1
|
Samiec M, Trzcińska M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod Biol 2024; 24:100965. [PMID: 39467448 DOI: 10.1016/j.repbio.2024.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
Genetic factors are one of the basic determinants affecting ontogenesis in mammals. Nevertheless, on the one hand, epigenetic factors have been found to exert the preponderant and insightful impact on the intracellular mechanistic networks related to not only initiation and suppression, but also up- and downregulation of gene expression in all the phases of ontogenetic development in a variety of mammalian species. On the other hand, impairments in the epigenetic mechanisms underlying reprogramming of transcriptional activity of genes (termed epimutations) not only give rise to a broad spectrum of acute and chronic developmental abnormalities in mammalian embryos, foetuses and neonates, but also contribute to premature/expedited senescence or neoplastic transformation of cells and even neurodegenerative and mental disorders. The current article is focused on the unveiling the present knowledge aimed at the identification, classification and characterization of epigenetic agents as well as multifaceted interpretation of current and coming trends targeted at recognizing the epigenetic background of proper ontogenesis in mammals. Moreover, the next objective of this paper is to unravel the mechanistic insights into a wide array of disturbances leading to molecular imbalance taking place during epigenetic reprogramming of genomic DNA. The above-indicated imbalance seems to play a predominant role in the initiation and progression of anatomo-, histo-, and physiopathological processes throughout ontogenetic development. Conclusively, different modalities of epigenetically assisted therapeutic procedures that have been exemplified in the current article, might be the powerful and promiseful tools reliable and feasible in the medical treatments of several diseases triggered by dysfunctions in the epigenetic landscapes, e.g., myelodysplastic syndromes or epilepsy.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| | - Monika Trzcińska
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice near Kraków, Poland.
| |
Collapse
|
2
|
Zhang Z, Hu X, Sun Y, Lei L, Liu Z. Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression. BMC Biol 2024; 22:195. [PMID: 39256730 PMCID: PMC11389306 DOI: 10.1186/s12915-024-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China.
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China.
| |
Collapse
|
3
|
Ju BH, Kim YJ, Park YB, Kim BH, Kim MK. Evaluation of conical 9 well dish on bovine oocyte maturation and subsequent embryonic development. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:936-948. [PMID: 39398310 PMCID: PMC11466740 DOI: 10.5187/jast.2024.e68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
The Conical 9 well dish (C9 well dish) is characterized by a decreasing cross-sectional area towards the base. This design was hypothesized to enhance embryonic development by emulating the in vivo physical environment through density modulation. Comparative analyses revealed no significant difference in nuclear maturation rates between the C9 well dish and the 5-well dish. Reactive oxygen species (ROS) generation was lower in the C9 well dish compared to the 5-well dish; however, this difference was not statistically significant. On the second day of in vitro culture, the cleavage rate in the C9 well dish was 4.66% higher, although not statistically significant, and the rates of blastocyst development were similar across both dishes. No significant differences were observed in the intracellular levels of glutathione (GSH) and ROS, as well as in the total cell number within the blastocysts between the dish types. The expression of mitogen-related factors, TGFα and IGF-1, in the blastocysts was consistent between the dishes. However, PDGFβ expression was significantly lower in the C9 well dish compared to the 35 mm petri dish. Similarly, the expression of the apoptosis factor Bax/Bcl2l2 showed no significant differences between the two dishes. Despite the marked difference in PDGFβ expression, its impact on blastocyst formation appeared negligible. The study also confirmed the feasibility of culturing a small number of oocytes per donor, collected via Ovum Pick-Up (OPU), with reduced volumes of culture medium and mineral oil, thus offering economic advantages. In conclusion, the present study indicates that the C9 well dish is effective for in vitro development of a small quantity of oocytes and embryos, presenting it as a viable alternative to traditional cell culture dishes.
Collapse
Affiliation(s)
- Byung Hyun Ju
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - You Jin Kim
- Department of Obstetrics &
Gynecology, Chungnam National University Hospital, Daejeon
34134, Korea
| | - Youn Bae Park
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - Byeong Ho Kim
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| | - Min Kyu Kim
- Division of Animal and Dairy Science,
College of Agriculture and Life Science, Chungnam National
University, Daejeon 34134, Korea
- MK biotech Inc., Daejeon
34134, Korea
| |
Collapse
|
4
|
Wakim JG, Spakowitz AJ. Physical modeling of nucleosome clustering in euchromatin resulting from interactions between epigenetic reader proteins. Proc Natl Acad Sci U S A 2024; 121:e2317911121. [PMID: 38900792 PMCID: PMC11214050 DOI: 10.1073/pnas.2317911121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 04/15/2024] [Indexed: 06/22/2024] Open
Abstract
Euchromatin is an accessible phase of genetic material containing genes that encode proteins with increased expression levels. The structure of euchromatin in vitro has been described as a 30-nm fiber formed from ordered nucleosome arrays. However, recent advances in microscopy have revealed an in vivo euchromatin architecture that is much more disordered, characterized by variable-length linker DNA and sporadic nucleosome clusters. In this work, we develop a theoretical model to elucidate factors contributing to the disordered in vivo architecture of euchromatin. We begin by developing a 1D model of nucleosome positioning that captures the interactions between bound epigenetic reader proteins to predict the distribution of DNA linker lengths between adjacent nucleosomes. We then use the predicted linker lengths to construct 3D chromatin configurations consistent with the physical properties of DNA within the nucleosome array, and we evaluate the distribution of nucleosome cluster sizes in those configurations. Our model reproduces experimental cluster-size distributions, which are dramatically influenced by the local pattern of epigenetic marks and the concentration of reader proteins. Based on our model, we attribute the disordered arrangement of euchromatin to the heterogeneous binding of reader proteins and subsequent short-range interactions between bound reader proteins on adjacent nucleosomes. By replicating experimental results with our physics-based model, we propose a mechanism for euchromatin organization in the nucleus that impacts gene regulation and the maintenance of epigenetic marks.
Collapse
Affiliation(s)
- Joseph G. Wakim
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Biophysics Program, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| |
Collapse
|
5
|
Zhang Z, Xu J, Liu J, Wang J, Lei L. SEC: A core hub during cell fate alteration. FASEB J 2024; 38:e23680. [PMID: 38758186 DOI: 10.1096/fj.202400514r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Pol II pause release is a rate-limiting step in gene transcription, influencing various cell fate alterations. Numerous proteins orchestrate Pol II pause release, thereby playing pivotal roles in the intricate process of cellular fate modulation. Super elongation complex (SEC), a large assembly comprising diverse protein components, has garnered attention due to its emerging significance in orchestrating physiological and pathological cellular identity changes by regulating the transcription of crucial genes. Consequently, SEC emerges as a noteworthy functional complex capable of modulating cell fate alterations. Therefore, a comprehensive review is warranted to systematically summarize the core roles of SEC in different types of cell fate alterations. This review focuses on elucidating the current understanding of the structural and functional basis of SEC. Additionally, we discuss the intricate regulatory mechanisms governing SEC in various models of cell fate alteration, encompassing both physiological and pathological contexts. Furthermore, leveraging the existing knowledge of SEC, we propose some insightful directions for future research, aiming to enhance our mechanistic and functional comprehension of SEC within the diverse landscape of cell fate alterations.
Collapse
Affiliation(s)
- Zhijing Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingyi Xu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiqiang Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Liao Z, Zhang J, Sun S, Li Y, Xu Y, Li C, Cao J, Nie Y, Niu Z, Liu J, Lu F, Liu Z, Sun Q. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer. Nat Commun 2024; 15:5. [PMID: 38228612 PMCID: PMC10791636 DOI: 10.1038/s41467-023-43985-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
Somatic cell nuclear transfer (SCNT) successfully clones cynomolgus monkeys, but the efficiency remains low due to a limited understanding of the reprogramming mechanism. Notably, no rhesus monkey has been cloned through SCNT so far. Our study conducts a comparative analysis of multi-omics datasets, comparing embryos resulting from intracytoplasmic sperm injection (ICSI) with those from SCNT. Our findings reveal a widespread decrease in DNA methylation and the loss of imprinting in maternally imprinted genes within SCNT monkey blastocysts. This loss of imprinting persists in SCNT embryos cultured in-vitro until E17 and in full-term SCNT placentas. Additionally, histological examination of SCNT placentas shows noticeable hyperplasia and calcification. To address these defects, we develop a trophoblast replacement method, ultimately leading to the successful cloning of a healthy male rhesus monkey. These discoveries provide valuable insights into the reprogramming mechanism of monkey SCNT and introduce a promising strategy for primate cloning.
Collapse
Affiliation(s)
- Zhaodi Liao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jixiang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiyu Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzhuo Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Yuting Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Chunyang Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Jing Cao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Yanhong Nie
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Zhuoyue Niu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingwen Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhen Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| | - Qiang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| |
Collapse
|
7
|
Yagcioglu S, Ersoy N, Demir K, Birler S, Pabuccuoglu S. Can roscovitine and trichostatin A be alternatives to standard protocols for cell cycle synchronization of ovine adult and foetal fibroblast cells? Reprod Domest Anim 2023; 58:1251-1260. [PMID: 37392470 DOI: 10.1111/rda.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Synchronization of donor cells is an important step for the success of somatic cell nuclear transfer application and facilitates the development of embryos. Contact inhibition, serum starvation and different chemical agents are used in synchronizing different types of somatic cells. In this study, to synchronize the primary ovine adult (POF) and foetal (POFF) fibroblast cells to G0/G1 phases, the contact inhibition, the serum starvation, roscovitine and trichostatin A (TSA) methods were used. In the first part of the study, roscovitine (10, 15, 20 and 30 μM) and TSA (25, 50, 75 and 100 nM) were applied for 24 h to determine the optimal concentration for POF and POFF cells. In the second part, optimal concentrations of roscovitine and TSA for these cells were compared with contact inhibition and serum starvation methods. Cell cycle distribution and apoptotic activity analysis were performed by flow cytometry to compare this synchronization methods. Serum starvation method resulted in higher cell synchronization rate in both cells compared to other groups. Although contact inhibition and TSA also achieved high success rates of synchronized cell value, it was observed that the difference between serum starvation and these groups was significant (p < .05). When the apoptosis rates of the two cell types were examined, it was observed that the early apoptotic cells in contact inhibition and late apoptotic cells in the serum starvation were higher than the other groups (p < .05). Although the 10 and 15 μM concentrations of roscovitine gave the lowest apoptosis rates, it was observed that it failed to synchronize both the ovine fibroblast cells to G0/G1 phase. As a result, it was concluded that while roscovitine was not successful to synchronize both the POFF and POF cell lines, TSA (50 nM for POF cells and 100 nM for POFF cells) can be used efficiently as an alternative to the contact inhibition and the serum starvation methods.
