1
|
Chang WC, Li SH, Tsai PS. Seminal Vesicle-Derived Exosomes for the Regulation of Sperm Activity. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2024. [PMID: 39287631 DOI: 10.1007/102_2024_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The seminal vesicle contributes to a large extent of the semen volume and composition. Removal of seminal vesicle or lack of seminal vesicle proteins leads to decreased fertility. Seminal plasma proteome revealed that seminal fluid contained a wide diversity of proteins. Many of them are known to modulate sperm capacitation and serve as capacitation inhibitors or decapacitation factors. Despite identifying secretory vesicles from the male reproductive tract, such as epididymosomes or prostasomes, isolation, identification, and characterization of seminal vesicle-derived exosomes are still unknown. This chapter aims to review the current understanding of the function of seminal vesicles on sperm physiology and male reproduction and provide ultracentrifugation-based isolation protocols for the isolation of seminal vesicle exosomes. Moreover, via proteomic analysis and functional categorization, a total of 726 proteins IDs were identified in the purified seminal vesicle exosomes fraction. Preliminary data showed seminal vesicle-derived exosomes inhibited sperm capacitation; however, more studies will be needed to reveal other functional involvements of seminal vesicle-derived exosomes on the sperm physiology and, more importantly, how these exosomes interact with sperm membrane to achieve their biological effects.
Collapse
Affiliation(s)
- Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Sheng-Hsiang Li
- Department of Medical Research, MacKay Memorial Hospital, Tamsui, Taiwan.
- MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan.
| | - Pei-Shiue Tsai
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Zhang Y, Ding N, Cao J, Zhang J, Liu J, Zhang C, Jiang L. Proteomics and Metabolic Characteristics of Boar Seminal Plasma Extracellular Vesicles Reveal Biomarker Candidates Related to Sperm Motility. J Proteome Res 2024; 23:3764-3779. [PMID: 39067049 PMCID: PMC11385425 DOI: 10.1021/acs.jproteome.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Although seminal plasma extracellular vesicles (SPEVs) play important roles in sperm function, little is known about their metabolite compositions and roles in sperm motility. Here, we performed metabolomics and proteomics analysis of boar SPEVs with high or low sperm motility to investigate specific biomarkers affecting sperm motility. In total, 140 proteins and 32 metabolites were obtained through differentially expressed analysis and weighted gene coexpression network analysis (WGCNA). Seven differentially expressed proteins (DEPs) (ADIRF, EPS8L1, PRCP, CD81, PTPRD, CSK, LOC100736569) and six differentially expressed metabolites (DEMs) (adenosine, beclomethasone, 1,2-benzenedicarboxylic acid, urea, 1-methyl-l-histidine, and palmitic acid) were also identified in WGCNA significant modules. Joint pathway analysis revealed that three DEPs (GART, ADCY7, and NTPCR) and two DEMs (urea and adenosine) were involved in purine metabolism. Our results suggested that there was significant correlation between proteins and metabolites, such as IL4I1 and urea (r = 0.86). Furthermore, we detected the expression level of GART, ADCY7, and CDC42 in sperm of two groups, which further verified the experimental results. This study revealed that several proteins and metabolites in SPEVs play important roles in sperm motility. Our results offered new insights into the complex mechanism of sperm motility and identified potential biomarkers for male reproductive diseases.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Ning Ding
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jinkang Cao
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jing Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Jianfeng Liu
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Chun Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Li Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science & Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
3
|
Batra V, Dagar K, Diwakar MP, Kumaresan A, Kumar R, Datta TK. The proteomic landscape of sperm surface deciphers its maturational and functional aspects in buffalo. Front Physiol 2024; 15:1413817. [PMID: 39005499 PMCID: PMC11239549 DOI: 10.3389/fphys.2024.1413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/07/2024] [Indexed: 07/16/2024] Open
Abstract
Buffalo is a dominant dairy animal in many agriculture-based economies. However, the poor reproductive efficiency (low conception rate) of the buffalo bulls constrains the realization of its full production potential. This in turn leads to economic and welfare issues, especially for the marginal farmers in such economies. The mammalian sperm surface proteins have been implicated in the regulation of survival and function of the spermatozoa in the female reproductive tract (FRT). Nonetheless, the lack of specific studies on buffalo sperm surface makes it difficult for researchers to explore and investigate the role of these proteins in the regulation of mechanisms associated with sperm protection, survival, and function. This study aimed to generate a buffalo sperm surface-specific proteomic fingerprint (LC-MS/MS) and to predict the functional roles of the identified proteins. The three treatments used to remove sperm surface protein viz. Elevated salt, phosphoinositide phospholipase C (PI-PLC) and in vitro capacitation led to the identification of N = 1,695 proteins (≥1 high-quality peptide-spectrum matches (PSMs), p < 0.05, and FDR<0.01). Almost half of these proteins (N = 873) were found to be involved in crucial processes relevant in the context of male fertility, e.g., spermatogenesis, sperm maturation and protection in the FRT, and gamete interaction or fertilization, amongst others. The extensive sperm-surface proteomic repertoire discovered in this study is unparalleled vis-à-vis the depth of identification of reproduction-specific cell-surface proteins and can provide a potential framework for further studies on the functional aspects of buffalo spermatozoa.
Collapse
Affiliation(s)
- Vipul Batra
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Maharana Pratap Diwakar
- Cell Science and Molecular Biology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Southern Regional Station of ICAR-National Dairy Research Institute, Karnal, India
| | - Rakesh Kumar
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
4
|
Sutovsky P, Hamilton LE, Zigo M, Ortiz D’Avila Assumpção ME, Jones A, Tirpak F, Agca Y, Kerns K, Sutovsky M. Biomarker-based human and animal sperm phenotyping: the good, the bad and the ugly†. Biol Reprod 2024; 110:1135-1156. [PMID: 38640912 PMCID: PMC11180624 DOI: 10.1093/biolre/ioae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Conventional, brightfield-microscopic semen analysis provides important baseline information about sperm quality of an individual; however, it falls short of identifying subtle subcellular and molecular defects in cohorts of "bad," defective human and animal spermatozoa with seemingly normal phenotypes. To bridge this gap, it is desirable to increase the precision of andrological evaluation in humans and livestock animals by pursuing advanced biomarker-based imaging methods. This review, spiced up with occasional classic movie references but seriously scholastic at the same time, focuses mainly on the biomarkers of altered male germ cell proteostasis resulting in post-testicular carryovers of proteins associated with ubiquitin-proteasome system. Also addressed are sperm redox homeostasis, epididymal sperm maturation, sperm-seminal plasma interactions, and sperm surface glycosylation. Zinc ion homeostasis-associated biomarkers and sperm-borne components, including the elements of neurodegenerative pathways such as Huntington and Alzheimer disease, are discussed. Such spectrum of biomarkers, imaged by highly specific vital fluorescent molecular probes, lectins, and antibodies, reveals both obvious and subtle defects of sperm chromatin, deoxyribonucleic acid, and accessory structures of the sperm head and tail. Introduction of next-generation image-based flow cytometry into research and clinical andrology will soon enable the incorporation of machine and deep learning algorithms with the end point of developing simple, label-free methods for clinical diagnostics and high-throughput phenotyping of spermatozoa in humans and economically important livestock animals.
Collapse
Affiliation(s)
- Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Mayra E Ortiz D’Avila Assumpção
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| | - Yuksel Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Karl Kerns
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Miriam Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia MO, USA
| |
Collapse
|
5
|
Lv C, Larbi A, Li C, Liang J, Wu G, Shao Q, Quan Q. Decoding the influence of semen collection processes on goat sperm quality from a perspective of seminal plasma proteomics. J Proteomics 2024; 298:105141. [PMID: 38408605 DOI: 10.1016/j.jprot.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
This study aims to assess the impact of semen collection methods on goat semen quality and seminal plasma (SP) proteomes. Semen was collected by artificial vagina (AV) or electro-ejaculator (EE) and semen parameters were evaluated. Tandem mass tag coupled with liquid chromatography-tandem mass spectrometry was used to screen SP differentially abundant proteins (DAPs) between EE and AV. PRM was used to confirm the reliability of the data. In contrast to EE, a lower volume, higher progressive motility and concentration were observed in AV. No differences were found in total motility, membrane integrity, acrosome integrity, and ROS production between EE and AV. In total, 1692 proteins were identified in SP, including 210 DAPs. Among them, 120 and 90 proteins were down-regulated and up-regulated in AV compared to EE, respectively. The GO annotation showed that DAPs are mainly localized in the membrane, involved in deference responses to bacterium, RNA processing, and related to oxidoreductase activity. KEGG demonstrated tight associations of DAPs with specific amino acids, carbon metabolism, citrate cycle, and propanoate metabolism. In conclusion, this study provides valuable insights into the effects of semen collection on goat semen quality and explores the potential action mechanism based on the modification of SP proteomes. SIGNIFICANCE OF THE STUDY: The quality of fresh semen directly influences the results of artificial insemination and semen cryopreservation in livestock. This study represents the first attempt to evaluate the impact of semen collection methods including electroejaculation and artificial vagina on sperm quality and seminal plasma proteomes in goat. The results of this study demonstrated that semen collection methods directly impacted the quality of goat semen. Then, the proteomic strategy was used to explore the potential action mechanism of semen collection methods on sperm. Some differentially abundant proteins that potentially influence semen quality were identified. Furthermore, this study suggests the possibility of utilizing specific proteins as predictive markers for goat semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Jiangchong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Quobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
6
|
Muñoz-Baquero M, Lorenzo-Rebenaque L, García-Domínguez X, Valdés-Hernández J, García-Párraga D, Marin C, García-Vázquez FA, Marco-Jiménez F. Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals (Basel) 2024; 14:1281. [PMID: 38731285 PMCID: PMC11083954 DOI: 10.3390/ani14091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In the ex situ conservation of chondrichthyan species, successful reproduction in aquaria is essential. However, these species often exhibit reduced reproductive success under human care. A key aspect is that conventional sperm analyses do not provide insights into the functional competence of sperm. However, proteomics analysis enables a better understanding of male physiology, gaining relevance as a powerful tool for discovering protein biomarkers related to fertility. The present work aims to build the first proteome database for shark semen and to investigate the proteomic profiles of seminal plasma and spermatozoa from small-spotted catsharks (Scyliorhinus canicula) related to the underlying adaptations to both natural and aquarium environments, thereby identifying the reproductive impact in aquarium specimens. A total of 305 seminal plasma and 535 spermatozoa proteins were identified. Among these, 89 proteins (29.2% of the seminal plasma set) were common to both spermatozoa and seminal plasma. In the seminal plasma, only adenosylhomocysteinase protein showed differential abundance (DAP) between wild and aquarium animals. With respect to the spermatozoa proteins, a total of 107 DAPs were found between groups. Gene Ontology enrichment analysis highlighted the primary functional roles of these DAPs involved in oxidoreductase activity. Additionally, KEGG analysis indicated that these DAPs were primarily associated with metabolic pathways and carbon metabolism. In conclusion, we have successfully generated an initial proteome database for S. canicula seminal plasma and spermatozoa. Furthermore, we have identified protein variations, predominantly within spermatozoa, between aquarium and wild populations of S. canicula. These findings provide a foundation for future biomarker discovery in shark reproduction studies. However, additional research is required to determine whether these protein variations correlate with reproductive declines in captive sharks.
Collapse
Affiliation(s)
- Marta Muñoz-Baquero
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Spain; (M.M.-B.); (C.M.)
