1
|
Feng X, Zhang J, Liu J, Su J, Liu X, Yang M, Peng Y, Yan H, Chen Z. A stable thymidine kinase 1 tetramer for improved quality control of serum level quantification. Clin Chim Acta 2024; 565:119967. [PMID: 39304108 DOI: 10.1016/j.cca.2024.119967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
DNA synthesis is a critical process for cell growth and division. In cancer patients, an enzyme called thymidine kinase 1 (TK1) is often elevated in the blood, making it a valuable biomarker for cancer diagnosis and treatment. However, previous studies have shown that recombinant TK1 can exist in unstable mixtures of tetramers and dimers, leading to inconsistent results and potentially affecting accuracy. To address this issue, we hypothesized that incorporating tetrameric coiled-coil peptides could enhance TK1 self-assembly into stable tetramers without requiring additional adenosine triphosphate. In this study, we successfully expressed a recombinant TK1 tetramer protein in the Escherichia coli system. We optimized the induction conditions, significantly increasing protein expression levels, functionality, and solubility. Size exclusion chromatography confirmed the formation of a tetrameric structure in the expressed TK1 protein, with a molecular weight of 127.2 KDa, consistent with our expectations. We also found that the TK1 tetramer exhibited higher affinity with anti-TK1 IgY than wild-type TK1, as shown by enzyme-linked immunosorbent assay experiments. Moreover, the TK1 tetramer demonstrated good stability against heating, freeze-thawing and lyophilization with almost no immunoactivity lost. These findings suggest that recombinant TK1 tetramers have the potential to serve as calibrators in diagnostic assay kits, becoming promising candidates for quality control of clinical laboratory and in vitro diagnostic reagents.
Collapse
Affiliation(s)
- Xiangning Feng
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Zhang
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jinsong Liu
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Jiayue Su
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Xinrui Liu
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Mingwei Yang
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Yuanli Peng
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Haozhen Yan
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China
| | - Zeliang Chen
- NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, 1 Sun Yat-Sen University, Guangzhou 510080, China; One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou 510080, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
2
|
Koplūnaitė M, Butkutė K, Stankevičiūtė J, Meškys R. Exploring the Mutated Kinases for Chemoenzymatic Synthesis of N4-Modified Cytidine Monophosphates. Molecules 2024; 29:3767. [PMID: 39202847 PMCID: PMC11357392 DOI: 10.3390/molecules29163767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.
Collapse
Affiliation(s)
| | | | | | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Av. 7, LT-10257 Vilnius, Lithuania; (K.B.); (J.S.)
| |
Collapse
|
3
|
Liu W, Wu Y, Wang H, Wang H, Zhou M. Isolation and Biological Characteristics of a Novel Phage and Its Application to Control Vibrio Parahaemolyticus in Shellfish Meat. Foodborne Pathog Dis 2024; 21:467-477. [PMID: 38757692 DOI: 10.1089/fpd.2023.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Vibrio parahaemolyticus is a common foodborne pathogenic bacterium. With the overuse of antibiotics, an increasing proportion of drug-resistant strains are emerging, which puts enormous pressure on public health. In this study, a V. parahaemolyticus-specific phage, VP41s3, was isolated. The head length, width, and tail length of the phage were 77.7 nm, 72.2 nm, and 17.5 nm, respectively. It remained active in the temperature range of 30-50°C and pH range of 4-11. The lytic curve of phage VP41s3 showed that the host bacteria did not grow until 11 h under phage treatment at MOI of 1000, indicating that the phage had good bacteriostatic ability. When it was added to shellfish contaminated with V. parahaemolyticus (15°C, 48 h), the number of bacteria in the experimental group was 2.11 log10 CFU/mL lower than that in the control group at 24 h. Furthermore, genomic characterization and phylogenetic analysis indicated that phage VP41s3 was a new member of the Podoviridae family. The genome contained 50 open reading frames (ORFs), in which the ORF19 (thymidine kinase) was an enzyme involved in the pyrimidine salvage pathway, which might lead to the accelerated DNA synthesis efficiency after phage entered into host cells. This study not only contributed to the improvement of phage database and the development of beneficial phage resources but also revealed the potential application of phage VP41s3 in food hygiene and safety.
Collapse
Affiliation(s)
- Wenting Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Yiming Wu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan, China
| |
Collapse
|
4
|
Gu M, Lu Q, Liu Y, Cui M, Si Y, Wu H, Chai T, Ling HQ. Requirement and functional redundancy of two large ribonucleotide reductase subunit genes for cell cycle, chloroplast biogenesis and photosynthesis in tomato. ANNALS OF BOTANY 2022; 130:173-187. [PMID: 35700127 PMCID: PMC9445600 DOI: 10.1093/aob/mcac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions. METHODS The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system. KEY RESULTS The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal. CONCLUSIONS SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
Collapse
Affiliation(s)
| | | | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
5
|
Molina-Granada D, González-Vioque E, Dibley MG, Cabrera-Pérez R, Vallbona-Garcia A, Torres-Torronteras J, Sazanov LA, Ryan MT, Cámara Y, Martí R. Most mitochondrial dGTP is tightly bound to respiratory complex I through the NDUFA10 subunit. Commun Biol 2022; 5:620. [PMID: 35739187 PMCID: PMC9226000 DOI: 10.1038/s42003-022-03568-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022] Open
Abstract
Imbalanced mitochondrial dNTP pools are known players in the pathogenesis of multiple human diseases. Here we show that, even under physiological conditions, dGTP is largely overrepresented among other dNTPs in mitochondria of mouse tissues and human cultured cells. In addition, a vast majority of mitochondrial dGTP is tightly bound to NDUFA10, an accessory subunit of complex I of the mitochondrial respiratory chain. NDUFA10 shares a deoxyribonucleoside kinase (dNK) domain with deoxyribonucleoside kinases in the nucleotide salvage pathway, though no specific function beyond stabilizing the complex I holoenzyme has been described for this subunit. We mutated the dNK domain of NDUFA10 in human HEK-293T cells while preserving complex I assembly and activity. The NDUFA10E160A/R161A shows reduced dGTP binding capacity in vitro and leads to a 50% reduction in mitochondrial dGTP content, proving that most dGTP is directly bound to the dNK domain of NDUFA10. This interaction may represent a hitherto unknown mechanism regulating mitochondrial dNTP availability and linking oxidative metabolism to DNA maintenance.
Collapse
Affiliation(s)
- David Molina-Granada
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emiliano González-Vioque
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Department of Clinical Biochemistry, Hospital Universitario Puerta del Hierro-Majadahonda, Madrid, Spain
| | - Marris G Dibley
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Vallbona-Garcia
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonid A Sazanov
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain.
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Nájera-Martínez M, Pedroza-García JA, Suzuri-Hernández LJ, Mazubert C, Drouin-Wahbi J, Vázquez-Ramos J, Raynaud C, Plasencia J. Maize Thymidine Kinase Activity Is Present throughout Plant Development and Its Heterologous Expression Confers Tolerance to an Organellar DNA-Damaging Agent. PLANTS 2020; 9:plants9080930. [PMID: 32717805 PMCID: PMC7463494 DOI: 10.3390/plants9080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Thymidine kinase 1 (TK1) phosphorylates thymidine nucleosides to generate thymidine monophosphate. This reaction belongs to the pyrimidine salvage route that is phylogenetically conserved. In the model plant Arabidopsis thaliana, TK activity contributes to maintain nuclear and organellar genome integrity by providing deoxythymidine-triphosphate (dTTP) for DNA synthesis. Arabidopsis has two TK1 genes (TK1a and TK1b) and double mutants show an albino phenotype and develop poorly. In contrast, maize (Zea mays L.) has a single TK1 (ZmTK1) gene and mutant plants are albino and display reduced genome copy number in chloroplasts. We studied the role of ZmTK1 during development and genotoxic stress response by assessing its activity at different developmental stages and by complementing Arabidopsis tk1 mutants. We found that ZmTK1 transcripts and activity are present during germination and throughout maize development. We show that ZmTK1 translocation to chloroplasts depends on a 72-amino-acid N-signal and its plastid localization is consistent with its ability to complement Arabidopsis tk1b mutants which are hypersensitive to ciprofloxacin (CIP), a genotoxic agent to organellar DNA. Also, ZmTK1 partly complemented the Arabidopsis double mutant plants during development. Our results contribute to the understanding of TK1 function in monocot species as an organellar enzyme for genome replication and repair.
