1
|
Peng Z, Fang C, Yuan H, Zhu Y, Ren Z, Lu M, Hu K. miR-135b-5p promotes gastric carcinogenesis by targeting CLIP4-mediated JAK2/STAT3 signal pathway. Cell Signal 2024; 122:111339. [PMID: 39121973 DOI: 10.1016/j.cellsig.2024.111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a common cancer worldwide; however, its molecular and pathogenic mechanisms remain unclear. MicroRNAs (miRNAs), which target key genes in GC, are associated with tumor promotion or suppression. Therefore, identifying new miRNA mechanisms could improve the novel diagnostic and therapeutic strategies for patients with GC. METHODS To explore the biological functions of miR-135b-5p in GC, bioinformatic analysis and in vitro functional assays, including colony formation, wound healing, Transwell, and EdU assays, were used to assess the proliferative, invasive, and migratory capacities of GC cells. Target genes were predicted using RNA-seq and online databases. Dual-luciferase reporter assay, fluorescence in situ hybridization and western blotting were used to confirm the regulatory relationship between miR-135b-5p and CLIP4. The role of CLIP4 in tumor progression was assessed using clinical samples and both in vitro and in vivo assays. The tumor-suppressive mechanism of CLIP4 in GC was elucidated using rescue assays. RESULTS Our study identified that miR-135b-5p as one of the top three over-expressed miRNAs in GC tissues, with RT-qPCR confirming its upregulation. Functional analysis showed that upregulated miR-135b-5p promoted malignant phenotypes in GC cells. Mechanistic research indicated that miR-135b-5p acts as a cancer promoter by targeting CLIP4. Moreover, our study suggested that CLIP4 exerts its tumor-suppressive function by inhibiting the JAK2/STAT3 signaling pathway. CONCLUSION This study reveals a novel mechanism by which miR-135b-5p exerts its tumor-promoting functions by targeting CLIP4. The tumor-suppressive function of CLIP4 by inactivating the JAK2/STAT3 pathway is also elucidated. Regulatory mechanism of CLIP4 by miR-135b-5p provides a promising novel therapeutic strategy for GC patients.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Can Fang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haibo Yuan
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yinan Zhu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zihao Ren
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ming Lu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, Anhui 236000, China.
| |
Collapse
|
2
|
Volkov VA, Akhmanova A. Phase separation on microtubules: from droplet formation to cellular function? Trends Cell Biol 2024; 34:18-30. [PMID: 37453878 DOI: 10.1016/j.tcb.2023.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Microtubules are cytoskeletal polymers that play important roles in numerous cellular processes, ranging from the control of cell shape and polarity to cell division and intracellular transport. Many of these roles rely on proteins that bind to microtubule ends and shafts, carry intrinsically disordered regions, and form complex multivalent interaction networks. A flurry of recent studies demonstrated that these properties allow diverse microtubule-binding proteins to undergo liquid-liquid phase separation (LLPS) in vitro. It is proposed that LLPS could potentially affect multiple microtubule-related processes, such as microtubule nucleation, control of microtubule dynamics and organization, and microtubule-based transport. Here, we discuss the evidence in favor and against the occurrence of LLPS and its functional significance for microtubule-based processes in cells.
Collapse
Affiliation(s)
- Vladimir A Volkov
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands.
| |
Collapse
|
3
|
Tang Q, Sensale S, Bond C, Xing J, Qiao A, Hugelier S, Arab A, Arya G, Lakadamyali M. Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets. Curr Biol 2023; 33:5169-5184.e8. [PMID: 37979580 PMCID: PMC10843832 DOI: 10.1016/j.cub.2023.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023]
Abstract
Microtubules in cells consist of functionally diverse subpopulations carrying distinct post-translational modifications (PTMs). Akin to the histone code, the tubulin code regulates a myriad of microtubule functions, ranging from intracellular transport to chromosome segregation. However, how individual PTMs only occur on subsets of microtubules to contribute to microtubule specialization is not well understood. In particular, microtubule detyrosination, the removal of the C-terminal tyrosine on α-tubulin subunits, marks the stable population of microtubules and modifies how microtubules interact with other microtubule-associated proteins to regulate a wide range of cellular processes. Previously, we found that in certain cell types, only ∼30% of microtubules are highly enriched with the detyrosination mark and that detyrosination spans most of the length of a microtubule, often adjacent to a completely tyrosinated microtubule. How the activity of a cytosolic detyrosinase, vasohibin (VASH), leads to only a small subpopulation of highly detyrosinated microtubules is unclear. Here, using quantitative super-resolution microscopy, we visualized nascent microtubule detyrosination events in cells consisting of 1-3 detyrosinated α-tubulin subunits after nocodazole washout. Microtubule detyrosination accumulates slowly and in a dispersed pattern across the microtubule length. By visualizing single molecules of VASH in live cells, we found that VASH engages with microtubules stochastically on a short timescale, suggesting limited removal of tyrosine per interaction, consistent with the super-resolution results. Combining these quantitative imaging results with simulations incorporating parameters from our experiments, we provide evidence for a stochastic model for cells to establish a subset of detyrosinated microtubules via a detyrosination-stabilization feedback mechanism.