- Fundación Oceanogràfic de la Comunidad Valenciana, 46005 Valencia, Spain;
| | - Laura Lorenzo-Rebenaque
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Ximo García-Domínguez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Jesús Valdés-Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Daniel García-Párraga
- Fundación Oceanogràfic de la Comunidad Valenciana, 46005 Valencia, Spain;
- Veterinary Services, Avanqua-Oceanogràfic S.L., Ciudad de las Artes y las Ciencias, 46013 Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Spain; (M.M.-B.); (C.M.)
| | - Francisco Alberto García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Mare Nostrum, 30100 Murcia, Spain;
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| |
Collapse
|
7
|
Lucca MS, Bustamante-Filho IC, Ulguim RR, Gianluppi RDF, Evaristo JAM, Nogueira FCS, Timmers LFSM, Mellagi APG, Wentz I, Bortolozzo FP. Proteomic analysis of boar seminal plasma: Putative markers for fertility based on capacity of semen preservation at 17°C. Mol Reprod Dev 2024; 91:e23735. [PMID: 38282317 DOI: 10.1002/mrd.23735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024]
Abstract
Boar seminal plasma (SP) proteins were associated with differences on sperm resistance to cooling at 17°C. However, information about seminal plasma proteins in boars classified by capacity of semen preservation and in vivo fertility remains lacking. Thus, the objective was to evaluate the SP proteome in boars classified by capacity of semen preservation and putative biomarkers for fertility. The ejaculates from high-preservation (HP) showed higher progressive motility during all 5 days than the low-preservation (LP) boars. There was no difference for farrowing rate between ejaculates from LP (89.7%) and HP boars (88.4%). The LP boars presented lower total piglets born (14.0 ± 0.2) than HP (14.8 ± 0.2; p < 0.01). A total of 257 proteins were identified, where 184 were present in both classes of boar, and 41 and 32 were identified only in LP and HP boars, respectively. Nine proteins were differently expressed: five were more abundant in HP (SPMI, ZPBP1, FN1, HPX, and C3) and four in LP boars (B2M, COL1A1, NKX3-2, and MPZL1). The HP boars had an increased abundance of SP proteins related to sperm resistance and fecundation process which explains the better TPB. LP boars had a higher abundance of SP proteins associated with impaired spermatogenesis.
Collapse
Affiliation(s)
- Matheus S Lucca
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Rafael R Ulguim
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael D F Gianluppi
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joseph A M Evaristo
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fábio C S Nogueira
- Laboratory of Proteomics, LADETEC, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Proteomics Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís F S M Timmers
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Brazil
| | - Ana P G Mellagi
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ivo Wentz
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando P Bortolozzo
- Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul-UFRGS, Setor de Suínos, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Ramírez-López CJ, Barros E, Vidigal PMP, Silva Okano D, Duarte Rodrigues JN, Lopes Gomes L, Montes-Vergara JC, Petro Hernandez VG, Baracat-Pereira MC, Guimarães SEF, Guimarães JD. Relative Abundance of Spermadhesin-1 in the Seminal Plasma of Young Nellore Bulls Is in Agreement with Reproductive Parameters. Vet Sci 2023; 10:610. [PMID: 37888562 PMCID: PMC10611397 DOI: 10.3390/vetsci10100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
This study aimed to evaluate the proteomic profile of seminal plasma from young Nellore bulls. We used 20 bulls aged between 19.8 and 22.7 months, divided into two groups according to the results of the Breeding Soundness Evaluation (BSE): approved (FIT n = 10) and not approved (UNFIT n = 10). The scrotal perimeter was measured and a semen collection was performed through electroejaculation. The percentage of sperm motility, mass motility, and sperm vigor were calculated using conventional microscopy, and the percentage of sperm abnormalities was calculated using phase-contrast microscopy of all ejaculates. Seminal plasma was separated from spermatozoa using centrifugation and processed for proteomic analysis by LC-MS/MS. Seminal plasma proteins were identified using MASCOT Daemon software v.2.4.0 and label-free quantification analysis was carried out by SCAFFOLD Q+ software v.4.0 using the Exponentially Modified Protein Abundance Index (emPAI) method. Functional classification of proteins was performed based on their genetic ontology terms using KOG. Functional cluster analysis was performed on DAVID. There were no differences in scrotal perimeter and physical semen characteristics between FIT and UNFIT groups of bulls. The percentage of sperm abnormalities was higher (p < 0.05) in the UNFIT group of bulls. A total of 297 proteins were identified for the two groups. There were a total of 11 differentially abundant proteins (p < 0.05), two of them more abundant in FIT bulls (Spermadhesin-1 and Ig gamma-1 chain C region) and nine in UNFIT bulls (Vasoactive intestinal peptide, Metalloproteinase inhibitor 2, Ig lambda-1 chain C regions, Protein FAM3C, Hemoglobin beta, Seminal ribonuclease, Spermadhesin 2, Seminal plasma protein BSP-30kDa, and Spermadhesin Z13). Spermadhesin-1 was the protein with the highest relative abundance (36.7%) in the seminal plasma among all bulls, corresponding to 47.7% for the FIT bulls and 25,7% for the UNFIT bulls. Posttranslational modification, protein turnover, and chaperones were the functional categories with the highest number of classified proteins. Protein functional annotation clusters were related to Phospholipid efflux, ATP binding, and chaperonin-containing T-complex. The differentially abundant proteins in the group of FIT bulls were related to sperm capacitation and protection against reactive species of oxygen. In contrast, differentially expressed proteins in the group of UNFIT bulls were related to motility inhibition, intramembrane cholesterol removal and oxidative stress. In conclusion, the proteomic profile of the seminal plasma of FIT bulls presents proteins with participation in several biological processes favorable to fertilization, while the proteins of the seminal plasma of UNFIT bulls indicate a series of alterations that can compromise the fertilizing capacity of the spermatozoa. In addition, the relative abundance of spermadhesin-1 found in the seminal plasma of young Nellore bulls could be studied as a reproductive parameter for selection.
Collapse
Affiliation(s)
- Camilo José Ramírez-López
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
- Department of Animal Science, Universidad de Córdoba, Monteria 230002, Colombia;
- Laboratory of Proteomics and Protein Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - Edvaldo Barros
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.B.); (P.M.P.V.)
| | - Pedro Marcus Pereira Vidigal
- Nucleus for Analysis of Biomolecules, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (E.B.); (P.M.P.V.)
| | - Denise Silva Okano
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| | - Juliana Nascimento Duarte Rodrigues
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| | - Lidiany Lopes Gomes
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| | | | | | - Maria Cristina Baracat-Pereira
- Laboratory of Proteomics and Protein Biochemistry, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - Simone Eliza Facioni Guimarães
- Laboratory of Animal Biotechnology, Department of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil;
| | - José Domingos Guimarães
- Laboratory of Animal Reproduction, Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil; (D.S.O.); (J.N.D.R.); (L.L.G.); (J.D.G.)
| |
Collapse
|
9
|
Pacheco RI, Cristo MI, Anjo SI, Silva AF, Sousa MI, Tavares RS, Sousa AP, Almeida Santos T, Moura-Ramos M, Caramelo F, Manadas B, Ramalho-Santos J, Amaral SG. New Insights on Sperm Function in Male Infertility of Unknown Origin: A Multimodal Approach. Biomolecules 2023; 13:1462. [PMID: 37892144 PMCID: PMC10605211 DOI: 10.3390/biom13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it was our aim to obtain new insight on UOMI, specifically on idiopathic (ID) and Unexplained male infertility (UMI), relying on a detailed evaluation of the male gamete, including functional, metabolic and proteomic aspects. For this purpose, 1114 semen samples, from males in couples seeking infertility treatment, were collected at the Reproductive Medicine Unit from the Centro Hospitalar e Universitário de Coimbra (CHUC), from July 2018-July 2022. Based on the couples' clinical data, seminal/hormonal analysis, and strict eligibility criteria, samples were categorized in 3 groups, control (CTRL), ID and UMI. Lifestyle factors and anxiety/depression symptoms were assessed via survey. Sperm samples were evaluated functionally, mitochondrially and using proteomics. The results of Assisted Reproduction Techniques were assessed whenever available. According to our results, ID patients presented the worst sperm functional profile, while UMI patients were similar to controls. The proteomic analysis revealed 145 differentially expressed proteins, 8 of which were specifically altered in ID and UMI samples. Acrosin (ACRO) and sperm acrosome membrane-associated protein 4 (SACA4) were downregulated in ID patients while laminin subunit beta-2 (LAMB2), mannose 6-phosphate isomerase (MPI), ATP-dependent 6-phosphofructokinase liver type (PFKAL), STAR domain-containing protein 10 (STA10), serotransferrin (TRFE) and exportin-2 (XPO2) were downregulated in UMI patients. Using random forest analysis, SACA4 and LAMB2 were identified as the sperm proteins with a higher chance of distinguishing ID and UMI patients, and their function and expression variation were in accordance with the functional results. No alterations were observed in terms of lifestyle and psychological factors among the 3 groups. These findings obtained in an experimental setting based on 3 well-defined groups of subjects, might help to validate new biomarkers for unknown origin male infertility (ID and UMI) that, in the future, can be used to improve diagnostics and treatments.
Collapse
Affiliation(s)
- Rita I. Pacheco
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria I. Cristo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Andreia F. Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria Inês Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Renata S. Tavares
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Paula Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
| | - Teresa Almeida Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Moura-Ramos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal
- Clinical Psychology Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | | | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Ramalho-Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Gomes Amaral
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
10
|
Nedić S, Đurić M, Vakanjac S, Arsić S, Nedić S, Samardžija M, Borozan S. Relationship between biochemical parameters and paraoxonase 1 activity of boar seminal plasma and semen quality. Vet Res Commun 2023; 47:1243-1253. [PMID: 36600008 DOI: 10.1007/s11259-022-10066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The aim of this study was to examine the biochemical components and the parameters of antioxidant protection in the seminal plasma (SP) of boars, as well as their relationship with semen quality parameters. Thirty-six boars were included in the study, whose ejaculates were divided into two groups: Group I (good quality semen, > 70% progressively motile sperm, < 20% spermatozoa with abnormal morphology, n = 16), and Group II (poor quality semen, < 70% progressively motile sperm, > 20% spermatozoa with abnormal morphology, n = 20). Significantly higher concentrations of ionized calcium (iCa), total cholesterol (TC), lactate-dehydrogenase (LDH) activity, as well as significantly higher values of antioxidant protection parameters: thiol groups (-SH), paraoxonase 1 (PON1), and total antioxidant capacity (TAC) ) were found in the good quality semen, while higher phosphorus (P) concentrations and increased alkaline-phosphatase (ALP) activity were found in the semen of poor quality. A negative correlation of total and progressive sperm motility with P and ALP was found in all examined semen samples, while a positive correlation was found with PON1 and TAC. The percentage of fast sperm cells positively correlated with iCa, chlorine (Cl), lactate, LDH and TAC, while a negative correlation was found with P, magnesium (Mg) and the enzyme creatine-kinase (CK). The percentage of immobile sperm positively correlated with P and ALP, and negatively correlated with TC, CK, PON1 and TAC. Elevated values of PON1 and TAC in SP and a positive correlation with sperm motility indicate the possible use of these parameters as sensitive biomarkers of boar semen quality. To the best of our knowledge there are no published data on association between PON1 activity and boar semen quality.