Collapse
Affiliation(s)
- Manuela Nájera-Martínez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
| | - José Antonio Pedroza-García
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Luis Jiro Suzuri-Hernández
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Licenciatura en Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Christelle Mazubert
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Jeannine Drouin-Wahbi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Jorge Vázquez-Ramos
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France; (C.M.); (J.D.-W.); (C.R.)
| | - Javier Plasencia
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (M.N.-M.); (J.A.P.-G.); (L.J.S.-H.); (J.V.-R.)
- Correspondence:
| |
Collapse
|
7
|
Lin S, Huang C, Sun J, Bollt O, Wang X, Martine E, Kang J, Taylor MD, Fang B, Singh PK, Koomen J, Hao J, Yang S. The mitochondrial deoxyguanosine kinase is required for cancer cell stemness in lung adenocarcinoma. EMBO Mol Med 2019; 11:e10849. [PMID: 31633874 PMCID: PMC6895611 DOI: 10.15252/emmm.201910849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial deoxynucleotide triphosphate (dNTP) is maintained by the mitochondrial deoxynucleoside salvage pathway and dedicated for the mtDNA homeostasis, and the mitochondrial deoxyguanosine kinase (DGUOK) is a rate-limiting enzyme in this pathway. Here, we investigated the role of the DGUOK in the self-renewal of lung cancer stem-like cells (CSC). Our data support that DGUOK overexpression strongly correlates with cancer progression and patient survival. The depletion of DGUOK robustly inhibited lung adenocarcinoma tumor growth, metastasis, and CSC self-renewal. Mechanistically, DGUOK is required for the biogenesis of respiratory complex I and mitochondrial OXPHOS, which in turn regulates CSC self-renewal through AMPK-YAP1 signaling. The restoration of mitochondrial OXPHOS in DGUOK KO lung cancer cells using NDI1 was able to prevent AMPK-mediated phosphorylation of YAP and to rescue CSC stemness. Genetic targeting of DGUOK using doxycycline-inducible CRISPR/Cas9 was able to markedly induce tumor regression. Our findings reveal a novel role for mitochondrial dNTP metabolism in lung cancer tumor growth and progression, and implicate that the mitochondrial deoxynucleotide salvage pathway could be potentially targeted to prevent CSC-mediated therapy resistance and metastatic recurrence.
Collapse
Affiliation(s)
- Shengchen Lin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chongbiao Huang
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Jianwei Sun
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
- South China Agricultural University, Guangzhou, China
| | - Oana Bollt
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xiuchao Wang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Eric Martine
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jiaxin Kang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- South China Agricultural University, Guangzhou, China
| | - Matthew D Taylor
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Bin Fang
- Department of Molecular Oncology, Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pankaj K Singh
- Department of Pathology and Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - John Koomen
- Department of Molecular Oncology, Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jihui Hao
- Key Laboratory of Cancer Prevention and Therapy, Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
8
|
Feldman AW, Fischer EC, Ledbetter MP, Liao JY, Chaput JC, Romesberg FE. A Tool for the Import of Natural and Unnatural Nucleoside Triphosphates into Bacteria. J Am Chem Soc 2018; 140:1447-1454. [PMID: 29338214 DOI: 10.1021/jacs.7b11404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleoside triphosphates play a central role in biology, but efforts to study these roles have proven difficult because the levels of triphosphates are tightly regulated in a cell and because individual triphosphates can be difficult to label or modify. In addition, many synthetic biology efforts are focused on the development of unnatural nucleoside triphosphates that perform specific functions in the cellular environment. In general, both of these efforts would be facilitated by a general means to directly introduce desired triphosphates into cells. Previously, we demonstrated that recombinant expression of a nucleoside triphosphate transporter from Phaeodactylum tricornutum (PtNTT2) in Escherichia coli functions to import triphosphates that are added to the media. Here, to explore the generality and utility of this approach, we report a structure-activity relationship study of PtNTT2. Using a conventional competitive uptake inhibition assay, we characterize the effects of nucleobase, sugar, and triphosphate modification, and then develop an LC-MS/MS assay to directly measure the effects of the modifications on import. Lastly, we use the transporter to import radiolabeled or 2'-fluoro-modified triphosphates and quantify their incorporation into DNA and RNA. The results demonstrate the general utility of the PtNTT2-mediated import of natural or modified nucleoside triphosphates for different molecular or synthetic biology applications.
Collapse
Affiliation(s)
- Aaron W Feldman
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Emil C Fischer
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael P Ledbetter
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jen-Yu Liao
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - John C Chaput
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Mutahir Z, Christiansen LS, Clausen AR, Berchtold MW, Gojkovic Z, Munch-Petersen B, Knecht W, Piškur J. Gene duplications and losses among vertebrate deoxyribonucleoside kinases of the non-TK1 Family. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:677-690. [PMID: 27906638 DOI: 10.1080/15257770.2016.1143557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) salvage deoxyribonucleosides (dNs) and catalyze the rate limiting step of this salvage pathway by converting dNs into corresponding monophosphate forms. These enzymes serve as an excellent model to study duplicated genes and their evolutionary history. So far, among vertebrates only four mammalian dNKs have been studied for their substrate specificity and kinetic properties. However, some vertebrates, such as fish, frogs, and birds, apparently possess a duplicated homolog of deoxycytidine kinase (dCK). In this study, we characterized a family of dCK/deoxyguanosine kinase (dGK)-like enzymes from a frog Xenopus laevis and a bird Gallus gallus. We showed that X. laevis has a duplicated dCK gene and a dGK gene, whereas G. gallus has a duplicated dCK gene but has lost the dGK gene. We cloned, expressed, purified, and subsequently determined the kinetic parameters of the dCK/dGK enzymes encoded by these genes. The two dCK enzymes in G. gallus have broader substrate specificity than their human or X. laevis counterparts. Additionally, the duplicated dCK enzyme in G. gallus might have become mitochondria. Based on our study we postulate that changing and adapting substrate specificities and subcellular localization are likely the drivers behind the evolution of vertebrate dNKs.
