1
|
Saini S, Tuli HS, Saini RV, Saini AK, Sak K, Kaur D, Shahwan M, Chauhan R, Chauhan A. Flavonoid-Mediated Suppression of Tumor Angiogenesis: Roles of Ang-Tie/PI3K/AKT. PATHOPHYSIOLOGY 2024; 31:596-607. [PMID: 39449525 PMCID: PMC11503374 DOI: 10.3390/pathophysiology31040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Angiogenesis is a process involved in the formation of new blood capillaries from pre-existing ones. It is regulated by several anti-angiogenic molecules involved in tumor growth and metastasis. The endothelial angiopoietin Ang-Tie/PI3K/AKT growth receptor pathway is necessary for healthy vascular development. The activation of AKT is controlled by a multistep process involving phosphoinositide 3-kinase (PI3K). This article aims to provide an overview of the role and mechanism of the Ang-Tie/PI3K/AKT signaling pathways and the potential of flavonoids as anti-angiogenic drugs. Flavonoids have shown great potential in preventing angiogenesis by targeting signaling pathways and exhibit additional anti-cancer properties. Research studies have revealed that the currently available anti-angiogenic drugs do not meet the safety and efficacy standards for treating tumor growth. Phytocompounds have long been a valuable resource for the development of novel therapeutic drugs. This article explores recent findings explaining the role and mechanism of the Ang-Tie/PI3K/AKT signaling pathways, as well as the interaction of flavonoids with angiogenic signaling pathways as a novel therapeutic approach. Several investigations have shown that synergistic studies of natural phytocompounds have great potential to target these pathways to inhibit tumor growth. Therefore, flavonoid-based medications may offer a more effective synergistic strategy to treat cancer.
Collapse
Affiliation(s)
- Shallu Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | - Reena V. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | - Adesh K. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India; (R.V.S.); (A.K.S.)
| | | | - Damandeep Kaur
- University Centre for Research and Development, Chandigarh University, Mohali 140413, India;
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 4184, United Arab Emirates;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun 248002, India;
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Sector-125, Noida 201303, India;
| |
Collapse
|
2
|
Vasuki A, Christy HJ, Renugadevi K, Dammalli M. Structure-based pharmacophore modeling and DFT studies of Indian Ocean-derived red algal compounds as PI3Kα inhibitors. Mol Divers 2024; 28:2563-2581. [PMID: 37466805 DOI: 10.1007/s11030-023-10695-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Phosphoinositide kinases (PIKs) are a type of lipid kinase that acts as an upstream activator of oncogenic signaling. Presently accessible therapeutic compounds have downsides, such as toxicity and dubious efficacy, as well as lengthy treatment durations, which have bred resistance. Here we attempt to screen the Indian Ocean-derived red algal compounds to be used as a promising lead for PI3Kα inhibitor development. Experimental structure of the PI3K alpha Isoform-Specific Inhibitor alpelisib complex-based pharmacophore model was constructed and used as key to mark off the suitable lead compounds from the pool of marine-derived red algal compounds of Indian Ocean. Besides, the study encompasses pharmacophore scaffold screening as well as physicochemical and pharmacokinetic parameter assessment. We employed molecular docking and molecular dynamics simulation to assess the binding type and stability of 21 red algal derivatives. Twelve compounds demonstrated a sustained binding mode within the PI3Kα binding pocket with an optimal protein backbone root-mean-square deviation, also prompted hydrogen bonding throughout the simulations, and also implies that these MNPs have firmly mediated the interaction with prime hinge region residues in the PI3Kα ATP binding pocket. DFT studies revealed that proposed compounds had the greatest occupied molecular orbital electrophilicity index, basicity, and dipole moment, all of which attributed their stability as well as binding affinity at the PI3Kα active site. Our study's findings revealed that CMNPD31054, CMNPD4798, CMNPD27861, CMNPD4799, CMNPD27860, CMNPD9533, CMNPD3732, CMNPD4221, CMNPD31058, CMNPD31052, CMNPD29281, and CMNPD31055 can be used as lead compounds for PI3KΑ isoform inhibitors design.
Collapse
Affiliation(s)
- Archana Vasuki
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, India
| | - H Jemmy Christy
- Department of Bioinformatics, Sathyabama Institute of Science and Technology, Chennai, India.
| | - K Renugadevi
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | - Manjunath Dammalli
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur, Karnataka, India
| |
Collapse
|
3
|
Catalán-Salas V, Sagredo P, Melgarejo W, Donoso MV, Cárdenas JC, Zakarian A, Valdés D, Acuña-Castillo C, Huidobro-Toro JP. 17-β-estradiol and phytoestrogens elicit NO production and vasodilatation through PI3K, PKA and EGF receptors pathways, evidencing functional selectivity. Eur J Pharmacol 2024; 975:176636. [PMID: 38729417 DOI: 10.1016/j.ejphar.2024.176636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells express multiple receptors mediating estrogen responses; including the G protein-coupled estrogen receptor (GPER). Past studies on nitric oxide (NO) production elicited by estrogens raised the question whether 17-β-estradiol (E2) and natural phytoestrogens activate equivalent mechanisms. We hypothesized that E2 and phytoestrogens elicit NO production via coupling to distinct intracellular pathways signalling. To this aim, perfusion of E2 and phytoestrogens to the precontracted rat mesentery bed examined vasorelaxation, while fluorescence microscopy on primary endothelial cells cultures quantified single cell NO production determined following 4-amino-5-methylamino-2',7'-difluoroescein diacetate (DAF) incubation. Daidzein (DAI) and genistein (GEN) induced rapid vasodilatation associated to NO production. Multiple estrogen receptor activity was inferred based on the reduction of DAF-NO signals; G-36 (GPER antagonist) reduced 75 % of all estrogen responses, while fulvestrant (selective nuclear receptor antagonist) reduced significantly more the phytoestrogens responses than E2. The joint application of both antagonists abolished the E2 response but not the phytoestrogen-induced DAF-NO signals. Wortmannin or LY-294002 (PI3K inhibitors), reduced by 90% the E2-evoked signal while altering significantly less the DAI-induced response. In contrast, H-89 (PKA inhibitor), elicited a 23% reduction of the E2-induced signal while blocking 80% of the DAI-induced response. Desmethylxestospongin-B (IP3 receptor antagonist), decreased to equal extent the E2 or the DAI-induced signal. Epidermal growth factor (EGF) induced NO production, cell treatment with AG-1478, an EGF receptor kinase inhibitor reduced 90% DAI-induced response while only 53% the E2-induced signals; highlighting GPER induced EGF receptor trans-modulation. Receptor functional selectivity may explain distinct signalling pathways mediated by E2 and phytoestrogens.
Collapse
Affiliation(s)
- Vicente Catalán-Salas
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Pablo Sagredo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Williams Melgarejo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - M Verónica Donoso
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - J Cesar Cárdenas
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, 8580745, Chile; Buck Institute for Research on Aging, Novato, CA, 94945, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Daniel Valdés
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Claudio Acuña-Castillo
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - J Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile; Unidad de Nanoseguridad, Centro de Nanociencia y Nanotecnología, CEDNNA, Santiago, Chile.
| |
Collapse
|
4
|
Lobo V, Rocha A, Castro TG, Carvalho MA. Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms. Polymers (Basel) 2023; 15:polym15071703. [PMID: 37050317 PMCID: PMC10096987 DOI: 10.3390/polym15071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling cascades in a wide variety of cancers. In the last 15 years, there has been an increase in the search for selective inhibitors of the four class I isoforms of PI3K, as they demonstrate better specificity and reduced toxicity in comparison to existing inhibitors. A ligand-based and target-based rational drug design strategy was employed to build a virtual library of 105 new compounds. Through this strategy, the four isoforms were compared regarding their activity pocket availability, amino acid sequences, and prone interactions. Additionally, a known active scaffold was used as a molecular base to design new derivatives. The virtual screening of the resultant library toward the four isoforms points to the obtention of 19 selective inhibitors for the PI3Kα and PI3Kγ targets. Three selective ligands, one for α-isoform and two for γ-isoform, present a ∆ (∆Gbinding) equal or greater than 1.5 Kcal/mol and were identified as the most promising candidates. A principal component analysis was used to establish correlations between the affinity data and some of the physicochemical and structural properties of the ligands. The binding modes and interactions established by the selective ligands in the active centre of the α and γ isoforms of PI3K were also investigated. After modelling studies, a synthetic approach to generate selective ligands was developed and applied in synthesising a set of derivatives that were obtained in good to excellent yield.