Collapse
Affiliation(s)
- Svetlana Nedić
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia.
| | - Miloje Đurić
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Slobodanka Vakanjac
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia
| | - Sveta Arsić
- Department of Ruminants and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Sreten Nedić
- Department of Ruminants and Swine Diseases, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Samardžija
- Clinic for Obstetrics and Reproduction, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Sunčica Borozan
- Department of Chemistry, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Supplementation of Schisandrin B in Semen Extender Improves Quality and Oxidation Resistance of Boar Spermatozoa Stored at 4 °C. Animals (Basel) 2023; 13:ani13050848. [PMID: 36899705 PMCID: PMC10000210 DOI: 10.3390/ani13050848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
During cold storage, boar spermatozoa undergo oxidative stress, which can impair sperm function and fertilizing capacity. The objective of the present study was to assess the effects of Schisandrin B (Sch B) in semen extenders on the quality of boar semen stored at hypothermia. Semen was collected from twelve Duroc boars and diluted in extenders supplemented with different concentrations of Sch B (0 μmol/L, 2.5 μmol/L, 5 μmol/L, 10 μmol/L, 20 μmol/L, and 40 μmol/L). Here, we demonstrated that 10 μmol/L Sch B provided the best effects on motility, plasma membrane integrity, acrosome integrity, sperm normality rate, average movement velocity, wobbility, mitochondrial membrane potential (MMP), and DNA integrity of sperm. The results of Sch B effects on antioxidant factors in boar sperm showed that Sch B significantly elevated the total antioxidant capacity (T-AOC) and markedly decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) content of sperm. The expression of catalase (CAT) and superoxide dismutase (SOD) mRNA was increased, while the expression of glutathione peroxidase (GPx) mRNA demonstrated no change compared to non-treated boar sperm. Compared to the non-treated group, Sch B triggered a decrease in Ca2+/protein kinase A (PKA) and lactic acid content in boar sperm. Similarly, Sch B led to a statistically higher quantitative expression of AWN mRNA and a lower quantitative expression of porcine seminal protein I (PSP-I) and porcine seminal protein II (PSP-II) mRNA. In a further reverse validation test, no significant difference was observed in any of the parameters, including adhesion protein mRNA, calcium content, lactic acid content, PKA, and protein kinase G (PKG) activity after sperm capacitation. In conclusion, the current study indicates the efficient use of Sch B with a 10 μmol/L concentration in the treatment of boar sperm through its anti-apoptosis, antioxidative, and decapacitative mechanisms, suggesting that Sch B is a novel candidate for improving antioxidation and decapacitation factors in sperm in liquid at 4 °C.
Collapse
|
12
|
Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int J Mol Sci 2023; 24:ijms24043379. [PMID: 36834790 PMCID: PMC9960060 DOI: 10.3390/ijms24043379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
For decades now, sperm cryopreservation has been a pillar of assisted reproduction in animals as well as humans. Nevertheless, the success of cryopreservation varies across species, seasons, and latitudes and even within the same individual. With the dawn of progressive analytical techniques in the field of genomics, proteomics, and metabolomics, new options for a more accurate semen quality assessment have become available. This review summarizes currently available information on specific molecular characteristics of spermatozoa that could predict their cryotolerance before the freezing process. Understanding the changes in sperm biology as a result of their exposure to low temperatures may contribute to the development and implementation of appropriate measures to assure high post-thaw sperm quality. Furthermore, an early prediction of cryotolerance or cryosensitivity may lead to the establishment of customized protocols interconnecting adequate sperm processing procedures, freezing techniques, and cryosupplements that are most feasible for the individual needs of the ejaculate.
Collapse
|
13
|
Iskandar H, Andersson G, Sonjaya H, Arifiantini RI, Said S, Hasbi H, Maulana T, Baharun A. Protein Identification of Seminal Plasma in Bali Bull ( Bos javanicus). Animals (Basel) 2023; 13:514. [PMID: 36766403 PMCID: PMC9913395 DOI: 10.3390/ani13030514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
The purpose of this study was to identify seminal plasma proteins in Bali bull and their potential as biomarkers of fertility. Semen was collected from 10 bulls aged 5-10 years using an artificial vagina. Fresh semen was then centrifuged (3000× g for 30 min). The supernatant was put into straws and stored in liquid nitrogen. The semen plasma protein concentration was determined using the Bradford method, and the protein was characterized using 1D-SDS-PAGE. Coomassie Brilliant Blue (CBB) was used to color the gel, and the molecular weight of the protein was determined using PM2700. A total of 94 proteins were identified in the seminal plasma of Bali bulls analyzed using LC-MS/MS (liquid chromatography-mass spectrometry). Proteins spermadhesin 1 (SPADH1), C-type natriuretic peptide (NPPC), clusterin (CLU), apoliprotein A-II (APOA2), inositol-3-phosphate synthase 1 (ISYNA1), and sulfhydryl oxidase 1 (QSOX1) were identified as important for fertility in Bos javanicus. These proteins may prove to be important biomarkers of fertility in Bali bulls. These proteins are important for reproductive function, which includes spermatozoa motility, capacitation, and acrosome reactions. This study provides new information about the protein content in seminal plasma in Bali bulls. The LC-MS/MS-based proteome approach that we applied in this study obtained 94 proteins. The identification of these seminal plasma proteins of Bali bulls and their potential as fertility biomarkers may have an impact on the success of future artificial insemination (AI).
Collapse
Affiliation(s)
- Hikmayani Iskandar
- Agricultural Science Study Program, Graduate School Hasanuddin University, Makassar 90245, Indonesia;
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| | - Herry Sonjaya
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Raden Iis Arifiantini
- Department of Veterinary Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, IPB University, Bogor 16680, Indonesia;
| | - Syahruddin Said
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Hasbi Hasbi
- Department of Animal Production, Faculty of Animal Science, Hasanuddin University, Makassar 90245, Indonesia;
| | - Tulus Maulana
- Animal Repronomics Research Group, Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16914, Indonesia; (S.S.); (T.M.)
| | - Abdullah Baharun
- Animal Science Program, Faculty of Agriculture, Djuanda University, Bogor 16720, Indonesia;
| |
Collapse
|
14
|
Gouletsou PG, Tsangaris GT, Katsarou EI, Bourganou MV, Barbagianni MS, Venianaki AP, Bouroutzika E, Anagnostopoulos AK, Fthenakis GC, Katsafadou AI. Proteomics Evaluation of Semen of Clinically Healthy Beagle-Breed Dogs. Vet Sci 2022; 9:vetsci9120697. [PMID: 36548858 PMCID: PMC9785154 DOI: 10.3390/vetsci9120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The objectives of the present work were to evaluate the semen of dogs by means of proteomics methods and to compare with proteomics results of the blood of the animals, in order to increase available knowledge on the topic and present relevant reference values for semen samples. Semen samples were collected from five Beagle-breed dogs. Reproductive assessment of the animals by means of clinical, ultrasonographic and seminological examinations confirmed their reproductive health. The sperm-rich fraction and the prostatic fraction of semen were processed for proteomics evaluation. LC-MS/MS analysis was performed by means of a LTQ Orbitrap Elite system. The technology combines high separation capacity and strong qualitative ability of proteins in biological samples that require deep proteome coverage. Protein classification was performed based on their functional annotations using Gene Ontology (GO). In blood plasma, semen sperm-rich fraction, and semen prostatic fraction, 59, 42 and 43 proteins, respectively, were detected. Two proteins were identified simultaneously in plasma and the semen sperm-rich fraction, 11 proteins in plasma and the semen prostatic fraction, and three proteins in the semen sperm-rich and prostatic fractions. In semen samples, most proteins were related to cell organization and biogenesis, metabolic processes or transport of ions and molecules. Most proteins were located in the cell membrane, the cytosol or the nucleus. Finally, most proteins performed functions related to binding or enzyme regulation. There were no differences between the semen sperm-rich fraction and prostatic fractions in terms of the clustering of proteins. In conclusion, a baseline reference for proteins in the semen of Beagle-breed dogs is provided. These proteins are involved mostly in supporting spermatozoan maturation, survival and motility, enhancing the reproductive performance of male animals. There appears potential for the proteomics examination of semen to become a tool in semen evaluation. This analysis may potentially identify biomarkers for reproductive disorders. This can be particularly useful in stud animals, also given its advantage as a non-invasive method.
Collapse
Affiliation(s)
| | - George Th. Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | - Maria V. Bourganou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
| | | | | | - Efterpi Bouroutzika
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | | | | | - Angeliki I. Katsafadou
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
15
|
Spermatozoa and seminal plasma proteomics: too many molecules, too few markers. The case of bovine and porcine semen. Anim Reprod Sci 2022; 247:107075. [DOI: 10.1016/j.anireprosci.2022.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022]
|
16
|
Lv C, Liang J, Yang H, Ni X, Raza SHA, Shah MA, Wu G, Quan G. The Proteomic Modification of Buck Ejaculated Sperm Induced by the Cryopreservation Process. Biopreserv Biobank 2022. [PMID: 35793518 DOI: 10.1089/bio.2022.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using two-dimensional electrophoresis along with mass spectroscopy, we have investigated how the cryopreservation process affected the protein profile of goat ejaculated sperm. In this study, five bucks were used for semen collection. After removal of seminal plasma, the Tris-based extender containing glycerol and egg yolk was used to freeze semen. The results indicated that the post-thaw sperm quality showed a significant reduction compared with fresh sperm. The numbers of protein spots acquired in fresh and post-thaw sperm were 2926 ± 57 and 3061 ± 81, respectively. Twenty-two different abundant proteins (DAPs) were identified between fresh sperm and frozen-thawed sperm (≥3.0-folds, p < 0.05). The abundances of 19 proteins were significantly higher in the fresh sperm than the post-thaw sperm. The results of the gene ontology annotation showed the primary location of the DAPs on sperm cytoskeleton, protein complex, cytoplasm, and mitochondria. In addition, these proteins were mainly involved in ion binding, small molecular metabolic processes, structure molecule activity, guanosine triphosphatase activity, oxidoreductase activity, and protein complex assembly. The interaction networks among these DAPs demonstrated that they may play roles in oxidoreductase activity, structure, acrosomal function, and motility of sperm. Collectively, the proteome of goat sperm was altered during the cryopreservation process, demonstrating that protein modification induced by cryopreservation may be associated with the reduced quality of goat sperm after thawing.
Collapse
Affiliation(s)
- Chunrong Lv
- Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China.,Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
| | - Jiachong Liang
- Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China.,Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
| | - Hongyuan Yang
- Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
| | - Xiaojun Ni
- Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China
| | | | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Water, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Guoquan Wu
- Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China.,Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
| | - Guobo Quan
- Small Ruminant Department, Yunnan Animal Science and Veterinary Institute, Kunming City, Yunnan Province, China.,Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Kunming City, China
| |
Collapse
|
17
|
Saraf KK, Kumaresan A, Arathi BP, Sundaresan NR, Datta TK. Comparative high-throughput analysis of sperm membrane proteins from crossbred bulls with contrasting fertility. Andrologia 2022; 54:e14451. [PMID: 35484731 DOI: 10.1111/and.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to identify fertility associated sperm membrane proteins in crossbred bulls. Sperm membrane proteins from high- and low-fertile Holstein Friesian crossbred bulls (n = 3 each) were subjected to high-throughput liquid chromatography-mass spectrometry (LC-MS/MS) for comparative proteomic analysis. Proteomic profiling identified a total of 456 proteins in crossbred bull spermatozoa; it was found that 108 proteins were up regulated while 26 proteins were down regulated (>1.5-folds) in spermatozoa from low- compared to high-fertile bulls. Gene ontology classification revealed that upregulated proteins in low-fertile bulls were involved in biological process such as oxidation-reduction process (p = 3.14E-06), fusion of sperm to egg plasma membrane (p = 7.51E-04), sperm motility (p = 0.03), and capacitation (p = 0.09), while down regulated proteins were associated with transport (p = 6.94E-04), superoxide metabolic process (p = 0.02), and tricarboxylic acid cycle (p = 0.04). KEGG pathway analysis revealed that oxidative phosphorylation and tricarboxylic acid cycle pathways are the most significantly affected pathway in low-fertile bulls. It was concluded that expression of proteins associated with oxidative phosphorylation and tricarboxylic acid cycle pathways were altered in low-fertile crossbred bulls, and expression levels of SPATA19, ELSPBP1, ACRBP, CLU, SUCLA2, and SPATC1 could aid in assessing potential fertility of crossbred bulls.