Collapse
Affiliation(s)
| | - Louise Slot Christiansen
- a Department of Biology , Lund University , Lund , Sweden.,e Lund Protein Production Platform, Lund University , Lund , Sweden
| | | | - Martin W Berchtold
- b Department of Biology , University of Copenhagen , Copenhagen , Denmark
| | | | - Birgitte Munch-Petersen
- a Department of Biology , Lund University , Lund , Sweden.,d Department of Science , Systems and Models, Roskilde University , Roskilde , Denmark
| | - Wolfgang Knecht
- a Department of Biology , Lund University , Lund , Sweden.,e Lund Protein Production Platform, Lund University , Lund , Sweden
| | - Jure Piškur
- a Department of Biology , Lund University , Lund , Sweden
| |
Collapse
|
10
|
Matsuura MF, Winiger CB, Shaw RW, Kim MJ, Kim MS, Daugherty AB, Chen F, Moussatche P, Moses JD, Lutz S, Benner SA. A Single Deoxynucleoside Kinase Variant from Drosophila melanogaster Synthesizes Monophosphates of Nucleosides That Are Components of an Expanded Genetic System. ACS Synth Biol 2017; 6:388-394. [PMID: 27935283 DOI: 10.1021/acssynbio.6b00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS). By shuffling hydrogen bonding groups on the nucleobases, AEGIS adds potentially as many as four additional nucleobase pairs to the genetic "alphabet". Specifically, we show that DmdNK Q81E creates the monophosphates from the AEGIS nucleosides dP, dZ, dX, and dK (respectively 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, dP; 6-amino-3-(1'-β-d-2'-deoxyribofuranosyl)-5-nitro-1H-pyridin-2-one, dZ; 8-(1'β-d-2'-deoxy-ribofuranosyl)imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione, dX; and 2,4-diamino-5-(1'-β-d-2'-deoxyribofuranosyl)-pyrimidine, dK). Using a coupled enzyme assay, in vitro kinetic parameters were obtained for three of these nucleosides (dP, dX, and dK; the UV absorbance of dZ made it impossible to get its precise kinetic parameters). Thus, DmdNK Q81E appears to be a suitable enzyme to catalyze the first step in the biosynthesis of AEGIS 2'-deoxynucleoside triphosphates in vitro and, perhaps, in vivo, in a cell able to manage plasmids containing AEGIS DNA.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Christian B. Winiger
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Ashley B. Daugherty
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Fei Chen
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Patricia Moussatche
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| | - Stefan Lutz
- Department
of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Steven A. Benner
- The Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences, LLC, 13709 Progress Blvd., Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
11
|
Slot Christiansen L, Egeblad L, Munch-Petersen B, Piškur J, Knecht W. New Variants of Tomato Thymidine Kinase 1 Selected for Increased Sensitivity of E. coli KY895 towards Azidothymidine. Cancers (Basel) 2015; 7:966-80. [PMID: 26061968 PMCID: PMC4491694 DOI: 10.3390/cancers7020819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/19/2015] [Accepted: 05/27/2015] [Indexed: 11/17/2022] Open
Abstract
Nucleoside analogues (NA) are prodrugs that are phosphorylated by deoxyribonucleoside kinases (dNKs) as the first step towards a compound toxic to the cell. During the last 20 years, research around dNKs has gone into new organisms other than mammals and viruses. Newly discovered dNKs have been tested as enzymes for suicide gene therapy. The tomato thymidine kinase 1 (ToTK1) is a dNK that has been selected for its in vitro kinetic properties and then successfully been tested in vivo for the treatment of malignant glioma. We present the selection of two improved variants of ToTK1 generated by random protein engineering for suicide gene therapy with the NA azidothymidine (AZT).We describe their selection, recombinant production and a subsequent kinetic and biochemical characterization. Their improved performance in killing of E. coli KY895 is accompanied by an increase in specificity for the NA AZT over the natural substrate thymidine as well as a decrease in inhibition by dTTP, the end product of the nucleoside salvage pathway for thymidine. The understanding of the enzymatic properties improving the variants efficacy is instrumental to further develop dNKs for use in suicide gene therapy.
Collapse
Affiliation(s)
- Louise Slot Christiansen
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| | - Louise Egeblad
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| | - Birgitte Munch-Petersen
- Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark; E-Mail:
| | - Jure Piškur
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; E-Mail:
- Lund Protein Production Platform, Lund University, Lund 22362, Sweden; E-Mail:
| |
Collapse
|
12
|
Clausen AR, Mutahir Z, Munch-Petersen B, Piškur J. Plants salvage deoxyribonucleosides in mitochondria. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:291-5. [PMID: 24940682 DOI: 10.1080/15257770.2013.853782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Deoxyribonucleoside kinases phosphorylate deoxyribonucleosides into the corresponding 5'-monophosphate deoxyribonucleosides to supply the cell with nucleic acid precursors. In mitochondrial fractions of the model plant Arabidopsis thaliana, we detected deoxyadenosine and thymidine kinase activities, while the cytosol fraction contained six-fold lower activity and chloroplasts contained no measurable activities. In addition, a mitochondrial fraction isolated from the potato Solanum tuberosum contained thymidine kinase and deoxyadenosine kinase activities. We conclude that an active salvage of deoxyribonucleosides in plants takes place in their mitochondria. In general, the observed localization of the plant dNK activities in the mitochondrion suggests that plants have a different organization of the deoxyribonucleoside salvage compared to mammals.
Collapse
|
13
|
Slot Christiansen L, Munch-Petersen B, Knecht W. Non-Viral Deoxyribonucleoside Kinases--Diversity and Practical Use. J Genet Genomics 2015; 42:235-48. [PMID: 26059771 DOI: 10.1016/j.jgg.2015.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 12/30/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) phosphorylate deoxyribonucleosides to their corresponding monophosphate compounds. dNks also phosphorylate deoxyribonucleoside analogues that are used in the treatment of cancer or viral infections. The study of the mammalian dNKs has therefore always been of great medical interest. However, during the last 20 years, research on dNKs has gone into non-mammalian organisms. In this review, we focus on non-viral dNKs, in particular their diversity and their practical applications. The diversity of this enzyme family in different organisms has proven to be valuable in studying the evolution of enzymes. Some of these newly discovered enzymes have been useful in numerous practical applications in medicine and biotechnology, and have contributed to our understanding of the structural basis of nucleoside and nucleoside analogue activation.
Collapse
Affiliation(s)
| | - Birgitte Munch-Petersen
- Department of Biology, Lund University, Lund 22362, Sweden; Department of Science, Systems and Models, Roskilde University, Roskilde 4000, Denmark
| | - Wolfgang Knecht
- Department of Biology, Lund University, Lund 22362, Sweden; Lund Protein Production Platform, Lund University, Lund 22362, Sweden.
| |
Collapse
|
14
|
Two-step procedure for evaluating experimentally induced DNA damage: Texas Red and Comet assays. Methods Mol Biol 2014; 1249:183-91. [PMID: 25348306 DOI: 10.1007/978-1-4939-2013-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The technique of Texas Red immunostaining for cellular γH2AX identifies by fluorescence microscopy DNA undergoing active remodeling or repair. To fully characterize γH2AX foci, the technique of alkaline single cell electrophoresis (Comet) assay quantifiably resolves DNA double-strand breaks from other types of DNA damage. When used together, these two techniques may provide evidence for radiochemotherapy-induced DNA damage.
Collapse
|
15
|
Konrad A, Lai J, Mutahir Z, Piškur J, Liberles DA. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa. J Mol Evol 2014; 78:202-16. [PMID: 24500774 DOI: 10.1007/s00239-014-9611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/22/2022]
Abstract
Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to the two different enzyme classes. The structural models showed that the carboxyl terminus of the ancestral sequence is more helical than dNK, in common with TK2, although any implications of this for enzyme specificity will require biochemical validation. Finally, rate-shift and conservation-shift analysis between clades with different specificities uncovered candidate residues outside the active site pocket which may have contributed to differentiation in substrate specificity between enzyme clades.
Collapse
Affiliation(s)
- Anke Konrad
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA,
| | | | | | | | | |
Collapse
|
16
|
Mutahir Z, Clausen AR, Andersson KM, Wisen SM, Munch-Petersen B, Piškur J. Thymidine kinase 1 regulatory fine-tuning through tetramer formation. FEBS J 2013; 280:1531-41. [PMID: 23351158 DOI: 10.1111/febs.12154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/30/2022]
Abstract
Thymidine kinase 1 (TK1) provides a crucial precursor, deoxythymidine monophosphate, for nucleic acid synthesis, and the activity of TK1 increases by up to 200-fold during the S-phase of cell division in humans. An important part of the regulatory checkpoints is the ATP and enzyme concentration-dependent transition of TK1 from a dimer with low catalytic efficiency to a tetramer with high catalytic efficiency. This regulatory fine-tuning serves as an additional control to provide a balanced pool of nucleic acid precursors in the cell. We subcloned and over-expressed 10 different TK1s, originating from widely different organisms, and characterized their kinetic and oligomerization properties. Whilst bacteria, plants and Dictyostelium only exhibited dimeric TK1, we found that all animals had a tetrameric TK1. However, a clear ATP-dependent switch between dimer and tetramer was found only in higher vertebrates and was especially pronounced in mammalian and bird TK1s. We suggest that the dimer form is the original form and that the tetramer originated in the animal lineage after the split of Dictyostelium and the lineages leading to invertebrates and vertebrates. The efficient switching mechanism was probably first established in warm-blooded animals when they separated from the rest of the vertebrates.
