1
|
Akbariansaravi A, Dekhne A, Dhamelia A, Mekhail M. Exploring the Intersection of Atypical Hemolytic Uremic Syndrome and Substance Use: A Comprehensive Narrative Review. Cureus 2024; 16:e71019. [PMID: 39507167 PMCID: PMC11540165 DOI: 10.7759/cureus.71019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by hemolytic anemia, renal failure, and thrombocytopenia. While the typical form of HUS is often associated with Shiga toxin-producing Escherichia coli (STEC) infections, atypical hemolytic uremic syndrome (aHUS) is caused by uncontrolled complement system activation, leading to endothelial damage, microthrombi formation, and other complications. Although aHUS is commonly linked to genetic mutations and infections, emerging evidence suggests that certain substances, particularly illicit drugs like heroin, cocaine, and ecstasy, can also trigger this condition, adding complexity to its diagnosis and management. This narrative review examines the mechanisms by which substance use can lead to aHUS, discusses its clinical presentation, and highlights the diagnostic challenges in distinguishing it from other thrombotic microangiopathies, such as thrombotic thrombocytopenic purpura (TTP) and STEC-HUS. A thorough literature search identified relevant case reports, case series, and observational studies, underscoring the need for genetic testing and complement assays to confirm aHUS in substance users. The review also explores the role of complement inhibitors, such as eculizumab and ravulizumab, which target the underlying pathophysiology and have shown promise in improving patient outcomes. However, the management of substance-induced aHUS remains challenging due to limited data, varying clinical presentations, and the need to optimize treatment protocols. Early recognition and tailored therapy are crucial for effective management. Further research is needed to refine diagnostic criteria, develop new therapeutic approaches, and improve care for patients with this under-recognized condition.
Collapse
Affiliation(s)
| | - Anushka Dekhne
- Internal Medicine, American University of Antigua, Antigua, ATG
| | - Archi Dhamelia
- Internal Medicine, MGM (Mahatma Gandhi Mission) Medical College, Navi Mumbai, IND
| | - Mario Mekhail
- Internal Medicine, Long Island Community Hospital, Patchogue, USA
- Intensive Care Unit, Ain Shams University, Cairo, EGY
| |
Collapse
|
2
|
Schachinger T, Holik AK, Schrenk G, Gritsch H, Hofbauer S, Furtmüller PG, Turecek PL. An Automated pre-Dilution Setup for Von Willebrand Factor Activity Assays. Bio Protoc 2024; 14:e5059. [PMID: 39282235 PMCID: PMC11393304 DOI: 10.21769/bioprotoc.5059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/18/2024] Open
Abstract
Accurate quantification of von Willebrand factor ristocetin cofactor activity (VWF:RCo) is critical for the diagnosis and classification of von Willebrand disease, the most common hereditary and acquired bleeding disorder in humans. Moreover, it is important to accurately assess the function of von Willebrand factor (VWF) concentrates within the pharmaceutical industry to provide consistent and high-quality biopharmaceuticals. Although the performance of VWF:RCo assay has been improved by using coagulation analyzers, which are specialized devices for blood and blood plasma samples, scientists still report a high degree of intra- and inter-assay variation in clinical laboratories. Moreover, high, manual sample dilutions are required for VWF:RCo determination of VWF concentrates within the pharmaceutical industry, which are a major source for assay imprecision. For the first time, we present a precise and accurate method to determine VWF:RCo, where all critical pipetting and mixing steps are automated. A pre-dilution setup was established on CyBio FeliX (Analytik-Jena) liquid handling system, and an adapted VWF:RCo method on BCS-XP analyzer (Siemens) is used. The automated pre-dilution method was executed on three different, most frequently used coagulation analyzers and compared to manual pre-dilutions performed by an experienced operator. Comparative sample testing revealed a similar assay precision (coefficient of variation = 5.9% automated, 3.1% manual pre-dilution) and no significant differences between the automated approach and manual dilutions of an expert in this method. While no outliers were generated with the automated procedure, the manual pre-dilution resulted in an error rate of 8.3%. Overall, this operator-independent protocol enables standardization and offers an efficient way of fully automating VWF activity assays, while maintaining the precision and accuracy of an expert analyst. Key features • Automated pre-dilution setup for von Willebrand factor concentrates of various natures. • Combination of a liquid handling system (CyBio FeliX) with a coagulation analyzer (BCS-XP). • Simplifies method transfer to other laboratories. • Basic training for CyBio FeliX and BCS-XP is required. Graphical overview VWF:RCo assay principle and measurement setup. Platelets (yellow ellipsoids) with negative surface charge (- - -) are treated with formaldehyde, which partly denatures the cell surface and thus stabilizes platelets for use as assay reagents. Stabilized platelets (dark-yellow-framed yellow ellipsoids) are then brought in contact with ristocetin A (chemical structure shown; black dots), which binds to the platelet surface and facilitates binding of VWF (green circles). The graphs show an example of quantitative determination of platelet agglutination by measurement of light transmission, where increasing amounts of VWF increase light transmission over time. The photo in the left-bottom corner shows the CyBio FeliX setup for VWF sample dilution and the photo in the right-bottom corner displays the BCS-XP system, which is used for VWF:RCo measurements.
Collapse
Affiliation(s)
- Tobias Schachinger
- Analytical Development Europe, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
- Institute of Biochemistry, Department of Chemistry, BOKU University, Vienna, Austria
| | - Ann-Katrin Holik
- Analytical Development Europe, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Gerald Schrenk
- Analytical Development Europe, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Herbert Gritsch
- Analytical Development Europe, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Stefan Hofbauer
- Institute of Biochemistry, Department of Chemistry, BOKU University, Vienna, Austria
| | - Paul G Furtmüller
- Institute of Biochemistry, Department of Chemistry, BOKU University, Vienna, Austria
| | - Peter L Turecek
- R&D Global Medical Affairs, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| |
Collapse
|
3
|
Yada N, Zhang Q, Bignotti A, Ye Z, Zheng XL. ADAMTS13 or Caplacizumab Reduces the Accumulation of Neutrophil Extracellular Traps and Thrombus in Whole Blood of COVID-19 Patients under Flow. Thromb Haemost 2024; 124:725-738. [PMID: 38272066 PMCID: PMC11260255 DOI: 10.1055/a-2253-9359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
BACKGROUND Neutrophil NETosis and neutrophil extracellular traps (NETs) play a critical role in pathogenesis of coronavirus disease 2019 (COVID-19)-associated thrombosis. However, the extents and reserve of NETosis, and potential of thrombus formation under shear in whole blood of patients with COVID-19 are not fully elucidated. Neither has the role of recombinant ADAMTS13 or caplacizumab on the accumulation of NETs and thrombus in COVID-19 patients' whole blood under shear been investigated. METHODS Flow cytometry and microfluidic assay, as well as immunoassays, were employed for the study. RESULTS We demonstrated that the percentage of H3Cit + MPO+ neutrophils, indicative of NETosis, was dramatically increased in patients with severe but not critical COVID-19 compared with that in asymptomatic or mild disease controls. Upon stimulation with poly [I:C], a double strain DNA mimicking viral infection, or bacterial shigatoxin-2, the percentage of H3Cit + MPO+ neutrophils was not significantly increased in the whole blood of severe and critical COVID-19 patients compared with that of asymptomatic controls, suggesting the reduction in NETosis reserve in these patients. Microfluidic assay demonstrated that the accumulation of NETs and thrombus was significantly enhanced in the whole blood of severe/critical COVID-19 patients compared with that of asymptomatic controls. Like DNase I, recombinant ADAMTS13 or caplacizumab dramatically reduced the NETs accumulation and thrombus formation under arterial shear. CONCLUSION Significantly increased neutrophil NETosis, reduced NETosis reserve, and enhanced thrombus formation under arterial shear may play a crucial role in the pathogenesis of COVID-19-associated coagulopathy. Recombinant ADAMTS13 or caplacizumab may be explored for the treatment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kanas City, Kansas, United States
- Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kanas City, Kansas, United States
| |
Collapse
|
4
|
Zhu J, Bouzid R, Travert B, Géri G, Cohen Y, Picod A, Heming N, Rottman M, Joly-Laffargue B, Veyradier A, Capron C, Coppo P. Combined coagulation and inflammation markers as predictors of venous thrombo-embolism and death in COVID-19. Front Med (Lausanne) 2024; 11:1399335. [PMID: 38915768 PMCID: PMC11194426 DOI: 10.3389/fmed.2024.1399335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/03/2024] [Indexed: 06/26/2024] Open
Abstract
Background The COVID-19 pandemic related to SARS-CoV-2 virus was responsible for global pandemic. The severe form of the disease was linked to excessive activation of immune pathways together with a systemic cytokine storm response and thrombotic venous or arterial complications. Factors predicting severe outcomes including venous and/or pulmonary thrombosis (VT) and death were identified, but the prognostic role of their combination was not addressed extensively. Objectives We investigated the role of prognostic factors from the coagulation or inflammatory pathways to better understand the outcome of the disease. Methods For this, we prospectively studied 167 SARS-CoV-2-positive patients from admission in intensive care units (ICU) or emergency departments from four academic hospitals over a 14-month period. Besides standard biology, we assessed serum concentrations of inflammatory markers, coagulation factors and peripheral blood cells immunophenotyping. Results Thirty-nine patients (23.3%) developed VT and 30 patients (18%) died. By univariate analysis, C-reactive protein (CRP) level > 150 mg/L, interleukin-6 (IL-6) ≥ 20 pg/mL, D-dimers > 1,500 μg/L, ADAMTS13 activity ≤ 50%, Von. Conclusion A combination of coagulation and inflammatory markers can refine the prognostication of severe outcome in COVID-19, and could be useful for the initial evaluation of other types of viral infection.