Collapse
|
5
|
Qin J, Sun X, Ma Y, Cheng Y, Ma Q, Jing W, Qu S, Liu L. Design, synthesis and biological evaluation of novel 1,3,4,9-tetrahydropyrano[3,4-b]indoles as potential treatment of triple negative breast cancer by suppressing PI3K/AKT/mTOR pathway. Bioorg Med Chem 2022; 55:116594. [PMID: 34990979 DOI: 10.1016/j.bmc.2021.116594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023]
Abstract
Triple-negative breast cancer (TNBC) represents a subset of breast cancer characterized by high aggressiveness and poor prognosis. Currently, there is no curative therapeutic regimen for TNBC patients. In this study, molecular hybridization strategy is adopted by combining benzopyran and indole pharmacophores together, and a library of structurally simple 1,3,4,9-tetrahydropyrano[3,4-b]indoles was rapidly constructed. The structure-activity relationship studies indicated that compound 23 exhibited the most potent effect against the MDA-MB-231 cells with IC50 value of 2.29 μM. Mechanistic studies revealed that compound 23 inhibited cell proliferation via arresting cell cycle at G0/G1 phase. It induced cell apoptosis by disruption of mitochondrial membrane potential (MMP), accumulation of reactive oxygen species (ROS), reduction of glutathione (GSH), elevation of intracellular calcium ion (Ca2+) and activation of caspase cascade. Furthermore, compound 23 significantly inhibited the regulators of PI3K/AKT/mTOR pathway in MDA-MB-231 cells, suggesting that PI3K/AKT/mTOR pathway was involved in the 23-mediated apoptosis. To our knowledge, this is the first example of the anti-cancer activity study of indole-fused pyrans through suppressing PI3K/AKT/mTOR pathway. Overall, the current study suggested that compound 23 would serve as a promising lead compound for TNBC treatment.
Collapse
Affiliation(s)
- Jing Qin
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xia Sun
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yingang Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yahong Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiushuang Ma
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Sifeng Qu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
6
|
Kim YS, Cheon MG, Boggu PR, Koh SY, Park GM, Kim G, Park SH, Park SL, Lee CW, Kim JW, Jung YH. Synthesis and biological evaluation of novel purinyl quinazolinone derivatives as PI3Kδ-specific inhibitors for the treatment of hematologic malignancies. Bioorg Med Chem 2021; 45:116312. [PMID: 34332211 DOI: 10.1016/j.bmc.2021.116312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) mediate intracellular signal transduction. Aberrant PI3K signaling is associated with oncogenesis and disease progression in solid tumors and hematologic malignancies. Idelalisib (1), a first-in-class PI3Kδ inhibitor for the treatment of hematologic malignancies, was developed, but its sales were limited by black box warnings due to unexpected adverse effects. Therefore, to overcome these adverse events, various quinazolinone derivatives were synthesized and evaluated in vitro based on their inhibitory activity against the PI3K enzyme and the viability of cell lines such as MOLT and SUDHL. Among them, 6f (IC50 = 0.39 nM) and 6m (IC50 = 0.09 nM) showed excellent enzyme activity, and 6m displayed an approximately four-fold higher selectivity for PI3Kγ/δ compared with Idelalisib (1). Furthermore, in vivo PK experiments with 6f and 6m revealed that 6f (AUClast = 81.04 h*ng/mL, Cmax = 18.34 ng/mL, Tmax = 0.5 h, t1/2 = 10.2 h in 1 mpk dose) had improved PK compared with 1. Finally, further experiments will be conducted with 6f selected as a candidate, and the potential for it to be developed as a treatment with good efficacy for hematologic malignancies will be determined.
Collapse
Affiliation(s)
- Yeon Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | | | - Pulla Reddy Boggu
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Su Youn Koh
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Gi Min Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Gahee Kim
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Seo Hyun Park
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Sung Lyea Park
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Chi Woo Lee
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea
| | - Jong Woo Kim
- Bioway, Inc., Chuncheon, Gangwon-do 24232, Republic of Korea.
| | - Young Hoon Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
7
|
Endicott SJ, Ziemba ZJ, Beckmann LJ, Boynton DN, Miller RA. Inhibition of class I PI3K enhances chaperone-mediated autophagy. J Cell Biol 2020; 219:211459. [PMID: 33048163 PMCID: PMC7557678 DOI: 10.1083/jcb.202001031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/14/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.
Collapse
Affiliation(s)
- S. Joseph Endicott
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - Zachary J. Ziemba
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Logan J. Beckmann
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Dennis N. Boynton
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Richard A. Miller
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI,University of Michigan Geriatrics Center, Ann Arbor, MI,Correspondence to Richard A. Miller:
| |
Collapse
|
8
|
Rieg AD, Suleiman S, Anker C, Verjans E, Rossaint R, Uhlig S, Martin C. PDGF-BB regulates the pulmonary vascular tone: impact of prostaglandins, calcium, MAPK- and PI3K/AKT/mTOR signalling and actin polymerisation in pulmonary veins of guinea pigs. Respir Res 2018; 19:120. [PMID: 29921306 PMCID: PMC6009037 DOI: 10.1186/s12931-018-0829-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background Platelet-derived growth factor (PDGF)-BB and its receptor PDGFR are highly expressed in pulmonary hypertension (PH) and mediate proliferation. Recently, we showed that PDGF-BB contracts pulmonary veins (PVs) and that this contraction is prevented by inhibition of PDGFR-β (imatinib/SU6668). Here, we studied PDGF-BB-induced contraction and downstream-signalling in isolated perfused lungs (IPL) and precision-cut lung slices (PCLS) of guinea pigs (GPs). Methods In IPLs, PDGF-BB was perfused after or without pre-treatment with imatinib (perfused/nebulised), the effects on the pulmonary arterial pressure (PPA), the left atrial pressure (PLA) and the capillary pressure (Pcap) were studied and the precapillary (Rpre) and postcapillary resistance (Rpost) were calculated. Perfusate samples were analysed (ELISA) to detect the PDGF-BB-induced release of prostaglandin metabolites (TXA2/PGI2). In PCLS, the contractile effect of PDGF-BB was evaluated in pulmonary arteries (PAs) and PVs. In PVs, PDGF-BB-induced contraction was studied after inhibition of PDGFR-α/β, L-Type Ca2+-channels, ROCK/PKC, prostaglandin receptors, MAP2K, p38-MAPK, PI3K-α/γ, AKT/PKB, actin polymerisation, adenyl cyclase and NO. Changes of the vascular tone were measured by videomicroscopy. In PVs, intracellular cAMP was measured by ELISA. Results In IPLs, PDGF-BB increased PPA, Pcap and Rpost. In contrast, PDGF-BB had no effect if lungs were pre-treated with imatinib (perfused/nebulised). In PCLS, PDGF-BB significantly contracted PVs/PAs which was blocked by the PDGFR-β antagonist SU6668. In PVs, inhibition of actin polymerisation and inhibition of L-Type Ca2+-channels reduced PDGF-BB-induced contraction, whereas inhibition of ROCK/PKC had no effect. Blocking of EP1/3- and TP-receptors or inhibition of MAP2K-, p38-MAPK-, PI3K-α/γ- and AKT/PKB-signalling prevented PDGF-BB-induced contraction, whereas inhibition of EP4 only slightly reduced it. Accordingly, PDGF-BB increased TXA2 in the perfusate, whereas PGI2 was increased in all groups after 120 min and inhibition of IP-receptors did not enhance PDGF-BB-induced contraction. Moreover, PDGF-BB increased cAMP in PVs and inhibition of adenyl cyclase enhanced PDGF-BB-induced contraction, whereas inhibition of NO-formation only slightly increased it. Conclusions PDGF-BB/PDGFR regulates the pulmonary vascular tone by the generation of prostaglandins, the increase of calcium, the activation of MAPK- or PI3K/AKT/mTOR signalling and actin remodelling. More insights in PDGF-BB downstream-signalling may contribute to develop new therapeutics for PH.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH-Aachen, Aachen, Germany.