Collapse
Affiliation(s)
- Selin Yagcioglu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Nur Ersoy
- Department of Reproduction and Artificial Insemination, Institute of Graduate Studies, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Kamber Demir
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Sema Birler
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| | - Serhat Pabuccuoglu
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Avcılar, Istanbul, Turkey
| |
Collapse
|
8
|
Sarmah H, Sawada A, Hwang Y, Miura A, Shimamura Y, Tanaka J, Yamada K, Mori M. Towards human organ generation using interspecies blastocyst complementation: Challenges and perspectives for therapy. Front Cell Dev Biol 2023; 11:1070560. [PMID: 36743411 PMCID: PMC9893295 DOI: 10.3389/fcell.2023.1070560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer from end-stage refractory diseases. The ideal treatment option for terminally ill patients is organ transplantation. However, donor organs are in absolute shortage, and sadly, most patients die while waiting for a donor organ. To date, no technology has achieved long-term sustainable patient-derived organ generation. In this regard, emerging technologies of chimeric human organ production via blastocyst complementation (BC) holds great promise. To take human organ generation via BC and transplantation to the next step, we reviewed current emerging organ generation technologies and the associated efficiency of chimera formation in human cells from the standpoint of developmental biology.
Collapse
Affiliation(s)
- Hemanta Sarmah
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Anri Sawada
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Youngmin Hwang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Akihiro Miura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Munemasa Mori
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
9
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
10
|
Navarro M, Halstead MM, Rincon G, Mutto AA, Ross PJ. bESC from cloned embryos do not retain transcriptomic or epigenetic memory from somatic donor cells. Reproduction 2022; 164:243-257. [PMID: 35951478 DOI: 10.1530/rep-22-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
In brief Epigenetic reprogramming after mammalian somatic cell nuclear transfer is often incomplete, resulting in low efficiency of cloning. However, gene expression and histone modification analysis indicated high similarities in transcriptome and epigenomes of bovine embryonic stem cells from in vitro fertilized and somatic cell nuclear transfer embryos. Abstract Embryonic stem cells (ESC) indefinitely maintain the pluripotent state of the blastocyst epiblast. Stem cells are invaluable for studying development and lineage commitment, and in livestock, they constitute a useful tool for genomic improvement and in vitro breeding programs. Although these cells have been recently derived from bovine blastocysts, a detailed characterization of their molecular state is lacking. Here, we apply cutting-edge technologies to analyze the transcriptomic and epigenomic landscape of bovine ESC (bESC) obtained from in vitro fertilized (IVF) and somatic cell nuclear transfer (SCNT) embryos. bESC were efficiently derived from SCNT and IVF embryos and expressed pluripotency markers while retaining genome stability. Transcriptome analysis revealed that only 46 genes were differentially expressed between IVF- and SCNT-derived bESC, which did not reflect significant deviation in cellular function. Interrogating histone 3 lysine 4 trimethylation, histone 3 lysine 9 trimethylation, and histone 3 lysine 27 trimethylation with cleavage under targets and tagmentation, we found that the epigenomes of both bESC groups were virtually indistinguishable. Minor epigenetic differences were randomly distributed throughout the genome and were not associated with differentially expressed or developmentally important genes. Finally, the categorization of genomic regions according to their combined histone mark signal demonstrated that all bESC shared the same epigenomic signatures, especially at gene promoters. Overall, we conclude that bESC derived from SCNT and IVF embryos are transcriptomically and epigenetically analogous, allowing for the production of an unlimited source of pluripotent cells from high genetic merit organisms without resorting to transgene-based techniques.
Collapse
Affiliation(s)
- M Navarro
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
- Department of Animal Science, University of California, Davis, California, USA
| | - M M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | | | - A A Mutto
- Instituto de Investigaciones Biotecnológicas 'Dr Rodolfo Ugalde', UNSAM-CONICET, Buenos Aires, Argentina
| | - P J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
11
|
Cheng R, Zheng X, Wang Y, Ma X, Liu X, Xu W, Wang M, Gao Y, Xing X, Zhou C, Sun H, Guo Z, Quan F, Liu J, Hua S, Wang Y, Zhang Y, Liu X. Modification of alternative splicing in bovine somatic cell nuclear transfer embryos using engineered CRISPR-Cas13d. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2257-2268. [PMID: 35524909 DOI: 10.1007/s11427-021-2060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Animal cloning can be achieved by somatic cell nuclear transfer (SCNT), but the resulting live birth rate is relatively low. We previously improved the efficiency of bovine SCNT by exogenous melatonin treatment or by overexpression of lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E). In this study, we revealed abundant alternative splicing (AS) transitions during fertilization and embryonic genome activation, and demonstrated abnormal AS in bovine SCNT embryos compared with in vitro fertilized embryos. We used the CRISPR-Cas13d RNA-targeting system to target cis-elements of ABI2 and ZNF106 pre-mRNA to modify AS, thus reducing the ratio of abnormal-isoform SCNT embryos by nearly 50% and achieving a high survival rate (11%-19%). These results indicate that this system may provide an efficient method for bovine cloning, while also paving the way for further improvements in the efficiency of SCNT.
Collapse
Affiliation(s)
- Rui Cheng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Yingmei Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xing Ma
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xin Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Wenjun Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Mengyun Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Xupeng Xing
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Chuan Zhou
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Hongzheng Sun
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Song Hua
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
12
|
iPSCs in Neurodegenerative Disorders: A Unique Platform for Clinical Research and Personalized Medicine. J Pers Med 2022; 12:jpm12091485. [PMID: 36143270 PMCID: PMC9500601 DOI: 10.3390/jpm12091485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
In the past, several animal disease models were developed to study the molecular mechanism of neurological diseases and discover new therapies, but the lack of equivalent animal models has minimized the success rate. A number of critical issues remain unresolved, such as high costs for developing animal models, ethical issues, and lack of resemblance with human disease. Due to poor initial screening and assessment of the molecules, more than 90% of drugs fail during the final step of the human clinical trial. To overcome these limitations, a new approach has been developed based on induced pluripotent stem cells (iPSCs). The discovery of iPSCs has provided a new roadmap for clinical translation research and regeneration therapy. In this article, we discuss the potential role of patient-derived iPSCs in neurological diseases and their contribution to scientific and clinical research for developing disease models and for developing a roadmap for future medicine. The contribution of humaniPSCs in the most common neurodegenerative diseases (e.g., Parkinson’s disease and Alzheimer’s disease, diabetic neuropathy, stroke, and spinal cord injury) were examined and ranked as per their published literature on PUBMED. We have observed that Parkinson’s disease scored highest, followed by Alzheimer’s disease. Furthermore, we also explored recent advancements in the field of personalized medicine, such as the patient-on-a-chip concept, where iPSCs can be grown on 3D matrices inside microfluidic devices to create an in vitro disease model for personalized medicine.
Collapse
|
13
|
Zhao L, Long C, Zhao G, Su J, Ren J, Sun W, Wang Z, Zhang J, Liu M, Hao C, Li H, Cao G, Bao S, Zuo Y, Li X. Reprogramming barriers in bovine cells nuclear transfer revealed by single-cell RNA-seq analysis. J Cell Mol Med 2022; 26:4792-4804. [PMID: 35971640 PMCID: PMC9465183 DOI: 10.1111/jcmm.17505] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022] Open
Abstract
Many progresses have recently been achieved in animal somatic cell nuclear transfer (SCNT). However, embryos derived from SCNT rarely result in live births. Single‐cell RNA sequencing (scRNA‐seq) can be used to investigate the development details of SCNT embryos. Here, bovine fibroblasts and three factors bovine iPSCs (3F biPSCs) were used as donors for bovine nuclear transfer, and the single blastomere transcriptome was analysed by scRNA‐seq. Compared to in vitro fertilization (IVF) embryos, SCNT embryos exhibited many defects. Abnormally expressed genes were found at each stage of embryos, which enriched in metabolism, and epigenetic modification. The DEGs of the adjacent stage in SCNT embryos did not follow the temporal expression pattern similar to that of IVF embryos. Particularly, SCNT 8‐cell stage embryos showed failures in some gene activation, including ZSCAN4, and defects in protein association networks which cored as POLR2K, GRO1, and ANKRD1. Some important signalling pathways also showed incomplete activation at SCNT zygote to morula stage. Interestingly, 3F biPSCNT embryos exhibited more dysregulated genes than SCNT embryos at zygote and 2‐cell stage, including genes in KDM family. Pseudotime analysis of 3F biPSCNT embryos showed the different developmental fate from SCNT and IVF embryos. These findings suggested partial reprogrammed 3F biPS cells as donors for bovine nuclear transfer hindered the reprogramming of nuclear transfer embryos. Our studies revealed the abnormal gene expression and pathway activation of SCNT embryos, which could increase our understanding of the development of SCNT embryos and give hints to improve the efficiency of nuclear transfer.