Collapse
|
17
|
Clausen AR, Girandon L, Ali A, Knecht W, Rozpedowska E, Sandrini MPB, Andreasson E, Munch-Petersen B, Piškur J. Two thymidine kinases and one multisubstrate deoxyribonucleoside kinase salvage DNA precursors in Arabidopsis thaliana. FEBS J 2012; 279:3889-97. [PMID: 22897443 DOI: 10.1111/j.1742-4658.2012.08747.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
Deoxyribonucleotides are the building blocks of DNA and can be synthesized via de novo and salvage pathways. Deoxyribonucleoside kinases (EC 2.7.1.145) salvage deoxyribonucleosides by transfer of a phosphate group to the 5' of a deoxyribonucleoside. This salvage pathway is well characterized in mammals, but in contrast, little is known about how plants salvage deoxyribonucleosides. We show that during salvage, deoxyribonucleosides can be phosphorylated by extracts of Arabidopsis thaliana into corresponding monophosphate compounds with an unexpected preference for purines over pyrimidines. Deoxyribonucleoside kinase activities were present in all tissues during all growth stages. In the A. thaliana genome, we identified two types of genes that could encode enzymes which are involved in the salvage of deoxyribonucleosides. Thymidine kinase activity was encoded by two thymidine kinase 1 (EC 2.7.1.21)-like genes (AtTK1a and AtTK1b). Deoxyadenosine, deoxyguanosine and deoxycytidine kinase activities were encoded by a single AtdNK gene. T-DNA insertion lines of AtTK1a and AtTK1b mutant genes had normal growth, although AtTK1a AtTK1b double mutants died at an early stage, which indicates that AtTK1a and AtTK1b catalyze redundant reactions. The results obtained in the present study suggest a crucial role for the salvage of thymidine during early plant development.
Collapse
Affiliation(s)
- Anders R Clausen
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tinta T, Christiansen LS, Konrad A, Liberles DA, Turk V, Munch-Petersen B, Piškur J, Clausen AR. Deoxyribonucleoside kinases in two aquatic bacteria with high specificity for thymidine and deoxyadenosine. FEMS Microbiol Lett 2012; 331:120-7. [DOI: 10.1111/j.1574-6968.2012.02565.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/13/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
| | | | - Anke Konrad
- Department of Molecular Biology; University of Wyoming; Laramie; WY; USA
| | - David A. Liberles
- Department of Molecular Biology; University of Wyoming; Laramie; WY; USA
| | - Valentina Turk
- Marine Biology Station; National Institute of Biology; Piran; Slovenia
| | | | - Jure Piškur
- Department of Biology; Lund University; Lund; Sweden
| | | |
Collapse
|
19
|
Hari Prasad O, Nanda Kumar Y, Reddy OVS, Chaudhary A, Sarma PVGK. Cloning, Expression, Purification and Characterization of UMP Kinase from Staphylococcus aureus. Protein J 2012; 31:345-52. [DOI: 10.1007/s10930-012-9410-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Kunos CA, Radivoyevitch T. Molecular Strategies of Deoxynucleotide Triphosphate Supply Inhibition Used in the Treatment of Gynecologic Malignancies. ACTA ACUST UNITED AC 2012; Suppl 4:001. [PMID: 25392744 DOI: 10.4172/2161-0932.s4-001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemotherapies targeting deoxynucleotide triphosphate synthesis are of high medical interest in the treatment of gynecologic malignancies. In this article, we focus on targeted inhibitors of ribonucleotide reductase, an enzyme in charge of ribonucleotide reduction to their corresponding deoxyribonucleotide to be used as the building blocks of DNA. We also discuss human clinical trials have utilized ribonucleotide reductase subunit-specific inhibitors, particularly trials for women with cervical cancer.
Collapse
Affiliation(s)
- Charles A Kunos
- Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Tomas Radivoyevitch
- Department of Epidemiology and Biostatistics, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
21
|
The global distribution and evolution of deoxyribonucleoside kinases in bacteria. Gene 2012; 492:117-20. [DOI: 10.1016/j.gene.2011.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022]
|
22
|
Aufderklamm S, Todenhöfer T, Gakis G, Kruck S, Hennenlotter J, Stenzl A, Schwentner C. Thymidine kinase and cancer monitoring. Cancer Lett 2011; 316:6-10. [PMID: 22068047 DOI: 10.1016/j.canlet.2011.10.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/19/2011] [Indexed: 11/29/2022]
Abstract
Thymidine kinases (TK) have a key function in the synthesis of DNA. Two isoenzymes have been characterized: TK1 is cell cycle-dependent and present in the cytoplasm whereas TK2--located in mitochondria--is cell cycle-independent. The diagnostic and prognostic role of TK1 has recently been investigated. TK1 might be helpful for screening and monitoring of human malignancies. TK1 may also serve as a prognostic factor for progression. Herein, we summarize the status of TK1 for cancer monitoring and point out its use as a proliferation marker. A comprehensive overview about the association of TK-1 with various entities is given.
Collapse
|
23
|
Lin ZP, Lee Y, Lin F, Belcourt MF, Li P, Cory JG, Glazer PM, Sartorelli AC. Reduced level of ribonucleotide reductase R2 subunits increases dependence on homologous recombination repair of cisplatin-induced DNA damage. Mol Pharmacol 2011; 80:1000-12. [PMID: 21875941 DOI: 10.1124/mol.111.074708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate-limiting step in the production of deoxyribonucleoside triphosphates (dNTPs) required for replicative and repair DNA synthesis. Mammalian RNR is a heteromeric enzyme consisting primarily of R1 and R2 subunits during the S phase of the cell cycle. We have shown previously that the presence of excess R2 subunits protects p53-deficient human colon cancer cells from cisplatin-induced DNA damage and replication stress. However, the mode of DNA repair influenced by changes in the level of the R2 subunit remained to be defined. In the present study, we demonstrated that depletion of BRCA1, an important factor of homologous recombination repair (HRR), preferentially sensitized stable R2-knockdown p53(-/-) HCT116 cells to the cytotoxicity of cisplatin and γ-H2AX induction. In accord with this finding, these R2-knockdown cells exhibited increased dependence on HRR, as evidenced by elevated levels of cisplatin-induced Rad51 foci and sister chromatid exchange frequency. Furthermore, stable knockdown of the R2 subunit also led to decreased cisplatin-induced gap-filling synthesis in nucleotide excision repair (NER) and a reduced dATP level in the G(2)/M phase of the cell cycle. These results suggest that an increased level of the R2 subunit extends the availability of dATP in the G(2)/M phase to promote the repair of NER-mediated single-strand gaps that are otherwise converted into double-strand breaks in the subsequent S phase. We propose that HRR becomes important for recovery from cisplatin-DNA lesions when the postexcision process of NER is restrained by reduced levels of the R2 subunit and dATP in p53-deficient cancer cells.