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Carolin Anker
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Eva Verjans
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anaesthesiology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, Aachen, Germany
| |
Collapse
|
9
|
Wang C, Deng Y, Yue Y, Chen W, Zhang Y, Shi G, Wu Z. Glutamine Enhances the Hypoglycemic Effect of Insulin in L6 Cells via Phosphatidylinositol-3-Kinase (PI3K)/Protein Kinase B (AKT)/Glucose Transporter 4 (GLUT4) Signaling Pathway. Med Sci Monit 2018; 24:1241-1250. [PMID: 29491345 PMCID: PMC5842660 DOI: 10.12659/msm.909011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Diabetes mellitus (DM) is characterized by a decreased blood level of glutamine (Gln), which may contribute to the disturbance in the effect of insulin on skeletal muscle. Therefore, it is crucial to study how to improve the effect of insulin on skeletal muscle by increasing Gln. In the present study, we investigated the effect of Gln on the hypoglycemic action of insulin in skeletal muscle L6 cells at high glucose levels through the insulin signaling pathway and glycogen synthesis pathway. Material/Methods The L6 cells were cultured in and stimulated by Gln and insulin. The glutamine analogue, L-Gamma-Glutamyl-p-nitroanilide (GPNA), was used for verifying the effect of Gln. The expression of insulin signaling molecules, including phosphatidylinositol-3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), protein kinase B (AKT), protein kinase C zeta (PKCζ), and glucose transporter 4 (GLUT4), were detected by real-time PCR and Western blot analysis, GLUT4 translocation was observed by immunofluorescence staining, glycogen synthase kinase (GSK) was analyzed by Western blotting, and glucose uptake was measured by glucose oxidase method (GOD). Results The results demonstrated that Gln combined with insulin remarkably up-regulated PI3K and PDK1 and also increased AKT and PKCζ phosphorylation. The present study shows that Gln enhanced the impact of insulin on GLUT4 and its translocation. The results of glucose uptake and GSK phosphorylation further confirmed the hypoglycemic effect of Gln accompanied with insulin. The hypoglycemic effect of Gln was reversed by GPNA. Conclusions These findings suggest that Gln enhances the hypoglycemic role of insulin through the PI3K/AKT/GLUT4 signaling pathway and glycogen synthesis pathway.
Collapse
Affiliation(s)
- Caijuan Wang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yujiao Deng
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yenan Yue
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Wenting Chen
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Yu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Guifang Shi
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| | - Zhongming Wu
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China (mainland)
| |
Collapse
|
10
|
Cai T, Yang F. Phospholipid and Phospholipidomics in Health and Diseases. LIPIDOMICS IN HEALTH & DISEASE 2018. [DOI: 10.1007/978-981-13-0620-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Synthesis and Structure-Activity Relationships of 4-Morpholino-7,8-Dihydro-5H-Thiopyrano[4,3-d]pyrimidine Derivatives Bearing Pyrazoline Scaffold. Molecules 2017; 22:molecules22111870. [PMID: 29088090 PMCID: PMC6150310 DOI: 10.3390/molecules22111870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 11/17/2022] Open
Abstract
Phosphatidylinositol 3-kinase/Protein kinase B/Mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway is abnormally active in the growth and proliferation of cancer cells. The inhibition of PI3K kinase can effectively block the conduction of signaling pathways and is an ideal target for drug design. In this paper; two series of 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing pyrazoline moiety (7a-l; 8a-l) were synthesized; and their cytotoxicity in vitro were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method against four human cancer cell lines including A549; PC-3; MCF-7; and HepG2 cell lines. The activity of the most promising compound 8d against PI3Kα kinase was further evaluated. The results indicated that most of the target compounds showed moderate to excellent cytotoxicity and the most promising compound 8d showed excellent cytotoxicity against four cancer cell lines with half maximal inhibitory concentration (IC50) values of 6.02-10.27 μM. In addition; the compound 8d was found to have a moderate inhibitory activity in the PI3Kα enzyme assay. What's more; the compounds of which the substituents of benzene ring at the C-4 position are electron-withdrawing groups such as substituents (Cl; F; Br) have better activity than the compounds containing the electron donating groups (OCH₃; H). However; the exact action mechanism is not quite clear right now. Further study will be carried out to identify the exact target in near future.
Collapse
|
12
|
Ricciardi MR, Mirabilii S, Licchetta R, Piedimonte M, Tafuri A. Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Adv Biol Regul 2017; 65:36-58. [PMID: 28549531 DOI: 10.1016/j.jbior.2017.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Over the last few decades, there has been significant progress in the understanding of the pathogenetic mechanisms of the Acute Myeloid Leukemia (AML). However, despite important advances in elucidating molecular mechanisms, the treatment of AML has not improved significantly, remaining anchored at the standard chemotherapy regimen "3 + 7", with the prognosis of patients remaining severe, especially for the elderly and for those not eligible for transplant procedures. The biological and clinical heterogeneity of AML represents the major obstacle that hinders the improvement of prognosis and the identification of new effective therapeutic approaches. To date, abundant information has been collected on the genetic and molecular alterations of AML carrying prognostic significance. However, not enough is known on how AML progenitors regulate proliferation and survival by redundant and cross-talking signal transduction pathways (STP). Furthermore, it remains unclear how such complicated network affects prognosis and therapeutic treatment options, although many of these molecular determinants are potentially attractive for their druggable characteristics. In this review, some of the key STP frequently deregulated in AML, such as PI3k/Akt/mTOR pathway, GSK3 and components of Bcl-2 family of proteins, are summarized, highlighting in addition their interplay. Based on this information, we reviewed new targeted therapeutic approaches, focusing on the aberrant networks that sustain the AML blast proliferation, survival and drug resistance, aiming to improve disease treatment. Finally, we reported the approaches aimed at disrupting key signaling cross-talk overcoming resistances based on the combination of different targeting therapeutic strategies.
Collapse
Affiliation(s)
- Maria Rosaria Ricciardi
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Simone Mirabilii
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy.
| | - Roberto Licchetta
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Monica Piedimonte
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| | - Agostino Tafuri
- Hematology, "Sant'Andrea" Hospital-Sapienza, University of Rome, Department of Clinical and Molecular Medicine, Rome, Italy
| |
Collapse
|
13
|
Juss JK, House D, Amour A, Begg M, Herre J, Storisteanu DML, Hoenderdos K, Bradley G, Lennon M, Summers C, Hessel EM, Condliffe A, Chilvers ER. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition. Am J Respir Crit Care Med 2016; 194:961-973. [PMID: 27064380 PMCID: PMC5067816 DOI: 10.1164/rccm.201509-1818oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/29/2016] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease's complex pathophysiology, yet these cells have been little studied. OBJECTIVES To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. METHODS Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. MEASUREMENTS AND MAIN RESULTS Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. CONCLUSIONS Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase-dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells.
Collapse
Affiliation(s)
- Jatinder K. Juss
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - David House
- Refractory Respiratory Inflammation Discovery Performance Unit and
| | - Augustin Amour
- Refractory Respiratory Inflammation Discovery Performance Unit and
| | - Malcolm Begg
- Refractory Respiratory Inflammation Discovery Performance Unit and
| | - Jurgen Herre
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Kim Hoenderdos
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Glyn Bradley
- Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom; and
| | - Mark Lennon
- Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom; and
| | - Charlotte Summers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edith M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit and
| | - Alison Condliffe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Gonzalez-Lopez de Turiso F, Hao X, Shin Y, Bui M, Campuzano IDG, Cardozo M, Dunn MC, Duquette J, Fisher B, Foti RS, Henne K, He X, Hu YL, Kelly RC, Johnson MG, Lucas BS, McCarter J, McGee LR, Medina JC, Metz D, San Miguel T, Mohn D, Tran T, Vissinga C, Wannberg S, Whittington DA, Whoriskey J, Yu G, Zalameda L, Zhang X, Cushing TD. Discovery and in Vivo Evaluation of the Potent and Selective PI3Kδ Inhibitors 2-((1S)-1-((6-Amino-5-cyano-4-pyrimidinyl)amino)ethyl)-6-fluoro-N-methyl-3-(2-pyridinyl)-4-quinolinecarboxamide (AM-0687) and 2-((1S)-1-((6-Amino-5-cyano-4-pyrimidinyl)amino)ethyl)-5-fluoro-N-methyl-3-(2-pyridinyl)-4-quinolinecarboxamide (AM-1430). J Med Chem 2016; 59:7252-67. [PMID: 27411843 DOI: 10.1021/acs.jmedchem.6b00827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, 4, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 6a (AM-0687) and 7 (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of 6a and 7 in biochemical and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either 6a or 7 resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development.