Collapse
Affiliation(s)
- Jaja Zhu
- Service d’Hématologie-Immunologie-Transfusion, AP-HP Paris Saclay, CHU Ambroise Paré, Université de Versailles Saint Quentin-Université Paris Saclay, Montigny-le-Bretonneux, France
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184, Commissariat à l’Energie Atomique et aux Energies Alternatives, Fontenay-aux-Roses, France
| | - Raïda Bouzid
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), AP-HP, Paris, France
| | - Benoît Travert
- Service de Médecine Interne, Hôpital Ambroise-Paré, AP-HP, Boulogne-Billancourt, France
| | - Guillaume Géri
- Service de Médecine Intensive et Réanimation, Hôpital Ambroise-Paré, AP-HP, Boulogne-Billancourt, France
| | - Yves Cohen
- Service de Médecine Intensive et Réanimation, Hôpital Avicenne, AP-HP, Paris, France
| | - Adrien Picod
- Service de Médecine Intensive et Réanimation, Hôpital Avicenne, AP-HP, Paris, France
| | - Nicholas Heming
- Department of Intensive Care, Raymond Poincaré Hospital, APHP University Versailles Saint Quentin-University Paris Saclay, Garches, France
- Institut Hospitalo Universitaire PROMETHEUS, Garches, France
- Innovative Biomarkers Plateform, Laboratory of Infection & Inflammation-U1173, School of Medicine, INSERM, University Versailles Saint Quentin-University Paris Saclay, Garches, France
- FHU SEPSIS, Garches, France
| | - Martin Rottman
- Innovative Biomarkers Plateform, Laboratory of Infection & Inflammation-U1173, School of Medicine, INSERM, University Versailles Saint Quentin-University Paris Saclay, Garches, France; FHU SEPSIS, Garches, France
- General Intensive Care Unit, Raymond Poincaré Hospital (AP-HP), FHU SEPSIS, Laboratory of Infection and Inflammation-U1173, School of Medicine Simone Veil, Université Versailles Saint Quentin, University Paris Saclay, INSERM, Garches, France
| | - Bérangère Joly-Laffargue
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), AP-HP, Paris, France
- EA3518, Institut de Recherche Saint Louis, Université de Paris, Paris, France
- Service D’hématologie Biologique, Laboratoire ADAMTS13, Hôpital Lariboisière, AP-HP Nord, Université de Paris, Paris, France
| | - Agnès Veyradier
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), AP-HP, Paris, France
- EA3518, Institut de Recherche Saint Louis, Université de Paris, Paris, France
- Service D’hématologie Biologique, Laboratoire ADAMTS13, Hôpital Lariboisière, AP-HP Nord, Université de Paris, Paris, France
| | - Claude Capron
- Service d’Hématologie-Immunologie-Transfusion, AP-HP Paris Saclay, CHU Ambroise Paré, Université de Versailles Saint Quentin-Université Paris Saclay, Montigny-le-Bretonneux, France
- Université Paris-Saclay, Université de Versailles Saint Quentin en Yvelines (UVSQ), Biomarqueurs en cancérologie et onco-hématologie (BECCOH), Boulogne-Billancourt, France
| | - Paul Coppo
- Centre de Référence des Microangiopathies Thrombotiques (CNR-MAT), AP-HP, Paris, France
- Service d’Hématologie, Hôpital Saint-Antoine, AP-HP-Sorbonne Université, Paris, France
- NSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
5
|
Hathaway A, Qian G, King J, McGuinness S, Maskell N, Oliver J, Finn A, Danon L, Challen R, Toye AM, Hyams C. Association of ABO and Rhesus blood groups with severe outcomes from non-SARS-CoV-2 respiratory infection: A prospective observational cohort study in Bristol, UK 2020-2022. Br J Haematol 2024; 204:826-838. [PMID: 38009561 PMCID: PMC7616671 DOI: 10.1111/bjh.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Despite significant global morbidity associated with respiratory infection, there is a paucity of data examining the association between severity of non-SARS-CoV-2 respiratory infection and blood group. We analysed a prospective cohort of adults hospitalised in Bristol, UK, from 1 August 2020 to 31 July 2022, including patients with acute respiratory infection (pneumonia [n = 1934] and non-pneumonic lower respiratory tract infection [NP-LRTI] [n = 1184]), a negative SARS-CoV-2 test and known blood group status. The likelihood of cardiovascular complication, survival and hospital admission length was assessed using regression models with group O and RhD-negative status as reference groups. Group A and RhD-positive were over-represented in both pneumonia and NP-LRTI compared to a first-time donor population (p < 0.05 in all); contrastingly, group O was under-represented. ABO group did not influence cardiovascular complication risk; however, RhD-positive patients with pneumonia had a reduced odds ratio (OR) for cardiovascular complications (OR = 0.77 [95% CI = 0.59-0.98]). Compared to group O, group A individuals with NP-LRTI were more likely to be discharged within 60 days (hazard ratio [HR] = 1.17 [95% CI = 1.03-1.33]), while group B with pneumonia was less likely (HR = 0.8 [95% CI = 0.66-0.96]). This analysis provides some evidence that blood group status may influence clinical outcome following respiratory infection, with group A having increased risk of hospitalisation and RhD-positive patients having reduced cardiovascular complications.
Collapse
Affiliation(s)
- Alice Hathaway
- School of Biochemistry, University of Bristol, Bristol, UK
| | - George Qian
- Engineering Mathematics, University of Bristol, Bristol, UK
| | - Jade King
- Clinical Research and Imaging Centre, UHBW NHS Trust, Bristol, UK
| | - Serena McGuinness
- Bristol Vaccine Centre and Population Health Sciences, University of Bristol, Bristol, UK
| | - Nick Maskell
- Academic Respiratory Unit, University of Bristol, Southmead Hospital, Bristol, UK
| | - Jennifer Oliver
- Bristol Vaccine Centre and Population Health Sciences, University of Bristol, Bristol, UK
| | - Adam Finn
- Bristol Vaccine Centre, Cellular and Molecular Medicine and Population Health Sciences, University of Bristol, Bristol, UK
| | - Leon Danon
- Engineering Mathematics, University of Bristol, Bristol, UK
| | - Robert Challen
- Engineering Mathematics, University of Bristol, Bristol, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Catherine Hyams
- Bristol Vaccine Centre, Cellular and Molecular Medicine and Population Health Sciences, University of Bristol, Bristol, UK
- Academic Respiratory Unit and Bristol Vaccine Centre, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Papadogeorgou P, Valsami S, Boutsikou M, Pergantou E, Mantzou A, Papassotiriou I, Iliodromiti Z, Sokou R, Bouza E, Politou M, Iacovidou N, Boutsikou T. Coagulation Profile in Neonates with Congenital Heart Disease: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:268. [PMID: 38399555 PMCID: PMC10890703 DOI: 10.3390/medicina60020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: congenital heart disease (CHD), cyanotic and, to a lesser degree, acyanotic, often are accompanied by coagulation abnormalities, impacting substantially morbidity and mortality. Until now, no consistent hemostatic patterns have been demonstrated in neonates and children with CHD because they represent a variable and heterogenous population. The aim of the present study is to investigate the hemostatic profile, as well as the role of ADAMTS-13 (a disintegrin and metalloprotease with thrombospondin type-1 motives), the cleaving protein of von Willebrand factor (VWF) in neonates with CHD and compare them to healthy age-matched controls. Materials and Methods: twenty neonates with a mean gestational age of 37.1 ± 2.5 weeks were included in the CHD group, and 18 healthy neonates with a mean gestational age of 38.2 ± 1.5 weeks were in the control group. Results: prothrombin time was significantly prolonged, and accordingly, factor VII (FVII) levels were significantly decreased in the CHD group in comparison to controls. Factor VIII (FVIII), VWF, and ristocetin cofactor activity (Rcof) levels were significantly higher in the study vs. control group. Concentrations of ADAMTS-13 were decreased in the CHD vs. control group, but the difference was not statistically significant. Our results, in combination, indicate a balanced hemostatic mechanism, although with greater variability in neonates with CHD, while developmental aspects of coagulation are evident in the specific patient population. Conclusions: the coagulation profile is moderately impaired early in the course of CHD, though increased thrombogenicity is already present and should not be ignored.
Collapse
Affiliation(s)
- Paraskevi Papadogeorgou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Maria Boutsikou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Eleni Pergantou
- Haemostasis Unit/Haemophilia Centre, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Aimilia Mantzou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece (I.P.)
| | - Ioannis Papassotiriou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece (I.P.)
| | - Zoi Iliodromiti
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Rozeta Sokou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Elena Bouza
- 2nd Neonatal Intensive Care Unit, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Marianna Politou
- Blood Transfusion Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Nicoletta Iacovidou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| |
Collapse
|
7
|
Neave L, Thomas M, de Groot R, Doyle AJ, Singh D, Adams G, David AL, Maksym K, Scully M. Alterations in the von Willebrand factor/ADAMTS-13 axis in preeclampsia. J Thromb Haemost 2024; 22:455-465. [PMID: 37926193 DOI: 10.1016/j.jtha.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/07/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Preeclampsia is a gestational hypertensive disorder characterized by maternal endothelial activation and increased ratio of soluble fms-like tyrosine kinase-1 (sFlt-1) inhibitor to placental growth factor (PlGF). The von Willebrand factor (VWF)/ADAMTS-13 axis is of interest because of the underlying endothelial activation and clinical overlap with pregnancy-associated thrombotic thrombocytopenic purpura. OBJECTIVES To assess VWF, ADAMTS-13, and VWF/ADAMTS-13 ratio in preeclampsia and look for associations with sFlt-1/PlGF ratio and clinical features. METHODS Thirty-four preeclampsia cases and 48 normal pregnancies were assessed in a case-control study. Twelve normal pregnancies in women with a history of preeclampsia formed an additional comparator group. VWF antigen (VWF:Ag) and VWF activity (VWF:Ac [VWF:glycoprotein IbM]) were measured via automated immunoturbidimetric assay, ADAMTS-13 activity was measured via fluorescence resonance energy transfer-VWF73 assay, and sFlt-1 and PlGF were measured via enzyme-linked immunosorbent assay. RESULTS VWF:Ag was higher in preeclampsia than in normal pregnancy (median, 3.07 vs 1.87 IU/mL; P < .0001). ADAMTS-13 activity was slightly lower (median, 89.6 vs 94.4 IU/dL; P = .02), with no severe deficiencies. Significant elevations in VWF:Ac were not observed in preeclampsia, resulting in reduced VWF:Ac/VWF:Ag ratios (median, 0.77 vs 0.97; P < .0001). VWF:Ag/ADAMTS-13 ratios were significantly higher in preeclampsia (median, 3.42 vs 2.06; P < .0001), with an adjusted odds ratio of 19.2 for a ratio of >2.7 (>75th centile of normal pregnancy). Those with a history of preeclampsia had similar ratios to normal pregnant controls. VWF:Ag/ADAMTS-13 and sFlt-1/PlGF were not correlated. However, percentage reduction in platelets correlated positively with VWF:Ac (P = .01), VWF:Ac/VWF:Ag ratio (P = .004), and sFlt-1/PlGF ratio (P = .01). CONCLUSION The VWF/ADAMTS-13 axis is significantly altered in preeclampsia. Further investigation of potential clinical utility is warranted.