Collapse
Affiliation(s)
- Lixia Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Chunshen Long
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gaoping Zhao
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Jie Su
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China.,College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Jie Ren
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
| | - Wei Sun
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Zixin Wang
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Jia Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Moning Liu
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunxia Hao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hanshuang Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guifang Cao
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, China.,Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| |
Collapse
|
14
|
Nadri P, Ansari-Mahyari S, Jafarpour F, Mahdavi AH, Tanhaei Vash N, Lachinani L, Dormiani K, Nasr-Esfahani MH. Melatonin accelerates the developmental competence and telomere elongation in ovine SCNT embryos. PLoS One 2022; 17:e0267598. [PMID: 35862346 PMCID: PMC9302776 DOI: 10.1371/journal.pone.0267598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/11/2022] [Indexed: 11/21/2022] Open
Abstract
SCNT embryos suffer from poor developmental competence (both in vitro and in vivo) due to various defects such as oxidative stress, incomplete epigenetic reprogramming, and flaws in telomere rejuvenation. It is very promising to ameliorate all these defects in SCNT embryos by supplementing the culture medium with a single compound. It has been demonstrated that melatonin, as a multitasking molecule, can improve the development of SCNT embryos, but its function during ovine SCNT embryos is unclear. We observed that supplementation of embryonic culture medium with 10 nM melatonin for 7 days accelerated the rate of blastocyst formation in ovine SCNT embryos. In addition, the quality of blastocysts increased in the melatonin-treated group compared with the SCNT control groups in terms of ICM, TE, total cell number, and mRNA expression of NANOG. Mechanistic studies in this study revealed that the melatonin-treated group had significantly lower ROS level, apoptotic cell ratio, and mRNA expression of CASPASE-3 and BAX/BCL2 ratio. In addition, melatonin promotes mitochondrial membrane potential and autophagy status (higher number of LC3B dots). Our results indicate that melatonin decreased the global level of 5mC and increased the level of H3K9ac in the treated blastocyst group compared with the blastocysts in the control group. More importantly, we demonstrated for the first time that melatonin treatment promoted telomere elongation in ovine SCNT embryos. This result offers the possibility of better development of ovine SCNT embryos after implantation. We concluded that melatonin can accelerate the reprogramming of telomere length in sheep SCNT embryos, in addition to its various beneficial effects such as increasing antioxidant capacity, reducing DNA damage, and improving the quality of derived blastocysts, all of which led to a higher in vitro development rate.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Saeid Ansari-Mahyari
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
- * E-mail: (SAM); , (MHNE)
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Amir Hossein Mahdavi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Liana Lachinani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- * E-mail: (SAM); , (MHNE)
| |
Collapse
|
15
|
Ghazimoradi MH, Khalafizadeh A, Babashah S. A critical review on induced totipotent stem cells: Types and methods. Stem Cell Res 2022; 63:102857. [PMID: 35872523 DOI: 10.1016/j.scr.2022.102857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Totipotent stem cells are cells with the capacity to form an entire embryo. Many attempts have been made to convert other types of cells to totipotent stem cells which we called induced totipotent stem cells. Various aspects of these cells such as transcriptional and epigenetics networks are unique. By taking advantage of these aspects, efficient methods have been provided to induce totipotent stem cells. Although this advancement is significant, many aspects of induction such as the underlying mechanism remain to be elucidated. On the other hand, embryonic stem cells usually are the source of induction which raise important questions regarding if these methods are induction or promotion of 2C intrinsic totipotent cells in ESC culture. Here, we review the latest mouse progress in underling mechanism of induction of totipotent stem cells. In addition, we follow up on the progress of Blastoids derived from totipotent stem cells.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Cai J, Chen H, Xie S, Hu Z, Bai Y. Research Progress of Totipotent Stem Cells. Stem Cells Dev 2022; 31:335-345. [PMID: 35502477 DOI: 10.1089/scd.2022.0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Totipotent stem cells (TSCs), can develop into complete organisms, used in biological fields such as regenerative medicine, mammalian breeding, and conservation. However, cells from early-stage embryos cultured are hard to self-renew and maintain developmental totipotency, which becomes a key factor limiting the research of TSCs. Fortunately, a break-through in the study of induced pluripotent stem cells returning to their totipotent state has been made, resulting in the establishment of multiple TSCs and igniting a new wave of stem cell research. Furthermore, the blastocyst-like structures can be generated by the established TSCs, which lays a foundation for synthetic embryos in vitro. In this review, we summarize the totipotent stage of the early embryos, the establishment and cultivation of TSCs, and the developmental ability exploration of TSCs to promote further research of TSCs.
Collapse
Affiliation(s)
- Jianfeng Cai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China, 528000;
| | - Huifang Chen
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Shiting Xie
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Zhichao Hu
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| | - Yinshan Bai
- Foshan University School of Life Science and Engineering, 118208, Foshan, China;
| |
Collapse
|
17
|
Maniego J, Pesko B, Habershon-Butcher J, Hincks P, Taylor P, Tozaki T, Ohnuma A, Stewart G, Proudman C, Ryder E. Use of mitochondrial sequencing to detect gene doping in horses via gene editing and somatic cell nuclear transfer. Drug Test Anal 2022; 14:1429-1437. [PMID: 35362263 DOI: 10.1002/dta.3267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Gene editing and subsequent cloning techniques offer great potential not only in genetic disease correction in domestic animals, but also in livestock production by enhancement of desirable traits. The existence of the technology, however, leaves it open to potential misuse in performance-led sports such as horseracing and other equestrian events. Recent advances in equine gene editing, regarding the generation of gene-edited embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer, has highlighted the need to develop tools to detect potential prohibited use of the technology. One possible method involves the characterisation of the mitochondrial genome (which is not routinely preserved during cloning) and comparing it to the sequence of the registered dam. We present here our approach to whole-mitochondrial sequencing using tiled long-range PCR and next-generation sequencing. To determine whether the background mutation rate in the mitochondrial genome could potentially confound results, we sequenced ten sets of dam and foal duos. We found variation between duos but none within duos, indicating that this method is feasible for future screening systems. Analysis of WGS data from over one hundred Thoroughbred horses revealed wide variation in the mitochondria sequence within the breed, further displaying the utility of this approach.
Collapse
Affiliation(s)
- Jillian Maniego
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Bogusia Pesko
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | | | - Pamela Hincks
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Polly Taylor
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Japan
| | - Graham Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Christopher Proudman
- School of Veterinary Medicine, Daphne Jackson Road, University of Surrey, Guildford, UK
| | - Edward Ryder
- Sport and Specialised Analytical Services, LGC, Newmarket Road, Fordham, Cambridgeshire, UK
| |
Collapse
|
18
|
Malpotra S, Goel P, Shyam S, Singh MK, Palta P. Global DNA methylation profiles of buffalo (Bubalus bubalis) preimplantation embryos produced by handmade cloning and in vitro fertilization. Sci Rep 2022; 12:5161. [PMID: 35338228 PMCID: PMC8956680 DOI: 10.1038/s41598-022-09207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Somatic cell nuclear transfer technique (SCNT) has proved to be an outstanding method of multiplication of elite animals but accompanied with low efficiency and live birth rate of cloned animals. Epigenetic alterations of DNA has been one of the culprits behind this issue. Cloned embryos are found to deviate slightly from regular pattern of demethylation and re-methylation at the time of nuclear reprogramming and embryonic development when compared with embryos produced by in vitro fertilization (IVF). Thus, the present study was aimed at evaluating global DNA methylation profiles of cloned embryos at 2-cell, 8-cell and blastocyst stages and compare it with corresponding stages of embryos produced by IVF by using MeDIP-Sequencing on Illumina-based platform. We found out that cloned embryos exhibited significantly different DNA methylation pattern as compared to IVF embryos with respect to distribution of differentially methylated regions in different components of genome, CpG islands distribution and methylation status, gene ontological profiles and pathways affected throughout the developmental stages. The data generated from MeDIP-Seq was validated at blastocyst stage cloned and IVF embryos by bisulfite-sequencing PCR on five randomly selected gene regions.
Collapse
Affiliation(s)
- Shivani Malpotra
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India.
| | - Pallavi Goel
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Songyukta Shyam
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute (Deemed University), Karnal, Haryana, 132001, India
| |
Collapse
|
19
|
Global MicroRNA Expression Profiling of Buffalo (Bubalus bubalis) Embryos at Different Developmental Stages Produced by Somatic Cell Nuclear Transfer and In-Vitro Fertilization Using RNA Sequencing. Genes (Basel) 2022; 13:genes13030453. [PMID: 35328007 PMCID: PMC8952793 DOI: 10.3390/genes13030453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Despite the success of cloning technology in the production of offspring across several species, its application on a wide scale is severely limited by the very low offspring rate obtained with cloned embryos. The expression profile of microRNAs (miRNAs) in cloned embryos throughout embryonic development is reported to deviate from regular patterns. The present study is aimed at determining the dynamics of the global expression of miRNA profile in cloned and in-vitro fertilization (IVF) pre-implantation embryos at different developmental stages, i.e., the two-cell, eight-cell, and blastocyst stages, using next-generation sequencing. The results of this study suggest that there is a profound difference in global miRNA profile between cloned and IVF embryos. These differences are manifested throughout the course of embryonic development. The cloned embryos differ from their IVF counterparts in enriched Gene Ontology (GO) terms of biological process, molecular function, cellular component, and protein class categories in terms of the targets of differentially expressed miRNAs. The major pathways related to embryonic development, such as the Wnt signaling pathway, the apoptosis signaling pathway, the FGF signaling pathway, the p53 pathway, etc., were found to be affected in cloned relative to IVF embryos. Overall, these data reveal the distinct miRNA profile of cloned relative to IVF embryos, suggesting that the molecules or pathways affected may play an important role in cloned embryo development.
Collapse
|
20
|
Deng M, Chen B, Yang Y, Wan Y, Liu Z, Fu J, Wang F. Characterization of transcriptional activity during ZGA in mammalian SCNT embryo. Biol Reprod 2021; 105:905-917. [PMID: 34192747 DOI: 10.1093/biolre/ioab127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 06/28/2021] [Indexed: 11/14/2022] Open
Abstract
Developmental arrest of somatic cell nuclear transfer (SCNT) embryos first occurs at zygotic/embryonic genome activation (ZGA/EGA), which is critical for preimplantation development. However, study on transcriptome of SCNT embryos during ZGA/EGA is limited. In the present study, we performed RNA-seq of the 8-cell SCNT embryos in goat and provide cross-species analysis of transcriptional activity of SCNT embryos during ZGA/EGA in mice, human, bovine, and goat. RNA-seq data revealed 3966 differentially expressed genes (DEGs) failed to be reprogrammed or activated during EGA of SCNT embryos in goat. Series test of cluster analysis showed four clusters of DEGs and similar changes of the clusters in the four species. Specifically, genes in cluster 3 were somehow upregulated compared with the donor cells and the IVF embryo. Moreover, the histone methylation key players and N6-methyladenosine modifiers (SUV39H1, SETDB1, SETD2, KDM5B, IGF2BP1, and YTHDF2) were differentially expressed in SCNT embryos of all species. Finally, we identified three modules correlated with the development of SCNT embryos in mice and screened 288 genes (such as BTG4, WEE1, KLF3, and USP21) that are likely critical for SCNT reprogramming using weighted gene correlation network analysis. Our data will broaden the current understanding of transcriptome activity during stochastic reprogramming events and provide an excellent source for future studies.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Fu
- LC Bio Ltd., Hangzhou, 310018, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Fu B, Ma H, Liu D. Functions and Regulation of Endogenous Retrovirus Elements during Zygotic Genome Activation: Implications for Improving Somatic Cell Nuclear Transfer Efficiency. Biomolecules 2021; 11:829. [PMID: 34199637 PMCID: PMC8229993 DOI: 10.3390/biom11060829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/28/2022] Open
Abstract
Endogenous retroviruses (ERVs), previously viewed as deleterious relics of ancestral retrovirus infections, are silenced in the vast majority of cells to minimize the risk of retrotransposition. Counterintuitively, bursts of ERV transcription usually occur during maternal-to-zygotic transition (MZT) in preimplantation embryos; this is regarded as a major landmark event in the zygotic genome activation (ZGA) process, indicating that ERVs play an active part in ZGA. Evolutionarily, the interaction between ERVs and hosts is mutually beneficial. The endogenization of retrovirus sequences rewires the gene regulatory network during ZGA, and ERV repression may lower germline fitness. Unfortunately, owing to various limitations of somatic cell nuclear transfer (SCNT) technology, both developmental arrest and ZGA abnormalities occur in a high percentage of cloned embryos, accompanied by ERV silencing, which may be caused by the activation failure of upstream ERV inducers. In this review, we discuss the functions and regulation of ERVs during the ZGA process and the feasibility of temporal control over ERVs in cloned embryos via exogenous double homeobox (DUX). We hypothesize that further accurate characterization of the ERV-rewired gene regulatory network during ZGA may provide a novel perspective on the development of preimplantation embryos.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Hong Ma
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| | - Di Liu
- Institute of Animal Husbandry, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China; (B.F.); (H.M.)