Collapse
Affiliation(s)
- Felix Gonzalez-Lopez de Turiso
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiaolin Hao
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Youngsook Shin
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Minna Bui
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Iain D G Campuzano
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Mario Cardozo
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michelle C Dunn
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jason Duquette
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Benjamin Fisher
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Robert S Foti
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kirk Henne
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xiao He
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yi-Ling Hu
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ron C Kelly
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael G Johnson
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian S Lucas
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - John McCarter
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lawrence R McGee
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Julio C Medina
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Daniela Metz
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tisha San Miguel
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Deanna Mohn
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Thuy Tran
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Christine Vissinga
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Sharon Wannberg
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Douglas A Whittington
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - John Whoriskey
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gang Yu
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Leeanne Zalameda
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Xuxia Zhang
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Timothy D Cushing
- Department of Therapeutic Discovery, §Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 1120 Veterans Boulevard, South San Francisco, California 94080, United States.,Department of Therapeutic Discovery, #Department of Inflammation Research, ⊥Drug Product Technologies, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320, United States.,Department of Therapeutic Discovery, ¶Department of Pharmacokinetics and Drug Metabolism, Amgen Inc. , 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
15
|
Ibrahim MA, Abou-Seri SM, Hanna MM, Abdalla MM, El Sayed NA. Design, synthesis and biological evaluation of novel condensed pyrrolo[1,2-c]pyrimidines featuring morpholine moiety as PI3Kα inhibitors. Eur J Med Chem 2015; 99:1-13. [DOI: 10.1016/j.ejmech.2015.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/30/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022]
|
16
|
Oh T, Ivan ME, Sun MZ, Safaee M, Fakurnejad S, Clark AJ, Sayegh ET, Bloch O, Parsa AT. PI3K pathway inhibitors: potential prospects as adjuncts to vaccine immunotherapy for glioblastoma. Immunotherapy 2015; 6:737-53. [PMID: 25186604 DOI: 10.2217/imt.14.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Constitutive activation of the PI3K pathway has been implicated in glioblastoma (GBM) pathogenesis. Pharmacologic inhibition can both inhibit tumor survival and downregulate expression of programmed death ligand-1, a protein highly expressed on glioma cells that strongly contributes to cancer immunosuppression. In that manner, PI3K pathway inhibitors can help optimize GBM vaccine immunotherapy. In this review, we describe and assess the potential integration of various classes of PI3K pathway inhibitors into GBM immunotherapy. While early-generation inhibitors have a wide range of immunosuppressive effects that could negate their antitumor potency, further work should better characterize how contemporary inhibitors affect the immune response. This will help determine if these inhibitors are truly a therapeutic avenue with a strong future in GBM immunotherapy.
Collapse
Affiliation(s)
- Taemin Oh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Feinberg School of Medicine, 676 N St Clair Street, Suite 2210, Chicago, IL 60611-2911, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
The hepatitis B virus (HBV) HBx protein activates AKT to simultaneously regulate HBV replication and hepatocyte survival. J Virol 2014; 89:999-1012. [PMID: 25355887 DOI: 10.1128/jvi.02440-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an essential role of HBx during HBV replication, HBx activation of AKT inhibits hepatocyte apoptosis, and this may facilitate persistent, noncytopathic HBV replication. AKT regulates HBV replication by reducing the activity of the transcription factor hepatocyte nuclear factor 4α (HNF4α). HBx activation of AKT may contribute to the development of liver cancer by facilitating persistent HBV replication, augmenting the dedifferentiation of hepatocytes by inhibiting HNF4α functions, and activating AKT-regulated oncogenic pathways. AKT-regulated factors may provide therapeutic targets for inhibiting HBV replication and the development of HBV-associated liver cancer.
Collapse
|
18
|
Njoroge M, Njuguna NM, Mutai P, Ongarora DSB, Smith PW, Chibale K. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human African trypanosomiasis and schistosomiasis. Chem Rev 2014; 114:11138-63. [PMID: 25014712 DOI: 10.1021/cr500098f] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Paul W Smith
- Novartis Institute for Tropical Diseases , Singapore 138670, Singapore
| | | |
Collapse
|
19
|
Storm MP, Kumpfmueller B, Bone HK, Buchholz M, Sanchez Ripoll Y, Chaudhuri JB, Niwa H, Tosh D, Welham MJ. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS One 2014; 9:e89821. [PMID: 24594919 PMCID: PMC3940611 DOI: 10.1371/journal.pone.0089821] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022] Open
Abstract
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.
Collapse
Affiliation(s)
- Michael P. Storm
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Benjamin Kumpfmueller
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Heather K. Bone
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Michael Buchholz
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Yolanda Sanchez Ripoll
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Julian B. Chaudhuri
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Hitoshi Niwa
- RIKEN Centre for Developmental Biology, Kobe, Hyogo, Japan
| | - David Tosh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Melanie J. Welham
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Gurzeler U, Rabachini T, Dahinden CA, Salmanidis M, Brumatti G, Ekert PG, Echeverry N, Bachmann D, Simon HU, Kaufmann T. In vitro differentiation of near-unlimited numbers of functional mouse basophils using conditional Hoxb8. Allergy 2013; 68:604-13. [PMID: 23590216 DOI: 10.1111/all.12140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Basophils constitute a rare leukocyte population known for their effector functions in inflammation and allergy, as well as more recently described immunoregulatory roles. Besides their low frequency, functional analysis of basophils is hindered by a short life span, inefficient ex vivo differentiation protocols, and lack of suitable cell models. A method to produce large quantities of basophils in vitro would facilitate basophil research and constitute a sought-after tool for diagnostic and drug testing purposes. METHODS A method is described to massively expand bone marrow-derived basophils in vitro. Myeloid progenitors are conditionally immortalized using Hoxb8 in the presence of interleukin-3 (IL-3) and outgrowing cell lines selected for their potential to differentiate into basophils upon shutdown of Hoxb8 expression. RESULTS IL-3-dependent, conditional Hoxb8-immortalized progenitor cell lines can be expanded and maintained in culture for prolonged periods. Upon shutdown of Hoxb8 expression, near-unlimited numbers of mature functional basophils can be differentiated in vitro within six days. The cells are end-differentiated and short-lived and express basophil-specific surface markers and proteases. Upon IgE- as well as C5a-mediated activation, differentiated basophils release granule enzymes and histamine and secrete Th2-type cytokines (IL-4, IL-13) and leukotriene C4. IL-3-deprivation induces apoptosis correlating with upregulation of the BH3-only proteins BCL-2-interacting mediator of cell death (BIM) and p53 upregulated modulator of apoptosis (PUMA) and downregulation of proviral integration site for Moloney murine leukemia virus 1 kinase (PIM-1). CONCLUSION A novel method is presented to generate quantitative amounts of mouse basophils in vitro, which moreover allows genetic manipulation of conditionally immortalized progenitors. This approach may represent a useful alternative method to isolating primary basophils.
Collapse
Affiliation(s)
- U. Gurzeler
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - T. Rabachini
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - C. A. Dahinden
- Institute of Immunology; University of Bern; Bern; Switzerland
| | - M. Salmanidis
- The Walter and Eliza Hall Institute of Medical Research; Melbourne; Australia
| | - G. Brumatti
- The Walter and Eliza Hall Institute of Medical Research; Melbourne; Australia
| | - P. G. Ekert
- The Walter and Eliza Hall Institute of Medical Research; Melbourne; Australia
| | - N. Echeverry
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - D. Bachmann
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - H. U. Simon
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| | - T. Kaufmann
- Institute of Pharmacology; University of Bern; Bern; Switzerland
| |
Collapse
|
21
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2013; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
22
|
Mascariñas E, Eibl G, Grippo PJ. Evaluating dietary compounds in pancreatic cancer modeling systems. Methods Mol Biol 2013; 980:225-248. [PMID: 23359157 DOI: 10.1007/978-1-62703-287-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the establishment of outstanding rodent models of pancreatic neoplasia and cancer, there are now systems available for evaluating the role diet, dietary supplements, and/or therapeutic compounds (which can be delivered in the diet) play in disease suppression. Several outstanding reports, which demonstrate clear inhibition or regression of pancreatic tumors following dietary manipulations, represent a noticeable advancement in the field by allowing for the contribution of diet and natural and synthetic compounds to be identified. The real goal is to provide support for translational components that will provide true chemoprevention to individuals at higher risk for developing pancreatic cancer. In addition, administration of molecules with proven efficacy in an in vivo system will screen likely candidates for future clinical trials. Despite this growing enthusiasm, it is important to note that the mere one-to-one translation of findings in rodent models to clinical outcomes is highly unlikely. Thus, careful consideration must be made to correlate findings in rodents with those in human cells with full disclosure of the subtle but often critical differences between animal models and humans. Additional concern should also be placed on the approaches employed to establish dietary components with real potential in the clinic. This chapter is focused on procedures that provide a systematic design for evaluating dietary compounds in cell culture and animal models to highlight which ones might have the greatest potential in people. The general format for this text is a stepwise use of fairly well-known approaches covered briefly but annotated with certain considerations for dietary studies. These methods include administration of a compound or a diet, measuring the cellular and molecular effects (histology, proliferation, apoptosis, RNA and protein expression, and signaling pathways), measuring the level of certain metabolites, and assessing the stability of active compounds. Though this chapter is divided into in vitro and in vivo sections, it is not an implication as to the order of experiments but an endorsement for utilizing human cells to complement work in a rodent modeling system. The notion that cell culture can provide the basis for further in vivo work is an attractive starting point, though the lack of a response in a single cell type should not necessarily prevent diet studies in rodents. The advantage of cell culture over animal models is the human origin of these cells and the ease and directness of manipulating a single cell type (particularly when exploring mechanism of action in that cell). Of course, the full effect of a diet, diet supplement, or therapeutic can only be wholly appreciated in an intact living organism with similar anatomical and physiological relevance. Thus, both approaches are considered in this chapter as each can provide unique strengths to determining the effectiveness of various dietary compounds or supplements on pancreatic neoplasia and cancer.