Collapse
Affiliation(s)
- Z Ping Lin
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kunos CA, Ferris G, Pyatka N, Pink J, Radivoyevitch T. Deoxynucleoside salvage facilitates DNA repair during ribonucleotide reductase blockade in human cervical cancers. Radiat Res 2011; 176:425-33. [PMID: 21756082 DOI: 10.1667/rr2556.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cells generate 2'-deoxyribonucleoside triphosphates (dNTPs) for both replication and repair of damaged DNA predominantly through de novo reduction of intracellular ribonucleotides by ribonucleotide reductase (RNR). Cells can also salvage deoxynucleosides by deoxycytidine kinase/thymidine kinase 1 in the cytosol or by deoxyguanosine kinase/thymidine kinase 2 in mitochondria. In this study we investigated whether the salvage dNTP supply pathway facilitates DNA damage repair, promoting cell survival, when pharmacological inhibition of RNR by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) impairs the de novo pathway. Human cervical cancer cells were subjected to radiation with or without 3-AP under medium deoxynucleoside concentrations of 0, 0.05, 0.5 and 5.0 µM. Efficacy of DNA damage repair was assessed by γ-H2AX flow cytometry and focus counts, by single cell electrophoresis (Comet assay), and by caspase 3 cleavage assay as a marker of treatment-induced apoptosis. Cell survival was assessed by colony formation. We found that deoxyribonucleotide salvage facilitates DNA repair during RNR inhibition by 3-AP and that salvage reduces the radiochemosensitivity of human cervical cancer cells.
Collapse
Affiliation(s)
- Charles A Kunos
- Department of Radiation Oncology, University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
25
|
Varga A, Chaloin L, Sági G, Sendula R, Gráczer E, Liliom K, Závodszky P, Lionne C, Vas M. Nucleotide promiscuity of 3-phosphoglycerate kinase is in focus: implications for the design of better anti-HIV analogues. MOLECULAR BIOSYSTEMS 2011; 7:1863-73. [PMID: 21505655 DOI: 10.1039/c1mb05051f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The wide specificity of 3-phosphoglycerate kinase (PGK) towards its nucleotide substrate is a property that allows contribution of this enzyme to the effective phosphorylation (i.e. activation) of nucleotide-based pro-drugs against HIV. Here, the structural basis of the nucleotide-PGK interaction is characterised in comparison to other kinases, namely pyruvate kinase (PK) and creatine kinase (CK), by enzyme kinetic analysis and structural modelling (docking) studies. The results provided evidence for favouring the purine vs. pyrimidine base containing nucleotides for PGK rather than for PK or CK. This is due to the exceptional ability of PGK in forming the hydrophobic contacts of the nucleotide rings that assures the appropriate positioning of the connected phosphate-chain for catalysis. As for the D-/L-configurations of the nucleotides, the L-forms (both purine and pyrimidine) are well accepted by PGK rather than either by PK or CK. Here again the dominance of the hydrophobic interactions of the L-form of pyrimidines with PGK is underlined in comparison with those of PK or CK. Furthermore, for the l-forms, the absence of the ribose OH-groups with PGK is better tolerated for the purine than for the pyrimidine containing compounds. On the other hand, the positioning of the phosphate-chain is an even more important term for PGK in the case of both purines and pyrimidines with an L-configuration, as deduced from the present kinetic studies with various nucleotide-site mutants of PGK. These characteristics of the kinase-nucleotide interactions can provide a guideline for designing new drugs.
Collapse
Affiliation(s)
- Andrea Varga
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P O Box 7, H-1518 Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Munch-Petersen B. Enzymatic regulation of cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2: a mini review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:363-9. [PMID: 20544521 DOI: 10.1080/15257771003729591] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The central enzyme on the de novo pathway for synthesis of DNA precursors, the deoxyribonucleoside triphosphates, is ribonucleotide reductase (RNR). Deoxythymidine triphosphate (dTTP) has a key role in control of RNR activity shifting the specificity from pyrimidine to purine nucleotide reduction. Apart from the complex de novo synthesis of dTTP through UDP reduction, dTTP is provided through salvage of thymidine catalyzed by the thymidine kinases, the cytosolic and cell cycle regulated TK1 and the mitochondrial and constitutively expressed TK2. The complex enzymatic regulation of TK1 and TK2 and the possible physiological significance of this regulation will be discussed.
Collapse
Affiliation(s)
- B Munch-Petersen
- Department of Science, Systems and Models NSM, Roskilde, Denmark.
| |
Collapse
|
27
|
Kunos CA, Radivoyevitch T, Pink J, Chiu SM, Stefan T, Jacobberger J, Kinsella TJ. Ribonucleotide reductase inhibition enhances chemoradiosensitivity of human cervical cancers. Radiat Res 2010; 174:574-81. [PMID: 20954859 DOI: 10.1667/rr2273.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For repair of damaged DNA, cells increase de novo synthesis of deoxyribonucleotide triphosphates through the rate-limiting, p53-regulated ribonucleotide reductase (RNR) enzyme. In this study we investigated whether pharmacological inhibition of RNR by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) enhanced chemoradiation sensitivity through a mechanism involving sustained DNA damage. RNR inactivation by 3-AP and resulting chemoradiosensitization were evaluated in human cervical (CaSki, C33-a) cancer cells through study of DNA damage (γ-H2AX signal) by flow cytometry, RNR subunit p53R2 and p21 protein steady-state levels by Western blot analysis and laser scanning imaging cytometry, and cell survival by colony formation assays. 3-AP treatment led to sustained radiation- and cisplatin-induced DNA damage (i.e. increased γ-H2AX signal) in both cell lines through a mechanism of inhibited RNR activity. Radiation, cisplatin and 3-AP exposure resulted in significantly elevated numbers and persistence of γ-H2AX foci that were associated with reduced clonogenic survival. DNA damage was associated with a rise in p53R2 but not p21 protein levels 6 h after treatment with radiation and/or cisplatin plus 3-AP. We conclude that blockage of RNR activity by 3-AP impairs DNA damage responses that rely on deoxyribonucleotide production and thereby may substantially increase chemoradiosensitivity of human cervical cancers.
Collapse
Affiliation(s)
- Charles A Kunos
- Department of Radiation Oncology, University Hospitals Case Medical Center and Case Western Reserve School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Khan Z, Knecht W, Willer M, Rozpedowska E, Kristoffersen P, Clausen AR, Munch-Petersen B, Almqvist PM, Gojkovic Z, Piskur J, Ekström TJ. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy. Neuro Oncol 2010; 12:549-58. [PMID: 20154339 DOI: 10.1093/neuonc/nop067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine kinase 1 (TK1) from the tomato plant, with favorable characteristics in vitro and in vivo. This enzyme (toTK1) is highly specific for the nucleoside analog prodrug zidovudine (azidothymidine, AZT), which is known to penetrate the blood-brain barrier. An important feature of toTK1 is that it efficiently phosphorylates its substrate AZT not only to AZT monophosphate, but also to AZT diphosphate, with excellent kinetics. The efficiency of the toTK1/AZT system was confirmed when toTK1-transduced human glioblastoma (GBM) cells displayed a 500-fold increased sensitivity to AZT compared with wild-type cells. In addition, when neural progenitor cells were used as delivery vectors for toTK1 in intracranial GBM xenografts in nude rats, substantial attenuation of tumor growth was achieved in animals exposed to AZT, and survival of the animals was significantly improved compared with controls. The novel toTK1/AZT suicide gene therapy system in combination with stem cell-mediated gene delivery promises new treatment of malignant gliomas.