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Harbin 150086, China
| |
Collapse
|
22
|
Lee AR, Park JH, Shim SH, Hong K, La H, Park KS, Lee DR. Genome stabilization by RAD51-stimulatory compound 1 enhances efficiency of somatic cell nuclear transfer-mediated reprogramming and full-term development of cloned mouse embryos. Cell Prolif 2021; 54:e13059. [PMID: 34021643 PMCID: PMC8249786 DOI: 10.1111/cpr.13059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The genetic instability and DNA damage arise during transcription factor-mediated reprogramming of somatic cells, and its efficiency may be reduced due to abnormal chromatin remodelling. The efficiency in somatic cell nuclear transfer (SCNT)-mediated reprogramming is also very low, and it is caused by development arrest of most reconstituted embryos. MATERIALS AND METHODS Whether the repair of genetic instability or double-strand breaks (DSBs) during SCNT reprogramming may play an important role in embryonic development, we observed and analysed the effect of Rad 51, a key modulator of DNA damage response (DDR) in SCNT-derived embryos. RESULTS Here, we observed that the activity of Rad 51 is lower in SCNT eggs than in conventional IVF and found a significantly lower level of DSBs in SCNT embryos during reprogramming. To address this difference, supplementation with RS-1, an activator of Rad51, during the activation of SCNT embryos can increase RAD51 expression and DSB foci and thereby increased the efficiency of SCNT reprogramming. Through subsequent single-cell RNA-seq analysis, we observed the reactivation of a large number of genes that were not expressed in SCNT-2-cell embryos by the upregulation of DDR, which may be related to overcoming the developmental block. Additionally, there may be an independent pathway involving histone demethylase that can reduce reprograming-resistance regions. CONCLUSIONS This technology can contribute to the production of comparable cell sources for regenerative medicine.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Hyeonwoo La
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do, Korea.,CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do, Korea
| |
Collapse
|
23
|
Zhao R, Zuo Q, Yuan X, Jin K, Jin J, Ding Y, Zhang C, Li T, Jiang J, Li J, Zhang M, Shi X, Sun H, Zhang Y, Xu Q, Chang G, Zhao Z, Li B, Wu X, Zhang Y, Song J, Chen G, Li B. Production of viable chicken by allogeneic transplantation of primordial germ cells induced from somatic cells. Nat Commun 2021; 12:2989. [PMID: 34017000 PMCID: PMC8138025 DOI: 10.1038/s41467-021-23242-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
The allogeneic transplantation of primordial germ cells (PGCs) derived from somatic cells overcomes the limitation of avian cloning. Here, we transdifferentiate chicken embryo fibroblasts (CEFs) from black feathered Langshan chickens to PGCs and transplant them into White Plymouth Rock chicken embryos to produce viable offspring with characteristics inherited from the donor. We express Oct4/Sox2/Nanog/Lin28A (OSNL) to reprogram CEFs to induced pluripotent stem cells (iPSCs), which are further induced to differentiate into PGCs by BMP4/BMP8b/EGF. DNA demethylation, histone acetylation and glycolytic activation elevate the iPSC induction efficiency, while histone acetylation and glycolytic inhibition facilitate PGCs formation. The induced PGCs (iPGCs) are transplanted into the recipients, which are self-crossed to produce 189/509 somatic cells derived chicken with the donor's characteristics. Microsatellite analysis and genome sequencing confirm the inheritance of genetic information from the donor. Thus, we demonstrate the feasibility of avian cloning from somatic cells.
Collapse
Affiliation(s)
- Ruifeng Zhao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xia Yuan
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jing Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ying Ding
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingting Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jingyi Jiang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiancheng Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ming Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiang Shi
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Hongyan Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- The Poultry Research Institute of Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Bing Li
- The Poultry Research Institute of Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Xinsheng Wu
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yang Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD, USA
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
24
|
Kashim MIAM, Hasim NA, Zin DMM, Amin L, Mokhtar MH, Shahimi S, Mutalib SA. Animal cloning and consumption of its by-products: A scientific and Islamic perspectives. Saudi J Biol Sci 2021; 28:2995-3000. [PMID: 34025177 PMCID: PMC8117031 DOI: 10.1016/j.sjbs.2021.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
Islam is a religion that inspires its followers to seek knowledge continually and nurtures innovation, within the realms of Islamic rulings, towards an ameliorated quality of life. Up-to-date biotechnological techniques, specifically animal cloning, are involved in advancing society's health, social, and economic domains. The goal of animal cloning includes the production of genetically modified animal for human consumption. Therefore, this research endeavoured to study animal cloning's current scientific findings, examine the by-product of said process, and determine its permissibility in an Islamic context. This study employed descriptive literature reviews. Results concluded that animal cloning, especially in mammals, does not occur naturally as in plants. A broadly trusted and efficient animal cloning method is known as Somatic Cell Nuclear Transfer (SCNT), which includes three principal steps: oocyte enucleation; implantation of donor cells (or nucleus); and the activation of the embryo. Nevertheless, the limitations of SCNT, particularly to the Large Offspring Syndrome (LOS), should be noted. One of the forms of the application of animal cloning is in agriculture. From an Islamic perspective, determining the permissibility of consuming cloned animals as food is essentially based on whether the cloned animal conforms to Islamic law's principles and criteria. Islam interdicts animal cloning when it is executed without benefiting humans, religion, or society. Nonetheless, if it is done to preserve the livelihood and the needs of a community, then the process is deemed necessary and should be administered following the conditions outlined in Islam. Hence, the Islamic ruling for animal cloning is not rigid and varies proportionately with the current fatwa.
Collapse
Affiliation(s)
- Mohd Izhar Ariff Mohd Kashim
- Center of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nur Asmadayana Hasim
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Diani Mardiana Mat Zin
- PERMATA Insan College, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Latifah Amin
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Pusat Citra Universiti, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Safiyyah Shahimi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sahilah Abd. Mutalib
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
25
|
Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int J Mol Sci 2021; 22:ijms22063099. [PMID: 33803567 PMCID: PMC8002851 DOI: 10.3390/ijms22063099] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still characterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the state of the art in not only molecular mechanisms underlying intergenomic communication between nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic cell-inherited chromosomes.
Collapse
|
26
|
Deng M, Wan Y, Chen B, Dai X, Liu Z, Yang Y, Cai Y, Zhang Y, Wang F. Long non-coding RNA lnc_3712 impedes nuclear reprogramming via repressing Kdm5b. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:54-66. [PMID: 33738138 PMCID: PMC7940708 DOI: 10.1016/j.omtn.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are involved in shaping chromosome conformation and regulation of preimplantation development. However, the role of lncRNA during somatic cell nuclear transfer (SCNT) reprogramming remains largely unknown. In the present study, we identified 114 upregulated lncRNAs in the 8-cell SCNT embryos as candidate key molecules involved in nuclear reprogramming in goat. We found that H3K4me3 was an epigenetic barrier in goat nuclear reprogramming that and injection of Kdm5b mRNA greatly improved SCNT embryos development through removal of H3K4me3. We further reported that knockdown of lnc_3712 increased the expression of Kdm5b, which led to H3K4me3 demethylation. Of note, the development of goat SCNT embryos was improved when lnc_3712 was knocked down, whereas the blastocyst rate showed no difference in lnc_3712 and Kdm5b double knockdown SCNT embryos compared with the negative control SCNT embryos. Specifically, in lnc_3712 knockdown SCNT embryos, partial of the transcriptional activity and the expression of critical embryonic genes (Wee1, Ctsb, and Ybx1) were similar with that of in vitro fertilization embryos. Therefore, our results elucidate the critical role of lnc_3712 in regulating the development of goat SCNT embryos via repressing Kdm5b, which advances our current understanding of the role of lncRNAs during nuclear reprogramming.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Cao P, Li H, Zuo Y, Nashun B. Characterization of DNA Methylation Patterns and Mining of Epigenetic Markers During Genomic Reprogramming in SCNT Embryos. Front Cell Dev Biol 2020; 8:570107. [PMID: 32984351 PMCID: PMC7492385 DOI: 10.3389/fcell.2020.570107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT), also known as somatic cell cloning, is a commonly used technique to study epigenetic reprogramming. Although SCNT has the advantages of being safe and able to obtain pluripotent cells, early developmental arrest happens in most SCNT embryos. Overcoming epigenetic barriers is currently the primary strategy for improving reprogramming efficiency and improving developmental rate in SCNT embryos. In this study, we analyzed DNA methylation profiles of in vivo fertilized embryos and SCNT embryos with different developmental fates. Overall DNA methylation level was higher in SCNT embryos during global de-methylation process compared to in vivo fertilized embryos. In addition, promoter region, first intron and 3′UTR were found to be the major genomic regions that were hyper-methylated in SCNT embryos. Surprisingly, we found the length of re-methylated region was directly related to the change of methylation level. Furthermore, a number of genes including Dppa2 and Dppa4 which are important for early zygotic genome activation (ZGA) were not properly activated in SCNT embryos. This study comprehensively analyzed genome-wide DNA methylation patterns in SCNT embryos and provided candidate target genes for improving efficiency of genomic reprogramming in SCNT embryos. Since SCNT technology has been widely used in agricultural and pastoral production, protection of endangered animals, and therapeutic cloning, the findings of this study have significant importance for all these fields.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
28
|
Shyam S, Goel P, Kumar D, Malpotra S, Singh MK, Lathwal SS, Chand S, Palta P. Effect of Dickkopf-1 and colony stimulating factor-2 on the developmental competence, quality, gene expression and live birth rate of buffalo (Bubalus bubalis) embryos produced by hand-made cloning. Theriogenology 2020; 157:254-262. [PMID: 32823021 DOI: 10.1016/j.theriogenology.2020.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/07/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023]
Abstract
A functional canonical WNT signaling pathway exists in preimplantation embryos and inhibits embryonic development. Recent studies suggest that this pathway is over-expressed in nuclear transferred (NT), compared to IVF embryos. The present study investigated the effects of Dickkopf-1 (DKK1), an inhibitor of canonical WNT signaling pathway and colony stimulating factor-2 (CSF2), an embryokine, on the developmental competence, quality, gene expression and live birth rate of NT buffalo embryos produced by Hand-made cloning (HMC). Following supplementation of the in vitro culture medium on day 5 with DKK1 (100 ng/mL), CSF2 (10 ng/mL), DKK1+CSF2 or no supplementation (control), the blastocyst rate was higher (P < 0.05) with DKK1 and DKK1+CSF2 (42.6 ± 1.4% and 46.6 ± 0.9%, respectively) than with CSF2 or controls (40.6 ± 1.3% and 39.0 ± 1.3%, respectively). The apoptotic index of the blastocysts was lower (P < 0.05) for DKK1, CSF2 and DKK1+CSF2 groups (3.44 ± 0.14, 3.39 ± 0.11 and 3.11 ± 0.22, respectively) compared to controls (6.64 ± 0.25), and was similar to that of the IVF blastocysts (3.67 ± 0.18). Although the total cell number was similar for the DKK1, CSF2, DKK1+CSF2 and control groups (200.4 ± 3.05, 196.4 ± 3.73, 204.7 ± 3.71 and 205 ± 4.03, respectively), the inner cell mass:trophectoderm cell number ratio of DKK1, CSF2 and DKK1+CSF2 groups (0.21 ± 0.01, 0.17 ± 0.01 and 0.22 ± 0.02, respectively) was higher (P < 0.05) than controls (0.13 ± 0.01) and was similar to that of IVF blastocysts (0.19 ± 0.01). Treatment with DKK1 or CSF2 or both increased (P < 0.05) the expression level of OCT4, NANOG,SOX2, GATA6, BCL2, PTEN, P53, FGF4, GLUT1 and IFN-τ, and decreased that of C-MYC, CDX2, CASPASE, DNMT3a, TCF7 and LEF1 in blastocysts, compared to controls. Transfer of DKK1-treated embryos to 13 recipients resulted in 4 pregnancies (30.8%; 2 live births, one abortion and one currently at 9 months of pregnancy) whereas, transfer of DKK1+CSF2-treated embryos to 16 recipients, resulted in 4 pregnancies (25.0%), all of which resulted in live births. No pregnancy was obtained after transfer of control and CSF-treated embryos to 12 and 16 recipients, respectively. These results suggest that DKK1 treatment of NT embryos increases the blastocyst, conception and live birth rate, and improves their quality whereas, CSF2 treatment, does not affect the blastocyst, conception and live birth rate despite improvement in embryo quality.
