1
|
Dyshlovoy SA, Shubina LK, Makarieva TN, Hauschild J, Strewinsky N, Guzii AG, Menshov AS, Popov RS, Grebnev BB, Busenbender T, Oh-Hohenhorst SJ, Maurer T, Tilki D, Graefen M, Bokemeyer C, Stonik VA, von Amsberg G. New diterpenes from the marine sponge Spongionella sp. overcome drug resistance in prostate cancer by inhibition of P-glycoprotein. Sci Rep 2022; 12:13570. [PMID: 35945234 PMCID: PMC9363487 DOI: 10.1038/s41598-022-17447-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 01/18/2023] Open
Abstract
Spongian diterpenes are a group of marine natural compounds possessing various biological activities. However, their anticancer activity is still poorly studied and understood. We isolated six spongian diterpenes from the marine sponge Spongionella sp., including one new spongionellol A and five previously known molecules. The structures were elucidated using a detailed analysis MS and NMR spectra as well as by comparison with previously reported data. Two of them, namely, spongionellol A and 15,16-dideoxy-15α,17β-dihydroxy-15,17-oxidospongian-16-carboxylate-15,17-diacetate exhibited high activity and selectivity in human prostate cancer cells, including cells resistant to hormonal therapy and docetaxel. The mechanism of action has been identified as caspase-dependent apoptosis. Remarkably, both compounds were able to suppress expression of androgen receptor (AR) and AR-splice variant 7, as well as AR-dependent signaling. The isolated diterpenes effectively inhibited drug efflux mediated by multidrug-resistance protein 1 (MDR1; p-glycoprotein). Of note, a synergistic effect of the compounds with docetaxel, a substrate of p-glycoprotein, suggests resensitization of p-glycoprotein overexpressing cells to standard chemotherapy. In conclusion, the isolated spongian diterpenes possess high activity and selectivity towards prostate cancer cells combined with the ability to inhibit one of the main drug-resistance mechanism. This makes them promising candidates for combinational anticancer therapy.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany. .,Institute of Science-Intensive Technologies and Advanced Materials, Far Eastern Federal University, Vladivostok, Russian Federation.
| | - Larisa K Shubina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Tatyana N Makarieva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Jessica Hauschild
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Strewinsky
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alla G Guzii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Alexander S Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Boris B Grebnev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Tobias Busenbender
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Su Jung Oh-Hohenhorst
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM) Et Institut du Cancer de Montréal, Montreal, QC, Canada
| | - Tobias Maurer
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Derya Tilki
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Urology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Graefen
- Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Valentin A Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Klinik, Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Liang YQ, Liao XJ, Zhao BX, Xu SH. Novel 3,4-seco-3,19-dinorspongian and 5,17-epoxy-19-norspongian diterpenes from the marine sponge Spongia sp. Org Chem Front 2020. [DOI: 10.1039/d0qo00977f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Twelve new norspongian diterpenes, dinorspongians A-F (1–6) and epoxynorspongians A–F (7–12), were isolated from the marine sponge Spongia sp.
Collapse
Affiliation(s)
- Yong-Qian Liang
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Xiao-Jian Liao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Bing-Xin Zhao
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| | - Shi-Hai Xu
- Department of Chemistry
- College of Chemistry and Materials Science
- Jinan University
- Guangzhou
- P. R. China
| |
Collapse
|
3
|
Li J, Gu BB, Sun F, Xu JR, Jiao WH, Yu HB, Han BN, Yang F, Zhang XC, Lin HW. Sesquiterpene Quinones/Hydroquinones from the Marine Sponge Spongia pertusa Esper. JOURNAL OF NATURAL PRODUCTS 2017; 80:1436-1445. [PMID: 28398051 DOI: 10.1021/acs.jnatprod.6b01105] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nine new sesquiterpene quinones/hydroquinones (1-7, 10, and 12), three solvent-generated artifacts (8, 9, and 11), and three known compounds, 5-epi-smenospongine (13), smenospongine (14), and smenospongiadine (15), were isolated from the marine sponge Spongia pertusa Esper. The planar structures of the new compounds were elucidated on the basis of spectroscopic analyses. Their absolute configurations were determined by comparison between the calculated and experimental ECD spectra. In the cytotoxicity bioassay, compounds 13-15 exhibited activities against the human cancer cell lines U937, HeLa, and HepG2, with most potent cytotoxicities to U937 cells with IC50 values of 2.8, 1.5, and 0.6 μM, respectively. In addition, compound 6 displayed CDK-2 affinity with a Kd value of 4.8 μM in a surface plasmon resonance assay.