Collapse
Affiliation(s)
- Lucy Neave
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Haemostasis Research Unit, University College London, London, United Kingdom.
| | - Mari Thomas
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom; National Institute for Health and Care Research University College London Hospital/University College London Biomedical Research Centre, London, United Kingdom
| | - Rens de Groot
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Andrew J Doyle
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Deepak Singh
- Special Coagulation, Health Services Laboratories, London, United Kingdom
| | - George Adams
- Department of Haematology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Katarzyna Maksym
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Marie Scully
- Department of Clinical Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom; National Institute for Health and Care Research University College London Hospital/University College London Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
8
|
Reilly JP, Shashaty MGS, Miano TA, Giannini HM, Jones TK, Ittner CAG, Christie JD, Meyer NJ. ABO Histo-Blood Group and the von Willebrand Factor Axis in Severe COVID-19. CHEST CRITICAL CARE 2023; 1:100023. [PMID: 38130415 PMCID: PMC10735236 DOI: 10.1016/j.chstcc.2023.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- John P Reilly
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Michael G S Shashaty
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Todd A Miano
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Heather M Giannini
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Tiffanie K Jones
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Caroline A G Ittner
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Jason D Christie
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care (J. P. R., M. G. S. S., H. M. G., T. K. J., C. A. G. I., J. D. C., and N. J. M.), the Center for Translational Lung Biology (J. P. R., M. G. S. S., T. K. J., C. A. G. I., J. D. C., and N. J. M.), and the Center for Clinical Epidemiology and Biostatics (M. G. S. S., T. A. M., T. K. J., and J. D. C.), Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
9
|
Dushianthan A, Bracegirdle L, Cusack R, Cumpstey AF, Postle AD, Grocott MPW. Alveolar Hyperoxia and Exacerbation of Lung Injury in Critically Ill SARS-CoV-2 Pneumonia. Med Sci (Basel) 2023; 11:70. [PMID: 37987325 PMCID: PMC10660857 DOI: 10.3390/medsci11040070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Luke Bracegirdle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Rebecca Cusack
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Andrew F. Cumpstey
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK; (L.B.); (R.C.); (A.F.C.); (A.D.P.); (M.P.W.G.)
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Irsara C, Anliker M, Egger AE, Harasser L, Lhotta K, Feistritzer C, Griesmacher A, Loacker L. Evaluation of two fully automated ADAMTS13 activity assays in comparison to manual FRET assay. Int J Lab Hematol 2023; 45:758-765. [PMID: 37194625 DOI: 10.1111/ijlh.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION The objective of the present study was to evaluate and compare the validity and utility of two fully automated ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) activity assays for clinical diagnostic decision-making and to compare their performance. METHODS Two automated ADAMTS13 activity assays (Werfen HemosIL® AcuStar ADAMTS13 Activity, Technoclone Technofluor ADAMTS13 Activity) were compared with a manual FRET assay (BioMedica ACTIFLUOR ADAMTS13 Activity). The following samples were used: 13 acute phase TTP (thrombotic thrombocytopenic purpura) samples from 11 different patients, one sample from a patient with congenital ADAMTS13 deficiency, 16 samples from control patients, three follow-up samples from TTP patients in long-term remission and one sample from a patient with stem cell transplantation related thrombotic microangiopathy (TMA). The WHO 1st International Standard for ADAMTS13 and several dilutions of normal plasma with ADAMTS13-depleted normal plasma were also tested. Statistical analysis included descriptive statistics, sensitivity and specificity, Passing & Bablok regression and Bland-Altman plot. RESULTS The quantitative comparison between the HemosIL® (x) and Technofluor (y) methods showed a strong correlation (Pearson r = 0.98, n = 49). When considering an ADAMTS13 activity of <10% as a hallmark for the diagnosis of TTP, two fully automated assays were both able to identify all TTP- and non-TTP-samples correctly, resulting in sensitivities and specificities of 100%. CONCLUSION Both fully automated ADAMTS13 activity assays showed a good diagnostic performance and quantitative correlation among themselves, discriminating reliably between TTP- and non-TTP-patients.
Collapse
Affiliation(s)
- Christian Irsara
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Markus Anliker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Alexander E Egger
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Lukas Harasser
- Department of Internal Medicine IV, Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | - Karl Lhotta
- Department of Internal Medicine III, Nephrology and Dialysis, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Clemens Feistritzer
- Department of Internal Medicine V, Hematology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Griesmacher
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| | - Lorin Loacker
- Central Institute of Clinical and Chemical Laboratory Diagnostics, University Hospital of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Falter T, Rossmann H, de Waele L, Dekimpe C, von Auer C, Müller-Calleja N, Häuser F, Degreif A, Marandiuc D, Messmer X, Sprinzl M, Lackner KJ, Jurk K, Vanhoorelbeke K, Lämmle B. A novel von Willebrand factor multimer ratio as marker of disease activity in thrombotic thrombocytopenic purpura. Blood Adv 2023; 7:5091-5102. [PMID: 37399489 PMCID: PMC10471935 DOI: 10.1182/bloodadvances.2023010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/05/2023] Open
Abstract
Immune-mediated thrombotic thrombocytopenic purpura (iTTP), an autoantibody-mediated severe ADAMTS13 deficiency, is caused by insufficient proteolytic processing of von Willebrand factor (VWF) multimers (MMs) and microvascular thrombi. Recurrence of acute iTTP is associated with persistence or reappearance of ADAMTS13 deficiency. Some patients remain in remission despite recurring or persisting severe ADAMTS13 deficiency. In a prospective 2-year observational study, we investigated VWF MM patterns and ADAMTS13 in patients with iTTP in remission and at acute episodes. Of the 83 patients with iTTP, 16 suffered 22 acute episodes whereas 67 remained in clinical remission during follow-up, including 13 with ADAMTS13 <10% and 54 with ADAMTS13 ≥10%. High -molecular weight to low-molecular weight VWF MM ratio based on sodium dodecyl sulfate-agarose gel electrophoresis was compared with ADAMTS13 activity. VWF MM ratio was significantly higher in patients in remission with <10% compared with ≥10% ADAMTS13 activity. Fourteen samples obtained from 13 to 50 days (interquartile range; median, 39) before acute iTTP onset (ADAMTS13 <10% in 9 patients and 10%-26% in 5) showed VWF MM ratios significantly higher than those from 13 patients remaining in remission with ADAMTS13 <10%. At acute iTTP onset, VWF MM ratio decreased significantly and was low in all patients despite <10% ADAMTS13. The VWF MM ratio does not depend exclusively on ADAMTS13 activity. The disappearance of high molecular weight VWF MMs resulting in low VWF MM ratio at iTTP onset may be explained by consumption of larger VWF MMs in the microcirculation. The very high VWF MM ratio preceding acute iTTP recurrence suggests that VWF processing is hampered more than in patients remaining in remission.
Collapse
Affiliation(s)
- Tanja Falter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Laure de Waele
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Charis von Auer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Department of Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Adriana Degreif
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dana Marandiuc
- Transfusion Center, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Xavier Messmer
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Martin Sprinzl
- Medical Department I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Interdisciplinary Research Facility, KU Leuven Campus Kortrijk, Kortrijk, Belgium
| | - Bernhard Lämmle
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- University Clinic of Hematology & Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Missense Variants of von Willebrand Factor in the Background of COVID-19 Associated Coagulopathy. Genes (Basel) 2023; 14:genes14030617. [PMID: 36980889 PMCID: PMC10048626 DOI: 10.3390/genes14030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
COVID-19 associated coagulopathy (CAC), characterized by endothelial dysfunction and hypercoagulability, evokes pulmonary immunothrombosis in advanced COVID-19 cases. Elevated von Willebrand factor (vWF) levels and reduced activities of the ADAMTS13 protease are common in CAC. Here, we aimed to determine whether common genetic variants of these proteins might be associated with COVID-19 severity and hemostatic parameters. A set of single nucleotide polymorphisms (SNPs) in the vWF (rs216311, rs216321, rs1063856, rs1800378, rs1800383) and ADAMTS13 genes (rs2301612, rs28729234, rs34024143) were genotyped in 72 COVID-19 patients. Cross-sectional cohort analysis revealed no association of any polymorphism with disease severity. On the other hand, analysis of variance (ANOVA) uncovered associations with the following clinical parameters: (1) the rs216311 T allele with enhanced INR (international normalized ratio); (2) the rs1800383 C allele with elevated fibrinogen levels; and (3) the rs1063856 C allele with increased red blood cell count, hemoglobin, and creatinine levels. No association could be observed between the phenotypic data and the polymorphisms in the ADAMTS13 gene. Importantly, in silico protein conformational analysis predicted that these missense variants would display global conformational alterations, which might affect the stability and plasma levels of vWF. Our results imply that missense vWF variants might modulate the thrombotic risk in COVID-19.
