implanted subcutaneously and only a few are intended for direct integration into the vascular system through anastomosis. In this study, we 3D printed a proof-of-concept IES using gelatin methacrylate biocompatible ink. This structure consisted of a branched vascular system surrounding both sides of a central cavity dedicated to islets of Langerhans. Furthermore, we designed a bioreactor optimized for these biological structures. This bioreactor allows seeding and perfusion experiments under sterile and physiological conditions. Preliminary experiments aimed to analyze if the vascular channel could successfully be seeded with mature endothelial cells and the central cavity with rat islets. Subsequently, the structures were used for a humanized model seeding human endothelial progenitor cells (huEPC) within the vascular architecture and human islets co-cultured with huEPC within the central cavity. The constructs were tested for hemocompatibility, suture strength, and anastomosability. The 3D printed IES appeared to be hemocompatible and anastomosable using an alternative cuff anastomosis in a simple ex vivo perfusion model. While rat islets alone could not successfully be embedded within the 3D printed structure for 3 days, human islets co-cultivated with huEPC successfully engrafted within the same time. This result emphasizes the importance of co-culture, nursing cells, and islet niche. In conclusion, we constructed a proof-of-concept 3D printed islet embedding device consisting of a vascular channel that is hemocompatible and perspectively anastomosable to clinical scale blood vessels. However, there are numerous limitations in this model that need to be overcome to transfer this technology to the bedside.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Lam
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| | - Luna Haderer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Kloke
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2025-390648296, Berlin, Germany
| | - Igor Maximilian Sauer
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy-EXC 2025-390648296, Berlin, Germany
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Experimental Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Cellbricks GmbH, Berlin, Germany
| |
Collapse
|
5
|
Liu W, Chen L, McClements DJ, Peng X, Jin Z. Recent trends of 3D printing based on starch-hydrocolloid in food, biomedicine and environment. Crit Rev Food Sci Nutr 2023; 64:8948-8962. [PMID: 37129300 DOI: 10.1080/10408398.2023.2205524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
People are exploring the potential application of 3D printing in food, biomedicine and environment, but it is urgent to find suitable bio-ink. Bio-ink compounded with starch and hydrocolloid can not only improve the rheology, structure and printability of starch-based edible bio-ink, but also endow it with other functional characteristics, so that it can be applied to food, biomedicine and even the environment, and meet the strategic needs of national health, green and sustainable development. In this paper, hydrocolloids are reviewed as potential means to regulate the physicochemical properties of starch, which endows it with good printability and presents excellent printing products. The specific applications of the bio-ink in the fields of food, biomedicine and environment in hypoglycemic, lipid-lowering, swallowable food, delivery, intelligent materials, and bio-sensor are also discussed. Then, the challenges and future development trends of realizing large-scale application are prospected. Proper physicochemical properties of starch-hydrocolloid are positively correlated with printability. The presentation of excellent printability has realized the application in different fields, not only satisfies most people, but also create benefits for some specific people. This review is expected to provide some theoretical guidance for the further development of 3D printing technology and its large-scale application.
Collapse
Affiliation(s)
- Wenmeng Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Long Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | | | - Xinwen Peng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Zhengyu Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Zhe M, Wu X, Yu P, Xu J, Liu M, Yang G, Xiang Z, Xing F, Ritz U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3197. [PMID: 37110034 PMCID: PMC10143913 DOI: 10.3390/ma16083197] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has been widely utilized as a novel manufacturing technique by more and more researchers to construct various tissue substitutes with complex architectures and geometries. Different biomaterials, including natural and synthetic materials, have been manufactured into bioinks for tissue regeneration using 3D bioprinting. Among the natural biomaterials derived from various natural tissues or organs, the decellularized extracellular matrix (dECM) has a complex internal structure and a variety of bioactive factors that provide mechanistic, biophysical, and biochemical signals for tissue regeneration and remodeling. In recent years, more and more researchers have been developing the dECM as a novel bioink for the construction of tissue substitutes. Compared with other bioinks, the various ECM components in dECM-based bioink can regulate cellular functions, modulate the tissue regeneration process, and adjust tissue remodeling. Therefore, we conducted this review to discuss the current status of and perspectives on dECM-based bioinks for bioprinting in tissue engineering. In addition, the various bioprinting techniques and decellularization methods were also discussed in this study.