Collapse
Affiliation(s)
- Zahidul Khan
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, KarolinskaUniversity Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bulst S, Abicht A, Holinski-Feder E, Müller-Ziermann S, Koehler U, Thirion C, Walter MC, Stewart JD, Chinnery PF, Lochmüller H, Horvath R. In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Hum Mol Genet 2009; 18:1590-9. [PMID: 19221117 DOI: 10.1093/hmg/ddp074] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA depletion syndrome, a frequent cause of childhood (hepato)encephalomyopathies, is defined as a reduction of mitochondrial DNA copy number related to nuclear DNA. It was previously shown that mtDNA depletion can be prevented by dAMP/dGMP supplementation in deoxyguanosine kinase-deficient fibroblasts. We investigated myotubes of patients diagnosed with mtDNA depletion carrying pathogenic mutations in DGUOK, POLG1 (Alpers syndrome) and TYMP. Differentiating myotubes of all patients and controls were supplemented with different doses of dAMP/dGMP or dAMP/dGMP/dCMP in TYMP deficiency, and analysed for mtDNA/nDNA ratio and for cytochrome c oxidase (COX) activity. Serum deprivation and myotube formation triggered a decrease in mtDNA copy number in DGUOK or POLG1 deficient myotubes, but not in TYMP deficiency and healthy controls. Supplementation with dAMP/dGMP leads to a significant and reproducible rescue of mtDNA depletion in DGUOK deficiency. POLG1 deficient myotubes also showed a mild, not significant increase in mtDNA copy number. MtDNA depletion did not result in deficient COX staining in DGUOK and POLG1-deficient myotubes. Treatment with ethidium bromide resulted in very severe depletion and absence of COX staining in all cell types, and no recovery was observed after supplementation with dAMP/dGMP. We show that supplementation with dAMP/dGMP increases mtDNA copy number significantly in DGUOK deficient myotubes and, leads to a mild, non-significant improvement of mtDNA depletion in POLG1 deficiency. No adverse effect on mtDNA copy number was observed on high-dose supplementation in vitro. Further studies are needed to determine possible therapeutic implications of dAMP/dGMP supplementation for DGUOK deficiency in vivo.
Collapse
Affiliation(s)
- Stefanie Bulst
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Rana grylio virus thymidine kinase gene: an early gene of iridovirus encoding for a cytoplasmic protein. Virus Genes 2009; 38:345-52. [DOI: 10.1007/s11262-008-0318-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 12/18/2008] [Indexed: 11/27/2022]
|
31
|
Leanza L, Ferraro P, Reichard P, Bianchi V. Metabolic interrelations within guanine deoxynucleotide pools for mitochondrial and nuclear DNA maintenance. J Biol Chem 2008; 283:16437-45. [PMID: 18417473 DOI: 10.1074/jbc.m801572200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial deoxynucleoside triphosphates are formed and regulated by a network of anabolic and catabolic enzymes present both in mitochondria and the cytosol. Genetic deficiencies for enzymes of the network cause mitochondrial DNA depletion and disease. We investigate by isotope flow experiments the interrelation between mitochondrial and cytosolic deoxynucleotide pools as well as the contributions of the individual enzymes of the network to their maintenance. To study specifically the synthesis of dGTP used for the synthesis of mitochondrial and nuclear DNA, we labeled hamster CHO cells or human fibroblasts with [(3)H]deoxyguanosine during growth and quiescence and after inhibition with aphidicolin or hydroxyurea. At time intervals we determined the labeling of deoxyguanosine nucleotides and DNA and the turnover of dGTP from its specific radioactivity in the separated mitochondrial and cytosolic pools. In both cycling and quiescent cells, the import of deoxynucleotides formed by cytosolic ribonucleotide reductase accounted for most of the synthesis of mitochondrial dGTP, with minor contributions by cytosolic deoxycytidine kinase and mitochondrial deoxyguanosine kinase. A dynamic isotopic equilibrium arose rapidly from the shuttling of deoxynucleotides between mitochondria and cytosol, incorporation of dGTP into DNA, and degradation of dGMP. Inhibition of DNA synthesis by aphidicolin marginally affected the equilibrium. Inhibition of DNA synthesis by blockage of ribonucleotide reduction with hydroxyurea instead disturbed the equilibrium and led to accumulation of labeled dGTP in the cytosol. The turnover of dGTP decreased, suggesting a close connection between ribonucleotide reduction and pool degradation.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35131 Padova, Italy
| | | | | | | |
Collapse
|
32
|
Sandrini MPB, Clausen AR, On SLW, Aarestrup FM, Munch-Petersen B, Piskur J. Nucleoside analogues are activated by bacterial deoxyribonucleoside kinases in a species-specific manner. J Antimicrob Chemother 2007; 60:510-20. [PMID: 17615154 DOI: 10.1093/jac/dkm240] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To investigate the bactericidal activity of antiviral and anticancer nucleoside analogues against a variety of pathogenic bacteria and characterize the activating enzymes, deoxyribonucleoside kinases (dNKs). METHODS Several FDA-approved nucleoside analogue drugs were screened for their potential bactericidal activity against several clinical bacterial isolates and type strains. We identified and subcloned the genes coding for putative deoxyribonucleoside kinases in Escherichia coli, Pasteurella multocida, Salmonella enterica, Yersinia enterocolitica, Bacillus cereus, Clostridium perfringens and Listeria monocytogenes. These genes were tested for their ability to increase the susceptibility of a dNK-deficient E. coli strain to various analogues. We overexpressed, purified and characterized the substrate specificity and kinetic properties of the recombinant enzymes from S. enterica and B. cereus. RESULTS The tested Gram-negative bacteria were susceptible to 3'-azido-3'-deoxythymidine (AZT) in the concentration range 0.032-31.6 microM except for a single E. coli isolate and two Pseudomonas aeruginosa isolates which were resistant to the tested AZT concentrations. Purified recombinant S. enterica thymidine kinase phosphorylated AZT efficiently with a Km of 73.3 microM and k(cat)/Km of 6.6 x 10(4) s(-1) M(-1) and is the activator of this drug in vivo. 2',2'-Difluoro-2'-deoxycytidine (gemcitabine) was a potent antibiotic against Gram-positive bacteria in the concentration range between 0.001 and 1.0 microM. The B. cereus deoxyadenosine kinase had a Km for gemcitabine of 33.5 microM and k(cat)/Km of 5.1 x 10(3) s(-1) M(-1) and activates gemcitabine in vivo. S. enterica and B. cereus are now amongst the first bacteria with a completely characterized set of dNK enzymes. CONCLUSIONS Bacterial dNKs efficiently activate nucleoside analogues in a species-specific manner. Therefore, nucleoside analogues have a potential to be employed as antibiotics in the fight against emerging multiresistant bacteria.
Collapse
|
33
|
Knecht W, Rozpedowska E, Le Breton C, Willer M, Gojkovic Z, Sandrini MPB, Joergensen T, Hasholt L, Munch-Petersen B, Piskur J. Drosophila deoxyribonucleoside kinase mutants with enhanced ability to phosphorylate purine analogs. Gene Ther 2007; 14:1278-86. [PMID: 17581598 DOI: 10.1038/sj.gt.3302982] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transduced deoxyribonucleoside kinases (dNK) can be used to kill recipient cells in combination with nucleoside prodrugs. The Drosophila melanogaster multisubstrate dNK (Dm-dNK) displays a superior turnover rate and has a great plasticity regarding its substrates. We used directed evolution to create Dm-dNK mutants with increased specificity for several nucleoside analogs (NAs) used as anticancer or antiviral drugs. Four mutants were characterized for the ability to sensitize Escherichia coli toward analogs and for their substrate specificity and kinetic parameters. The mutants had a reduced ability to phosphorylate pyrimidines, while the ability to phosphorylate purine analogs was relatively similar to the wild-type enzyme. We selected two mutants, for expression in the osteosarcoma 143B, the glioblastoma U-87M-G and the breast cancer MCF7 cell lines. The sensitivities of the transduced cell lines in the presence of the NAs fludarabine (F-AraA), cladribine (CdA), vidarabine and cytarabine were compared to the parental cell lines. The sensitivity of 143B cells was increased by 470-fold in the presence of CdA and of U-87M-G cells by 435-fold in the presence of F-AraA. We also show that a choice of the selection and screening system plays a crucial role when optimizing suicide genes by directed evolution.