Collapse
Affiliation(s)
- S Shyam
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - P Goel
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - D Kumar
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S Malpotra
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - M K Singh
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S S Lathwal
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - S Chand
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - P Palta
- ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
29
|
Yang L, Liu X, Song L, Di A, Su G, Bai C, Wei Z, Li G. Transient Dux expression facilitates nuclear transfer and induced pluripotent stem cell reprogramming. EMBO Rep 2020; 21:e50054. [PMID: 32715614 DOI: 10.15252/embr.202050054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cloned animals generated by somatic cell nuclear transfer (SCNT) have been reported for many years; however, SCNT is extremely inefficient, and zygotic genome activation (ZGA) is required for SCNT-mediated somatic cell reprogramming. To identify candidate factors that facilitate ZGA in SCNT-mediated reprogramming, we performed siRNA-repressor and mRNA-inducer screenings, which reveal Dux, Dppa2, and Dppa4 as key factors enhancing ZGA in SCNT. We show that direct injection of ZGA inducers has no significant effect on SCNT blastocyst formation; however, following the establishment of an inducible Dux transgenic mouse model, we demonstrate that transient overexpression of Dux not only improves SCNT efficiency but also increases that of chemically induced pluripotent stem cell reprogramming. Moreover, transcriptome profiling reveals that Dux-treated SCNT embryos are similar to fertilized embryos. Furthermore, transient overexpression of Dux combined with inactivation of DNA methyltransferases (Dnmts) further promotes the full embryonic development of SCNT-derived animals. These findings enhance our understanding of ZGA-regulator function in somatic reprogramming.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, China.,Research Center for Mammalian Reproductive Biology and Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
30
|
Lee JE, Lee JY, Park CH, Eum JH, Jung SK, Han AR, Seol DW, Lee JS, Shin HS, Im JH, Chun T, Ha K, Heo DR, Yoon TK, Lee DR. Cryopreserved Human Oocytes and Cord Blood Cells Can Produce Somatic Cell Nuclear Transfer-Derived Pluripotent Stem Cells with a Homozygous HLA Type. Stem Cell Reports 2020; 15:171-184. [PMID: 32502464 PMCID: PMC7363744 DOI: 10.1016/j.stemcr.2020.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (PSCs) through somatic cell nuclear transfer (SCNT) may be an important source for regenerative medicine. The low derivation efficiency of stem cells and the accessibility of human oocytes are the main obstacles to their application. We previously reported that the efficiency of SCNT was increased by overexpression of H3K9me3 demethylase. Here, we applied a modified derivation method to the PSC line and first obtained human SCNT-PSC lines derived from both donated cryopreserved oocytes and cord blood cells with a homozygous human leukocyte antigen (HLA) type. The SCNT-PSCs have very similar characteristics with embryonic stem cells (ESCs) and additionally have shown immunocompatibility in an in vitro and in vivo humanized mouse with a matching HLA type. Our study demonstrates that SCNT technology using donated cryopreserved oocytes and cord blood cells with a known HLA type provides a promising method for establishing a human HLA-matched SCNT-PSC bank for regenerative medicine. Human normal SCNT-PSC line with homozygous HLA type is derived from both donated cryopreserved oocytes and cord blood cells SCNT-PSC derivation is improved by modified method using ESC-conditioned medium Differentiated functional cells from SCNT-PSC with homozygous HLA type have shown immunocompatibility in humanized mouse with a matching HLA type This SCNT technology facilitates the establishment of the human HLA-matched SCNT-PSC bank
Collapse
Affiliation(s)
- Jeoung Eun Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do 13488, Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do 13488, Korea
| | - Chang-Hwan Park
- Graduated School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jin Hee Eum
- Fertility Center of CHA Gangnam Medical Center, CHA University, Seoul 06135, Korea
| | - Soo Kyung Jung
- CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do 13488, Korea
| | - A-Reum Han
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do 13488, Korea
| | - Dong-Won Seol
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do 13488, Korea
| | - Jin Saem Lee
- Graduated School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Hyun Soo Shin
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Jung Ho Im
- Department of Radiation Oncology, CHA Bundang Medical Center, CHA University, Seongnam 13496, Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kyungsoo Ha
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Korea
| | - Deok Rim Heo
- New Drug Development Center, Osong Medical Innovation Foundation, Osong 28160, Korea
| | - Tae Ki Yoon
- Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do 13488, Korea
| | - Dong Ryul Lee
- CHA Advanced Research Institute, CHA University, Seongnam, Gyunggi-do 13488, Korea; Department of Biomedical Science, CHA University, Seongnam, Gyunggi-do 13488, Korea.
| |
Collapse
|
31
|
Jafarpour F, Ghazvini Zadegan F, Ostadhosseini S, Hajian M, Kiani-Esfahani A, Nasr-Esfahani MH. siRNA inhibition and not chemical inhibition of Suv39h1/2 enhances pre-implantation embryonic development of bovine somatic cell nuclear transfer embryos. PLoS One 2020; 15:e0233880. [PMID: 32497112 PMCID: PMC7272017 DOI: 10.1371/journal.pone.0233880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (SCNT) is low due to the strong resistance of somatic donor cells to epigenetic reprogramming. Many epigenetic drugs targeting DNA methylation and histone acetylation have been used in attempts to improve the in vitro and in vivo development of SCNT embryos. H3K9me3 has been shown to be an important reprogramming barrier for generating induced pluripotent stem cells (iPSCs) and SCNT embryos in mice and humans. In this study, we examined the effects of selective siRNA and chemical inhibition of H3K9me3 in somatic donor cells on the in vitro development of bovine SCNT embryos. Chaetocin, an inhibitor of SUV39H1/H2, was supplemented during the culture of donor cells. In addition, the siRNA knockdown of SUV39H1/H2 was performed in the donor cells. The effects of chaetocin and siSUV39H1/H2 on H3K9me3 and H3K9ac were quantified using flow cytometry. Furthermore, we assessed chaetocin treatment and SUV39H1/H2 knockdown on the blastocyst formation rate. Both chaetocin and siSUV39H1/H2 significantly reduced and elevated the relative intensity level of H3K9me3 and H3K9ac in treated fibroblast cells, respectively. siSUV39H1/H2 transfection, but not chaetocin treatment, improved the in vitro development of SCNT embryos. Moreover, siSUV39H1/H2 altered the expression profile of the selected genes in the derived blastocysts, similar to those derived from in vitro fertilization (IVF). In conclusion, our results demonstrated H3K9me3 as an epigenetic barrier in the reprogramming process mediated by SCNT in bovine species, a finding which supports the role of H3K9me3 as a reprogramming barrier in mammalian species. Our findings provide a promising approach for improving the efficiency of mammalian cloning for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Faezeh Ghazvini Zadegan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayyeh Ostadhosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - M. H. Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
32
|
Borges AA, Lira GPDO, Nascimento LE, Santos MVDO, Oliveira MFD, Silva AR, Pereira AF. Isolation, characterization, and cryopreservation of collared peccary skin-derived fibroblast cell lines. PeerJ 2020; 8:e9136. [PMID: 32547858 PMCID: PMC7275682 DOI: 10.7717/peerj.9136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Background Biobanking of cell lines is a promising tool of support for wildlife conservation. In particular, the ability to preserve fibroblast cell lines derived from collared peccaries is of significance as these wild mammals are unique to the Americas and play a large role in maintaining the ecosystem. We identified collared peccary fibroblasts by immunofluorescence and evaluated their morphology, growth and adherence capacity. Further, we monitored the viability and metabolic activity of the fibroblasts to determine the effects of passage number and cryopreservation on establishment of cell lines. Methods Skin biopsies were collected from the peripheral ear region from five adult animals in captivity. Initially, cells were isolated from fragments and cultured in the Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum and 2% antibiotic-antimycotic solution under a controlled atmosphere (38.5 °C, 5% CO2). We evaluated the maintenance of primary cells for morphology, adherence capacity of explants, explants in subconfluence, cell growth and absence of contamination. Moreover, we identified the fibroblast cells by immunofluorescence. Additionally, to evaluate the influence of the number of passages (first, third and tenth passage) and cryopreservation on establishment of cell lines, fibroblasts were analysed for the viability, metabolic activity, population doubling time (PDT), levels of reactive oxygen species (ROS), and mitochondrial membrane potential (ΔΨm). Results All explants (20/20) adhered to the dish in 2.4 days ± 0.5 with growth around the explants in 4.6 days ± 0.7, and subconfluence was observed within 7.8 days ± 1.0. Moreover, by morphology and immunocytochemistry analyses, cells were identified as fibroblasts which presented oval nuclei, a fusiform shape and positive vimentin staining. No contamination was observed after culture without antibiotics and antifungals for 30 days. While there was no difference observed for cell viability after the passages (first vs. third: P = 0.98; first vs. tenth: P = 0.76; third vs. tenth: P = 0.85), metabolic activity was found to be reduced in the tenth passage (23.2 ± 12.1%) when compared to that in the first and third passage (100.0 ± 24.4%, P = 0.006). Moreover, the cryopreservation did not influence the viability (P = 0.11), metabolic activity (P = 0.77), or PDT (P = 0.11). Nevertheless, a greater ΔΨm (P = 0.0001) was observed for the cryopreserved cells (2.12 ± 0.14) when compared to that in the non-cryopreserved cells (1.00 ± 0.05). Additionally, the cryopreserved cells showed greater levels of intracellular ROS after thawing (1.69 ± 0.38 vs. 1.00 ± 0.22, P = 0.04). Conclusions This study is the first report on isolation, characterization and cryopreservation of fibroblasts from collared peccaries. We showed that adherent cultures were efficient for obtaining fibroblasts, which can be used as donor cells for nuclei for species cloning and other applications.