Collapse
Affiliation(s)
- Emman Mascariñas
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
23
|
Al-Dosari MS, Ghorab MM, Al-Said MS, Nissan YM. Discovering some novel 7-chloroquinolines carrying a biologically active benzenesulfonamide moiety as a new class of anticancer agents. Chem Pharm Bull (Tokyo) 2013; 61:50-8. [PMID: 23302586 DOI: 10.1248/cpb.c12-00812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Based on the reported anticancer activity of quinolines, a new series of 7-chloroquinoline derivatives bearing the biologically active benzenesulfonamide moiety 2-17 and 19-25 were synthesized starting with 4,7-dichloroquinolne 1. Compound 17 was the most active compound with IC(50) value 64.41, 75.05 and 30.71 µM compared with Doxorubicin as reference drug with IC(50) values 82.53, 88.32 and 73.72 µM on breast cancer cells, skin cancer cells and neuroblastoma, respectively. All the synthesized compounds were evaluated for their in vitro anticancer activity on breast cancer cells, skin cancer cells and neuroblastoma cells. Most of the synthesized compounds showed moderate activity. In order to suggest the mechanism of action for their cytotoxic activity, molecular docking for all synthesized compounds was done on the active site of phosphoinositide kinase (PI3K) and good results were obtained.
Collapse
Affiliation(s)
- Mohammed Salem Al-Dosari
- Pharmacognosy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
24
|
Xin M, Gao Y, Xiang H, Chen D, He Y, You Q. A General and Facile Synthesis of Novel Polysubstituted Quinazolin-4(3 H)-ones. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang; Nanjing; 210009; People's Republic of China
| | - Ying Gao
- Department of Medicinal Chemistry, School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang; Nanjing; 210009; People's Republic of China
| | - Hua Xiang
- Department of Medicinal Chemistry, School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang; Nanjing; 210009; People's Republic of China
| | - Dong Chen
- Department of Medicinal Chemistry, School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang; Nanjing; 210009; People's Republic of China
| | - Yi He
- Department of Medicinal Chemistry, School of Pharmacy; China Pharmaceutical University; 24 Tongjiaxiang; Nanjing; 210009; People's Republic of China
| | | |
Collapse
|
25
|
Thappali SRS, Varanasi KVS, Veeraraghavan S, Vakkalanka SKVS, Mukkanti K. Simultaneous quantitation of IC87114, roflumilast and its active metabolite roflumilast N-oxide in plasma by LC-MS/MS: application for a pharmacokinetic study. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1612-1619. [PMID: 23280750 DOI: 10.1002/jms.3103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
A sensitive and reliable high-performance liquid chromatography-mass spectrometry (LC-MS/MS) was developed and validated for simultaneous quantification IC87114, roflumilast (RFM), and its active metabolite roflumilast N-oxide (RFN) using tolbutamide as an internal standard. The analytes were extracted by using liquid-liquid extraction and separated on a reverse phase C(18) column (50 mm × 3 mm i.d., 4.6 µ) using methanol: 2 mM ammonium acetate buffer, pH 4.0 as mobile phase at a flow rate 1 mL/min in gradient mode. Selective reaction monitoring was performed using the transitions m/z 398.3 > 145.9, 403.1 >186.9, 419.1 > 187.0 and 271.1 > 155.0 to quantify quantification IC87114, RFM, RFN and tolbutamide, respectively. The method was validated over the concentration range of 0.1-60 ng.mL(-1) for RFM and RFN and 6 to 2980 ng.mL(-1) for IC87114. Intra- and inter-day accuracy and precision of validated method were within the acceptable limits of <15% at all concentrations. Coefficients of correlation (r(2) ) for the calibration curves were >0.99 for all analytes. The quantitation method was successfully applied for simultaneous estimation of IC87114, RFM and RFN in a pharmacokinetic drug-drug interaction study in Wistar rats.
Collapse
Affiliation(s)
- Satheeshmanikandan R S Thappali
- Drug Metabolism and Pharmacokinetics Division, Incozen Therapeutics Private Limited, 450, Alexandria Knowledge Park, Shamirpet Hyderabad, 500078, Andhra Pradesh, India.
| | | | | | | | | |
Collapse
|
26
|
Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012. [PMID: 23030059 DOI: 10.1111/j.1365-2184.2012.00845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.
Collapse
Affiliation(s)
- L Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2012; 45:487-98. [PMID: 23030059 DOI: 10.1111/j.1365-2184.2012.00845.x] [Citation(s) in RCA: 1004] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 07/09/2012] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD), referring to apoptosis, autophagy and programmed necrosis, is proposed to be death of a cell in any pathological format, when mediated by an intracellular program. These three forms of PCD may jointly decide the fate of cells of malignant neoplasms; apoptosis and programmed necrosis invariably contribute to cell death, whereas autophagy can play either pro-survival or pro-death roles. Recent bulk of accumulating evidence has contributed to a wealth of knowledge facilitating better understanding of cancer initiation and progression with the three distinctive types of cell death. To be able to decipher PCD signalling pathways may aid development of new targeted anti-cancer therapeutic strategies. Thus in this review, we present a brief outline of apoptosis, autophagy and programmed necrosis pathways and apoptosis-related microRNA regulation, in cancer. Taken together, understanding PCD and the complex interplay between apoptosis, autophagy and programmed necrosis may ultimately allow scientists and clinicians to harness the three types of PCD for discovery of further novel drug targets, in the future cancer treatment.
Collapse
Affiliation(s)
- L Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Synthesis and structure–activity relationships of dual PI3K/mTOR inhibitors based on a 4-amino-6-methyl-1,3,5-triazine sulfonamide scaffold. Bioorg Med Chem Lett 2012; 22:5714-20. [DOI: 10.1016/j.bmcl.2012.06.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
|
29
|
Gonzalez-Lopez de Turiso F, Shin Y, Brown M, Cardozo M, Chen Y, Fong D, Hao X, He X, Henne K, Hu YL, Johnson MG, Kohn T, Lohman J, McBride HJ, McGee LR, Medina JC, Metz D, Miner K, Mohn D, Pattaropong V, Seganish J, Simard JL, Wannberg S, Whittington DA, Yu G, Cushing TD. Discovery and in Vivo Evaluation of Dual PI3Kβ/δ Inhibitors. J Med Chem 2012; 55:7667-85. [DOI: 10.1021/jm300679u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | - David Fong
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | | | | | | | - Yi-Ling Hu
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | | | | | | | - Helen J. McBride
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | | | | | - Daniela Metz
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Kent Miner
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Deanna Mohn
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | | | | | | | - Sharon Wannberg
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | - Douglas A. Whittington
- Department of Therapeutic Discovery, Amgen Inc., 360 Binney Street,
Cambridge, Massachusetts 02142, United States
| | - Gang Yu
- Department
of Inflammation Research, Amgen Inc., One Amgen Center Drive, Thousand
Oaks, California 91320, United States
| | | |
Collapse
|
30
|
A hypothetical model of cargo-selective rab recruitment during organelle maturation. Cell Biochem Biophys 2012; 63:59-71. [PMID: 22328341 DOI: 10.1007/s12013-012-9341-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rabs constitute a group of small GTPases that confer directionality to intracellular vesicle transport by promoting on the membrane of transport vesicles in the formation of specific protein complexes allowing for efficient fusion with a selected set of target organelles. The molecular mechanism controlling recruitment of the correct Rab at the right time is not fully understood. We propose a model according to which the residence time of a given Rab on the membrane of an organelle is determined by its transient trapping into a Rab effector complex (REC) composed of cargo receptor, SNAREs and further effectors. The stability of REC is controlled by the conformational state of the receptor which may change due to binding and release of cargo or changes in the luminal ion milieu. We use a conceptual mathematical model to calculate temporal changes in the Rab decoration of an organelle brought about by exchange with a cytosolic pool of Rabs or alternatively by budding and uptake of Rab-carrying vesicles. Considering the time-dependent drop in pH as one crucial factor for the conformational change of endocytic cargo receptors, our model provides a good quantitative description of the switch from Rab5 to Rab7 during the early-to-late endosome transition and correctly explains the arrest of this transition at insufficient luminal acidification. Model simulations suggest that a switch from one Rab to another may be continuous or abrupt. We discuss mechanisms, e.g. specific signalling pathways, which may restore an arrested organelle maturation.