Collapse
|
13
|
Zhang Q, Ye Z, McGowan P, Jurief C, Ly A, Bignotti A, Yada N, Zheng XL. Effects of convalescent plasma infusion on the ADAMTS13-von Willebrand factor axis and endothelial integrity in patients with severe and critical COVID-19. Res Pract Thromb Haemost 2023; 7:100010. [PMID: 36531671 PMCID: PMC9744678 DOI: 10.1016/j.rpth.2022.100010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 01/13/2023] Open
Abstract
Background Convalescent plasma infusion (CPI) was given to patients with COVID-19 during the early pandemic with mixed therapeutic efficacy. However, the impacts of CPI on the ADAMTS13-von Willebrand factor (VWF) axis and vascular endothelial functions are not known. Objectives To determine the impacts of CPI on the ADAMTS13-VWF axis and vascular endothelial functions. Methods Sixty hospitalized patients with COVID-19 were enrolled in the study; 46 received CPI and 14 received no CPI. Plasma ADAMTS13 activity, VWF antigen, endothelial syndecan-1, and soluble thrombomodulin (sTM) were assessed before and 24 hours after treatment. Results Patients with severe and critical COVID-19 exhibited significantly lower plasma ADAMTS13 activity than the healthy controls. Conversely, these patients showed a significantly increased VWF antigen. This resulted in markedly reduced ratios of ADAMTS13 to VWF in these patients. The levels of plasma ADAMTS13 activity in each patient remained relatively constant throughout hospitalization. Twenty-four hours following CPI, plasma ADAMTS13 activity increased by ∼12% from the baseline in all patients and ∼21% in those who survived. In contrast, plasma levels of VWF antigen varied significantly over time. Patients who died exhibited a significant reduction of plasma VWF antigen from the baseline 24 hours following CPI, whereas those who survived did not. Furthermore, patients with severe and critical COVID-19 showed significantly elevated plasma levels of syndecan-1 and sTM, similar to those found in patients with immune thrombotic thrombocytopenic purpura. Both syndecan-1 and sTM levels were significantly reduced 24 hours following CPI. Conclusion Our results demonstrate the relative deficiency of plasma ADAMTS13 activity and endothelial damage in patients with severe and critical COVID-19, which could be modestly improved following CPI therapy.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Zhan Ye
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Paul McGowan
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher Jurief
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Andrew Ly
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Antonia Bignotti
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Noritaka Yada
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
14
|
Ellsworth P, Sparkenbaugh EM. Targeting the von Willebrand Factor-ADAMTS-13 axis in sickle cell disease. J Thromb Haemost 2023; 21:2-6. [PMID: 36695390 PMCID: PMC10413208 DOI: 10.1016/j.jtha.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/09/2023]
Affiliation(s)
- Patrick Ellsworth
- Department of Medicine, Division of Hematology and Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Erica M Sparkenbaugh
- Department of Medicine, Division of Hematology and Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
15
|
Moore GW, Llusa M, Griffiths M, Binder NB. ADAMTS13 Activity Measurement by ELISA and Fluorescence Resonance Energy Transfer Assay. Methods Mol Biol 2023; 2663:533-547. [PMID: 37204735 DOI: 10.1007/978-1-0716-3175-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Accurate estimation of ADAMTS13 (a disintegrin-like and metalloprotease with thrombospondin type 1 motif, member 13) activity level is crucial in the diagnostic setting of differentiation between thrombotic thrombocytopenic purpura (TTP) and other thrombotic microangiopathies. The original assays were too cumbersome and time-consuming for use in the acute situation, and treatment was often based on clinical findings alone, with confirmatory laboratory assays following days or weeks later. Rapid assays are now available that can generate results fast enough to impact on immediate diagnosis and management. Assays based on fluorescence resonance energy transfer (FRET) or chemiluminescence principles can generate results in less than an hour, although they require specific analytical platforms. Enzyme-linked immunosorbent assays (ELISA) can generate results in about 4 h, but do not require specialized equipment beyond ELISA plate readers that are in regular use in many laboratories. The present chapter describes principles, performance, and practical aspects of an ELISA and a FRET assay, for quantitative measurement of ADAMTS13 activity in plasma.
Collapse
Affiliation(s)
- Gary W Moore
- Research and Development, Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria.
- Department of Haematology, Specialist Haemostasis Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University London, London, UK.
| | - Marcos Llusa
- Research and Development, Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria
| | - Margaret Griffiths
- Research and Development, Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria
| | - Nikolaus B Binder
- Research and Development, Technoclone Herstellung von Diagnostika und Arzneimitteln GmbH, Vienna, Austria
| |
Collapse
|
16
|
Uzun G, Althaus K, Hammer S, Bakchoul T. Assessment and Monitoring of Coagulation in Patients with COVID-19: A Review of Current Literature. Hamostaseologie 2022; 42:409-419. [PMID: 35477118 DOI: 10.1055/a-1755-8676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coagulation abnormalities are common in patients with COVID-19 and associated with high morbidity and mortality. It became a daily challenge to navigate through these abnormal laboratory findings and deliver the best possible treatment to the patients. The unique character of COVID-19-induced coagulopathy necessitates not only a dynamic follow-up of the patients in terms of hemostatic findings but also the introduction of new diagnostic methods to determine the overall function of the coagulation system in real time. After the recognition of the high risk of thromboembolism in COVID-19, several professional societies published their recommendations regarding anticoagulation in patients with COVID-19. This review summarizes common hemostatic findings in COVID-19 patients and presents the societal recommendations regarding the use of coagulation laboratory findings in clinical decision-making. Although several studies have investigated coagulation parameters in patients with COVID-19, the methodological shortcomings of published studies as well as the differences in employed anticoagulation regimens that have changed over time, depending on national and international guidelines, limit the applicability of these findings in other clinical settings. Accordingly, evidence-based recommendations for diagnostics during acute COVID-19 infection are still lacking. Future studies should verify the role of coagulation parameters as well as viscoelastic methods in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Günalp Uzun
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Karina Althaus
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany.,Medical Faculty of Tuebingen, Institute for Clinical and Experimental Transfusion Medicine, Tuebingen, Germany
| | - Stefanie Hammer
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine, University Hospital of Tuebingen, Tuebingen, Germany.,Medical Faculty of Tuebingen, Institute for Clinical and Experimental Transfusion Medicine, Tuebingen, Germany
| |
Collapse
|
17
|
Gritsch H, Schrenk G, Weinhappl N, Mellgård B, Ewenstein B, Turecek PL. Structure and Function of Recombinant versus Plasma-Derived von Willebrand Factor and Impact on Multimer Pharmacokinetics in von Willebrand Disease. J Blood Med 2022; 13:649-662. [PMID: 36405429 PMCID: PMC9673800 DOI: 10.2147/jbm.s377126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Recombinant von Willebrand factor (rVWF, vonicog alfa) is a purified VWF concentrate produced from Chinese hamster ovary cells. rVWF is not exposed to the VWF-cleaving protease ADAMTS13 and so is not subject to proteolytic degradation of large (L) and ultra-large (UL) VWF multimers by that enzyme. PURPOSE To compare the structure and function of rVWF with the human plasma-derived VWF [pdVWF] concentrates Haemate P®/Humate-P®, Voncento®, Wilate®/Eqwilate®, and Wilfactin®/Willfact®; to investigate the relationship between VWF multimeric pattern and VWF:ristocetin cofactor (VWF:RCo) activity through population pharmacokinetic (PK) modeling in patients with severe von Willebrand disease (VWD) treated with rVWF. METHODS Analyses included VWF:RCo activity, VWF:collagen-binding activity, VWF:platelet glycoprotein Ib receptor binding, factor VIII (FVIII) binding capacity, and VWF-mediated platelet adhesion under flow conditions. VWF multimeric structure was determined by agarose gel electrophoresis. Population PK models describing the activity-time profile of small, medium, and L/UL multimers following intravenous administration of rVWF in patients with severe VWD were developed. RESULTS Findings demonstrate that rVWF contains a non-degraded VWF multimer pattern including the UL multimers not present in pdVWF concentrates. rVWF displayed higher specific platelet-binding activity, and faster mediation of platelet adhesion to collagen under shear stress versus pdVWF concentrates. rVWF also demonstrated higher FVIII binding capacity than Haemate P®, Voncento® and Wilate®. Modeling provided evidence that VWF:RCo activity in patients with severe VWD treated with rVWF is associated with L/UL VWF multimers in the circulation. CONCLUSIONS Findings suggest that the L and UL multimers preserved in rVWF contribute to high biological activity and might be important for providing hemostatic efficacy.
Collapse
Affiliation(s)
- Herbert Gritsch
- Pharmaceutical Sciences, Baxalta Innovations GmbH, a Takeda Company, Vienna, Austria
| | - Gerald Schrenk
- Pharmaceutical Sciences, Baxalta Innovations GmbH, a Takeda Company, Vienna, Austria
| | - Nina Weinhappl
- Pharmaceutical Sciences, Baxalta Innovations GmbH, a Takeda Company, Vienna, Austria
| | - Björn Mellgård
- Rare Genetics and Hematology, Research & Development, Takeda Development Center Americas, Inc, Cambridge, MA, USA
| | - Bruce Ewenstein
- Rare Genetics and Hematology, Research & Development, Takeda Development Center Americas, Inc, Cambridge, MA, USA
| | - Peter L Turecek
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Vienna, Vienna, Austria
- Plasma Derived Therapies, Research & Development, Baxalta Innovations GmbH, a Takeda Company, Vienna, Austria
| |
Collapse
|
18
|
Mir TH. "COVID-19 associated divergent thrombotic thrombocytopenic purpura (TTP) syndromes reported so far, five and counting": Classification and possible therapeutic options. Thromb Res 2022; 219:86-88. [PMID: 36150272 PMCID: PMC9484099 DOI: 10.1016/j.thromres.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/24/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Key Words
- tma, thrombotic microangiopathy
- ttp, thrombotic thrombocytopenic purpura
- hus, hemolytic uremic syndrome
- ittp, immune thrombotic thrombocytopenic purpura
- adamts-13, a disintegrin and metalloproteinase with thrombospondin type 1 motif member 13
- radamts-13, recombinant adamts-13
- vwf, von willebrand factor
- ulvwf, ultra-large von willebrand factor
- vitt, vaccine-induced immune thrombotic thrombocytopenia
- vi-ittp, vaccine induced immune thrombotic thrombocytopenic purpura
- pex, plasma exchange
Collapse
Affiliation(s)
- Tajamul H Mir
- Department of Nephrology and Lupus/Vasculitis Centre, Khyber Medical Institute, Srinagar, India.