Collapse
Affiliation(s)
- Alana Azevedo Borges
- Laboratory of Animal Biotechnology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | - Lucas Emanuel Nascimento
- Laboratory of Animal Biotechnology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | | | - Moacir Franco De Oliveira
- Laboratory of Applied Animal Morphophysiology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| | - Alexsandra Fernandes Pereira
- Laboratory of Animal Biotechnology, Universidade Federal Rural do Semi-Árido, Mossoró, Rio Grande do Norte, Brazil
| |
Collapse
|
33
|
Wang Y, Li Y, Luan D, Kang J, He R, Zhang Y, Quan F. Dynamic replacement of H3.3 affects nuclear reprogramming in early bovine SCNT embryos. Theriogenology 2020; 154:43-52. [PMID: 32480063 DOI: 10.1016/j.theriogenology.2020.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/22/2023]
Abstract
The histone variant H3.3 is an important maternal factor in fertilization of oocytes and reprogramming of somatic cell nuclear transfer (SCNT) embryos. As a crucial replacement histone, maternal H3.3 is involved in chromatin remodeling and zygote genome activation. Litte is, however, known about the replacement of H3.3 in the bovine SCNT embryos. In this study, the maternal H3.3 in mature ooplasm was labeled with HA tag and the donor cells H3.3 was labeled with Flag tag, in order to observe the replacement of H3.3 in the bovine SCNT embryos. Meanwhile, maternal H3.3 knockdown was performed by microinjecting two different interfering fragments before nucleus transfer. It was showed that the dynamic replacement between maternal- and donor nucleus-derived H3.3 was detected after SCNT. And it could be observed that the blastocyst development rate of the cloned embryos decreased from 22.3% to 8.2-10.3% (P < 0.05), the expression of Pou5f1 and Sox2 was down-regulated and the level of H3K9me3 was increased in the interfered embryos. In summary, H3.3 replacement impacted on the process of reprogramming, including embryonic development potential, activation of pluripotency genes and epigenetic modification in bovine SCNT embryos.
Collapse
Affiliation(s)
- Yile Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanhe Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Deji Luan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jian Kang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rongjun He
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Fusheng Quan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Jiang Q, Huang X, Hu X, Shan Z, Wu Y, Wu G, Lei L. Histone demethylase KDM6A promotes somatic cell reprogramming by epigenetically regulating the PTEN and IL-6 signal pathways. Stem Cells 2020; 38:960-972. [PMID: 32346926 DOI: 10.1002/stem.3188] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Aberrant epigenetic reprogramming is one of the major barriers for somatic cell reprogramming. Although our previous study has indicated that H3K27me3 demethylase KDM6A can improve the nuclear reprogramming efficiency, the mechanism remains unclear. In this study, we demonstrate that the overexpression of Kdm6a may improve induced pluripotent stem cell (iPSC) reprogramming efficiency in a demethylase enzymatic activity-dependent manner. KDM6A erased H3K27me3 on pluripotency- and metabolism-related genes, and consequently facilitated changing the gene expression profile and metabolic pattern to an intermediate state. Furthermore, KDM6A may promote IL-6 expression, and the secreted IL-6 may further improve iPSC reprogramming efficiency. In addition, KDM6A may promote PTEN expression to decrease p-AKT and p-mTOR levels, which in turn facilitates reprogramming. Overall, our results reveal that KDM6A may promote iPSC reprogramming efficiency by accelerating changes in the gene expression profile and the metabolic pattern in a demethylation-activity-dependent manner. These results may provide an insight into the relationship between epigenomics, transcriptomics, metabolomics, and reprogramming.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Xingwei Huang
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Xinglin Hu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Zhiyan Shan
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Yanshuang Wu
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China
| | - Guangming Wu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, People's Republic of China
| | - Lei Lei
- Department of Histology and Embryology, Basic Medical Science College, Harbin Medical University, Harbin, People's Republic of China.,Key laboratory of preservation of human genetic resources and disease control in China(Harbin Medical University), Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
35
|
Zhao X, Nie J, Tang Y, He W, Xiao K, Pang C, Liang X, Lu Y, Zhang M. Generation of Transgenic Cloned Buffalo Embryos Harboring the EGFP Gene in the Y Chromosome Using CRISPR/Cas9-Mediated Targeted Integration. Front Vet Sci 2020; 7:199. [PMID: 32426378 PMCID: PMC7212351 DOI: 10.3389/fvets.2020.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Sex control technology is of great significance in the production of domestic animals, especially for rapidly breeding water buffalo (bubalus bubalis), which served as a research model in the present study. We have confirmed that a fluorescence protein integrated into the Y chromosome is fit for sexing pre-implantation embryos in the mouse. Firstly, we optimized the efficiency of targeted integration of exogenous gene encoding enhanced green fluorescent protein (eGFP) and mCherry in Neuro-2a cells, mouse embryonic stem cells, mouse embryonic cells (NIH3T3), buffalo fetal fibroblast (BFF) cells. The results showed that a homology arm length of 800 bp on both sides of the target is more efficient that 300 bp or 300 bp/800 bp. Homology-directed repair (HDR)-mediated knock-in in BFF cells was also significantly improved when cells were supplemented with pifithrin-μ, which is a small molecule that inhibits the binding of p53 to mitochondria. Three pulses at 250 V resulted in the most efficient electroporation in BFF cells and 1.5 μg/mL puromycin was found to be the optimal concentration for screening. Moreover, Y-Chr-eGFP transgenic BFF cells and cloned buffalo embryos were successfully generated using CRISPR/Cas9-mediated gene editing combined with the somatic cell nuclear transfer (SCNT) technique. At passage numbers 6–8, the growth rate and cell proliferation rate were significantly lower in Y-Chr-eGFP transgenic than in non-transgenic BFF cells; the expression levels of the methylation-related genes DNMT1 and DNMT3a were similar; however, the expression levels of the acetylation-related genes HDAC1, HDAC2, and HDAC3 were significantly higher (p < 0.05) in Y-Chr-eGFP transgenic BFF cells compared with non-transgenic cells. Y-Chr-eGFP transgenic BFFs were used as donors for SCNT, the results showed that eGFP reporter is suitable for the visualization of the sex of embryos. The blastocyst rates of cloned buffalo embryos were similar; however, the cleavage rates of transgenic cloned embryos were significantly lower compared with control. In summary, we optimized the protocol for generating transgenic BFF cells and successfully generated Y-Chr-eGFP transgenic embryos using these cells as donors.
Collapse
Affiliation(s)
- Xiuling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Wengtan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
36
|
Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos. Nat Commun 2020; 11:1813. [PMID: 32286279 PMCID: PMC7156422 DOI: 10.1038/s41467-020-15607-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/14/2020] [Indexed: 01/03/2023] Open
Abstract
The oocyte cytoplasm can reprogram the somatic cell nucleus into a totipotent state, but with low efficiency. The spatiotemporal chromatin organization of somatic cell nuclear transfer (SCNT) embryos remains elusive. Here, we examine higher order chromatin structures of mouse SCNT embryos using a low-input Hi-C method. We find that donor cell chromatin transforms to the metaphase state rapidly after SCNT along with the dissolution of typical 3D chromatin structure. Intriguingly, the genome undergoes a mitotic metaphase-like to meiosis metaphase II-like transition following activation. Subsequently, weak chromatin compartments and topologically associating domains (TADs) emerge following metaphase exit. TADs are further removed until the 2-cell stage before being progressively reestablished. Obvious defects including stronger TAD boundaries, aberrant super-enhancer and promoter interactions are found in SCNT embryos. These defects are partially caused by inherited H3K9me3, and can be rescued by Kdm4d overexpression. These observations provide insight into chromatin architecture reorganization during SCNT embryo development. The organisation of chromatin in somatic cell nuclear transfer (SCNT) embryos remains poorly understood. Here, the authors examine higher order chromatin structures of mouse SCNT embryos and provide insights into chromatin architecture reorganisation during SCNT embryo development.