Collapse
|
31
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|
32
|
Gnocchi D, Leoni S, Incerpi S, Bruscalupi G. 3,5,3'-triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes. Steroids 2012; 77:589-95. [PMID: 22366194 DOI: 10.1016/j.steroids.2012.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/18/2022]
Abstract
Thyroid hormones (THs) have a wide variety of essential roles in vertebrates, ranging from the regulation of key metabolic processes to cell proliferation and apoptosis. The classical mechanism of action of THs is genomic; 3,5,3'-triiodothyronine (T3) binds to specific nuclear receptors (TRs) and modifies the expression of specific genes. Recently, a new category of mechanisms, termed nongenomic, has been discovered for T3. These mechanisms include, among others, the rapid activation of signal transduction pathways, such as PI3K/Akt and MAPK, which eventually lead to cell proliferation. These effects are mediated in some cell types by a plasma membrane receptor, identified as integrin αvβ3, and in other cell types by cytoplasmic TRβ1. The aim of this work was to analyze the effect of T3 on the cell growth of chick embryo hepatocytes at two different stages of development, 14 and 19 days, and to determine the activation of the signal transduction pathways, focusing on the potential involvement of a plasma membrane receptor and the possible participation of PI3K/Akt and reactive oxygen species (ROS). Our results clearly show that T3 stimulates cell proliferation at both stages of development through the activation of the PI3K/Akt pathway and the production of small amounts of ROS, which operate as effective second messengers. Moreover, we prove that these effects are not initiated at the plasma membrane receptor for T3.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.
| | | | | | | |
Collapse
|
33
|
Blunt MD, Ward SG. Targeting PI3K isoforms and SHIP in the immune system: new therapeutics for inflammation and leukemia. Curr Opin Pharmacol 2012; 12:444-51. [PMID: 22483603 DOI: 10.1016/j.coph.2012.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 10/28/2022]
Abstract
PI3K is critical for the normal function of the immune system, however dysregulated PI3K mediated signaling has been linked to the development of many immune mediated pathologies. This review describes current progress in the development of isoform-specific PI3K inhibitors that hold promise for the treatment of hematopoietic malignancies as well as for inflammatory and autoimmune diseases. A SH2-domain containing inositol-5-phosphatase (SHIP) is a regulator of PI3K signaling, and is also discussed as a potential drug target for immunomodulation and the treatment of leukemia. Recent progress has been made in the development of small molecule compounds that potently and selectively modulate SHIP activity and hence provide a novel mechanism to alter PI3K mediated signaling.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | |
Collapse
|
34
|
Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 2012; 8:200-12. [PMID: 22252008 DOI: 10.4161/auto.8.2.18554] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline drug used for the treatment of diverse diseases. It inhibits lysosomal acidification and therefore prevents autophagy by blocking autophagosome fusion and degradation. In cancer treatment, CQ is often used in combination with chemotherapeutic drugs and radiation because it has been shown to enhance the efficacy of tumor cell killing. Since CQ and its derivatives are the only inhibitors of autophagy that are available for use in the clinic, multiple ongoing clinical trials are currently using CQ or hydroxychloroquine (HCQ) for this purpose, either alone, or in combination with other anticancer drugs. Here we show that in the mouse breast cancer cell lines, 67NR and 4T1, autophagy is induced by the DNA damaging agent cisplatin or by drugs that selectively target autophagy regulation, the PtdIns3K inhibitor LY294002, and the mTOR inhibitor rapamycin. In combination with these drugs, CQ sensitized to these treatments, though this effect was more evident with LY294002 and rapamycin treatment. Surprisingly, however, in these experiments CQ sensitization occurred independent of autophagy inhibition, since sensitization was not mimicked by Atg12, Beclin 1 knockdown or bafilomycin treatment, and occurred even in the absence of Atg12. We therefore propose that although CQ might be helpful in combination with cancer therapeutic drugs, its sensitizing effects can occur independently of autophagy inhibition. Consequently, this possibility should be considered in the ongoing clinical trials where CQ or HCQ are used in the treatment of cancer, and caution is warranted when CQ treatment is used in cytotoxic assays in autophagy research.
Collapse
Affiliation(s)
- Paola Maycotte
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | |
Collapse
|
35
|
Mallawaaratchy DM, Mactier S, Kaufman KL, Blomfield K, Christopherson RI. The phosphoinositide 3-kinase inhibitor LY294002, decreases aminoacyl-tRNA synthetases, chaperones and glycolytic enzymes in human HT-29 colorectal cancer cells. J Proteomics 2011; 75:1590-9. [PMID: 22172953 DOI: 10.1016/j.jprot.2011.11.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/03/2011] [Accepted: 11/25/2011] [Indexed: 01/10/2023]
Abstract
The proposed anticancer drug LY294002, inhibits phosphoinositide-3 kinase (PI3K) that initiates a signalling pathway often activated in colorectal cancer (CRC). The effects of LY294002 (10 μM, 48 h) on the cytosolic, mitochondrial and nuclear proteomes of human HT-29 CRC cells have been determined using iTRAQ (isobaric tag for relative and absolute quantitation) and tandem mass spectrometry (MS/MS). Analysis of cells treated with LY294002 identified 26 differentially abundant proteins that indicate several mechanisms of action. The majority of protein changes were directly or indirectly associated with Myc and TNF-α, previously implicated in CRC progression. LY294002 decreased the levels of 6 aminoacyl-tRNA synthetases (average 0.39-fold) required for protein translation, 5 glycolytic enzymes (average 0.37-fold) required for ATP synthesis, and 3 chaperones required for protein folding. There was a 3.2-fold increase in lysozyme C involved in protein-glycoside hydrolysis. LY294002 increased cytosolic p53 with a concomitant decrease in nuclear p53, suggesting transfer of p53 to the cytosol where apoptosis might be initiated via the intrinsic mitochondrial pathway. Protein changes described here suggest that the anti-angiogenic effects of LY294002 may be related to p53; the mutational status of p53 in CRC may be an important determinant of the efficacy of PI3K inhibitors for treatment.