Collapse
Affiliation(s)
- Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinyu Wu
- West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Jiawei Xu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming Liu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guang Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhou Xiang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Xing
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Chen Q, Xiao Z, Wang C, Chen G, Zhang Y, Zhang X, Han X, Wang J, Ye X, Prausnitz MR, Li S, Gu Z. Microneedle Patches Loaded with Nanovesicles for Glucose Transporter-Mediated Insulin Delivery. ACS NANO 2022; 16:18223-18231. [PMID: 36322923 PMCID: PMC10738036 DOI: 10.1021/acsnano.2c05687] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glucose-responsive insulin delivery systems that mimic insulin secretion activity in the pancreas show great potential to improve clinical therapeutic outcomes for people with type 1 and advanced type 2 diabetes. Here, we report a glucose-responsive insulin delivery microneedle (MN) array patch that is loaded with red blood cell (RBC) vesicles or liposome nanoparticles containing glucose transporters (GLUTs) bound with glucosamine-modified insulin (Glu-Insulin). In hyperglycemic conditions, high concentrations of glucose in interstitial fluid can replace Glu-Insulin via a competitive interaction with GLUT, leading to a quick release of Glu-Insulin and subsequent regulation of blood glucose (BG) levels in vivo. To prolong the effective glucose-responsive insulin release from MNs, additional free Glu-Insulin, which serves as "stored insulin", is loaded after RBC vesicles or liposome nanoparticles bound with Glu-Insulin. In the streptozotocin (STZ)-induced type 1 diabetic mouse model, this smart GLUT-based insulin patch can effectively control BG levels without causing hypoglycemia.
Collapse
Affiliation(s)
- Qian Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123
| | - Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xudong Zhang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Xiao Han
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Jinqiang Wang
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Ye
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
9
|
Thurzo A, Šufliarsky B, Urbanová W, Čverha M, Strunga M, Varga I. Pierre Robin Sequence and 3D Printed Personalized Composite Appliances in Interdisciplinary Approach. Polymers (Basel) 2022; 14:polym14183858. [PMID: 36146014 PMCID: PMC9500754 DOI: 10.3390/polym14183858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
This paper introduces a complex novel concept and methodology for the creation of personalized biomedical appliances 3D-printed from certified biocompatible photopolymer resin Dental LT Clear (V2). The explained workflow includes intraoral and CT scanning, patient virtualization, digital appliance design, additive manufacturing, and clinical application with evaluation of the appliance intended for patients with cranio-facial syndromes. The presented concept defines virtual 3D fusion of intraoral optical scan and segmented CT as sufficient and accurate data defining the 3D surface of the face, intraoral and airway morphology necessary for the 3D design of complex personalized intraoral and extraoral parts of the orthopedic appliance. A central aspect of the concept is a feasible utilization of composite resin for biomedical prototyping of the sequence of marginally different appliances necessary to keep the pace with the patient rapid growth. Affordability, noninvasiveness, and practicality of the appliance update process shall be highlighted. The methodology is demonstrated on a particular case of two-year-old infant with Pierre Robin sequence. Materialization by additive manufacturing of this photopolymer provides a highly durable and resistant-to-fracture two-part appliance similar to a Tübingen palatal plate, for example. The paper concludes with the viability of the described method and material upon interdisciplinary clinical evaluation of experts from departments of orthodontics and cleft anomalies, pediatric pneumology and phthisiology, and pediatric otorhinolaryngology.