Collapse
|
37
|
Jozi M, Jafarpour F, Moradi R, Zadegan FG, Karbalaie K, Nasr-Esfahani MH. Induced DNA hypomethylation by Folic Acid Deprivation in Bovine Fibroblast Donor Cells Improves Reprogramming of Somatic Cell Nuclear Transfer Embryos. Sci Rep 2020; 10:5076. [PMID: 32193457 PMCID: PMC7081283 DOI: 10.1038/s41598-020-61797-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Aberrant patterns of DNA methylation are consistent events in SCNT derived embryos and mechanistically are believed to be related to abnormal development. While some epigenetic drugs have been used in attempts to improve SCNT efficiency but some concerns remained toward the safety of these drugs on the health of future offspring. Folate is an essential cofactor in one‐carbon cycle for conversion of homocysteine to methionine, thereby ensuring supply of SAM, the universal methyl donor for many biological methylation reactions including DNA methylation. Therefore, in vitro DNA hypo-methylation can be induced by folate deprivation and this study aims at deciphering the role of folic acid deprivation in culture medium of BFFs for 6 days on SCNT efficiency. Our data revealed that culture of fibroblast cells in folate− medium containing 0.5% FBS did not alter the cell cycle compared to other groups. Flowcytometric analysis revealed that DNA methylation (5-mC level) in folate deprived cells cultured in 0.5% serum was decreased compared to folate+ group. The result of bisulfite sequencing was in accordance with flowcytometric analysis, which indicated a decrease in DNA methylation of POU5F1 promoter. Gene expression analysis revealed an increase in expression of POU5F1 gene in folate− group. The nuclear area of the cells in folate− group was significantly larger than folate+ group. Induced DNA hypomethylation by folate deprivation in the folate− group significantly improved blastocyst rate compared to the folate+ group. DNA methylation level in POU5F1 promoter and ICR of H19 and IGF2 of SCNT derived embryos in the folate− group was similar to the IVF derived blastocysts. In conclusion, our results proposes a promising “non-chemical” instead of “chemical” approach using inhibitors of epigenetic modifier enzymes for improving mammalian SCNT efficiency for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Mina Jozi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Reza Moradi
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Faezeh Ghazvini Zadegan
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Khadijeh Karbalaie
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
38
|
Deng M, Liu Z, Chen B, Wan Y, Yang H, Zhang Y, Cai Y, Zhou J, Wang F. Aberrant DNA and histone methylation during zygotic genome activation in goat cloned embryos. Theriogenology 2020; 148:27-36. [PMID: 32126393 DOI: 10.1016/j.theriogenology.2020.02.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 01/23/2023]
Abstract
In somatic cell nuclear transfer (SCNT) embryos, developmental defects first appear at the time of zygotic genome activation (ZGA), a process that is under the control of DNA and histone methylation. However, dynamics of 5-mC and 5-hmC during ZGA differ between porcine and bovine SCNT embryos, and histone methylation during ZGA in goat SCNT embryos remains poorly understood. Therefore, in the present study, we investigated the dynamic changes of 5-mC, 5-hmC, H3K4me2/3, and H3K9me3, as well as the expression of key genes related to these epigenetic modifications, during ZGA in goat cloned embryos. Compared with the IVF embryos, the 5-mC signal intensity was significantly increased at the 2- and 4-cell stage SCNT embryos, and the H3K4me3 and H3K9me3 signal intensity was significantly increased at 2- to 8-cell stage SCNT embryos, while the 5-hmC and H3K4me2 signal intensity was significantly lower at the 4- and 8-cell stage SCNT embryos. Of note, the H3K9me3 level was also significantly higher, whereas H3K4me3 signal intensity showed no statistical difference in the pronuclear stage SCNT embryos. Moreover, the expression of TET2, DNMT3B, KDM4A, SUV39H1, G9A, and SETDB1 was significantly increased, while the expression of UHRF1, PCNA, KDM4B, KDM4D, KDM5A, KDM5B, and KDM5C was significantly decreased at the 8-cell stage SCNT embryos. Our data revealed aberrant DNA and histone methylation during ZGA in goat cloned embryos. We further inferred that the abnormally higher level of 5-mC, H3K4me3, and H3K9me3 might serve as epigenetic barriers of the reprogramming and modifying these aberrant modifications might be a promising strategy to improve cloning efficiency in goat.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Cai
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianguo Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
39
|
Zhang L, Yu M, Xu H, Wei X, Liu Y, Huang C, Chen H, Guo Z. RNA sequencing revealed the abnormal transcriptional profile in cloned bovine embryos. Int J Biol Macromol 2020; 150:492-500. [PMID: 32035150 DOI: 10.1016/j.ijbiomac.2020.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has potential applications in agriculture and biomedicine, but the efficiency of cloning is still low. In this study, the transcriptional profiles in cloned and fertilized embryos were measured and compared by RNA sequencing. The 2-cell embryos were detected to identify the earliest transcriptional differences between embryos derived through IVF and SCNT. As a result, 364 genes showed decreased expression in cloned 2-cell embryos and were enriched in "intracellular protein transport" and "ubiquitin mediated proteolysis". In blastocysts, 593 genes showed decreased expression in cloned blastocysts and were enriched in "RNA binding", "nucleotide binding", "embryo development", and "adherens junction". We identified 14 development related genes that were not activated in the cloned embryos. Then, 68 and 245 long non-coding RNAs were recognized abnormally expressed in cloned 2-cell embryos and cloned blastocysts, respectively. Furthermore, we found that incomplete RNA-editing occurred in cloned embryos and might be caused by decreased ADAR expression. In conclusion, our study revealed the abnormal transcripts and deficient RNA-editing sites in cloned embryos and provided new data for further mechanistic studies of somatic nuclear reprogramming.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Mengying Yu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Hongyu Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Xing Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Yingxiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Chenyang Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Huanhuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| | - Zekun Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
40
|
Enhancement of in Vitro Developmental Outcome of Cloned Goat Embryos After Epigenetic Modulation of Somatic Cell-Inherited Nuclear Genome with Trichostatin A. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
In this study, the effect of trichostatin A (TSA)-mediated epigenomic modulation of nuclear donor cells on the in vitro developmental potential of caprine somatic cell cloned embryos was examined. The enucleated ex vivo-matured oocytes were subzonally injected with adult ear skin-derived fibroblast cells exposed or not exposed to TSA (at a concentration of 50 nM). The experiment was designed on the basis of three different approaches to TSA-dependent modulation of donor cell-descended genome: before being used for somatic cell nuclear transfer/SCNT (Group I); immediately after activation of nuclear-transferred (NT) oocytes (Group II); or combined treatment both before being used for SCNT and after activation of NT oocytes (Group III). In the control Group IV, donor cell nuclei have not been treated with TSA at any stage of the experimental design. In TSA-treated Groups I and II and untreated Group IV, cleavage activities of cloned embryos were at the similar levels (80.6%, 79.8% and 77.1%, respectively). But, significant difference was observed between Groups III and IV (85.3 vs. 77.1%). Moreover, in the experimental Groups I and III, the percentages of cloned embryos that reached the blastocyst stages remarkably increased as compared to those noticed in the control Group IV (31.2% vs. 36.7% vs. 18.9%, respectively). In turn, among embryos assigned to Group II, blastocyst formation rate was only slightly higher than that in the control Group IV, but the differences were not statistically significant (25.8% vs. 18.9%). To sum up, TSA-based epigenomic modulation of somatic cell-inherited nuclear genome gave rise to increased competences of caprine cloned embryos to complete their development to blastocyst stages. In particular, sequential TSA-mediated modulation of both nuclear donor cells and activated NT oocytes led to improvement in the blastocyst yields of cloned goat embryos, which can result from enhanced donor cell nuclear reprogrammability.
Collapse
|
41
|
Li H, Song M, Yang W, Cao P, Zheng L, Zuo Y. A Comparative Analysis of Single-Cell Transcriptome Identifies Reprogramming Driver Factors for Efficiency Improvement. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1053-1064. [PMID: 32045876 PMCID: PMC7015826 DOI: 10.1016/j.omtn.2019.12.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022]
Abstract
Terminally differentiated somatic cells can be reprogrammed into a totipotent state through somatic cell nuclear transfer (SCNT). The incomplete reprogramming is the major reason for developmental arrest of SCNT embryos at early stages. In our studies, we found that pathways for autophagy, endocytosis, and apoptosis were incompletely activated in nuclear transfer (NT) 2-cell arrest embryos, whereas extensively inhibited pathways for stem cell pluripotency maintenance, DNA repair, cell cycle, and autophagy may result in NT 4-cell embryos arrest. As for NT normal embryos, a significant shift in expression of developmental transcription factors (TFs) Id1, Pou6f1, Cited1, and Zscan4c was observed. Compared with pluripotent gene Ascl2 being activated only in NT 2-cell, Nanog, Dppa2, and Sall4 had major expression waves in normal development of both NT 2-cell and 4-cell embryos. Additionally, Kdm4b/4d and Kdm5b had been confirmed as key markers in NT 2-cell and 4-cell embryos, respectively. Histone acetylases Kat8, Elp6, and Eid1 were co-activated in NT 2-cell and 4-cell embryos to facilitate normal development. Gadd45a as a key driver functions with Tet1 and Tet2 to improve the efficiency of NT reprogramming. Taken together, our findings provided an important theoretical basis for elucidating the potential molecular mechanisms and identified reprogramming driver factor to improve the efficiency of SCNT reprogramming.
Collapse
Affiliation(s)
- Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Mingmin Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wuritu Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lei Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
42
|
Zhou C, Zhang J, Zhang M, Wang D, Ma Y, Wang Y, Wang Y, Huang Y, Zhang Y. Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos. FASEB J 2019; 34:1637-1651. [PMID: 31914649 DOI: 10.1096/fj.201900578rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/29/2019] [Accepted: 10/22/2019] [Indexed: 11/11/2022]
Abstract
Studies on the effects of transcriptional memory on clone reprogramming in mammals are limited. In the present study, we observed higher levels of active histone H3 lysine 4 trimethylation (H3K4me3 and 5-hydroxymethylcytosine) and repressive (5-methylcytosine) epigenetic modifications in bovine early cloned embryos than in in vitro fertilized embryos. We hypothesized that aberrant epigenetic modification may result in transcriptional disorders in bovine somatic cell nuclear transfer (SCNT) embryos. RNA sequencing results confirmed that both abnormal transcriptional silencing and transcriptional activation are involved in bovine SCNT reprogramming. The cloned embryos exhibited excessive transcription in RNA processing- and translation-related genes as well as transcriptional defects in reproduction-related genes whose transcriptional profiles were similar to those in donor cells. These results demonstrated the existence of active and silent memory genes inherited from donor cells in early bovine SCNT embryos. Further, H3K4me3-specific demethylase 5B (KDM5B) mRNA was injected into the reconstructed embryos to reduce the increased H3K4me3 modification. KDM5B overexpression not only reduced the transcriptional level of active memory genes, but also promoted the expression of silent memory genes; in particular, it rescued the expression of multiple development-related genes. These results showed that transcriptional memory acts as a reprogramming barrier and KDM5B improves SCNT reprogramming via bidirectional regulation effects on transcriptional memory genes in bovines.
Collapse
Affiliation(s)
- Chuan Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Min Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Debao Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Yi Ma
- Tianjin Institute of Animal Science and Veterinary, Tianjin, China
| | - Yong Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Yizhi Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Yuemeng Huang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Engineering Center for Animal Embryo Technology, Yangling, China.,Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Comparison of pregnancy rates with transfer of in vivo produced embryos derived using multiple ovulation and embryo transfer (MOET) with in vitro produced embryos by somatic cell nuclear transfer (SCNT) in the dromedary camel (Camelus dromedaries). Anim Reprod Sci 2019; 209:106132. [PMID: 31514928 DOI: 10.1016/j.anireprosci.2019.106132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/15/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
In the present study, there was comparison of pregnancy rates with transfer of in vivo-produced embryos using multiple ovulation and embryo transfer (MOET) with in vitro-produced embryos by somatic cell nuclear transfer (SCNT) in dromedary camels. In vivo-produced embryos were collected from donors after super-stimulation of follicular development on day 7 after ovulation, while in vitro-derived embryos were produced using SCNT from in vivo-matured oocytes collected from camels after follicular development super-stimulation. As a result of estrous synchronization, all recipient camels for both groups were 1 day earlier in stage of estrous cycle than developmental status of embryos at the time of transfer. The animals into which embryos were transferred were monitored at 7-day intervals after embryo transfer for signs of pregnancy based on response to presence of a male and there was ultrasonic confirmation on days 35 and 60 subsequent to day of estrus in recipient animals. A greater proportion of recipients (P < 0.05) were considered pregnant based on response to male presence when there was transfer of MOET-(76.8 ± 3.2) compared with SCNT- (26.4 ± 2.4) derived embryos on day 14. There was no difference in pregnancy losses in subsequent weeks until day 60 between groups. There were also no differences in calving rates of females in which MOET- (91.7%) and SCNT- (93.3%) derived embryos were transferred. These results indicate pregnancies at day 60 with SCNT-derived embryos are sustained for the remainder of gestation periods similar to when there was transfer of MOET-derived embryos in dromedary camels.