| |
Collapse
|
19
|
Xu X, Feng Y, Jia Y, Zhang X, Li L, Bai X, Jiao L. Prognostic value of von Willebrand factor and ADAMTS13 in patients with COVID-19: A systematic review and meta-analysis. Thromb Res 2022; 218:83-98. [PMID: 36027630 PMCID: PMC9385270 DOI: 10.1016/j.thromres.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Endotheliopathy and coagulopathy appear to be the main causes for critical illness and death in patients with coronavirus disease 2019 (COVID-19). The adhesive ligand von Willebrand factor (VWF) has been involved in immunothrombosis responding to endothelial injury. Here, we reviewed the current literature and performed meta-analyses on the relationship between both VWF and its cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13) with the prognosis of COVID-19. METHODS We searched MEDLINE, Cochrane Library, Web of Science, and EMBASE databases from inception to 4 March 2022 for studies analyzing the relationship between VWF-related variables and composite clinical outcomes of patients with COVID-19. The VWF-related variables analyzed included VWF antigen (VWF:Ag), VWF ristocetin cofactor (VWF:Rco), ADAMTS13 activity (ADAMTS13:Ac), the ratio of VWF:Ag to ADAMTS13:Ac, and coagulation factor VIII (FVIII). The unfavorable outcomes were defined as mortality, intensive care unit (ICU) admission, and severe disease course. We used random or fixed effects models to create summary estimates of risk. Risk of bias was assessed based on the principle of the Newcastle-Ottawa Scale. RESULTS A total of 3764 patients from 40 studies were included. The estimated pooled means indicated increased plasma levels of VWF:Ag, VWF:Rco, and VWF:Ag/ADAMTS13:Ac ratio, and decreased plasma levels of ADAMTS13:Ac in COVID-19 patients with unfavorable outcomes when compared to those with favorable outcomes (composite outcomes or subgroup analyses of non-survivor versus survivor, ICU versus non-ICU, and severe versus non-severe). In addition, FVIII were higher in COVID-19 patients with unfavorable outcomes. Subgroup analyses indicated that FVIII was higher in patients admitting to ICU, while there was no significant difference between non-survivors and survivors. CONCLUSIONS The imbalance of the VWF-ADAMTS13 axis (massive quantitative and qualitative increases of VWF with relative deficiency of ADAMTS13) is associated with poor prognosis of patients with COVID-19.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China.
| | - Yao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China; China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, China; Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China..
| |
Collapse
|
20
|
Gritsch H, Stimpfl M, Turecek PL. Von Willebrand Factor Multimer Analysis by Low Resolution SDS-Agarose Gel Electrophoresis. Bio Protoc 2022; 12:e4495. [PMID: 36199702 PMCID: PMC9486687 DOI: 10.21769/bioprotoc.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 12/29/2022] Open
Abstract
Von Willebrand factor (VWF) is a complex glycoprotein found in plasma, composed of disulfide-bond-linked multimers with apparent molecular weights between 500 kDa and 20,000 kDa. After release of VWF from storage granules, it is cleaved in flowing blood by the specific metalloproteinase ADAMTS13, resulting in a highly characteristic cleavage pattern and structure. As the structure of VWF multimers determines diagnosis of von Willebrand disease, which has different sub-types with different multimer- and cleavage patterns, VWF analysis is performed using low-resolution horizontal SDS-agarose gel electrophoresis. However, almost every laboratory uses a different protocol, and all experimental details are rarely, if at all, described. Therefore, the results from similar methods may be substantially different. Here, we present a detailed description of a validated VWF multimer method that we have developed. It has been successfully used for over more than 20 years in quality control of recombinant and plasma-derived VWF drug products, and in preclinical and clinical studies with VWF drug candidates. As most of the published methods, it enables visualization of VWF multimers separated by electrophoresis by immunostaining with a polyclonal anti-human VWF antibody followed by a secondary antibody coupled to alkaline phosphatase. VWF appears as a series of regularly spaced bands on the low and middle molecular weight range of the gel, with an unresolved zone in the high molecular weight (HMW) range, where ultra-large multimers are found. An example is shown below. This low-resolution agarose gel electrophoresis allows the determination of the number of VWF multimers with high reproducibility. Graphical abstract: Example of electrophoretic analysis of multimer structure of four batches of a recombinant VWF drug substance.
Collapse
Affiliation(s)
- Herbert Gritsch
- Analytical Development Europe, Pharmaceutical Sciences, Baxalta Innovations GmbH, part of Takeda, Vienna, Austria
| | - Margit Stimpfl
- Analytical Development Europe, Pharmaceutical Sciences, Baxalta Innovations GmbH, part of Takeda, Vienna, Austria
| | - Peter L. Turecek
- Plasma-Derived Therapies R&D, Baxalta Innovations GmbH, part of Takeda, Vienna, Austria,*For correspondence:
| |
Collapse
|
21
|
Wolf A, Khimani F, Yoon B, Gerhart C, Endsley D, Ray AK, Yango AF, Flynn SD, Lip GYH, Gonzalez SA, Sathyamoorthy M. The mechanistic basis linking cytokine storm to thrombosis in COVID-19. THROMBOSIS UPDATE 2022; 8:100110. [PMID: 38620974 PMCID: PMC9116969 DOI: 10.1016/j.tru.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
It is now well established that infection with SARS-CoV-2 resulting in COVID-19 disease includes a severely symptomatic subset of patients in whom an aggressive and/or dysregulated host immune response leads to cytokine storm syndrome (CSS) that may be further complicated by thrombotic events, contributing to the severe morbidity and mortality observed in COVID-19. This review provides a brief overview of cytokine storm in COVID-19, and then presents a mechanistic discussion of how cytokine storm affects integrated pathways in thrombosis involving the endothelium, platelets, the coagulation cascade, eicosanoids, auto-antibody mediated thrombosis, and the fibrinolytic system.
Collapse
Affiliation(s)
- Adam Wolf
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Faria Khimani
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Braian Yoon
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Coltin Gerhart
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Dakota Endsley
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- TCU School of Medicine, Fort Worth, TX, United States
| | - Anish K Ray
- Cook Children's Medical Center, Fort Worth, TX, United States
- Department of Pediatrics, TCU School of Medicine, Fort Worth, TX, United States
| | - Angelito F Yango
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, USA
| | | | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg, Denmark
| | - Stevan A Gonzalez
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Annette C. and Harold C. Simmons Transplant Institute, Baylor All Saints Medical Center, Fort Worth, TX, USA
| | - Mohanakrishnan Sathyamoorthy
- Sathyamoorthy Laboratory, TCU School of Medicine, Fort Worth, TX, United States
- Department of Medicine, TCU School of Medicine, Fort Worth, TX, United States
- Consultants in Cardiovascular Medicine and Science - Fort Worth, PLLC, Fort Worth, TX, United States
| |
Collapse
|
22
|
Plášek J, Gumulec J, Máca J, Škarda J, Procházka V, Grézl T, Václavík J. COVID-19 associated coagulopathy: Mechanisms and host-directed treatment. Am J Med Sci 2022; 363:465-475. [PMID: 34752741 PMCID: PMC8576106 DOI: 10.1016/j.amjms.2021.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is associated with specific coagulopathy that frequently occurs during the different phases of coronavirus disease 2019 (COVID-19) and can result in thrombotic complications and/or death. This COVID-19-associated coagulopathy (CAC) exhibits some of the features associated with thrombotic microangiopathy, particularly complement-mediated hemolytic-uremic syndrome. In some cases, due to the anti-phospholipid antibodies, CAC resembles catastrophic anti-phospholipid syndrome. In other patients, it exhibits features of hemophagocytic syndrome. CAC is mainly identified by: increases in fibrinogen, D-dimers, and von Willebrand factor (released from activated endothelial cells), consumption of a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), over activated and dysregulated complement, and elevated plasma cytokine levels. CAC manifests as both major cardiovascular and/or cerebrovascular events and dysfunctional microcirculation, which leads to multiple organ damage. It is not clear whether the mainstay of COVID-19 is complement overactivation, cytokine/chemokine activation, or a combination of these activities. Available data have suggested that non-critically ill hospitalized patients should be administered full-dose heparin. In critically ill, full dose heparin treatment is discouraged due to higher mortality rate. In addition to anti-coagulation, four different host-directed therapeutic pathways have recently emerged that influence CAC: (1) Anti-von Willebrand factor monoclonal antibodies; (2) activated complement C5a inhibitors; (3) recombinant ADAMTS13; and (4) Interleukin (IL)-1 and IL-6 antibodies. Moreover, neutralizing monoclonal antibodies against the virus surface protein have been tested. However, the role of antiplatelet treatment remains unclear for patients with COVID-19.
Collapse
Affiliation(s)
- Jiří Plášek
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
| | - J Gumulec
- Department of Clinical Hematology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - J Máca
- Department of Anesthesiology and Intensive Care, University Hospital Ostrava, Ostrava, Czech Republic; Medical Faculty, Institute of Physiology and Pathophysiology, University of Ostrava, Ostrava, Czech Republic
| | - J Škarda
- Institute of Clinical Pathology, University Hospital of Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - V Procházka
- Institute of Radiology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - T Grézl
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jan Václavík
- Department of Internal Medicine and Cardiology, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
23
|
Bai Y, Mi LZ. The effects of shear stress on the interaction between ADAMTS13 and VWF. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Sadler B, Castaman G, O’Donnell JS. von Willebrand disease and von Willebrand factor. Haemophilia 2022; 28 Suppl 4:11-17. [PMID: 35521725 PMCID: PMC9094051 DOI: 10.1111/hae.14547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022]
Abstract
Progress in both basic and translational research into the molecular mechanisms of VWD can be seen in multiple fields. GENETICS OF VWD In the past several decades, knowledge of the underlying pathogenesis of von Willebrand disease (VWD) has increased tremendously, thanks in no small part to detailed genetic mapping of the von Willebrand Factor (VWF) gene and advances in genetic and bioinformatic technology. However, these advances do not always easily translate into improved management for patients with VWD and low-VWF levels. VWD AND PREGNANCY For example, the treatment of pregnant women with VWD both pre- and postpartum can be complicated. While knowledge of the VWF genotype at some amino acid positions can aid in knowledge of who may be at increased risk of thrombocytopenia or insufficient increase in VWF levels during pregnancy, in many cases, VWF levels and bleeding severity is highly heterogeneous, making monitoring recommended during pregnancy to optimize treatment strategies. VWF AND COVID-19: New challenges related to the consequences of dysregulation of hemostasis continue to be discovered. The ongoing COVID-19 pandemic has highlighted that VWF has additional biological roles in the regulation of inflammatory disorders and angiogenesis, disruption of which may contribute to COVID-19 induced vasculopathy. Increased endothelial cell activation and Weibel-Palade body exocytosis in severe COVID-19 lead to markedly increased plasma VWF levels. Coupled with impairment of normal ADAMTS13 multimer regulation, these data suggest a role for VWF in the pathogenesis underlying pulmonary microvascular angiopathy in severe COVID-19. CONCLUSION With the increased affordability and availability of next-generation sequencing techniques, as well as a push towards a multi-omic approach and personalized medicine in human genetics, there is hope that translational research will improve VWD patient outcomes.