Collapse
|
36
|
D'Abramo M, Rabal O, Oyarzabal J, Gervasio FL. Conformational Selection versus Induced Fit in Kinases: The Case of PI3K-γ. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
D'Abramo M, Rabal O, Oyarzabal J, Gervasio FL. Conformational Selection versus Induced Fit in Kinases: The Case of PI3K-γ. Angew Chem Int Ed Engl 2011; 51:642-6. [DOI: 10.1002/anie.201103264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/19/2011] [Indexed: 11/09/2022]
|
38
|
Son SM, Jung ES, Shin HJ, Byun J, Mook-Jung I. Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol Aging 2011; 33:1006.e11-23. [PMID: 22048125 DOI: 10.1016/j.neurobiolaging.2011.09.039] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 10/16/2022]
Abstract
Pathological autophagic vacuoles (AVs) accumulate in the brains of Alzheimer's disease (AD) patients, but the mechanisms by which they are induced are unknown. In this study, we found that the formation of AVs was mediated by activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the brains of APP/PS1 double transgenic mice, amyloid-beta peptide (Aβ) pathology-bearing model mouse. Injection of sunitinib malate, AMPK inhibitor, to the mice lowered AV formation in their brains. Consistent with our in vivo observations, treatment of SH-SY5Y cells with Aβ enhanced the induction of autophagosomes, which was mediated by Ca(2+)/calmodulin-dependent protein kinase kinase-beta (CaMKKβ)-AMPK signaling, as shown using various inhibitors and small interfering RNA (siRNA). CaMKKβ is a calcium-activated kinase, and the depletion of intracellular calcium by BAPTA-AM, a Ca(2+) chelator, also curtailed Aβ-induced autophagy. Finally, the inhibition of receptor for advanced glycation end products (RAGE) attenuated autophagsome formation and AMPK signaling. Conversely, RAGE overexpression amplified the induction of autophagy. These results implicate the regulation of the Aβ-induced formation of AVs by the RAGE-calcium-CaMKKβ-AMPK pathway and suggest that modulation of autophagosome formation and the interaction between Aβ and RAGE are beneficial in the treatment and prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Sung Min Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
39
|
Structure-based design of thienobenzoxepin inhibitors of PI3-kinase. Bioorg Med Chem Lett 2011; 21:4054-8. [PMID: 21636270 DOI: 10.1016/j.bmcl.2011.04.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/23/2022]
|
40
|
Kerr WG, Colucci F. Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 2011; 3:249-57. [PMID: 21422750 DOI: 10.1159/000323920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/07/2010] [Indexed: 12/30/2022] Open
Abstract
A family of phosphoinositide-3 kinase (PI3K) isoenzymes catalyzes the production of second messengers that recruit critical regulators of cell growth, survival, proliferation and motility. Conversely, 3'-(phosphatase and tensin homolog) and 5'-inositol polyphosphatases (SH2-containing inositol phosphatases 1/2, SHIP1/2) are recruited to sites of PI3K signaling at the plasma membrane to oppose or, in some cases, to modify and enhance PI3K signaling. A substantial and growing body of literature demonstrates that these enzymes which mediate interchange of phosphates on inositol phospholipid species at the plasma membrane have prominent roles in natural killer cell biology, including development, effector functions and trafficking. Here, we review the salient points of these recent papers with a special emphasis on the role of p110δ and SHIP1 in natural killer cells.
Collapse
Affiliation(s)
- William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
41
|
Andreopoulou E. The PI3K/AKT/mTOR Signaling Pathway: Implications in the Treatment of Breast Cancer. CURRENT BREAST CANCER REPORTS 2011. [DOI: 10.1007/s12609-010-0038-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Mise J, Dembitz V, Banfic H, Visnjic D. Combined inhibition of PI3K and mTOR exerts synergistic antiproliferative effect, but diminishes differentiative properties of rapamycin in acute myeloid leukemia cells. Pathol Oncol Res 2011; 17:645-56. [PMID: 21336564 DOI: 10.1007/s12253-011-9365-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 01/06/2011] [Indexed: 01/27/2023]
Abstract
A novel strategy has been suggested to enhance rapamycin-based cancer therapy through combining mammalian target of rapamycin (mTOR)-inhibitors with an inhibitor of the phosphatydilinositol 3-kinase PI3K/Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. However, recent study demonstrated the potentiating effect of rapamycin on all-trans-retinoic acid (ATRA)-mediated differentiation of acute myelogenous leukemia (AML) cells, prompting us to investigate the effects of longitudinal inhibition of PI3K/Akt/mTOR signaling pathway on both proliferation and differentiative capacity of AML. In NB4, HL-60, U937 and K562 cell lines, rapamycin exerted minimal antiproliferative effects, and combining PI3K inhibitor LY 294002 and rapamycin inhibited proliferation more than LY 294002 alone. Rapamycin potentiated differentiation of ATRA-treated NB4 cells, but the combination of rapamycin and LY 294002 inhibited the expression of CD11b in both ATRA- and phorbol myristate acetate (PMA)-stimulated cells more than PI3K inhibitor alone. These results demonstrate that, although the combination of PI3K inhibitor and rapamycin is more effective in inhibiting proliferation of AML, the concomitant inhibition of PI3K and mTOR by LY 294002 and rapamycin has more inhibitory effects on ATRA-mediated differentiation than the presence of PI3K-inhibitor alone, and diminishes positive effects of rapamycin on leukemia cell differentiation.
Collapse
Affiliation(s)
- Josko Mise
- Department of Physiology, University of Zagreb, Zagreb, Croatia
| | | | | | | |
Collapse
|
43
|
Chiang EY, Yu X, Grogan JL. Immune complex-mediated cell activation from systemic lupus erythematosus and rheumatoid arthritis patients elaborate different requirements for IRAK1/4 kinase activity across human cell types. THE JOURNAL OF IMMUNOLOGY 2010; 186:1279-88. [PMID: 21160042 DOI: 10.4049/jimmunol.1002821] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IL-1R-associated kinases (IRAKs) are important mediators of MyD88-dependent signaling by the TLR/IL-1R superfamily and facilitate inflammatory responses. IRAK4 and IRAK1 function as active kinases and as scaffolds for protein-protein interactions. We report that although IRAK1/4 kinase activity is essential for human plasmacytoid dendritic cell (pDC) activation, it is dispensable in B, T, dendritic, and monocytic cells, which is in contrast with an essential active kinase role in comparable mouse cell types. An IRAK1/4 kinase inhibitor abrogated TLR7/9-induced IFN-α responses in both mouse and human pDCs, but other human immune cell populations activated via TLR7/9 or IL-1R were refractory to IRAK4 kinase inhibition. Gene ablation experiments using small interfering RNA demonstrated an essential scaffolding role for IRAK1 and IRAK4 in MyD88-dependent signaling. Finally, we demonstrate that autoimmune patient (systemic lupus erythematosus and rheumatoid arthritis) serum activates both pDC and B cells, but IRAK1/4 kinase inhibition affects only the pDC response, underscoring the differential IRAK1/4 functional requirements in human immune cells. These data reveal important species differences and elaborate cell type requirements for IRAK1/4 kinase activity.
Collapse
Affiliation(s)
- Eugene Y Chiang
- Department of Immunology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
44
|
Large JM, Torr JE, Raynaud FI, Clarke PA, Hayes A, Stefano FD, Urban F, Shuttleworth SJ, Saghir N, Sheldrake P, Workman P, McDonald E. Preparation and evaluation of trisubstituted pyrimidines as phosphatidylinositol 3-kinase inhibitors. 3-Hydroxyphenol analogues and bioisosteric replacements. Bioorg Med Chem 2010; 19:836-51. [PMID: 21216151 DOI: 10.1016/j.bmc.2010.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/27/2010] [Accepted: 12/03/2010] [Indexed: 01/22/2023]
Abstract
Two classes of trisubstituted pyrimidines related to PI-103 1 have been prepared and their inhibitory activities against phosphatidylinositol 3-kinase (PI3K) p110α were determined. From those with direct 6-aryl substitution compound 11a was the most potent inhibitor with an IC₅₀ value of 62 nM, and showed similar activity against other class 1a PI3K isoforms tested, p110β and p110γ. When a linking chain was introduced, as in the second exemplified class, compound 15f inhibited p110α with IC₅₀ 142 nM, and showed greater selectivity towards p110α. Compounds of both classes showed promising inhibition of cellular proliferation in IGROV-1 ovarian cancer cells. Among compounds designed to replace the 3-phenolic motif with structural isosteres, analogues incorporating a 4-indazolyl group possessed enzyme and cellular activities comparable to the parent phenols.
Collapse
|
45
|
Hamilton MJ, Ho VW, Kuroda E, Ruschmann J, Antignano F, Lam V, Krystal G. Role of SHIP in cancer. Exp Hematol 2010; 39:2-13. [PMID: 21056081 DOI: 10.1016/j.exphem.2010.11.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 09/30/2010] [Accepted: 11/02/2010] [Indexed: 12/19/2022]
Abstract
The SH2-containing inositol-5'-phosphatase, SHIP (or SHIP1), is a hematopoietic-restricted phosphatidylinositide phosphatase that translocates to the plasma membrane after extracellular stimulation and hydrolyzes the phosphatidylinositol-3-kinase-generated second messenger PI-3,4,5-P(3) to PI-3,4-P(2). As a result, SHIP dampens down PI-3,4,5-P(3)-mediated signaling and represses the proliferation, differentiation, survival, activation, and migration of hematopoietic cells. There are multiple lines of evidence suggesting that SHIP may act as a tumor suppressor during leukemogenesis and lymphomagenesis. Because of its ability to skew macrophage progenitors toward M1 macrophages and naïve T cells toward T helper 1 and T helper 17 cells, SHIP may play a critical role in activating the immune system to eradicate solid tumors. In this review, we will discuss the role of SHIP in hematopoietic cells and its therapeutic potential in terms of suppressing leukemias and lymphomas and manipulating the immune system to combat cancer.