Collapse
Affiliation(s)
- Kaustubh Kishor Saraf
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Veterinary Gynaecology and Obstetrics, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, Karnataka, India
| | | | | | - Tirtha Kumar Datta
- Animal Genomics Laboratory, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
18
|
Talluri TR, Kumaresan A, Paul N, Sinha MK, Ebenezer Samuel King JP, Elango K, Sharma A, Raval K, Legha RA, Pal Y. High throughput deep proteomic analysis of seminal plasma from stallions with contrasting semen quality. Syst Biol Reprod Med 2022; 68:272-285. [PMID: 35484763 DOI: 10.1080/19396368.2022.2057257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Seminal plasma proteins and pathways associated with sperm motility have not been elucidated in stallions. Therefore, in the current study, using the high throughput LC/MS-MS approach, we profiled stallion seminal plasma proteins and identified the proteins and pathways associated with sperm motility. Seminal plasma from six stallions producing semen with contrasting sperm motility (n = 3 each high-and low-motile group) was utilized for proteomic analysis. We identified a total of 1687 proteins in stallion seminal plasma, of which 1627 and 1496 proteins were expressed in high- (HM) and low- motile (LM) sperm of stallions, respectively. A total number of 1436 proteins were co-expressed in both the groups; 191 (11%) and 60 (3.5%) proteins were exclusively detected in HM and LM groups, respectively. A total of 220 proteins were upregulated (>1-fold change) and 386 proteins were downregulated in SP from LM group stallions as compared to HM group stallions, while 830 proteins were neutrally expressed in both the groups. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed dysregulation of the important proteins related to mitochondrial function, acrosome, and sperm cytoskeleton in the seminal plasma of stallions producing ejaculates with low sperm motility. High abundance of peroxiredoxins and low abundance of seminal Chaperonin Containing TCP1 Complex (CCT) complex and Annexins indicate dysregulated oxidative metabolism, which might be the underlying etiology for poor sperm motility in LM group stallions. In conclusion, the current study identified the seminal plasma proteomic alterations associated with poor sperm motility in stallions; the results indicate that poor sperm motility in stallions could be associated with altered expression of seminal plasma proteins involved in oxidative metabolism.
Collapse
Affiliation(s)
- Thirumala Rao Talluri
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India.,ICAR-National Research Centre on Equines, Hisar, India
| | - Arumugam Kumaresan
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Kamaraj Elango
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Ankur Sharma
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
19
|
Griffin RA, Swegen A, Baker MA, Ogle RA, Smith N, Aitken RJ, Skerrett-Byrne DA, Fair S, Gibb Z. Proteomic analysis of spermatozoa reveals caseins play a pivotal role in preventing short-term periods of subfertility in stallions. Biol Reprod 2022; 106:741-755. [DOI: 10.1093/biolre/ioab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Stallions experience transient fluctuations in fertility throughout the breeding season. Considering pregnancy diagnoses cannot be ascertained until ~14 days post-breeding, the timely detection of decreases in stallion fertility would enhance industry economic and welfare outcomes. Therefore, this study aimed to identify the proteomic signatures reflective of short-term fertility fluctuations, and to determine the biological mechanisms governing such differences. Using LC–MS/MS, we compared the proteomic profile of semen samples collected from commercially “fertile” stallions, during high- and low-fertility periods. A total of 1702 proteins were identified, of which, 38 showed a significant change in abundance (p ≤ 0.05). Assessment of intra- and inter-stallion variability revealed that caseins (namely κ-, α-S1-, and α-S2-casein), were significantly more abundant during “high-fertility” periods, while several epididymal, and seminal plasma proteins (chiefly, epididymal sperm binding protein 1 [ELSPbP1], horse seminal plasma protein 1 [HSP-1] and clusterin), were significantly more abundant during “low-fertility” periods. We hypothesised that an increased abundance of caseins offers greater protection from potentially harmful seminal plasma proteins, thereby preserving cell functionality and fertility. In vitro exposure of spermatozoa to casein resulted in decreased levels of lipid scrambling (Merocyanine 540), higher abundance of sperm-bound caseins (α-S1-, α-S2-, and κ-casein), and lower abundance of sperm-bound HSP-1 (p ≤ 0.05). This study demonstrates key pathways governing short-term fertility fluctuations in the stallion, thereby providing a platform to develop robust, fertility assessment strategies into the future.
Collapse
Affiliation(s)
- Róisín Ann Griffin
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Mark A Baker
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Rachel Ann Ogle
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - Nathan Smith
- Analytical and Biomedical Research Facility, Research Division, University of Newcastle, Callaghan, New South Wales, Australia
| | - Robert John Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| | - David Anthony Skerrett-Byrne
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New South Wales, Australia
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Zamira Gibb
- Priority Research Centre for Reproductive Science, University of Newcastle, New South Wales, Australia
| |
Collapse
|
20
|
Fractionated Seminal Plasma of Boar Ejaculates Analyzed by LC-MS/MS: Its Effects on Post-Thaw Semen Quality. Genes (Basel) 2021; 12:genes12101574. [PMID: 34680969 PMCID: PMC8536186 DOI: 10.3390/genes12101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
This study aimed to characterize the protein composition of fractionated seminal plasma (SP) by liquid chromatography mass spectrometry (LC–MS/MS) analysis and investigate its effects on survival of frozen-thaw (FT) boar spermatozoa following storage. Seminal plasma (SP) was fractionated by gel filtration chromatography to give two fractions, SP1 with more than 40 kDa (>40 kDa) and SP2 with less than 40 kDa (<40 kDa). SP1 and SP2 were subjected to LC–MS/MS and bioinformatics analysis. Following cryopreservation, FT boar semen (n = 7) was thawed in Beltsville Thawing Solution (BTS), BTS + SP1 or BTS + SP2, stored at different periods and subjected to post-thaw (PT) quality assessment. A total of 52 and 22 abundant proteins were detected in SP1 and SP2, respectively. FN1, ANGPTL1, and KIF15 proteins were more abundance in SP1, whereas a high abundance of spermadhesins (PSP-I and PSP-II) was detected in SP2. Proteins of the fractionated SP were involved in various biological processes, such as cell motility and signal transduction. The dominant pathway of SP1 proteins was the apelin signaling pathway (GNA13, MEF2D, SPHK2, and MEF2C), whereas a pathway related to lysosome (CTSH, CTSB, and NPC2) was mainly represented by SP2 proteins. In most of the boars, significantly higher motility characteristics, membrane integrity, and viability were observed in FT spermatozoa exposed to SP1 or SP2 compared with BTS. The results of our study confirm that a combination of several proteins from the fractionated SP exerted beneficial effects on the sperm membrane, resulting in improved quality characteristics following PT storage.
Collapse
|
21
|
Jia B, Liang J, Lv C, Memon S, Fang Y, Wu G, Quan G. The characteristics of proteome and metabolome associated with contrasting sperm motility in goat seminal plasma. Sci Rep 2021; 11:15562. [PMID: 34330982 PMCID: PMC8324791 DOI: 10.1038/s41598-021-95138-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/21/2021] [Indexed: 01/10/2023] Open
Abstract
Sperm motility is an index tightly associated with male fertility. A close relationship between seminal plasma and sperm motility has been confirmed. This study was to assess the protein and metabolite profiles of seminal plasma obtained from adult goats with high or low sperm motility using the proteomic and metabolomic strategies. In total, 2098 proteins were found. 449 differentially abundant proteins (DAPs) were identified, and 175 DAPs were enriched in the high motility group. The obtained DAPs primarily exist in cytoplasma and extra-cellular portion. The Gene Ontology enrichment analysis demonstrated the main functional roles of these DAPs in regulating biological process, metabolic process of organic substances, cellular-metabolic process, primary-metabolic process, metabolic process of nitrogen compounds, etc. Additionally, the Kyoto-Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these DAPs were primarily involved in phosphatidylinositol signaling system, salivary secretion, proteasome, apoptosis, mitophagy-animal, etc. Aided by the parallel reaction monitoring technology, the abundance changing pattern of 19 selected DAPs was consistent with that of the corresponding proteins obtained by TMT. A total of 4603 metabolites were identified in seminal plasma. 1857 differential metabolites were found between the high motility group and the low motility group, and 999 metabolites were up-regulated in the high motility group. The KEGG analysis demonstrated the primary involvement of the differential metabolites in metabolic and synthetic activities. In conclusion, we first established the proteome and metabolome databank of goat seminal plasma, detecting some proteins and metabolites which may affect sperm motility. This study will be valuable for understanding mechanisms leading to poor sperm motility.
Collapse
Affiliation(s)
- Baoyu Jia
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming City, Yunnan Province, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan Province, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan Province, China
| | - Sameeullah Memon
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences, Changchun City, Jilin Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China.
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan Province, China.
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming City, Yunnan Province, China.
- Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming City, Yunnan Province, China.
| |
Collapse
|
22
|
Michos I, Tsantarliotou M, Boscos CM, Tsousis G, Basioura A, Tzika ED, Tassis PD, Lymberopoulos AG, Tsakmakidis IA. Effect of Boar Sperm Proteins and Quality Changes on Field Fertility. Animals (Basel) 2021; 11:ani11061813. [PMID: 34204554 PMCID: PMC8234339 DOI: 10.3390/ani11061813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Artificial insemination with extended liquid boar semen is widely used in the swine industry. The identification of the relationship between boar sperm characteristics and fertility could be of substantial importance to reproduction management. This study evaluated the relationship between boar sperm characteristics and sperm/seminal plasma proteins with main parameters of field fertility. Immotile spermatozoa and spermatozoa with biochemically active plasma membranes affected the number of live-born piglets and litter size of ≥12 piglets. The proteins osteopontin 70 and glutathione peroxidase 5, both separately and in combination, affected the farrowing rate. The combination of immotile sperm and protein osteopontin 70 explained the variation regarding litter size with ≥12 piglets. In conclusion, the evaluation of semen quality variables combined with the evaluation of specific sperm or seminal plasma proteins could provide useful information on in vivo fertilizing capacity of semen doses. Abstract This study aimed to evaluate boar sperm characteristics and proteins, in relation to their importance regarding in vivo fertility. Sixty-five ejaculates were used and 468 sows (parity ≥ 2) were inseminated. Sperm CASA kinetics, morphology, viability, DNA fragmentation, mitochondrial membrane potential, sperm membrane biochemical activity (HOST) and sperm proteins (Heat Shock Protein 90-HSP90, glutathione peroxidase-5-GPX5, Osteopontin 70-OPN70) were assessed and related to field fertility (number of live-born piglets—NLBP, litter size ≥ 12 piglets—LS, farrowing rate—FR). Statistical analysis was conducted with simple and multiple regression models. Simple regression analysis showed that immotile sperm (IM) significantly affected the NLBP and LS, explaining 6.7% and 6.5% of their variation, respectively. The HOST positive spermatozoa significantly affected the NLBP and LS, explaining 24.5% and 7.8% of their variation, respectively. Similarly, sperm with activated mitochondria significantly affected the NLBP, explaining 13.5% of its variation. Moreover, the OPN70 affected LS and FR, explaining 7.5% and 10.8% of their variation, respectively. Sperm GPX5 protein affected FR, explaining 6.7% of its variation. Multiple regression analysis showed that the combination of IM and/OPN70 explains 13.0% of the variation regarding LS, and the combination of GPX5 and OPN70 explains 13.6% of the variation regarding FR. In conclusion, the estimation of parameters IM, membrane biochemical activity, mitochondrial membrane potential, OPN and GPX5 can provide useful information regarding semen doses for field fertility.
Collapse
Affiliation(s)
- Ilias Michos
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Maria Tsantarliotou
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Constantin M. Boscos
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Georgios Tsousis
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Athina Basioura
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Eleni D. Tzika
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Panagiotis D. Tassis
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
| | - Aristotelis G. Lymberopoulos
- Laboratory of Farm Animal Reproduction & Animal Breeding, Department of Agriculture, School of Geotechnical Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Ioannis A. Tsakmakidis
- Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (I.M.); (M.T.); (C.M.B.); (G.T.); (A.B.); (E.D.T.); (P.D.T.)