Collapse
Affiliation(s)
- Brooke Sadler
- Washington University School of Medicine, Department of Pediatrics, Division of Hematology/Oncology, St. Louis, MO USA
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - James S. O’Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland,National Coagulation Centre, St James’s Hospital, Dublin, Ireland
| |
Collapse
|
25
|
Roh JD, Kitchen RR, Guseh JS, McNeill JN, Aid M, Martinot AJ, Yu A, Platt C, Rhee J, Weber B, Trager LE, Hastings MH, Ducat S, Xia P, Castro C, Singh A, Atlason B, Churchill TW, Di Carli MF, Ellinor PT, Barouch DH, Ho JE, Rosenzweig A. Plasma Proteomics of COVID-19-Associated Cardiovascular Complications: Implications for Pathophysiology and Therapeutics. JACC Basic Transl Sci 2022; 7:425-441. [PMID: 35530264 PMCID: PMC9067411 DOI: 10.1016/j.jacbts.2022.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/30/2022]
Abstract
To gain insights into the mechanisms driving cardiovascular complications in COVID-19, we performed a case-control plasma proteomics study in COVID-19 patients. Our results identify the senescence-associated secretory phenotype, a marker of biological aging, as the dominant process associated with disease severity and cardiac involvement. FSTL3, an indicator of senescence-promoting Activin/TGFβ signaling, and ADAMTS13, the von Willebrand Factor-cleaving protease whose loss-of-function causes microvascular thrombosis, were among the proteins most strongly associated with myocardial stress and injury. Findings were validated in a larger COVID-19 patient cohort and the hamster COVID-19 model, providing new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.
Collapse
Affiliation(s)
- Jason D. Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert R. Kitchen
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - J. Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jenna N. McNeill
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Amanda J. Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biomedical Sciences, Section of Pathology, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Andy Yu
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Colin Platt
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lena E. Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret H. Hastings
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Ducat
- Department of Biomedical Sciences, Section of Pathology, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA
| | - Peng Xia
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Castro
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abhilasha Singh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bjarni Atlason
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy W. Churchill
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcelo F. Di Carli
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Patrick T. Ellinor
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jennifer E. Ho
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Vasquez-Rios G, Nadkarni GN. Proteomic Analyses Unveil Actionable Disease Pathways in COVID-19: A Step Toward Targeted Therapies. JACC Basic Transl Sci 2022; 7:442-444. [PMID: 35663631 PMCID: PMC9156428 DOI: 10.1016/j.jacbts.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- George Vasquez-Rios
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Girish N. Nadkarni
- Barbara T. Murphy Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Data-Driven and Digital Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Address for correspondence: Dr Girish N. Nadkarni, Barbara T. Murphy Division of Nephrology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, New York 10029, USA.
| |
Collapse
|
27
|
COVID-19 and thrombosis: The role of hemodynamics. Thromb Res 2022; 212:51-57. [PMID: 35219932 PMCID: PMC8864963 DOI: 10.1016/j.thromres.2022.02.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/24/2022] [Accepted: 02/18/2022] [Indexed: 12/16/2022]
Abstract
Severe coronavirus disease 2019 (COVID-19) is characterized by an increased risk of thromboembolic events, a leading cause for adverse outcomes in patients afflicted by the more serious manifestation of the disease. These thromboembolic complications expressed as sepsis-induced coagulopathy, disseminated intravascular coagulation, venous and arterial thromboembolism, pulmonary embolism, microthrombosis, and thrombotic microangiopathy have been observed to affect different organs such as the lungs, heart, kidneys, and brain. Endothelial injury and dysfunction have been identified as the critical pathway towards thrombogenesis, and contributions of other mechanisms such as hypercoagulability, cytokine storm, neutrophils have been studied. However, the contribution of hemodynamic pathways towards thrombosis in severe COVID-19 cases has not been investigated. From the classical theory of Virchow's triad to the contemporary studies on the effect of shear enhanced platelet activation, it is well established that hemodynamics plays a role in the initiation and growth of thrombosis. This article reviews recent studies on COVID-19 related thrombotic events and offers hypotheses on how hemodynamics may be responsible for some of the adverse outcomes observed in severe COVID-19 cases. While thrombogenesis through endothelial injury and the effects of hypercoagulability on thrombosis are briefly addressed, the crux of the discussion is focused on hemodynamic factors such as stasis, turbulent flow, and non-physiological shear stress and their effects on thrombosis. In addition, hemodynamics-dependent venous, arterial, and microvascular thrombosis in COVID-19 cases is discussed. We also propose further investigation of diagnostic and therapeutic options that address the hemodynamics aspects of COVID-19 thrombus formation to assess their potential in patient care.
Collapse
|
28
|
Mankelow TJ, Blair A, Arnold DT, Hamilton FW, Gillespie KM, Anstee DJ, Toye AM. Higher levels of von Willebrand factor in hospitalised patient plasma provides an explanation for the association of ABO blood group and secretor status with COVID19 severity. Transfus Med 2022; 32:261-262. [PMID: 35332587 DOI: 10.1111/tme.12860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Tosti J Mankelow
- Bristol Institute for Transfusion Sciences, NHSBT, Bristol, UK.,NIHR Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, UK
| | - Allison Blair
- Bristol Institute for Transfusion Sciences, NHSBT, Bristol, UK.,NIHR Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, UK
| | - David T Arnold
- Infection Sciences, Southmead Hospital North Bristol NHS Trust, Bristol, UK
| | - Fergus W Hamilton
- Infection Sciences, Southmead Hospital North Bristol NHS Trust, Bristol, UK.,Population Health Sciences, University of Bristol, Bristol, UK
| | - Kathleen M Gillespie
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David J Anstee
- Bristol Institute for Transfusion Sciences, NHSBT, Bristol, UK.,NIHR Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, UK
| | - Ashley M Toye
- Bristol Institute for Transfusion Sciences, NHSBT, Bristol, UK.,NIHR Blood and Transplant Research Unit in Red Cell Products, University of Bristol, Bristol, UK
| |
Collapse
|
29
|
An Optimized Purification Design for Extracting Active ADAMTS13 from Conditioned Media. Processes (Basel) 2022. [DOI: 10.3390/pr10020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ADAMTS13 is a hemostatic enzyme that breaks down pro-thrombotic ultra-large multimers of von Willebrand factor (VWF). The deficiency of ADAMTS13 increases VWF-mediated thrombogenic potential and may lead to thrombotic thrombocytopenic purpura (TTP). Recently, clinical studies have shown the development of acquired TTP after COVID-19 infection and a correlation between low ADAMTS13 plasma levels and increased mortality. As a result, investigating ADAMTS13 as a potential recombinant therapeutic is of broad interest in the field of hematology. ADAMTS13 is considered challenging to purify in its biologically active state. Current purification methods utilize immobilized metal ions, which can interfere with ADAMTS13 metalloprotease activity. For this reason, we optimized an alternative strategy to isolate milligram quantities of highly active recombinant ADAMTS13 (rADAMTS13) from conditioned media after exogenous expression in human cell line, HEK293. HEK293 cells stably expressing C-terminal V5-His-tagged ADAMTS13 were grown in two parallel systems, culture bottles and flasks, for identifying an optimal cultivation strategy. Subsequently, we employed anion exchange followed by anti-V5-tag affinity chromatography to purify rADAMTS13, and extracted rADAMTS13 of high specific activity while preserving its native post-translational modifications. In addition, this process has been optimized and scaled up to produce active rADAMTS13 at levels sufficient for laboratory-scale structural, enzymatic, and biochemical studies.
Collapse
|
30
|
O’Donnell AS, Fazavana J, O’Donnell JS. The von Willebrand factor - ADAMTS-13 axis in malaria. Res Pract Thromb Haemost 2022; 6:e12641. [PMID: 35128300 PMCID: PMC8804941 DOI: 10.1002/rth2.12641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria (CM) continues to be associated with major morbidity and mortality, particularly in children aged <5 years in sub-Saharan Africa. Although the biological mechanisms underpinning severe malaria pathophysiology remain incompletely understood, studies have shown that cytoadhesion of malaria-infected erythrocytes to endothelial cells (ECs) within the cerebral microvasculature represents a key step in this process. Furthermore, these studies have also highlighted that marked EC activation, with secretion of Weibel-Palade bodies (WPBs), occurs at a remarkably early stage following malaria infection. As a result, plasma levels of proteins normally stored within WPBs (including high-molecular-weight von Willebrand factor [VWF] multimers, VWF propeptide, and angiopoietin-2) are significantly elevated. In this review, we provide an overview of recent studies that have identified novel roles through which these secreted WPB glycoproteins may directly facilitate malaria pathogenesis through a number of different platelet-dependent and platelet-independent pathways. Collectively, these emerging insights suggest that hemostatic dysfunction, and in particular disruption of the normal VWF-ADAMTS-13 axis, may be of specific importance in triggering cerebral microangiopathy. Defining the molecular mechanisms involved may offer the opportunity to develop novel targeted therapeutic approaches, which are urgently needed as the mortality rate associated with CM remains in the order of 20%.
Collapse
Affiliation(s)
- Andrew S. O’Donnell
- Department of PaediatricsUniversity Maternity Hospital LimerickLimerickIreland
| | - Judicael Fazavana
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
| | - James S. O’Donnell
- Irish Centre for Vascular BiologySchool of Pharmacy & Biomolecular SciencesRoyal College of Surgeons in IrelandDublin 2Ireland
- National Coagulation CentreSt James’s HospitalDublinIreland
- National Children’s Research CentreOur Lady’s Children’s Hospital CrumlinDublinIreland
| |
Collapse
|
31
|
Seth R, McKinnon TAJ, Zhang XF. Contribution of the von Willebrand factor/ADAMTS13 imbalance to COVID-19 coagulopathy. Am J Physiol Heart Circ Physiol 2022; 322:H87-H93. [PMID: 34890277 PMCID: PMC8714251 DOI: 10.1152/ajpheart.00204.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 2019 coronavirus disease (COVID-19) is the disease caused by SARS-CoV-2 infection. Although this infection has been shown to affect the respiratory system, a high incidence of thrombotic events has been observed in severe cases of COVID-19 and in a significant portion of COVID-19 nonsurvivors. Although prior literature has reported on both the coagulopathy and hypercoagulability of COVID-19, the specifics of coagulation have not been fully investigated. Observations of microthrombosis in patients with COVID-19 have brought attention to potential inflammatory endothelial injury. Von Willebrand factor (VWF) and its protease, A disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), play an important homeostatic role in responding to endothelial injury. This report provides an overview of the literature investigating the role the VWF/ADAMTS13 axis may have in COVID-19 thrombotic events and suggests potential therapeutic strategies to prevent the progression of coagulopathy in patients with COVID-19.