Collapse
Affiliation(s)
- Jing Li
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
- College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Bin-Bin Gu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| | - Fan Sun
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| | - Jian-Rong Xu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai 20025, China
| | - Wei-Hua Jiao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| | - Hao-Bing Yu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| | - Bing-Nan Han
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| | - Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| | - Xi-Chun Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Traditional Chinese Medicine , Taiyuan 030024, China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, 200127, China
| |
Collapse
|
4
|
New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol Adv 2016; 34:473-491. [PMID: 26802363 DOI: 10.1016/j.biotechadv.2015.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
The discovery of new drugs can no longer rely primarily on terrestrial resources, as they have been heavily exploited for over a century. During the last few decades marine sources, particularly sponges, have proven to be a most promising source of new natural products for drug discovery. This review considers the order Dictyoceratida in the Phylum Porifera from which the largest number of new marine natural products have been reported over the period 2001-2012. This paper examines all the sponges from the order Dictyoceratida that were reported as new compounds during the time period in a comprehensive manner. The distinctive physical characteristics and the geographical distribution of the different families are presented. The wide structural diversity of the compounds produced and the variety of biological activities they exhibited is highlighted. As a representative of sponges, insights into this order and avenues for future effective natural product discovery are presented. The research institutions associated with the various studies are also highlighted with the aim of facilitating collaborative relationships, as well as to acknowledge the major international contributors to the discovery of novel sponge metabolites. The order Dictyoceratida is a valuable source of novel chemical structures which will continue to contribute to a new era of drug discovery.
Collapse
|
5
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:553-81. [PMID: 17392033 PMCID: PMC2151674 DOI: 10.1016/j.cbpc.2007.01.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA.
| | | | | | | |
Collapse
|
6
|
Dixon N, Wong LS, Geerlings TH, Micklefield J. Cellular targets of natural products. Nat Prod Rep 2007; 24:1288-310. [DOI: 10.1039/b616808f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Abstract
This review covers the literature published in 2004 for marine natural products, with 693 citations (491 for the period January to December 2004) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (716 for 2004), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies (8), and syntheses (80), including those that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Five-membered ring systems: furans and benzofurans. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0959-6380(05)80329-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
9
|
Affiliation(s)
- James R Hanson
- Department of Chemistry, University of Sussex, Brighton, Sussex BN1 9QJ, UK
| |
Collapse
|
10
|
Chaturvedula VSP, Zhou BN, Gao Z, Thomas SJ, Hecht SM, Kingston DGI. New lupane triterpenoids from Solidago canadensis that inhibit the lyase activity of DNA polymerase β. Bioorg Med Chem 2004; 12:6271-5. [PMID: 15519169 DOI: 10.1016/j.bmc.2004.08.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
Bioassay-directed fractionation of a methyl ethyl ketone extract of Solidago canadensis L. (Asteraceae), using an assay to detect the lyase activity of DNA polymerase beta, resulted in the isolation of the four new lupane triterpenoids 1-4 and the seven known compounds lupeol, lupeyl acetate, ursolic acid, cycloartenol, cycloartenyl palmitate, alpha-amyrin acetate, and stigmasterol. The structures of the new compounds were established as 3beta-(3R-acetoxyhexadecanoyloxy)-lup-20(29)-ene (1), 3beta-(3-ketohexadecanoyloxy)-lup-20(29)-ene (2), 3beta-(3R-acetoxyhexadecanoyloxy)-29-nor-lupan-20-one (3), and 3beta-(3-hetohexadecanoyloxy)-29-nor-lupan-20-one (4), respectively, on the basis of extensive 1D and 2D NMR spectroscopic interpretation and chemical modification studies. All 11 compounds were inhibitory to the lyase activity of DNA polymerase beta.
Collapse
Affiliation(s)
- V S Prakash Chaturvedula
- Department of Chemistry, M/C 0212, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0212, USA
| | | | | | | | | | | |
Collapse
|