Collapse
Affiliation(s)
- Andrej Thurzo
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-903-110-107
| | - Barbora Šufliarsky
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava and University Hospital, 81372 Bratislava, Slovakia
| | - Wanda Urbanová
- Department of Orthodontics and Cleft Anomalies, Faculty Hospital Kralovske Vinohrady, Dental Clinic 3rd Medical Faculty Charles University, 10034 Prague, Czech Republic
| | - Martin Čverha
- Clinic of Pediatric Otorhinolaryngology of the Medical Faculty Comenius University in Bratislava, 83340 Bratislava, Slovakia
| | - Martin Strunga
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, Comenius University in Bratislava, 81250 Bratislava, Slovakia
| | - Ivan Varga
- Department of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
10
|
Wang D, Guo Y, Zhu J, Liu F, Xue Y, Huang Y, Zhu B, Wu D, Pan H, Gong T, Lu Y, Yang Y, Wang Z. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater 2022:S1742-7061(22)00375-0. [PMID: 35803504 DOI: 10.1016/j.actbio.2022.06.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/01/2022]
Abstract
Islet transplantation has poor long-term efficacy because of the lack of extracellular matrix support and neovascularization; this limits its wide application in diabetes research. In this study, we develop a 3D-printed islet organoid by combining a pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA) as specific bioinks. The HAMA/pECM hydrogel was validated in vitro to maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, which helps improve islet function and activity. Further, in vivo experiments confirmed that the 3D-printed islet-encapsulated HAMA/pECM hydrogel increases insulin levels in diabetic mice, maintains blood glucose levels within a normal range for 90 days, and rapidly secretes insulin in response to blood glucose stimulation. In addition, the HAMA/pECM hydrogel can facilitate the attachment and growth of new blood vessels and increase the density of new vessels. Meanwhile, the designed 3D-printed structure was conducive to the formation of vascular networks and it promoted the construction of 3D-printed islet organoids. In conclusion, our experiments optimized the HAMA/pECM bioink composition and 3D-printed structure of islet organoids with promising therapeutic effects compared with the HAMA hydrogel group that can be potentially used in clinical applications to improve the effectiveness and safety of islet transplantation in vivo. STATEMENT OF SIGNIFICANCE: The extraction process of pancreatic islets can easily cause damage to the extracellular matrix and vascular system, resulting in poor islet transplantation efficiency. We developed a new tissue-specific bioink by combining pancreatic extracellular matrix (pECM) and hyaluronic acid methacrylate (HAMA). The islet organoids constructed by 3D printing can mimic the microenvironment of the pancreas and maintain islet cell adhesion and morphology through the Rac1/ROCK/MLCK signaling pathway, thereby improving islet function and activity. In addition, the 3D-printed structures we designed are favorable for the formation of new blood vessel networks, bringing hope for the long-term efficacy of islet transplantation.
Collapse
Affiliation(s)
- Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Jiacheng Zhu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Fang Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Yan Xue
- Department of Internal Medicine, Nantong Health College of Jiangsu Province, Nantong, 226010, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Haopeng Pan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226006, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226006, China.
| |
Collapse
|
11
|
Du S, Li Y, Geng Z, Zhang Q, Buhler LH, Gonelle-Gispert C, Wang Y. Engineering Islets From Stem Cells: The Optimal Solution for the Treatment of Diabetes? Front Immunol 2022; 13:869514. [PMID: 35572568 PMCID: PMC9092457 DOI: 10.3389/fimmu.2022.869514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a metabolic disease characterized by insulin deficiency. Bioengineering of stem cells with the aim to restore insulin production and glucose regulation has the potential to cure diabetic patients. In this review, we focus on the recent developments for bioengineering of induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and pancreatic progenitor cells in view of generating insulin producing and glucose regulating cells for β-cell replacement therapies. Recent clinical trials using islet cells derived from stem cells have been initiated for the transplantation into diabetic patients, with crucial bottlenecks of tumorigenesis, post-transplant survival, genetic instability, and immunogenicity that should be further optimized. As a new approach given high expectations, bioengineered islets from stem cells occupies considerable potential for the future clinical application and addressing the treatment dilemma of diabetes.
Collapse
Affiliation(s)
- Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H Buhler
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
12
|
Lau HH, Gan SU, Lickert H, Shapiro AMJ, Lee KO, Teo AKK. Charting the next century of insulin replacement with cell and gene therapies. MED 2021; 2:1138-1162. [DOI: 10.1016/j.medj.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
|