- Correspondence: ; Tel.: +30-2310-994-467
| |
Collapse
|
23
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|
24
|
Menezes TDA, Bustamante-Filho IC, Paschoal AFL, Dalberto PF, Bizarro CV, Bernardi ML, Ulguim RDR, Bortolozzo FP, Mellagi APG. Differential seminal plasma proteome signatures of boars with high and low resistance to hypothermic semen preservation at 5°C. Andrology 2021; 8:1907-1922. [PMID: 33460278 DOI: 10.1111/andr.12869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/20/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypothermic storage at 5°C has been investigated as an alternative to promote the prudent use of antibiotics for boar artificial insemination doses. However, this temperature is challenging for some ejaculates or boars. OBJECTIVE The present study aimed to identify putative biomarkers for semen resistance to hypothermic storage at 5°C by comparing the seminal plasma proteomes of boars with high and low seminal resistance to preservation at 5°C. MATERIALS AND METHODS From an initial group of 34 boars, 15 were selected based on the following criteria: ejaculate with ≤20% abnormal spermatozoa and at least 70% progressive motility at 120 hours of storage at 17°C. Then, based on the response to semen hypothermic storage at 5°C, boars were classified into two categories: high resistance-progressive motility of >75% in the three collections (n = 3); and low resistance-progressive motility of <75% in the three collections (n = 3). Seminal plasma proteins were analyzed in pools, and differential proteomics was performed using Multidimensional Protein Identification Technology. RESULTS Progressive motility was lower at 120 hours of storage in low resistance, compared to high resistance boars (P < .05). Acrosome and plasma membrane integrity were not affected by the boar category, storage time, or their interaction (P ≥ .104). Sixty-five proteins were considered for differential proteomics. Among the differentially expressed and exclusive proteins, the identification of proteins such cathepsin B, legumain, and cystatin B suggests significant changes in key enzymes (eg, metalloproteinases) involved in spermatogenesis, sperm integrity, and fertilizing potential. DISCUSSION AND CONCLUSION Differences in the seminal plasma suggest that proteins involved in the proteolytic activation of metalloproteinases and proteins related to immune response modulation could disrupt key cellular pathways during spermatogenesis and epididymal maturation, resulting in altered resistance to chilling injury. Further in vivo studies focusing on the immunological crosstalk between epithelial cells and gametes might explain how the immune regulators influence sperm resistance to hipothermic storage.
Collapse
Affiliation(s)
- Tila de Alcantara Menezes
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Pedro Ferrari Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mari Lourdes Bernardi
- Departamento de Zootecnia, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael da Rosa Ulguim
- Setor de Suínos, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
25
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
26
|
Zhang YT, Liu Y, Liang HL, Xu QQ, Liu ZH, Weng XG. Metabolomic differences of seminal plasma between boars with high and low average conception rates after artificial insemination. Reprod Domest Anim 2020; 56:161-171. [PMID: 33176019 DOI: 10.1111/rda.13861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Seminal plasma is a complex biological fluid containing many metabolites including amino acids, fructose, carbohydrates and lipids Metabolites play important roles in multiple biological processes, but details and significance of the seminal plasma metabolome related to boar fertility are unknown. The aim of the present study was to compare the comprehensive metabolome of seminal plasma from boars with different conception rate after artificial insemination and to identify the potential biomarkers. Semen samples were collected from boars which divided into two groups according to the conception rates in the offspring. Seminal plasma metabolites were isolated, purified, and then subjected to Ultra-high Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-qTOF-MS) procession. A total of 576 (Positive ion mode) and 377 (Negative ion mode) metabolites were identified in seminal plasma. Metabolites were identified and categorized according to their major chemical classes, including carboxylic acids and derivatives, organooxygen compounds, amino acids, peptides, and alogues, fatty amides, fatty acyls, benzene and substituted derivatives, purine nucleotides, pyrimidine nucleotides, glycosyl compounds, fatty acids and conjugates. The results showed that 4-Aminobenzoate, Pro-Asn, Ile-Tyr, Homoveratric acid and D-Biotin were higher in semen of boar with higher conception rate (HG) versus lower conception rate (LG) (p < .05), whereas L-Serine, Butoxyacetic acid, S-Methyl-5'-thioadenosine, Capsaicin and 1-O-(cis-9-Octadecenyl)-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) were lower in HG than in LG (p < .05). These metabolites may be considered as candidate biomarkers for different fertility in boars.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Han-Lin Liang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Qian-Qian Xu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Zhong-Hua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiao-Gang Weng
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
Vasectomy and Photoperiodic Regimen Modify the Protein Profile, Hormonal Content and Antioxidant Enzymes Activity of Ram Seminal Plasma. Int J Mol Sci 2020; 21:ijms21218063. [PMID: 33138035 PMCID: PMC7663742 DOI: 10.3390/ijms21218063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
This work aimed to determine the contribution of the testis and epididymis and the effect of the photoperiodic regimen on ram seminal plasma (SP). Semen was collected from 15 mature rams located in an equatorial (Colombian Creole and Romney Marsh, eight intact and two vasectomized) or a temperate climate (Rasa Aragonesa, three intact and two vasectomized). SP proteins were analyzed by Bradford, SDS-PAGE and difference gel electrophoresis (DIGE). Melatonin and testosterone concentrations were quantified by ELISA, and activity of glutathione peroxidase (GPx), glutathione reductase (GRD), and catalase by enzymatic assays. Vasectomy increased protein concentration and the intensity of high molecular weight bands (p < 0.001), with no differences between breeds. DIGE revealed the absence of six proteins in vasectomized rams: angiotensin-converting enzyme, lactotransferrin, phosphoglycerate kinase, sorbitol dehydrogenase, epididymal secretory glutathione peroxidase and epididymal secretory protein E1. Vasectomy also decreased melatonin concentrations in seasonal rams, and testosterone in all of them (p < 0.001), but did not affect antioxidant enzyme activity. Equatorial rams showed lower melatonin and testosterone concentration (p < 0.01) and catalase, but higher GPx activity (p < 0.05). In conclusion, vasectomy modifies the protein profile and hormonal content of ram seminal plasma, whereas the exposure to a constant photoperiod affects hormonal concentration and antioxidant enzymes activity.
Collapse
|
28
|
Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals (Basel) 2020; 10:ani10101899. [PMID: 33081332 PMCID: PMC7603003 DOI: 10.3390/ani10101899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Mesenchymal stem cells and their derivatives are used in clinical studies for their anti-apoptotic, anti-oxidant, immunomodulatory, and regenerative properties. Their use in reproductive medicine is increasing as they have been proved to be beneficial for infertility treatment. Mesenchymal stem cells can secrete factors that influence biological processes in target tissues or cells; these factors are either directly secreted by the cells or mediated through their derivatives. Although the amniotic membrane is easy to obtain and is a good source of stem cells, clinical trials using amniotic membrane-derived mesenchymal stem cells are still uncommon, especially in reproductive medicine or artificial reproductive technologies. The objective of the present study was to demonstrate the effects of conditioned medium prepared from amniotic membrane-derived stem cells on dog sperm cryopreservation. Our results showed that 10% of the conditioned medium enhanced the quality-related parameters of frozen–thawed sperm cells because of the presence of antioxidants and growth factors in the medium, which probably protected spermatozoa during the freeze–thaw process. These results suggest that conditioned media prepared from amniotic membrane-derived mesenchymal stem cells might have clinical applications in assisted reproductive technologies. Abstract This study investigated the effects of conditioned medium (CM) from canine amniotic membrane-derived MSCs (cAMSCs) on dog sperm cryopreservation. For this purpose, flow cytometry analysis was performed to characterize cAMSCs. The CM prepared from cAMSCs was subjected to proteomic analysis for the identification of proteins present in the medium. Sperm samples were treated with freezing medium supplemented with 0%, 5%, 10%, and 15% of the CM, and kinetic parameters were evaluated after 4–6 h of chilling at 4 °C to select the best concentration before proceeding to cryopreservation. Quality-related parameters of frozen–thawed sperm were investigated, including motility; kinetic parameters; viability; integrity of the plasma membrane, chromatin, and acrosome; and mitochondrial activity. The results showed that 10% of the CM significantly enhanced motility, viability, mitochondrial activity, and membrane integrity (p < 0.05); however, the analysis of chromatin and acrosome integrity showed no significant differences between the treatment and control groups. Therefore, we concluded that the addition of 10% CM derived from cAMSC in the freezing medium protected dog sperm during the cryopreservation process.
Collapse
|
29
|
Lv C, Larbi A, Memon S, Liang J, Zhao X, Shao Q, Wu G, Quan G. The proteomic characterization of ram sperm during cryopreservation analyzed by the two-dimensional electrophoresis coupled with mass spectrometry. Cryobiology 2020; 97:37-45. [PMID: 33068554 DOI: 10.1016/j.cryobiol.2020.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the effects of the cryopreservation process on the protein profile of ram sperm using two-dimensional electrophoresis (2-DE) coupled with mass spectroscopy. Semen was collected from five rams and cryopreserved in a Tris-based extender supplemented with glycerol and egg yolk as the main cryoprotectants. The fresh and post-thaw sperm total proteins were extracted and purified, followed by the 2-DE. The differential proteins in the stained gel were determined by mass spectrometry. The results indicated that there were 39 differential proteins between fresh sperm and frozen-thawed sperm. Among these proteins, the abundance of 28 proteins in fresh sperm was higher than those in post-thaw sperm (P < 0.05). However, 11 proteins in post-thaw sperm were up-regulated instead. The gene ontology (GO) analysis showed that most of differential proteins were implicated in cellular process, metabolism and regulation of the biological process. The networks of protein-protein interaction indicated a strong interaction among these differential proteins, which may be involved in sperm metabolism, acrosomal function, sperm motility, and reducing ROS level. In conclusion, the cryopreservation process modifies the proteome of ram sperm, which may be directly associated with ram sperm cryodamage, consequently influencing their fertility. Additionally, these differential proteins can be used as biomarkers for evaluation of frozen ram semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming, Yunnan province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China
| | - Sameeullah Memon
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming, Yunnan province, China
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS); No.2 Yuanmingyuan Western Road, Haidian, Beijing, 100193, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming, Yunnan province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming, Yunnan province, China.
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong County, Kunming, Yunnan province, China; Yunnan Provincial Engineering Laboratory of Animal Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong County, Kunming, Yunnan province, China.
| |
Collapse
|
30
|
van Tilburg M, Sousa S, Lobo MDP, Monteiro-Azevedo ACOM, Azevedo RA, Araújo AA, Moura AA. Mapping the major proteome of reproductive fluids and sperm membranes of rams: From the cauda epididymis to ejaculation. Theriogenology 2020; 159:98-107. [PMID: 33126182 DOI: 10.1016/j.theriogenology.2020.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
The present study evaluated the major proteome of ram seminal plasma and the main secretions that contribute to its formation, such as the cauda epididymal and accessory sex gland fluids. The study also investigated sperm membrane protein profiles before and after ejaculation. First, semen was collected from six rams (using artificial vagina) to obtain seminal plasma and ejaculated sperm. Then, rams were vasectomized for collection of accessory sex gland fluid (using artificial vagina). Next, rams were slaughtered and cauda epididymal fluid (CEF), seminal vesicle fluid, bulbourethral gland fluid and cauda epididymal sperm were properly collected. Proteins from reproductive fluids and sperm membranes were analyzed by 2-D SDS-PAGE, tandem mass spectrometry and bioinformatics. There we 386 proteins and 256 isoforms identified in all samples. The most abundant seminal plasma proteins were BSP1, BSP5 and spermadhesins (bodhesin-2 and spermadhesin Z13-like). These proteins were present in similar patterns in maps of accessory sexgland fluid, with very low quantities in the CEF and absent in the bulbourethral gland secretion. Thus, practically all BSPs and spermadhesins come from seminal vesicles. Bulbourethral gland fluid brought bactericidal/permeability-increasing protein-containing Family A member 1 isoforms, superoxide dismutase [Cu-Zn] and betamicroseminoprotein to seminal plasma. CEF was the major provider of clusterin, epididymal-specific lipocalin-5-like isoform, epididymal secretory gluthathione peroxidase, epididymal secretory protein E1 and prostaglandin-H2 D-isomerase to seminal plasma. Albumin came from all reproductive fluids. BSPs and spermadhesins were present in 2-D maps of ejaculated sperm but absent in cauda epididymal sperm. These proteins come from the seminal vesicles and bind to sperm at the moment of ejaculation. Other proteins of ejaculated and epididymal sperm membranes were mostly associated to energy production, cell adhesion and proteolytic activity (ATP synthases, disintegrin, metalloproteinase domain-containing protein 32, carboxypeptidase Q and cytosol aminopeptidase). In conclusion, there is a well-orchestrated sequence of events to form the major seminal plasma proteome, with specific contributions from cauda epididymis, seminal vesicles and bulbourethral glands. The present data contribute to a better understanding of male reproductive biology and how sperm functions are affected by the noncellularmicro environment of semen.