Collapse
|
44
|
Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (
Bubalus bubalis
) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev 2019; 86:1149-1167. [DOI: 10.1002/mrd.23233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tanushri Jerath Sood
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Swati Viviyan Lagah
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Manishi Mukesh
- Animal Biotechnology DivisionICAR‐National Bureau of Animal Genetic ResourcesKarnal Haryana India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Radhey Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| |
Collapse
|
45
|
Wang H, Cui W, Meng C, Zhang J, Li Y, Qian Y, Xing G, Zhao D, Cao S. MC1568 Enhances Histone Acetylation During Oocyte Meiosis and Improves Development of Somatic Cell Nuclear Transfer Embryos in Pig. Cell Reprogram 2019; 20:55-65. [PMID: 29412739 DOI: 10.1089/cell.2017.0023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An increasing number of studies have revealed that histone deacetylase (HDAC) mediated histone deacetylation is important for mammalian oocyte development. However, nonselective HDAC inhibitors (HDACi) were applied in most studies; the precise functions of specific HDAC classes during meiosis are poorly defined. In this study, the class IIa-specific HDACi MC1568 was used to reveal a crucial role of class IIa HDACs in the regulation of histone deacetylation during porcine oocyte meiosis. Besides, the functions of HDACs and histone acetyltransferases in regulating the balance of histone acetylation/deacetylation were also confirmed during oocyte maturation. After the validation of nontoxicity of MC1568 in maturation rate, spindle morphology, and chromosome alignment, effects of MC1568 on developmental competence of porcine somatic cell nuclear transfer (SCNT) embryos were evaluated, and data indicated that treatment with 10 μM MC1568 for 12 hours following electrical activation significantly enhanced the blastocyst rate and cell numbers. Moreover, results showed that optimal MC1568 treatment increased the H4K12 acetylation level in SCNT one cells and two cells. In addition, MC1568 treatment stimulated expression of the development-related genes OCT4, CDX2, SOX2, and NANOG in SCNT blastocysts. Collectively, our investigation uncovered a critical role of class IIa HDACs in the regulation of histone deacetylation during oocyte meiosis. Furthermore, for the first time, we showed that MC1568 can improve the in vitro development of porcine SCNT embryos. These findings provide an alternative HDACi for improving animal cloning efficiency and may shed more light on nuclear reprogramming.
Collapse
Affiliation(s)
- Huili Wang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Wei Cui
- 2 Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Chunhua Meng
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Jun Zhang
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yinxia Li
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Yong Qian
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Guangdong Xing
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Dongmin Zhao
- 3 Institute of Veterinary Medicine , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Shaoxian Cao
- 1 Institute of Animal Science , Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| |
Collapse
|
46
|
Fu B, Ma H, Liu D. Endogenous Retroviruses Function as Gene Expression Regulatory Elements During Mammalian Pre-implantation Embryo Development. Int J Mol Sci 2019; 20:ijms20030790. [PMID: 30759824 PMCID: PMC6387303 DOI: 10.3390/ijms20030790] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 01/13/2023] Open
Abstract
Pre-implantation embryo development encompasses several key developmental events, especially the activation of zygotic genome activation (ZGA)-related genes. Endogenous retroviruses (ERVs), which are regarded as “deleterious genomic parasites”, were previously considered to be “junk DNA”. However, it is now known that ERVs, with limited conservatism across species, mediate conserved developmental processes (e.g., ZGA). Transcriptional activation of ERVs occurs during the transition from maternal control to zygotic genome control, signifying ZGA. ERVs are versatile participants in rewiring gene expression networks during epigenetic reprogramming. Particularly, a subtle balance exists between ERV activation and ERV repression in host–virus interplay, which leads to stage-specific ERV expression during pre-implantation embryo development. A large portion of somatic cell nuclear transfer (SCNT) embryos display developmental arrest and ZGA failure during pre-implantation embryo development. Furthermore, because of the close relationship between ERV activation and ZGA, exploring the regulatory mechanism underlying ERV activation may also shed more light on the enigma of SCNT embryo development in model animals.
Collapse
Affiliation(s)
- Bo Fu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Hong Ma
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| | - Di Liu
- Institute of Animal Husbandry Research, HeiLongJiang Academy of Agricultural Sciences, Harbin 150086, China.
- Key Laboratory of Combine of Planting and Feeding, Ministry of Agriculture of the People's Republic of China, Harbin 150086, China.
| |
Collapse
|
47
|
Zhou C, Wang Y, Zhang J, Su J, An Q, Liu X, Zhang M, Wang Y, Liu J, Zhang Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency. FASEB J 2019; 33:4638-4652. [PMID: 30673507 DOI: 10.1096/fj.201801887r] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aberrant epigenetic reprogramming is a major factor of developmental failure of cloned embryos. Histone H3 lysine 27 trimethylation (H3K27me3), a histone mark for transcriptional repression, plays important roles in mammalian embryonic development and induced pluripotent stem cell (iPSC) generation. The global loss of H3K27me3 marks may facilitate iPSC generation in mice and humans. However, the H3K27me3 level and its role in bovine somatic cell nuclear transfer (SCNT) reprogramming remain poorly understood. Here, we show that SCNT embryos exhibit global H3K27me3 hypermethylation from the 2- to 8-cell stage and that its removal by ectopically expressed H3K27me3 lysine demethylase (KDM)6A greatly improves nuclear reprogramming efficiency. In contrast, H3K27me3 reduction by H3K27me3 methylase enhancer of zeste 2 polycomb repressive complex knockdown or donor cell treatment with the enhancer of zeste 2 polycomb repressive complex-selective inhibitor GSK343 suppressed blastocyst formation by SCNT embryos. KDM6A overexpression enhanced the transcription of genes involved in cell adhesion and cellular metabolism and X-linked genes. Furthermore, we identified methyl-CpG-binding domain protein 3-like 2, which was reactivated by KDM6A, as a factor that is required for effective reprogramming in bovines. These results show that H3K27me3 functions as an epigenetic barrier and that KDM6A overexpression improves SCNT efficiency by facilitating transcriptional reprogramming.-Zhou, C., Wang, Y., Zhang, J., Su, J., An, Q., Liu, X., Zhang, M., Wang, Y., Liu, J., Zhang, Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency.
Collapse
Affiliation(s)
- Chuan Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yizhi Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Quanli An
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xin Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Min Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongsheng Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
48
|
Abstract
In this issue of Cell, Liu et al. (2018) report the birth of two healthy cloned macaque monkeys using fetal fibroblasts. By artificially enhancing the arsenal of epigenetic modifiers in the oocyte, the authors overcome the earliest roadblocks that take place during somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Jose B Cibelli
- Departments of Animal Science and Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | - John B Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
49
|
Sun Z, Wang M, Han S, Ma S, Zou Z, Ding F, Li X, Li L, Tang B, Wang H, Li N, Che H, Dai Y. Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Sci Rep 2018; 8:15430. [PMID: 30337546 PMCID: PMC6194018 DOI: 10.1038/s41598-018-32024-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/18/2018] [Indexed: 12/26/2022] Open
Abstract
The whey protein β-lactoglobulin (BLG) is a major milk allergen which is absent in human milk. Here, we for the first time generated DNA-free BLG bi-allelic knockout cow by zinc-finger nuclease (ZFNs) mRNA and produced BLG-free milk. According to the allergenicity evaluation of BLG-free milk, we found it can trigger lower allergic reaction of Balb/c mice including the rectal temperature drop and the allergen-specific immunoglobulin IgE production; BLG free-milk was easily digested by pepsin at 2 min, while BLG in control milk was still not completely digested after 60 min, and the binding of IgE from cow's milk allergy (CMA) patients to BLG free-milk was significantly lower than that to the control milk. Meanwhile, the genome sequencing revealed that our animal is free of off-target events. Importantly, editing animal genomes without introducing foreign DNA into cells may alleviate regulatory concerns related to foods produced by genome edited animals. Finally, the ZFNs-mediated targeting in cow could be transmitted through the germline by breeding. These findings will open up unlimited possibilities of modifying milk composition to make it more suitable for human health and also improve the functional properties of milk.
Collapse
Affiliation(s)
- Zhaolin Sun
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shiwen Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuangyu Ma
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyuan Zou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fangrong Ding
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinrui Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ling Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bo Tang
- Beijing Genprotein Biotechnology Company, Beijing, China
| | - Haiping Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Yunping Dai
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
50
|
Liu Y, Wu F, Zhang L, Wu X, Li D, Xin J, Xie J, Kong F, Wang W, Wu Q, Zhang D, Wang R, Gao S, Li W. Transcriptional defects and reprogramming barriers in somatic cell nuclear reprogramming as revealed by single-embryo RNA sequencing. BMC Genomics 2018; 19:734. [PMID: 30305014 PMCID: PMC6180508 DOI: 10.1186/s12864-018-5091-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/19/2018] [Indexed: 11/25/2022] Open
Abstract
Background Nuclear reprogramming reinstates totipotency or pluripotency in somatic cells by changing their gene transcription profile. This technology is widely used in medicine, animal husbandry and other industries. However, certain deficiencies severely restrict the applications of this technology. Results Using single-embryo RNA-seq, our study provides complete transcriptome blueprints of embryos generated by cumulus cell (CC) donor nuclear transfer (NT), embryos generated by mouse embryonic fibroblast (MEF) donor NT and in vivo embryos at each stage (zygote, 2-cell, 4-cell, 8-cell, morula, and blastocyst). According to the results from further analyses, NT embryos exhibit RNA processing and translation initiation defects during the zygotic genome activation (ZGA) period, and protein kinase activity and protein phosphorylation are defective during blastocyst formation. Two thousand three constant genes are not able to be reprogrammed in CCs and MEFs. Among these constant genes, 136 genes are continuously mis-transcribed throughout all developmental stages. These 136 differential genes may be reprogramming barrier genes (RBGs) and more studies are needed to identify. Conclusions These embryonic transcriptome blueprints provide new data for further mechanistic studies of somatic nuclear reprogramming. These findings may improve the efficiency of somatic cell nuclear transfer. Electronic supplementary material The online version of this article (10.1186/s12864-018-5091-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Fengrui Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Ling Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Xiaoqing Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Dengkun Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Jing Xin
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Juan Xie
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Feng Kong
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Wenying Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Qiaoqin Wu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Di Zhang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Rong Wang
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China
| | - Shaorong Gao
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenyong Li
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, 236041, Anhui Province, China.
| |
Collapse
|