Collapse
Affiliation(s)
- W Knecht
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dictyostelium discoideum Salvages Purine Deoxyribonucleosides by Highly Specific Bacterial-like Deoxyribonucleoside Kinases. J Mol Biol 2007; 369:653-64. [DOI: 10.1016/j.jmb.2007.03.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/23/2022]
|
35
|
Hu CM, Chang ZF. Mitotic control of dTTP pool: a necessity or coincidence? J Biomed Sci 2007; 14:491-7. [PMID: 17525869 DOI: 10.1007/s11373-007-9175-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022] Open
Abstract
The fidelity of DNA replication in eukaryotic cells requires a balanced dNTP supply in the S phase. During the cell cycle progression, the production of dTTP is highly regulated to coordinate with DNA replication. Intracellular thymidine is salvaged to dTTP by cytosolic thymidine kinase (TK1) and thymidylate kinase (TMPK), both of which expression increase in the G1/S transition and diminish in the mitotic phase via proteolytic destruction. Anaphase promoting complex/cyclosome (APC/C)-mediated ubiquitination targets TK1 and TMPK to undergo proteasomal degradation in mitosis, by which dTTP pool is minimized in the early G1 phase of the next cell cycle. In this review, we will focus on regulation of TK1 in the post-S phase and the importance of mitotic proteolysis in controlling dNTP balance, replication stress and genomic stability. Finally, we discuss how thymidine pool and oligomeric forms of TK1 can affect mitotic control of dTTP.
Collapse
Affiliation(s)
- Chun-Mei Hu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan
| | | |
Collapse
|
36
|
Andersen G, Andersen B, Dobritzsch D, Schnackerz KD, Piskur J. A gene duplication led to specialized γ-aminobutyrate and β-alanine aminotransferase in yeast. FEBS J 2007; 274:1804-17. [PMID: 17355287 DOI: 10.1111/j.1742-4658.2007.05729.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In humans, beta-alanine (BAL) and the neurotransmitter gamma-aminobutyrate (GABA) are transaminated by a single aminotransferase enzyme. Apparently, yeast originally also had a single enzyme, but the corresponding gene was duplicated in the Saccharomyces kluyveri lineage. SkUGA1 encodes a homologue of Saccharomyces cerevisiae GABA aminotransferase, and SkPYD4 encodes an enzyme involved in both BAL and GABA transamination. SkPYD4 and SkUGA1 as well as S. cerevisiae UGA1 and Schizosaccharomyces pombe UGA1 were subcloned, over-expressed and purified. One discontinuous and two continuous coupled assays were used to characterize the substrate specificity and kinetic parameters of the four enzymes. It was found that the cofactor pyridoxal 5'-phosphate is needed for enzymatic activity and alpha-ketoglutarate, and not pyruvate, as the amino group acceptor. SkPyd4p preferentially uses BAL as the amino group donor (V(max)/K(m)=0.78 U x mg(-1) x mm(-1)), but can also use GABA (V(max)/K(m)=0.42 U x mg(-1) x mm(-1)), while SkUga1p only uses GABA (V(max)/K(m)=4.01 U x mg(-1) x mm(-1)). SpUga1p and ScUga1p transaminate only GABA and not BAL. While mammals degrade BAL and GABA with only one enzyme, but in different tissues, S. kluyveri and related yeasts have two different genes/enzymes to apparently 'distinguish' between the two reactions in a single cell. It is likely that upon duplication approximately 200 million years ago, a specialized Uga1p evolved into a 'novel' transaminase enzyme with broader substrate specificity.
Collapse
Affiliation(s)
- Gorm Andersen
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
37
|
Gerth ML, Lutz S. Mutagenesis of non-conserved active site residues improves the activity and narrows the specificity of human thymidine kinase 2. Biochem Biophys Res Commun 2007; 354:802-7. [PMID: 17266931 PMCID: PMC1853344 DOI: 10.1016/j.bbrc.2007.01.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 01/16/2007] [Indexed: 11/26/2022]
Abstract
Human thymidine kinase 2 (TK2) is critical for the nucleotide salvage pathway and phosphorylation of nucleoside analog prodrugs in vivo; however, it remains poorly studied because of difficulties in expressing it heterologously. TK2 is strictly pyrimidine-specific, whereas its phylogenetic relative, the Drosophila melanogaster deoxyribonucleoside kinase (DmdNK), shows higher activity and broader specificity towards both pyrimidines and purines. These differences are counterintuitive, as only two of 29 active site residues differ in the two enzymes: F80 and M118 in DmdNK are L78 and L116 in TK2. In addition to reporting an optimized protocol for the expression and purification of TK2, we have used site-directed mutagenesis to introduce the DmdNK-like amino acids into TK2, and characterized the three resulting enzymes (L78F-TK2, L116M-TK2, and L78F/L116M-TK2). These mutations improve the K(M) for thymidine, increasing the catalytic activity of L78F/L116M-TK2 4.4-fold, yet leaving the activity for deoxycytidine or the purine nucleosides unchanged.
Collapse
Affiliation(s)
- Monica L Gerth
- Chemistry Department, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
38
|
Sandrini MPB, Clausen AR, Munch-Petersen B, Piskur J. Thymidine kinase diversity in bacteria. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1153-8. [PMID: 17065081 DOI: 10.1080/15257770600894469] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thymidine kinases (TKs) appear to be almost ubiquitous and are found in nearly all prokaryotes, eukaryotes, and several viruses. They are the key enzymes in thymidine salvage and activation of several anti-cancer and antiviral drugs. We show that bacterial TKs can be subdivided into 2 groups. The TKs from Gram-positive bacteria are more closely related to the eukaryotic TK1 enzymes than are TKs from Gram-negative bacteria.
Collapse
Affiliation(s)
- M P B Sandrini
- BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark
| | | | | | | |
Collapse
|
39
|
Clausen AR, Matakos A, Sandrini MPB, Piskur J. Thymidine kinases in archaea. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 25:1159-63. [PMID: 17065082 DOI: 10.1080/15257770600894485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea, while none was found in Nanoarchaeum. The identified TK1s have high identity to Gram-positive bacteria TK1s. The TK1s from archaea, Gram-positive bacteria and eukaryotes share the same common ancestor, while the TK1s from Gram-negative bacteria belong to a less-related subgroup. It seems that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell.
Collapse
Affiliation(s)
- A R Clausen
- Cell and Organism Biology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
40
|
Tjarks W, Tiwari R, Byun Y, Narayanasamy S, Barth RF. Carboranyl thymidine analogues for neutron capture therapy. Chem Commun (Camb) 2007:4978-91. [DOI: 10.1039/b707257k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Kosinska U, Carnrot C, Sandrini MPB, Clausen AR, Wang L, Piskur J, Eriksson S, Eklund H. Structural studies of thymidine kinases from Bacillus anthracis and Bacillus cereus provide insights into quaternary structure and conformational changes upon substrate binding. FEBS J 2006; 274:727-37. [PMID: 17288553 DOI: 10.1111/j.1742-4658.2006.05617.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thymidine kinase (TK) is the key enzyme in salvaging thymidine to produce thymidine monophosphate. Owing to its ability to phosphorylate nucleoside analogue prodrugs, TK has gained attention as a rate-limiting drug activator. We describe the structures of two bacterial TKs, one from the pathogen Bacillus anthracis in complex with the substrate dT, and the second from the food-poison-associated Bacillus cereus in complex with the feedback inhibitor dTTP. Interestingly, in contrast with previous structures of TK in complex with dTTP, in this study dTTP occupies the phosphate donor site and not the phosphate acceptor site. This results in several conformational changes compared with TK structures described previously. One of the differences is the way tetramers are formed. Unlike B. anthracis TK, B. cereus TK shows a loose tetramer. Moreover, the lasso-domain is in open conformation in B. cereus TK without any substrate in the active site, whereas in B. anthracis TK the loop conformation is closed and thymidine occupies the active site. Another conformational difference lies within a region of 20 residues that we refer to as phosphate-binding beta-hairpin. The phosphate-binding beta-hairpin seems to be a flexible region of the enzyme which becomes ordered upon formation of hydrogen bonds to the alpha-phosphate of the phosphate donor, dTTP. In addition to descriptions of the different conformations that TK may adopt during the course of reaction, the oligomeric state of the enzyme is investigated.