Collapse
Affiliation(s)
- Mauricio van Tilburg
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil
| | - Solange Sousa
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Marina D P Lobo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | | | - Renato A Azevedo
- Experimental Biology Centre (NUBEX), University of Fortaleza, Fortaleza, Brazil
| | - Airton A Araújo
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; The School of Veterinary Medicine, Ceará State University, Fortaleza, Brazil
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
31
|
Gomes FP, Park R, Viana AG, Fernandez-Costa C, Topper E, Kaya A, Memili E, Yates JR, Moura AA. Protein signatures of seminal plasma from bulls with contrasting frozen-thawed sperm viability. Sci Rep 2020; 10:14661. [PMID: 32887897 PMCID: PMC7474054 DOI: 10.1038/s41598-020-71015-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
The present study investigated the seminal plasma proteome of Holstein bulls with low (LF; n = 6) and high (HF; n = 8) sperm freezability. The percentage of viable frozen-thawed sperm (%ViableSperm) determined by flow cytometry varied from -2.2 in LF to + 7.8 in HF bulls, as compared to the average %ViableSperm (54.7%) measured in an 860-sire population. Seminal proteins were analyzed by label free mass spectrometry, with the support of statistical and bioinformatics analyses. This approach identified 1,445 proteins, associated with protein folding, cell-cell adhesion, NADH dehydrogenase activity, ATP-binding, proteasome complex, among other processes. There were 338 seminal proteins differentially expressed (p < 0.05) in LF and HF bulls. Based on multivariate analysis, BSP5 and seminal ribonuclease defined the HF phenotype, while spermadhesin-1, gelsolin, tubulins, glyceraldehyde-3-phosphate dehydrogenase, calmodulin, ATP synthase, sperm equatorial segment protein 1, peroxiredoxin-5, secretoglobin family 1D and glucose-6-phosphate isomerase characterized the LF phenotype. Regression models indicated that %ViableSperm of bulls was related to seminal plasma peroxiredoxin-5, spermadhesin-1 and the spermadhesin-1 × BSP5 interaction (R2 = 0.84 and 0.79; p < 0.05). This report is the largest dataset of bovine seminal plasma proteins. Specific proteins of the non-cellular microenvironment of semen are potential markers of sperm cryotolerance.
Collapse
Affiliation(s)
| | - Robin Park
- The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | | | | - John R Yates
- The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
32
|
Höfner L, Luther AM, Palladini A, Fröhlich T, Waberski D. Tolerance of Stored Boar Spermatozoa to Autologous Seminal Plasma: A Proteomic and Lipidomic Approach. Int J Mol Sci 2020; 21:ijms21186474. [PMID: 32899843 PMCID: PMC7555833 DOI: 10.3390/ijms21186474] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
Long-term exposure of liquid preserved boar spermatozoa to seminal plasma (SP) can cause dramatic sperm injury. This study examined whether boar specificity exists in the sensitivity of spermatozoa to SP and whether correspondent biomarkers can be identified. Consecutive ejaculates (n = 4–5) collected from 19 boars were centrifuged, diluted with a pH-stablising extender with 10% (v/v) autologous SP and evaluated by computer-assisted semen analysis and flow cytometry. Up until 144 h storage, four boars showed consistently high sperm motility, viability and mitochondria activity, and one boar showed consistently low values. Intra-boar variability was high in the other boars. Screening of SP (n = 12 samples) for protein markers using mass spectrometry identified three protein candidates of which the granulin precursor, legumain and AWN were 0.5 to 0.9 log2-fold less abundant (p < 0.05) in SP-resistant compared to SP-sensitive samples. Lipidome analysis by mass spectrometry revealed 568 lipids showing no difference between the SP-groups. The most abundant lipids were cholesterol (42,442 pmol), followed by phosphatidylserine (20,956 pmol) and ether-linked phosphatidylethanolamine (13,039 pmol). In conclusion, three candidate proteins were identified which might be indicative of SP-tolerance of sperm during long-term storage. Noteworthy, a first lipidomic profile of boar SP is presented.
Collapse
Affiliation(s)
- Lisa Höfner
- Unit for Reproductive Medicine of Clinics/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine, 30559 Hannover, Germany; (L.H.); (A.-M.L.)
| | - Anne-Marie Luther
- Unit for Reproductive Medicine of Clinics/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine, 30559 Hannover, Germany; (L.H.); (A.-M.L.)
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
- German Centre for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Dagmar Waberski
- Unit for Reproductive Medicine of Clinics/Clinic for Pigs and Small Ruminants, University of Veterinary Medicine, 30559 Hannover, Germany; (L.H.); (A.-M.L.)
- Correspondence:
| |
Collapse
|
33
|
Luongo C, González-Brusi L, Cots-Rodríguez P, Izquierdo-Rico MJ, Avilés M, García-Vázquez FA. Sperm Proteome after Interaction with Reproductive Fluids in Porcine: From the Ejaculation to the Fertilization Site. Int J Mol Sci 2020; 21:ijms21176060. [PMID: 32842715 PMCID: PMC7570189 DOI: 10.3390/ijms21176060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Ejaculated sperm are exposed to different environments before encountering the oocyte. However, how the sperm proteome changes during this transit remains unsolved. This study aimed to identify proteomic changes in boar sperm after incubation with male (seminal plasma, SP) and/or female (uterine fluid, UF; and oviductal fluid, OF) reproductive fluids. The following experimental groups were analyzed: (1) SP: sperm + 20% SP; (2) UF: sperm + 20% UF; (3) OF: sperm + 20% OF; (4) SP + UF: sperm + 20% SP + 20% UF; and (5) SP+OF: sperm + 20% SP + 20% OF. The proteome analysis, performed by HPLC-MS/MS, allowed the identification of 265 proteins. A total of 69 proteins were detected in the UF, SP, and SP + UF groups, and 102 proteins in the OF, SP, and SP + OF groups. Our results showed a higher number of proteins when sperm were incubated with only one fluid than when they were co-incubated with two fluids. Additionally, the number of sperm-interacting proteins from the UF group was lower than the OF group. In conclusion, the interaction of sperm with reproductive fluids alters its proteome. The description of sperm-interacting proteins in porcine species after co-incubation with male and/or female reproductive fluids may be useful to understand sperm transport, selection, capacitation, or fertilization phenomena.
Collapse
Affiliation(s)
- Chiara Luongo
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain;
| | - Leopoldo González-Brusi
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
| | - Paula Cots-Rodríguez
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
| | - Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain; (L.G.-B.); (P.C.-R.); (M.J.I.-R.)
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (M.A.); (F.A.G.-V.)
| | - Francisco Alberto García-Vázquez
- Department of Physiology, Veterinary School, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), University of Murcia, 30100 Murcia, Spain;
- Institute for Biomedical Research of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain
- Correspondence: (M.A.); (F.A.G.-V.)
| |
Collapse
|
34
|
Llavanera M, Delgado-Bermúdez A, Mateo-Otero Y, Padilla L, Romeu X, Roca J, Barranco I, Yeste M. Exploring Seminal Plasma GSTM3 as a Quality and In Vivo Fertility Biomarker in Pigs-Relationship with Sperm Morphology. Antioxidants (Basel) 2020; 9:antiox9080741. [PMID: 32806672 PMCID: PMC7466085 DOI: 10.3390/antiox9080741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022] Open
Abstract
Glutathione S-transferases Mu 3 (GSTM3) is an essential antioxidant enzyme whose presence in sperm has recently been related to sperm cryotolerance, quality and fertility. However, its role in seminal plasma (SP) as a predictor of the same sperm parameters has never been investigated. Herein, cell biology and proteomic approaches were performed to explore the presence, origin and role of SP-GSTM3 as a sperm quality and in vivo fertility biomarker. GSTM3 in SP was quantified using a commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit specific for Sus scrofa, whereas the presence of GSTM3 in testis, epididymis and accessory sex glands was assessed through immunoblotting analysis. Sperm quality and functionality parameters were evaluated in semen samples at 0 and 72 h of liquid-storage, whereas fertility parameters were recorded over a 12-months as farrowing rate and litter size. The presence and concentration of GSTM3 in SP was established for the first time in mammalian species, predominantly synthesized in the epididymis. The present study also evidenced a relationship between SP-GSTM3 and sperm morphology and suggested it is involved in epididymal maturation rather than in ejaculated sperm physiology. Finally, the data reported herein ruled out the role of this antioxidant enzyme as a quality and in vivo fertility biomarker of pig sperm.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Yentel Mateo-Otero
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
| | - Lorena Padilla
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, ES-30100 Murcia, Spain; (L.P.); (J.R.)
| | - Xavier Romeu
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Veterinary Science, University of Murcia, ES-30100 Murcia, Spain; (L.P.); (J.R.)
| | - Isabel Barranco
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
- Correspondence: (I.B.); (M.Y.); Tel.: +34-972-419514 (I.B. & M.Y.)
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain; (M.L.); (A.D.-B.); (Y.M.-O.); (X.R.)
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain
- Correspondence: (I.B.); (M.Y.); Tel.: +34-972-419514 (I.B. & M.Y.)
| |
Collapse
|
35
|
Souza APB, Lopes TN, da Silva AFT, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Changes in porcine cauda epididymal fluid proteome by disrupting the HPT axis: Unveiling potential mechanisms of male infertility. Mol Reprod Dev 2020; 87:952-965. [PMID: 32749760 DOI: 10.1002/mrd.23408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/23/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022]
Abstract
Male infertility or subfertility is frequently associated with disruption of the hypothalamic-pituitary-testis axis events, like secondary hypogonadism. However, little is known how this condition affects the proteomic composition of the epididymal fluid. In the present study, we evaluated the proteomic changes in the cauda epididymal fluid (CEF) in a swine model of secondary hypogonadism induced by anti-GnRH immunization using multidimensional protein identification technology. Seven hundred and eighteen proteins were identified in both GnRH-immunized and control groups. GnRH immunization doubled the number of proteins in the CEF, with 417 proteins being found exclusively in samples from GnRH-immunized boars. CEF from GnRH-immunized boars presented an increase in the number of proteins related to cellular and metabolic processes, with affinity to organic cyclic compounds, small molecules, and heterocyclic compounds, as well changed the enzymatic profile of the CEF. Also, a significant increase in the number of proteins associated to the ubiquitin-proteasome system was identified in CEF from GnRH-immunized animals. These results bring strong evidence of the impact of secondary hypogonadism on the epididymal environment, which is responsible for sperm maturation and storage prior ejaculation. Finally, the differently expressed proteins in the CEF are putative seminal biomarkers for testicular and epididymal disorders caused by secondary hypogonadism.
Collapse
Affiliation(s)
- Ana P B Souza
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Tayná N Lopes
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Anna F T da Silva
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California
| | - Ivan C Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Rio Grande do Sul, Brazil
| |
Collapse
|
36
|
Shotgun proteome analysis of seminal plasma differentiate boars by reproductive performance. Theriogenology 2020; 157:130-139. [PMID: 32810790 DOI: 10.1016/j.theriogenology.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
There is a need to identify subfertile boars before they enter into the breeding herd. Seminal plasma proteins are essential for normal sperm function and transport and play an important role in fertilization. The objective of this study was to use liquid chromatography tandem mass spectrometry for shotgun proteome analysis to investigate whether differences in boar fertility phenotype can be differentiated by seminal plasma protein abundance. Following 50 breedings, boars were categorized into one of four phenotypes: high farrowing rate and total born (HFHB; n = 9), high farrowing rate with low total born (HFLB; n = 10), low farrowing rate and total born (LFLB; n = 9), and low farrowing rate with high total born (LFHB; n = 4) that were distinct (p < 0.05) from each other by these variables. There were 506 proteins measured in at least one sample across all animals. There were 245 high confidence proteins and 56 were differentially abundant between the high fertility phenotype (HFHB) and at least one of the three subfertile groups. Findings support that seminal plasma protein profiles are distinct between boars with different fertility phenotypes.