Collapse
Affiliation(s)
- Melisa J Hamilton
- The Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Wojciechowska-Durczyńska K, Krawczyk-Rusiecka K, Cyniak-Magierska A, Zygmunt A, Gałecka E, Lewiński A. Relative quantification of PIK3CA gene expression level in fine-needle aspiration biopsy thyroid specimens collected from patients with papillary thyroid carcinoma and non-toxic goitre by real-time RT-PCR. Thyroid Res 2010; 3:5. [PMID: 20804548 PMCID: PMC2939511 DOI: 10.1186/1756-6614-3-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/30/2010] [Indexed: 12/16/2022] Open
Abstract
Background Recent studies have shown that the phosphatidylinositol 3-kinase (PI3K) signaling pathway is important regulator of many cellular events, including apoptosis, proliferation and motility. PI3K pathway alterations (PIK3CA gene mutations and/or amplification) have been observed in various human tumours. In the majority of diagnosed cases, mutations are localized in one of the three "hot spots" in the gene, responsible for coding catalytic subunit α of class I PI3K (PIK3CA). Mutations and amplification of PIK3CA gene are characteristic for thyroid cancer, as well. Methods The aim of our study was to examine a gene expression level of PIK3CA in fine-needle aspiration biopsy (FNAB) thyroid specimens in two types of thyroid lesions, papillary thyroid carcinoma (PTC) and non-toxic goitre (NTG). Following conventional cytological examination, 42 thyroid FNAB specimens, received from patients with PTC (n = 20) and NTG (n = 22), were quantitatively evaluated regarding PIK3CA expression level by real-time PCR in the ABI PRISM® 7500 Sequence Detection System. Results Significantly higher expression level (RQ) of PIK3CA in PTC group has been noted in comparison with NTG group (p < 0.05). Conclusion These observations may suggest role of PIK3CA alterations in PTC carcinogenesis.
Collapse
Affiliation(s)
- Katarzyna Wojciechowska-Durczyńska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Polish Mother's Memorial Hospital - Research Institute, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
47
|
McDonald GT, Sullivan R, Paré GC, Graham CH. Inhibition of phosphatidylinositol 3-kinase promotes tumor cell resistance to chemotherapeutic agents via a mechanism involving delay in cell cycle progression. Exp Cell Res 2010; 316:3197-206. [PMID: 20736003 DOI: 10.1016/j.yexcr.2010.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 08/15/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Approaches to overcome chemoresistance in cancer cells have involved targeting specific signaling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study determined the effect of PI3K inhibition on the clonogenic survival of human cancer cells following exposure to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in increased survival of MDA-MB-231 breast carcinoma cells after exposure to doxorubicin, etoposide, 5-fluorouracil, and vincristine. Increased survival following PI3K inhibition was also observed in DU-145 prostate, HCT-116 colon and A-549 lung carcinoma cell lines exposed to doxorubicin. Increased cell survival mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G(1) phase of the cell cycle. Inhibition of PI3K signaling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21(Waf1/Cip1) and p27(Kip1); and knockdown of p27(kip1) with siRNA attenuated resistance to doxorubicin in cells treated with LY294002. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle; however, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) may be a critical determinant of chemosensitivity.
Collapse
Affiliation(s)
- Gail T McDonald
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
48
|
Staben ST, Heffron TP, Sutherlin DP, Bhat SR, Castanedo GM, Chuckowree IS, Dotson J, Folkes AJ, Friedman LS, Lee L, Lesnick J, Lewis C, Murray JM, Nonomiya J, Olivero AG, Plise E, Pang J, Prior WW, Salphati L, Rouge L, Sampath D, Tsui V, Wan NC, Wang S, Weismann C, Wu P, Zhu BY. Structure-based optimization of pyrazolo-pyrimidine and -pyridine inhibitors of PI3-kinase. Bioorg Med Chem Lett 2010; 20:6048-51. [PMID: 20822905 DOI: 10.1016/j.bmcl.2010.08.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/12/2010] [Accepted: 08/12/2010] [Indexed: 11/30/2022]
Abstract
Starting from HTS hit 1a, X-ray co-crystallization and molecular modeling were used to design potent and selective inhibitors of PI3-kinase. Bioavailablity in this series was improved through careful modulation of physicochemical properties. Compound 12 displayed in vivo knockdown of PI3K pharmacodynamic markers such as pAKT, pPRAS40, and pS6RP in a PC3 prostate cancer xenograft model.
Collapse
Affiliation(s)
- Steven T Staben
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gross C, Nakamoto M, Yao X, Chan CB, Yim SY, Ye K, Warren ST, Bassell GJ. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci 2010; 30:10624-38. [PMID: 20702695 PMCID: PMC2924772 DOI: 10.1523/jneurosci.0402-10.2010] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 05/09/2010] [Accepted: 06/11/2010] [Indexed: 01/30/2023] Open
Abstract
Fragile X syndrome (FXS) is an inherited neurologic disease caused by loss of fragile X mental retardation protein (FMRP), which is hypothesized to mediate negative regulation of mRNA translation at synapses. A prominent feature of FXS animal models is exaggerated signaling through group 1 metabotropic glutamate receptors (gp1 mGluRs), and therapeutic strategies to treat FXS are targeted mainly at gp1 mGluRs. Recent studies, however, indicate that a variety of receptor-mediated signal transduction pathways are dysregulated in FXS, suggesting that FMRP acts on a common downstream signaling molecule. Here, we show that deficiency of FMRP results in excess activity of phosphoinositide 3-kinase (PI3K), a downstream signaling molecule of many cell surface receptors. In Fmr1 knock-out neurons, excess synaptic PI3K activity can be reduced by perturbation of gp1 mGluR-mediated signaling. Remarkably, increased PI3K activity was also observed in FMRP-deficient non-neuronal cells in the absence of gp1 mGluRs. Here, we show that FMRP regulates the synthesis and synaptic localization of p110beta, the catalytic subunit of PI3K. In wild type, gp1 mGluR activation induces p110beta translation, p110beta protein expression, and PI3K activity. In contrast, both p110beta protein synthesis and PI3K activity are elevated and insensitive to gp1 mGluR stimulation in Fmr1 knock-out. This suggests that dysregulated PI3K signaling may underlie the synaptic impairments in FXS. In support of this hypothesis, we show that PI3K antagonists rescue three FXS-associated phenotypes: dysregulated synaptic protein synthesis, excess AMPA receptor internalization, and increased spine density. Targeting excessive PI3K activity might thus be a potent therapeutic strategy for FXS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gary J. Bassell
- Departments of Cell Biology
- Neurology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
50
|
Willox I, Mirkina I, Westwick J, Ward SG. Evidence for PI3K-dependent CXCR3 agonist-induced degranulation of human cord blood-derived mast cells. Mol Immunol 2010; 47:2367-77. [PMID: 20627397 DOI: 10.1016/j.molimm.2010.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022]
Abstract
The chemokine receptor CXCR3, which has three known variants (CXCR3-A, CXCR3-B and CXCR3-Alt), has been implicated in the recruitment of mast cells to tissues in many different chronic diseases with its agonists found in elevated levels in several pulmonary diseases. All three variants of CXCR3 were detected in cord blood-derived mast cells at the mRNA level. Using an antibody that is unable to distinguish individual CXCR3 isoforms, we detected a marked down-regulation of intracellular protein during maturation from progenitor cells, with no concomitant changes in the modest surface expression of CXCR3. The known CXCR3 agonists CXCL9, CXCL10 and CXCL11 as well as the reported CXCR3-B agonist CXCL4, were able to induce Akt and ERK1/2 phosphorylation, as well as partial degranulation. Responses to all agonists were inhibited by pre-treatment with selective CXCR3 antagonists and pertussis toxin. Use of novel isoform-selective inhibitors, indicates that the p110 gamma isoform of PI3K is required for degranulation and signaling responses to CXCR3 agonists.
Collapse
Affiliation(s)
- Ian Willox
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|