Collapse
Affiliation(s)
- Ryan Seth
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| | - Thomas A J McKinnon
- Department of Immunology and Inflammation, Centre for Haematology, Imperial College London, London, United Kingdom
| | - X Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
32
|
Laghmouchi A, Graça NAG, Voorberg J. Emerging Concepts in Immune Thrombotic Thrombocytopenic Purpura. Front Immunol 2021; 12:757192. [PMID: 34858410 PMCID: PMC8631936 DOI: 10.3389/fimmu.2021.757192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Immune thrombotic thrombocytopenic purpura (iTTP) is an autoimmune disorder of which the etiology is not fully understood. Autoantibodies targeting ADAMTS13 in iTTP patients have extensively been studied, the immunological mechanisms leading to the breach of tolerance remain to be uncovered. This review addresses the current knowledge on genetic factors associated with the development of iTTP and the interplay between the patient's immune system and environmental factors in the induction of autoimmunity against ADAMTS13. HLA-DRB1*11 has been identified as a risk factor for iTTP in the Caucasian population. Interestingly, HLA-DRB1*08:03 was recently identified as a risk factor in the Japanese population. Combined in vitro and in silico MHC class II peptide presentation approaches suggest that an ADAMTS13-derived peptide may bind to both HLA-DRB1*11 and HLA-DRB1*08:03 through different anchor-residues. It is apparent that iTTP is associated with the presence of infectious microorganisms, viruses being the most widely associated with development of iTTP. Infections may potentially lead to loss of tolerance resulting in the shift from immune homeostasis to autoimmunity. In the model we propose in this review, infections disrupt the epithelial barriers in the gut or lung, promoting exposure of antigen presenting cells in the mucosa-associated lymphoid tissue to the microorganisms. This may result in breach of tolerance through the presentation of microorganism-derived peptides that are homologous to ADAMTS13 on risk alleles for iTTP.
Collapse
Affiliation(s)
| | | | - Jan Voorberg
- Department of Molecular Hematology, Sanquin-Academic Medical Center Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
33
|
Rostami M, Mansouritorghabeh H, Parsa-Kondelaji M. High levels of Von Willebrand factor markers in COVID-19: a systematic review and meta-analysis. Clin Exp Med 2021; 22:347-357. [PMID: 34741678 PMCID: PMC8571968 DOI: 10.1007/s10238-021-00769-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022]
Abstract
The SARS-CoV-2 virus has spread to all corners of the world. Thrombosis is the cause of organ failure and subsequent death in COVID-19. The pathophysiology of thrombosis in COVID-19 needs to be further explored to shed light on its downside. For this reason, this meta-analysis of Von Willebrand Factor profile (VWF: Ag, VWF: activity, VWF: RCo), ADAMTS-13, and factor VIII levels in COVID-19 was performed. To obtain data on the status of the aforementioned hemostatic factors, a systematic literature review and meta-analysis were performed on COVID-19. After reviewing the evaluation of 348 papers, 28 papers included in the meta-analysis, which was performed using STATA. The analysis showed an increase in VWF: Ag levels in COVID‐19 patients. VWF: Ac was higher in all COVID-19 patients, while it was lower in the COVID‐19 ICU patients. The pooled mean of VWF: RCO in all patients with COVID-19 was 307.94%. In subgroup analysis, VWF: RCO was significantly higher in ICU patients than in all COVID-19 patients. The pooled mean of ADAMTS-13 activity was 62.47%, and 58.42% in ICU patients. The pooled mean of factor VIII level was 275.8%, which was significantly higher in ICU patients with COVID-19 than all patients with COVID-19. Levels of VWF: Ag, VWF: activity, VWF: ristocetin, and factor VIII are increased in patients with COVID-19. The elevated levels in ICU patients with COVID-19 suggest that these markers may have prognostic value in determining the severity of COVID-19. New therapeutic programs can be developed as a result.
Collapse
Affiliation(s)
- Mehrdad Rostami
- Hematology and Blood Banking, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Mansouritorghabeh
- Hematology and Blood Banking, Mashhad University of Medical Sciences, Mashhad, Iran. .,Central Diagnostic Laboratories, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
34
|
Jampol LM, Tauscher R, Schwarz HP. COVID-19, COVID-19 Vaccinations, and Subsequent Abnormalities in the Retina: Causation or Coincidence? JAMA Ophthalmol 2021; 139:1135-1136. [PMID: 34473193 DOI: 10.1001/jamaophthalmol.2021.3483] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lee M Jampol
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Robert Tauscher
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
35
|
Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, Englert H, Byrne M, Bergin C, O'Sullivan JM, Martin-Loeches I, Nadarajan P, Bannan C, Mallon PW, Curley GF, Preston RJS, Rehill AM, McGonagle D, Ni Cheallaigh C, Baker RI, Renné T, Ward SE, O'Donnell JS. Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost 2021; 19:2546-2553. [PMID: 34375505 PMCID: PMC8420256 DOI: 10.1111/jth.15490] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this "long COVID" syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19. OBJECTIVES To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis. PATIENTS AND METHODS Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed. RESULTS Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI -2.57 to -1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15-416 nM/min), and peak thrombin (p < .0001, 95% CI 39-93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09-0.57 IU/ml; p = .009, 95% CI 0.06-0.5 IU/ml; p = .04, 95% CI 0.03-0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01-2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests. CONCLUSIONS Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis.
Collapse
Affiliation(s)
- Helen Fogarty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Liam Townsend
- Department of Infectious Diseases, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Hannah Morrin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Azaz Ahmad
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Claire Comerford
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hanna Englert
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Mary Byrne
- National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | - Colm Bergin
- Department of Infectious Diseases, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | - Ciaran Bannan
- Department of Infectious Diseases, St James's Hospital, Dublin, Ireland
| | - Patrick W Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- St Vincent's University Hospital, Dublin, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| | - Cliona Ni Cheallaigh
- Department of Infectious Diseases, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ross I Baker
- Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, WA, Australia
- Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Soracha E Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James's Hospital, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- Irish-Australian Blood Collaborative (IABC) Network, Dublin, Ireland
| |
Collapse
|
36
|
Tiscia G, Favuzzi G, De Laurenzo A, Cappucci F, Fischetti L, Colaizzo D, Chinni E, Florio L, Miscio G, Piscitelli AP, Mastroianno M, Grandone E. The Prognostic Value of ADAMTS-13 and von Willebrand Factor in COVID-19 Patients: Prospective Evaluation by Care Setting. Diagnostics (Basel) 2021; 11:diagnostics11091648. [PMID: 34573989 PMCID: PMC8468613 DOI: 10.3390/diagnostics11091648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Endothelial dysfunction, coupled with inflammation, induces thrombo-inflammation. In COVID-19, this process is believed to be associated with clinical severity. Von Willebrand factor (VWF), and a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS-13), are strong markers of endothelial dysfunction. We evaluated the impact of the VWF/ADAMTS-13 fraction on COVID-19 severity and prognosis. Materials and methods: A cohort study including 74 COVID-19 patients, with 22 admitted to the intensive care unit (ICU) and 52 to the medical ward (MW), was carried out. We also evaluated, in a group of 54 patients who were prospectively observed, whether variations in VWF/ADAMTS-13 correlated with the degree of severity and routine blood parameters. Results: A VWF:RCo/ADAMTS-13 fraction above 6.5 predicted in-hospital mortality in the entire cohort. At admission, a VWF:RCo/ADAMTS-13 fraction above 5.7 predicted admission to the ICU. Furthermore, the VWF:RCo/ADAMTS-13 fraction directly correlated with C-reactive protein (CRP) (Spearman r: 0.51, p < 0.0001) and D-dimer (Spearman r: 0.26, p = 0.03). In the prospective cohort, dynamic changes in VWF:RCo/ADAMTS-13 and the CRP concentration were directly correlated (Spearman r, p = 0.0014). This relationship was significant in both groups (ICU: p = 0.006; MW: p = 0.02).Conclusions: The present findings show that in COVID-19, the VWF/ADAMTS-13 fraction predicts in-hospital mortality. The VWF/ADAMTS-13 fraction may be a helpful tool to monitor COVID-19 patients throughout hospitalization.
Collapse
Affiliation(s)
- Giovanni Tiscia
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Giovanni Favuzzi
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Antonio De Laurenzo
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Filomena Cappucci
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Lucia Fischetti
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Donatella Colaizzo
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Elena Chinni
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
| | - Lucia Florio
- Unit of Neurology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Giuseppe Miscio
- Unit of Transfusion Medicine and Clinical Pathology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Angela Pamela Piscitelli
- Unit of Internal Medicine, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Mario Mastroianno
- Scientific Direction, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Elvira Grandone
- Thrombosis and Haemostasis Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (G.T.); (G.F.); (A.D.L.); (F.C.); (L.F.); (D.C.); (E.C.)