Collapse
|
37
|
Guasti PN, Souza FF, Scott C, Papa PM, Camargo LS, Schmith RA, Monteiro GA, Hartwig FP, Papa FO. Equine seminal plasma and sperm membrane: Functional proteomic assessment. Theriogenology 2020; 156:70-81. [PMID: 32679458 DOI: 10.1016/j.theriogenology.2020.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
During ejaculation, a large amount of seminal plasma proteins interact with the sperm membrane, leading to a series of biochemical and structural changes implicated in sperm function and gamete interaction. However, the roles of the majority of these proteins remain unknown. This study aimed to investigate the proteome and functionality of the major equine proteins of seminal plasma and the sperm membrane. Seminal plasma and enriched-membrane proteins (150 μg) were separated by two-dimensional gel electrophoresis, and the respective maps were analyzed. Protein identification was performed by in-gel digestion and tandem mass spectrometry (GeLC-MS/MS). Samples were also submitted to in-solution digestion (complex protein mixture) and identified by shotgun analysis by LC-MS/MS; bioinformatic tools were used to investigate protein functions. Seminal plasma and sperm membrane extract maps contained 91.0 ± 8.2 spots and 245.3 ± 11.3 spots, respectively, within the 3-10 pH range. In total, the most abundant proteins identified in 2D maps and in complex protein mixtures included 24 proteins for seminal plasma and 33 for sperm membrane extract, with a high degree of confidence (P < 0.05). Of these, HSP1, CRISP3 and KLK1E2 were the most abundant in seminal plasma; HSP1 was highly abundant in sperm membrane extract, in many isoforms, which is related to membrane destabilization and may compromise sperm preservation. HSP1-polybromo-1 interactions suggested a role in DNA stabilization. Prosaposin was identified in seminal plasma and may play a role in the fertilization process. IZUMO4, a member of the IgSF family involved in the prefertilization stages, was identified in 2D gel and MS/MS analysis of sperm membrane extract. Ten proteins of seminal plasma were found to interact with the sperm membrane and were related to binding and catalytic activities (clusterin, CRISP3, epididymal sperm-binding protein 1, kallikrein1E2, seminal plasma protein A3, and HSP1). Additionally, other identified proteins were associated with DNA integrity, capacitation and recognition of pregnancy. These findings indicate that the binding of specific proteins to the plasma membrane during ejaculation may influence sperm survival after cryopreservation and may play a role in decreasing the quality in stallions with toxic seminal plasma. Elucidation of these interactions is an important step in understanding the biological processes related to equine fertility and facilitates future investigations on the selection and application of low freezability semen strategies.
Collapse
Affiliation(s)
- P N Guasti
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - F F Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - C Scott
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - P M Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - L S Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - R A Schmith
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - G A Monteiro
- Department of Veterinary Clinic and Surgery, School of Veterinary Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - F P Hartwig
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - F O Papa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
38
|
van Son M, Tremoen NH, Gaustad AH, Våge DI, Zeremichael TT, Myromslien FD, Grindflek E. Transcriptome profiling of porcine testis tissue reveals genes related to sperm hyperactive motility. BMC Vet Res 2020; 16:161. [PMID: 32456687 PMCID: PMC7249385 DOI: 10.1186/s12917-020-02373-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sperm hyperactive motility has previously been shown to influence litter size in pigs, but little is known about the underlying biological mechanisms. The aim of this study was to use RNA sequencing to investigate gene expression differences in testis tissue from Landrace and Duroc boars with high and low levels of sperm hyperactive motility. Boars with divergent phenotypes were selected based on their sperm hyperactivity values at the day of ejaculation (day 0) (contrasts (i) and (ii) for Landrace and Duroc, respectively) and on their change in hyperactivity between day 0 and after 96 h liquid storage at 18 °C (contrast (iii)). RESULTS RNA sequencing was used to measure gene expression in testis. In Landrace boars, 3219 genes were differentially expressed for contrast (i), whereas 102 genes were differentially expressed for contrast (iii). Forty-one differentially expressed genes were identified in both contrasts, suggesting a functional role of these genes in hyperactivity regardless of storage. Zinc finger DNLZ was the most up-regulated gene in contrasts (i) and (iii), whereas the most significant differentially expressed gene for the two contrasts were ADP ribosylation factor ARFGAP1 and solute carrier SLC40A1, respectively. For Duroc (contrast (ii)), the clustering of boars based on their gene expression data did not reflect their difference in sperm hyperactivity phenotypes. No results were therefore obtained for this breed. A case-control analysis of variants identified in the Landrace RNA sequencing data showed that SNPs in NEU3, CHRDL2 and HMCN1 might be important for sperm hyperactivity. CONCLUSIONS Differentially expressed genes were identified in Landrace boars with high and low levels of sperm hyperactivity at the day of ejaculate collection and high and low change in hyperactivity after 96 h of sperm storage. The results point towards important candidate genes, biochemical pathways and sequence variants underlying sperm hyperactivity in pigs.
Collapse
Affiliation(s)
| | - Nina Hårdnes Tremoen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Ann Helen Gaustad
- Norsvin SA, 2317 Hamar, Norway
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway
| | - Dag Inge Våge
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | | | | |
Collapse
|
39
|
Leahy T, Rickard JP, Bernecic NC, Druart X, de Graaf SP. Ram seminal plasma and its functional proteomic assessment. Reproduction 2020; 157:R243-R256. [PMID: 30844754 DOI: 10.1530/rep-18-0627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/07/2019] [Indexed: 12/30/2022]
Abstract
Ejaculation results in the confluence of epididymal spermatozoa with secretions of the accessory sex glands. This interaction is not a prerequisite for fertilisation success, but seminal factors do play a crucial role in prolonging the survival of spermatozoa both in vitro and in vivo by affording protection from handling induced stress and some selective mechanisms of the female reproductive tract. Reproductive biologists have long sought to identify specific factors in seminal plasma that influence sperm function and fertility in these contexts. Many seminal plasma proteins have been identified as diagnostic predictors of sperm function and have been isolated and applied in vitro to prevent sperm damage associated with the application of artificial reproductive technologies. Proteomic assessment of the spermatozoon, and its surroundings, has provided considerable advances towards these goals and allowed for greater understanding of their physiological function. In this review, the importance of seminal plasma will be examined through a proteomic lens to provide comprehensive analysis of the ram seminal proteome and detail the use of proteomic studies that correlate seminal plasma proteins with ram sperm function and preservation ability.
Collapse
Affiliation(s)
- T Leahy
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - N C Bernecic
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| | - X Druart
- Physiologie de la Reproduction et du Comportement, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, New South Wales, Australia
| |
Collapse
|
40
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
41
|
Roca J, Perez-Patiño C, Barranco I, Padilla LC, Martínez EA, Rodriguez-Martinez H, Parrilla I. Proteomics in fresh and preserved pig semen: Recent achievements and future challenges. Theriogenology 2020; 150:41-47. [PMID: 32088031 DOI: 10.1016/j.theriogenology.2020.01.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Proteins in semen, either in spermatozoa (SPZ) or seminal plasma (SP), are directly involved in molecular processes and biological pathways regulating sperm function, including fertilizing ability. Therefore, semen proteins are candidates of choice for biomarkers discovery for fertility and for sperm (dys)function. Mass spectrometry (MS)-based proteomics has opened up a new era for characterizing and quantifying the protein profile of SP and SPZ, as well as for unveiling the complex protein interactions involved in the activation of sperm functionality. This article overviews existing literature on MS-based proteomics regarding porcine semen, with a specific focus on the potential practical application of the results achieved so far. The weaknesses of current studies and the perspectives for future research in MS-based pig semen proteomics are also addressed.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain.
| | - Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Lorena C Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Emilio A Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| |
Collapse
|
42
|
De Lazari FL, Sontag ER, Schneider A, Araripe Moura AA, Vasconcelos FR, Nagano CS, Dalberto PF, Bizarro CV, Mattos RC, Mascarenhas Jobim MI, Bustamante-Filho IC. Proteomic identification of boar seminal plasma proteins related to sperm resistance to cooling at 17 °C. Theriogenology 2019; 147:135-145. [PMID: 31780059 DOI: 10.1016/j.theriogenology.2019.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
Abstract
The modern pig industry relies on extensive use of artificial insemination with cooled semen. It is important that semen doses maintain their quality during processing, transport and storage before insemination to guarantee maximum fertility rates. However, ejaculates may respond differently to liquid preservation at 17 °C, despite the optimal quality assessed before cooling. Thus, the aim of this study was to identify differences in seminal plasma proteome of ejaculates with a higher or lower seminal resistance to storage at 17 °C. A total of 148 ejaculates from 65 sexually mature healthy boars were classified as: High Resistance to cooling (HR, total motility > 60% at 144h) and Low resistance to cooling (LR, total motility <60 at 72h). To identify differentially expressed seminal plasma proteins between HR and LR ejaculates, ten ejaculates of each group were analyzed by 2D SDS-PAGE and ESI-Q-TOF mass spectrometry. The proteins associated with HR ejaculates were cathepsin B (spot 2803 and 6601, p < 0.01); spermadhesin PSP-I (spots 3101 and 3103, p < 0.05); epididymal secretory protein E1 precursor (spot 2101, p < 0.05) and IgGFc binding protein (spot 1603, p < 0.01). The protein associated with LR group was the Major seminal plasma PSPI (spot 9103, p < 0.01). To our knowledge, this is the first report of the association of boar seminal plasma proteins to semen resistance to cold storage at 17 °C. These results suggest the use of these proteins as biomarkers for semen resistance to preservation at 17 °C.
Collapse
Affiliation(s)
- Franciele Lucca De Lazari
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil
| | - Elistone Rafael Sontag
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil
| | - Alexander Schneider
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil
| | | | - Fábio Roger Vasconcelos
- Laboratório de Fisiologia Animal, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Celso Shiniti Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Pedro Ferrari Dalberto
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, Porto Alegre, RS, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Av. Ipiranga 6681 - Prédio 92A Tecnopuc, Porto Alegre, RS, Brazil
| | - Rodrigo Costa Mattos
- REPROLAB, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Ivan Cunha Bustamante-Filho
- Laboratório de Biotecnologia, Universidade do Vale do Taquari - Univates, Rua Avelino Tallini, 171, 95914-014, Lajeado, RS, Brazil.
| |
Collapse
|
43
|
Noor Z, Ranganathan S. Bioinformatics approaches for improving seminal plasma proteome analysis. Theriogenology 2019; 137:43-49. [PMID: 31186128 DOI: 10.1016/j.theriogenology.2019.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reproduction efficiency of male animals is one of the key factors influencing the sustainability of livestock. Mass spectrometry (MS) based proteomics has become an important tool for studying seminal plasma proteomes. In this review, we summarize bioinformatics analysis strategies for current proteomics approaches, for identifying novel biomarkers of reproductive robustness.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
44
|
Mogielnicka-Brzozowska M, Prochowska S, Niżański W, Bromke MA, Wiśniewski J, Olejnik B, Kuzborska A, Fraser L, Młynarz P, Kordan W. Proteome of cat semen obtained after urethral catheterization. Theriogenology 2019; 141:68-81. [PMID: 31518731 DOI: 10.1016/j.theriogenology.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023]
Abstract
The binding of seminal plasma (SP) proteins by spermatozoa plays an important role in the regulation of sperm epididymal maturation, motility gaining in female reproductive tracts and sperm-egg interaction. The aim of the study was to analyze the SP and sperm extracts proteome of cat (Felis catus) semen. The seminal plasma and spermatozoa were obtained by urethra catheterization from 10 male cats. Proteins were extracted using RIPA buffer and separated by electrophoresis (SDS-PAGE). The gels were analyzed using MultiAnalyst software. The proteins were subsequently analyzed using NanoUPLC-Q-TOF/MS. UniProt database-supported identification resulted in 106 proteins identified in the cat SP and 98 proteins in the extracts of spermatozoa. Based on a gene ontology analysis, dominant molecular functions of feline SP proteins were binding, catalytic, and antioxidant activity (56%, 33%, and 11% of cases, respectively). The molecular functions of sperm extracts proteins were mainly involved in catalytic activity (41%) and binding (23%). The proteins present in both, the SP and spermatozoa's extracts, were: serum albumin (ALB), semenogelin 2 (SEMG 2), clusterin (CLU), lactoferrin (LTF), prostatic acid phosphatase (ACPP), prolactin inducible protein (PIP), negative elongation factor E (NELF-E) and ectonucleotide pyrophosphatase (ENPP3). Protein-protein interactions analysis showed significant connection for 12 proteins in the cat semen. The seminal plasma proteins which, with high probability score, participate in important metabolic pathways are: glutathione peroxidases (GPx5 and 6), prostatic acid phosphatase (ACPP), β-hexosaminidase (HEXB), polymeric immunoglobulin receptor (pIgR) and serpin family F member 1 (SERPINF1). For sperm protein extracts it were: pyruvate dehydrogenase (PDHB), succinate-CoA-ligase (SUCLA2), malate dehydrogenase (MDH2), ATP synthase F1 subunit alpha (ATP5F1A) and tubulin beta (TUBB).