Collapse
Affiliation(s)
- Urszula Kosinska
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Centre, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hible G, Daalova P, Gilles AM, Cherfils J. Crystal structures of GMP kinase in complex with ganciclovir monophosphate and Ap5G. Biochimie 2006; 88:1157-64. [PMID: 16690197 DOI: 10.1016/j.biochi.2006.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 04/04/2006] [Indexed: 11/24/2022]
Abstract
Guanosine monophosphate kinases (GMPK), by catalyzing the phosphorylation of GMP or dGMP, are of dual potential in assisting the activation of anti-viral prodrugs or as candidates for antibiotic strategies. Human GMPK is an obligate step for the activation of acyclic guanosine analogs, such as ganciclovir, which necessitate efficient phosphorylation, while GMPK from bacterial pathogens, in which this enzyme is essential, are potential targets for therapeutic inhibition. Here we analyze these two aspects of GMPK activity with the crystal structures of Escherichia coli GMPK in complex with ganciclovir-monophosphate (GCV-MP) and with a bi-substrate inhibitor, Ap5G. GCV-MP binds as GMP to the GMP-binding domain, which is identical in E. coli and human GMPKs, but unlike the natural substrate fails to stabilize the closed, catalytically-competent conformation of this domain. Comparison with GMP- and GDP-bound GMPK structures identifies the 2'hydroxyl of the ribose moiety as responsible for hooking the GMP-binding domain onto the CORE domain. Absence of this hydroxyl in GCV-MP impairs the stabilization of the active conformation, and explains why GCV-MP is phosphorylated less efficiently than GMP, but as efficiently as dGMP. In contrast, Ap5G is an efficient inhibitor of GMPK. The crystal structure shows that Ap5G locks an incompletely closed conformation of the enzyme, in which the adenine moiety is located outside its expected binding site. Instead, it binds at a subunit interface that is unique to the bacterial enzyme, which is in equilibrium between a dimeric and an hexameric form in solution. This suggests that inhibitors could be designed to bind at this interface such as to prevent nucleotide-induced domain closure. Altogether, these complexes point to domain motions as critical components to be evaluated in therapeutic strategies targeting NMP kinases, with opposite effects depending on whether efficient phosphorylation or inhibition is being sought after.
Collapse
Affiliation(s)
- G Hible
- Laboratoire d'Enzymologie et Biochimie Structurales, bâtiment 34, CNRS, avenue de la Terrasse, 91198 Gif sur Yvette cedex, France
| | | | | | | |
Collapse
|
43
|
Håkansson P, Hofer A, Thelander L. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 2006; 281:7834-41. [PMID: 16436374 DOI: 10.1074/jbc.m512894200] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ribonucleotide reductase (RNR) provides the cell with a balanced supply of deoxyribonucleoside triphosphates (dNTP) for DNA synthesis. In budding yeast DNA damage leads to an up-regulation of RNR activity and an increase in dNTP pools, which are essential for survival. Mammalian cells contain three non-identical subunits of RNR; that is, one homodimeric large subunit, R1, carrying the catalytic site and two variants of the homodimeric small subunit, R2 and the p53-inducible p53R2, each containing a tyrosyl free radical essential for catalysis. S-phase-specific DNA replication is supported by an RNR consisting of the R1 and R2 subunits. In contrast, DNA damage induces expression of the R1 and the p53R2 subunits. We now show that neither logarithmically growing nor G(o)/G1-synchronized mammalian cells show any major increase in their dNTP pools after DNA damage. However, non-dividing fibroblasts expressing the p53R2 protein, but not the R2 protein, have reduced dNTP levels if exposed to the RNR-specific inhibitor hydroxyurea, strongly indicating that there is ribonucleotide reduction in resting cells. The slow, 4-fold increase in p53R2 protein expression after DNA damage results in a less than 2-fold increase in the dNTP pools in G(o)/G1 cells, where the pools are about 5% that of the size of the pools in S-phase cells. Our results emphasize the importance of the low constitutive levels of p53R2 in mammalian cells, which together with low levels of R1 protein may be essential for the supply of dNTPs for basal levels of DNA repair and mitochondrial DNA synthesis in G(o)/G1 cells.
Collapse
Affiliation(s)
- Pelle Håkansson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187-Umeå, Sweden.
| | | | | |
Collapse
|
44
|
Carnrot C, Vogel SR, Byun Y, Wang L, Tjarks W, Eriksson S, Phipps AJ. Evaluation of Bacillus anthracis thymidine kinase as a potential target for the development of antibacterial nucleoside analogs. Biol Chem 2006; 387:1575-81. [PMID: 17132103 DOI: 10.1515/bc.2006.196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis, which causes anthrax, has attracted attention because of its potential use as a biological weapon. The risk of multidrug resistance against B. anthracis increases the need for antibiotics with new molecular targets. Nucleoside analogs are well-known antiviral and anticancer prodrugs, and thymidine kinase catalyzes the rate-limiting step in the activation of pyrimidine nucleoside analogs used in chemotherapy. The thymidine kinase gene from B. anthracis Sterne strain (34F2) (Ba-TK) was cloned and expressed in E. coli, and the product was purified and characterized regarding its substrate specificity. Ba-TK phosphorylated pyrimidine nucleosides and all natural nucleoside triphosphates served as phosphate donors. Size exclusion chromatography indicated a dimeric form of Ba-TK, regardless of the presence of ATP. Thymidine was the most efficient substrate with a low K(m) value (0.6 microM) and a V(max) of 3.3 micromol dTMP mg(-1) min(-1), but deoxyuridine (K(m)=4.2 microM, V(max)=4.1 micromol dUMP mg(-1) min(-1)) was also a good substrate. Several pyrimidine analogs were also tested and analogs with 5-position modifications showed higher activities compared to analogs with 3'- and N3-position modifications. Deoxyuridine analogs were the most potent inhibitors of B. anthracis growth in vitro. These results may be used to guide future development of nucleoside analogs against B. anthracis.
Collapse
Affiliation(s)
- Cecilia Carnrot
- Department of Molecular Biosciences, The Swedish University of Agricultural Biosciences, Biomedical Center, P.O. Box 575, S-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
45
|
Welin M, Skovgaard T, Knecht W, Zhu C, Berenstein D, Munch-Petersen B, Piskur J, Eklund H. Structural basis for the changed substrate specificity of Drosophila melanogaster deoxyribonucleoside kinase mutant N64D. FEBS J 2005; 272:3733-42. [PMID: 16008571 DOI: 10.1111/j.1742-4658.2005.04803.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3'-modified nucleoside analogs like 3'-azidothymidine (AZT) was nearly unchanged. Here, we identify the mutation N64D as being responsible for these changes. Furthermore, we crystallized the mutant enzyme in the presence of one of its substrates, thymidine, and the feedback inhibitor, dTTP. The introduction of the charged Asp residue appears to destabilize the LID region (residues 167-176) of the enzyme by electrostatic repulsion and no hydrogen bond to the 3'-OH is made in the substrate complex by Glu172 of the LID region. This provides a binding space for more bulky 3'-substituents like the azido group in AZT but influences negatively the interactions between Dm-dNK, substrates and feedback inhibitors based on deoxyribose. The detailed picture of the structure-function relationship provides an improved background for future development of novel mutant suicide genes for Dm-dNK-mediated gene therapy.
Collapse
Affiliation(s)
- Martin Welin
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|