- Ob/Gyn Department of the First I.M. Sechenov Moscow State Medical University, 119435 Moscow, Russia
- Correspondence:
| | | |
Collapse
|
37
|
Joly BS, Darmon M, Dekimpe C, Dupont T, Dumas G, Yvin E, Beranger N, Vanhoorelbeke K, Azoulay E, Veyradier A. Imbalance of von Willebrand factor and ADAMTS13 axis is rather a biomarker of strong inflammation and endothelial damage than a cause of thrombotic process in critically ill COVID-19 patients. J Thromb Haemost 2021; 19:2193-2198. [PMID: 34219357 PMCID: PMC8420340 DOI: 10.1111/jth.15445] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Critically ill patients with coronavirus disease 2019 (COVID-19) are prone to developing macrothrombosis and microthrombosis. COVID-19 has been reported to be rarely associated with thrombotic microangiopathies. A disintegrin and metalloprotease with thrombospondin type I repeats, member 13 (ADAMTS13) severe deficiency, the hallmark of thrombotic thrombocytopenic purpura (TTP), induces the formation of platelet, unusually large von Willebrand factor (VWF) multimer microthrombi. In immune-mediated TTP, ADAMTS13 adopts specifically an open conformation. The VWF/ADAMTS13 couple may contribute to the microthrombi formation in pulmonary alveolar capillaries in COVID-19. OBJECTIVE To investigate clinical features, hemostatic laboratory parameters, VWF/ADAMTS13 axis, and ADAMTS13 conformation in critically ill COVID-19 patients at admission. METHODS Fifty three critically ill COVID-19 patients were enrolled between March 18 and May 9 2020 in a monocentric hospital. RESULTS The median age was 59 years and the male-to-female ratio was 2.8/1. We reported seven pulmonary embolisms and 15 deaths. Biological investigations showed increased fibrinogen and factor V levels, and strongly increased D-dimers correlated with mortality. No patient presented severe thrombocytopenia nor microangiopathic hemolytic anemia. An imbalance between high VWF antigen levels and normal or slightly decreased ADAMTS13 activity levels (strongly elevated VWF/ADAMTS13 ratio) was correlated with mortality. Three patients had a partial quantitative deficiency in ADAMTS13. We also reported a closed conformation of ADAMTS13 in all patients, reinforcing the specificity of an open conformation of ADAMTS13 as a hallmark of TTP. CONCLUSION We suggest that slightly decreased or normal ADAMTS13 activity and highly elevated VWF are rather biomarkers reflecting both the strong inflammation and the endothelial damage rather than drivers of the thrombotic process of COVID-19.
Collapse
Affiliation(s)
- Bérangère S Joly
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris, Paris, France
- EA3518 Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Michael Darmon
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Charlotte Dekimpe
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Thibault Dupont
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Guillaume Dumas
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Elise Yvin
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Nicolas Beranger
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris, Paris, France
- EA3518 Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak, Kortrijk, Belgium
| | - Elie Azoulay
- Service de Réanimation médicale, Hôpital Saint-Louis, AP-HP.Nord, Université de Paris, Paris, France
| | - Agnès Veyradier
- Service d'Hématologie biologique, Hôpital Lariboisière, AP-HP.Nord, Université de Paris, Paris, France
- EA3518 Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| |
Collapse
|
38
|
The roles of platelets in COVID-19-associated coagulopathy and vaccine-induced immune thrombotic thrombocytopenia. Trends Cardiovasc Med 2021; 32:1-9. [PMID: 34455073 PMCID: PMC8390120 DOI: 10.1016/j.tcm.2021.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
In coronavirus disease 2019 (COVID-19), multiple thromboinflammatory events contribute to the pathophysiology, including coagulation system activation, suppressed fibrinolysis, vascular endothelial cell injury, and prothrombotic alterations in immune cells such as macrophages and neutrophils. Although thrombocytopenia is not an initial presentation as an infectious coagulopathy, recent studies have demonstrated the vital role of platelets in COVID-19-associated coagulopathy SARS-CoV-2 and its spike protein have been known to directly or indirectly promote release of prothrombotic and inflammatory mediators that lead to COVID-19-associated coagulopathy. Although clinical features of vaccine-induced immune thrombotic thrombocytopenia include uncommon locations of thrombosis, including cerebral venous sinus, we speculate coronavirus spike-protein-initiated prothrombotic pathways are involved in the pathogenesis of vaccine-induced immune thrombotic thrombocytopenia, as current evidence suggests that the spike protein is the promotor and other cofactors such as perturbed immune response and inflammatory reaction enhance the production of anti-platelet factor 4 antibody.
Collapse
|
39
|
Zhang J, Gao XL, Yang LH. [Research progress in coagulation dysfunction and its relationship with cytokine storm syndrome in patients with severe/critical COVID-19]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:700-704. [PMID: 34547883 PMCID: PMC8501276 DOI: 10.3760/cma.j.issn.0253-2727.2021.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 01/08/2023]
Affiliation(s)
- J Zhang
- Shanxi Medical University, Taiyuan 030001
| | - X L Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - L H Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
40
|
Becker RC, Sexton T, Smyth S. COVID-19 and biomarkers of thrombosis: focus on von Willebrand factor and extracellular vesicles. J Thromb Thrombolysis 2021; 52:1010-1019. [PMID: 34350541 PMCID: PMC8336902 DOI: 10.1007/s11239-021-02544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 12/19/2022]
Abstract
COVID-19, caused by the SARS-CoV-2 virus, is responsible for a pandemic of unparalleled portion over the past century. While the acute phase of infection causes significant morbidity and mortality, post-acute sequelae that can affect essentially any organ system is rapidly taking on an equally large part of the overall impact on human health, quality of life, attempts to return to normalcy and the global economy. Herein, we summarize the potential role of von Willebrand Factor and extracellular vesicles toward understanding the pathophysiology, clinical presentation, duration of illness, diagnostic approach and management of COVID-19 and its sequelae.
Collapse
Affiliation(s)
- Richard C Becker
- Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| | - Travis Sexton
- The Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, USA
| | - Susan Smyth
- University of Arkansas for Medical Sciences, Little Rock, AK, USA
| |
Collapse
|
41
|
Ward SE, Fogarty H, Karampini E, Lavin M, Schneppenheim S, Dittmer R, Morrin H, Glavey S, Ni Cheallaigh C, Bergin C, Martin-Loeches I, Mallon PW, Curley GF, Baker RI, Budde U, O'Sullivan JM, O'Donnell JS. ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J Thromb Haemost 2021; 19:1914-1921. [PMID: 34053187 PMCID: PMC8237059 DOI: 10.1111/jth.15409] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis. OBJECTIVES This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis. PATIENTS AND METHODS Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed. RESULTS We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated. CONCLUSIONS These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy.
Collapse
Affiliation(s)
- Soracha E Ward
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Helen Fogarty
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ellie Karampini
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Michelle Lavin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | - Sonja Schneppenheim
- Department of Hämostaseology, Medilys Laborgesellschaft mbH, Hamburg, Germany
| | - Rita Dittmer
- Department of Hämostaseology, Medilys Laborgesellschaft mbH, Hamburg, Germany
| | - Hannah Morrin
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siobhan Glavey
- Department of Haematology, Beaumont Hospital, Dublin, Ireland
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Colm Bergin
- St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Patrick W Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Ireland
- St Vincent's University Hospital, Dublin, Ireland
| | - Gerard F Curley
- Department of Anaesthesia and Critical Care, RCSI, Dublin, Ireland
| | - Ross I Baker
- Western Australia Centre for Thrombosis and Haemostasis, Perth Blood Institute, Murdoch University, Perth, Australia
| | - Ulrich Budde
- Department of Hämostaseology, Medilys Laborgesellschaft mbH, Hamburg, Germany
| | - Jamie M O'Sullivan
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- National Coagulation Centre, St James's Hospital, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
42
|
COVID-19 is a systemic vascular hemopathy: insight for mechanistic and clinical aspects. Angiogenesis 2021; 24:755-788. [PMID: 34184164 PMCID: PMC8238037 DOI: 10.1007/s10456-021-09805-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 β [IL-1β] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.
Collapse
|
43
|
Roh J, Kitchen R, Guseh JS, McNeill J, Aid M, Martinot A, Yu A, Platt C, Rhee J, Weber B, Trager L, Hastings M, Ducat S, Xia P, Castro C, Atlason B, Churchill T, Di Carli M, Ellinor P, Barouch D, Ho J, Rosenzweig A. Plasma Proteomics of COVID-19 Associated Cardiovascular Complications: Implications for Pathophysiology and Therapeutics. RESEARCH SQUARE 2021:rs.3.rs-539712. [PMID: 34127963 PMCID: PMC8202429 DOI: 10.21203/rs.3.rs-539712/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiovascular complications are common in COVID-19 and strongly associated with disease severity and mortality. However, the mechanisms driving cardiac injury and failure in COVID-19 are largely unknown. We performed plasma proteomics on 80 COVID-19 patients and controls, grouped according to disease severity and cardiac involvement. Findings were validated in 305 independent COVID-19 patients and investigated in an animal model. Here we show that senescence-associated secretory proteins, markers of biological aging, strongly associate with disease severity and cardiac involvement even in age-matched cohorts. FSTL3, an indicator of Activin/TGFβ signaling, was the most significantly upregulated protein associated with the heart failure biomarker, NTproBNP (β = 0.4;p adj =4.6x10 - 7 ), while ADAMTS13, a vWF-cleaving protease whose loss-of-function causes microvascular thrombosis, was the most downregulated protein associated with myocardial injury (β=-0.4;p adj =8x10 - 7 ). Mendelian randomization supported a causal role for ADAMTS13 in myocardial injury. These data provide important new insights into the pathophysiology of COVID-19 cardiovascular complications with therapeutic implications.
Collapse
Affiliation(s)
| | | | | | | | - Malika Aid
- Beth Israel Deaconess Medical Center BIDMC
| | | | - Andy Yu
- Massachusetts General Hospital
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fang XZ, Wang YX, Xu JQ, He YJ, Peng ZK, Shang Y. Immunothrombosis in Acute Respiratory Dysfunction of COVID-19. Front Immunol 2021; 12:651545. [PMID: 34149692 PMCID: PMC8207198 DOI: 10.3389/fimmu.2021.651545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023] Open
Abstract
COVID-19 is an acute, complex disorder that was caused by a new β-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on current reports, it was surprising that the characteristics of many patients with COVID-19, who fulfil the Berlin criteria for acute respiratory distress syndrome (ARDS), are not always like those of patients with typical ARDS and can change over time. While the mechanisms of COVID-19–related respiratory dysfunction in COVID-19 have not yet been fully elucidated, pulmonary microvascular thrombosis is speculated to be involved. Considering that thrombosis is highly related to other inflammatory lung diseases, immunothrombosis, a two-way process that links coagulation and inflammation, seems to be involved in the pathophysiology of COVID-19, including respiratory dysfunction. Thus, the current manuscript will describe the proinflammatory milieu in COVID-19, summarize current evidence of thrombosis in COVID-19, and discuss possible interactions between these two.
Collapse
Affiliation(s)
- Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Xin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Qain Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya-Jun He
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Kang Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|