Collapse
Affiliation(s)
- Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland.
| | - Sylwia Prochowska
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366, Wrocław, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366, Wrocław, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Medical University of Wrocław, Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Jerzy Wiśniewski
- Department of Medical Biochemistry, Medical University of Wrocław, Chałubińskiego 10, 50-368, Wrocław, Poland
| | - Beata Olejnik
- Department of Chemistry and Immunochemistry, Medical University of Wrocław, Bujwida 44a, 50-345, Wrocław, Poland
| | - Anna Kuzborska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| | - Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| | - Piotr Młynarz
- Department of Chemistry, Wroclaw University of Technology, 50-370, Wrocław, Poland
| | - Władysław Kordan
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-957, Olsztyn, Poland
| |
Collapse
|
45
|
Parrilla I, Perez-Patiño C, Li J, Barranco I, Padilla L, Rodriguez-Martinez H, Martinez EA, Roca J. Boar semen proteomics and sperm preservation. Theriogenology 2019; 137:23-29. [PMID: 31208776 DOI: 10.1016/j.theriogenology.2019.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently numerous proteomic approaches have been undertaken to identify sperm and seminal plasma (SP) proteins that can be used as potential biomarkers for sperm function, including fertilization ability. This review aims firstly to briefly introduce the proteomic technologies and workflows that can be successfully applied for sperm and SP proteomic analysis. Secondly, we summarize the current knowledge about boar SP and the sperm proteome, focusing mainly on its relevance to sperm preservation procedures (liquid storage or cryopreservation) and their outcomes in terms of sperm function and fertility.
Collapse
Affiliation(s)
- I Parrilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain.
| | - C Perez-Patiño
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - J Li
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - I Barranco
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - L Padilla
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - H Rodriguez-Martinez
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Sweden
| | - E A Martinez
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| | - J Roca
- Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum", University of Murcia, Murcia, Spain; Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
46
|
Abstract
Artificial insemination (AI) is widely used for livestock breeding. Although sperm cryopreservation is the most efficient method for long-term storage, its use for porcine AI is marginal, because of its dramatic impact on sperm quality. While the removal of seminal plasma is a routine practice prior to porcine sperm cryopreservation, its beneficial role on sperm function has not been investigated in as much detail. In this context and despite seminal plasma being regarded as a mere vehicle of sperm, mounting evidence indicates that it could be positive for porcine sperm fertility. In effect, not only is seminal plasma able to interact with the female reproductive tract after mounting/insemination, but it has been demonstrated it modulates sperm function. For this reason, the composition of this fluid and its proteome have begun to be investigated in order to elucidate whether its components play any role in sperm function, fertility and cryotolerance. Previous research has demonstrated that seminal plasma may maintain the quality and fertilizing ability of frozen-thawed boar spermatozoa when added before or after cryopreservation. However, a large variety of results have been reported with both beneficial and detrimental effects, including studies in which no influence has been observed. This review examines the composition of porcine seminal plasma and summarizes the available published studies regarding seminal plasma supplementation to spermatozoa before or after freeze-thawing. The take-home message of this article is that clearing up the role of seminal plasma in sperm cryotolerance may increase the reproductive performance of frozen-thawed boar spermatozoa.
Collapse
|
47
|
Kasimanickam R, Kasimanickam V, Arangasamy A, Kastelic J. Sperm and seminal plasma proteomics of high- versus low-fertility Holstein bulls. Theriogenology 2019; 126:41-48. [DOI: 10.1016/j.theriogenology.2018.11.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/13/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
|
48
|
Bezerra MJB, Arruda-Alencar JM, Martins JAM, Viana AGA, Viana Neto AM, Rêgo JPA, Oliveira RV, Lobo M, Moreira ACO, Moreira RA, Moura AA. Major seminal plasma proteome of rabbits and associations with sperm quality. Theriogenology 2019; 128:156-166. [PMID: 30772659 DOI: 10.1016/j.theriogenology.2019.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 12/12/2022]
Abstract
The present study was conducted to describe the major seminal plasma proteome of rabbits and potential associations between seminal proteins and semen criteria. Semen samples were collected from 18 New Zealand adult rabbits, and seminal plasma proteins were analyzed by 2-D SDS-PAGE and tandem mass spectrometry. Sperm motility, vigor, concentration, morphology and membrane sperm viability were evaluated. Rabbits ejaculated 364 ± 70 million sperm/ml, with 81 ± 6.1% motile cells, 3.8 ± 0.2 vigor and 66.7 ± 2.5% sperm with normal morphology. Based on the viability and acrosome integrity assay, there were 65.8 ± 2.5% live sperm with intact acrosome and most spermatozoa had both intact acrosome and functional membrane. On average, 2-D gels of rabbit seminal plasma had 232 ± 69.5 spots, as determined by PDQuest software (Bio Rad, USA). Mass spectrometry allowed the identification of 137 different proteins. The most abundant proteins in rabbit seminal plasma were hemoglobin subunit zeta-like, annexins, lipocalin, FAM115 protein and albumin. The intensity of the spots associated with these five proteins represented 71.5% of the intensity of all spots detected in the master gel. Multiple regression models were estimated using sperm traits as dependent variables and seminal plasma proteins as independent ones. Also, sperm motility had positive association with beta-nerve growth factor and cysteine-rich secretory protein 1-like and a negative one with galectin-1. The percentage of rabbit sperm with intact membrane was related to seminal plasma protein FAM115 complex and tropomyosin. Then, the population of morphologically normal sperm in rabbit semen was positively linked to carcinoembryonic antigen-related cell adhesion molecule 6-like and down regulated by seminal plasma isocitrate dehydrogenase. Based on another regression model, the variation in the percentage of live sperm with intact acrosome was partially explained by the amount of leukocyte elastase inhibitor and the peptidyl-prolyl cis-trans isomerase A in the rabbit seminal fluid. The current study reports the identification of 137 proteins of rabbit seminal plasma. Major proteins of seminal secretion relate primarily to prevention of damages caused by lipid peroxide radicals and oxidative stress, membrane functionality, transport of lipids to the sperm membrane and temperature regulation. Moreover, finding seminal plasma proteins as indicators of semen parameters will improve assisted reproductive technologies.
Collapse
Affiliation(s)
- M J B Bezerra
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J M Arruda-Alencar
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J A M Martins
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A G A Viana
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A M Viana Neto
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - J P A Rêgo
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - R V Oliveira
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - M Lobo
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - A C O Moreira
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - R A Moreira
- School of Pharmacy, University of Fortaleza, Fortaleza, CE, Brazil
| | - A A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
49
|
Pérez-Patiño C, Parrilla I, Li J, Barranco I, Martínez EA, Rodriguez-Martínez H, Roca J. The Proteome of Pig Spermatozoa Is Remodeled During Ejaculation. Mol Cell Proteomics 2019; 18:41-50. [PMID: 30257877 PMCID: PMC6317480 DOI: 10.1074/mcp.ra118.000840] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
Proteins are essential for sperm function, including their fertilizing capacity. Pig spermatozoa, emitted in well-defined ejaculate fractions, vary in their functionality, which could be related to different sperm protein composition. This study aimed (i) to update the porcine sperm proteome and (ii) to identify proteins differentially expressed in mature spermatozoa from cauda epididymis and those delivered in separate ejaculate fractions. Ejaculates from nine mature and fertile boars were manually collected in three separate portions: the first 10 ml of the sperm-rich ejaculate fraction (SRF), the rest of the SRF and the post-SRF. The contents of cauda epididymides of the boars were collected post-mortem by retrograde duct perfusion, generating four different semen sources for each boar. Following centrifugation, the resulting pellets of each semen source were initially pooled and later split to generate two technical replicates per source. The resulting eight sperm samples (two per semen source) were subjected to iTRAQ-based 2D-LC-MS/MS for protein identification and quantification. A total of 1,723 proteins were identified (974 of Sus scrofa taxonomy) and 1,602 of them were also quantified (960 of Sus scrofa taxonomy). After an ANOVA test, 32 Sus scrofa proteins showed quantitative differences (p < 0.01) among semen sources, which was particularly relevant for sperm functionality in the post-SRF. The present study showed that the proteome of boar spermatozoa is remodeled during ejaculation involving proteins clearly implicated in sperm function. The findings provide valuable groundwork for further studies focused on identifying protein biomarkers of sperm fertility.
Collapse
Affiliation(s)
- Cristina Pérez-Patiño
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Inmaculada Parrilla
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Junwei Li
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Isabel Barranco
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | - Emilio A Martínez
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain
| | | | - Jordi Roca
- From the ‡Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Spain;.
| |
Collapse
|
50
|
De Lazari FL, Sontag ER, Schneider A, Moura AAA, Vasconcelos FR, Nagano CS, Mattos RC, Jobim MIM, Bustamante-Filho IC. Seminal plasma proteins and their relationship with sperm motility and morphology in boars. Andrologia 2018; 51:e13222. [PMID: 30592081 DOI: 10.1111/and.13222] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
The identification of biomarkers associated with seminal traits could aid in the selection of higher quality ejaculates and benefit the swine industry. The objective of this study was to identify boar seminal plasma proteins associated with sperm motility and morphology. Twenty ejaculates from fifteen adult boars from a commercial boar stud were used for this work. After routine semen collection and analysis, ejaculates were classified into two groups: high-quality semen (HQS) and low-quality semen (LQS), based on sperm motility and morphology. Semen samples were processed for seminal plasma separation and analysis by 2D SDS-PAGE. Total and progressive sperm motility differed between groups (p < 0.001), as well sperm morphology (p < 0.05). The intensity of spots identified as Major seminal plasma PSP-I (PSP-I) and cathepsin B (CTSB) was higher in LQS as compared to HQS samples (p < 0.05). Also, PSP-I was positively associated with major and sperm cauda defects. Sperm motility was negatively correlated with both PSP-I and cathepsin B. We conclude that high concentrations of Major seminal plasma PSP-I and cathepsin B in boar seminal plasma are associated with reduced total and progressive sperm motility and low sperm morphology and might be used as biomarkers for semen quality.
Collapse
Affiliation(s)
- Franciele L De Lazari
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Brazil
| | - Elistone R Sontag
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Brazil
| | - Alexander Schneider
- Laboratório de Biotecnologia, Universidade do Vale do Taquari-Univates, Lajeado, Brazil
| | - Arlindo A A Moura
- Laboratório de Fisiologia Animal, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Fábio R Vasconcelos
- Laboratório de Fisiologia Animal, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, Brasil
| | - Rodrigo C Mattos
- REPROLAB, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Inês M Jobim
- REPROLAB, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|