Collapse
Affiliation(s)
- Qing Tang
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebastian Sensale
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Department of Physics, Cleveland State University, Cleveland, OH 44115-2214, USA.
| | - Charles Bond
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiazheng Xing
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy Qiao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Siewert Hugelier
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arian Arab
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Yue Y, Hotta T, Higaki T, Verhey KJ, Ohi R. Microtubule detyrosination by VASH1/SVBP is regulated by the conformational state of tubulin in the lattice. Curr Biol 2023; 33:4111-4123.e7. [PMID: 37716348 PMCID: PMC10592207 DOI: 10.1016/j.cub.2023.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/18/2023]
Abstract
Tubulin, a heterodimer of α- and β-tubulin, is a GTPase that assembles into microtubule (MT) polymers whose dynamic properties are intimately coupled to nucleotide hydrolysis. In cells, the organization and dynamics of MTs are further tuned by post-translational modifications (PTMs), which control the ability of MT-associated proteins (MAPs) and molecular motors to engage MTs. Detyrosination is a PTM of α-tubulin, wherein its C-terminal tyrosine residue is enzymatically removed by either the vasohibin (VASH) or MT-associated tyrosine carboxypeptidase (MATCAP) peptidases. How these enzymes generate specific patterns of MT detyrosination in cells is not known. Here, we use a novel antibody-based probe to visualize the formation of detyrosinated MTs in real time and employ single-molecule imaging of VASH1 bound to its regulatory partner small-vasohibin binding protein (SVBP) to understand the process of MT detyrosination in vitro and in cells. We demonstrate that the activity, but not binding, of VASH1/SVBP is much greater on mimics of guanosine triphosphate (GTP)-MTs than on guanosine diphosphate (GDP)-MTs. Given emerging data showing that tubulin subunits in GTP-MTs are in expanded conformation relative to tubulin subunits in GDP-MTs, we reasoned that the lattice conformation of MTs is a key factor that gates the activity of VASH1/SVBP. We show that Taxol, a drug known to expand the MT lattice, promotes MT detyrosination and that CAMSAP2 and CAMSAP3 are two MAPs that spatially regulate detyrosination in cells. Collectively, our work shows that VASH1/SVBP detyrosination is regulated by the conformational state of tubulin in the MT lattice and that this is spatially determined in cells by the activity of MAPs.
Collapse
Affiliation(s)
- Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; International Research Organization in Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Fan X, McKenney RJ. Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail. Nat Commun 2023; 14:4715. [PMID: 37543636 PMCID: PMC10404244 DOI: 10.1038/s41467-023-40425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Microtubules are major components of the eukaryotic cytoskeleton. Posttranslational modifications (PTMs) of tubulin regulates interactions with microtubule-associated proteins (MAPs). One unique PTM is the cyclical removal and re-addition of the C-terminal tyrosine of α-tubulin and MAPs containing CAP-Gly domains specifically recognize tyrosinated microtubules. KIF13B, a long-distance transport kinesin, contains a conserved CAP-Gly domain, but the role of the CAP-Gly domain in KIF13B's motility along microtubules remains unknown. To address this, we investigate the interaction between KIF13B's CAP-Gly domain, and tyrosinated microtubules. We find that KIF13B's CAP-Gly domain influences the initial motor-microtubule interaction, as well as processive motility along microtubules. The effect of the CAP-Gly domain is enhanced when the motor domain is in the ADP state, suggesting an interplay between the N-terminal motor domain and C-terminal CAP-Gly domain. These results reveal that specialized kinesin tail domains play active roles in the initiation and continuation of motor movement.
Collapse
Affiliation(s)
- Xiangyu Fan
- Department of Molecular and Cellular Biology, University of California - Davis, 145 Briggs Hall, Davis, CA, 95616, USA
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California - Davis, 145 Briggs Hall, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Maan R, Reese L, Volkov VA, King MR, van der Sluis EO, Andrea N, Evers WH, Jakobi AJ, Dogterom M. Multivalent interactions facilitate motor-dependent protein accumulation at growing microtubule plus-ends. Nat Cell Biol 2023; 25:68-78. [PMID: 36536175 PMCID: PMC9859754 DOI: 10.1038/s41556-022-01037-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/25/2022] [Indexed: 12/24/2022]
Abstract
Growing microtubule ends organize end-tracking proteins into comets of mixed composition. Here using a reconstituted fission yeast system consisting of end-binding protein Mal3, kinesin Tea2 and cargo Tip1, we found that these proteins can be driven into liquid-phase droplets both in solution and at microtubule ends under crowding conditions. In the absence of crowding agents, cryo-electron tomography revealed that motor-dependent comets consist of disordered networks where multivalent interactions may facilitate non-stoichiometric accumulation of cargo Tip1. We found that two disordered protein regions in Mal3 are required for the formation of droplets and motor-dependent accumulation of Tip1, while autonomous Mal3 comet formation requires only one of them. Using theoretical modelling, we explore possible mechanisms by which motor activity and multivalent interactions may lead to the observed enrichment of Tip1 at microtubule ends. We conclude that microtubule ends may act as platforms where multivalent interactions condense microtubule-associated proteins into large multi-protein complexes.
Collapse
Affiliation(s)
- Renu Maan
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Louis Reese
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Vladimir A Volkov
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Matthew R King
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO, USA
| | - Eli O van der Sluis
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Nemo Andrea
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Marileen Dogterom
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
- Physiology Course 2017, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
7
|
Ramirez-Rios S, Choi SR, Sanyal C, Blum TB, Bosc C, Krichen F, Denarier E, Soleilhac JM, Blot B, Janke C, Stoppin-Mellet V, Magiera MM, Arnal I, Steinmetz MO, Moutin MJ. VASH1-SVBP and VASH2-SVBP generate different detyrosination profiles on microtubules. J Cell Biol 2022; 222:213744. [PMID: 36512346 PMCID: PMC9750192 DOI: 10.1083/jcb.202205096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/30/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
The detyrosination/tyrosination cycle of α-tubulin is critical for proper cell functioning. VASH1-SVBP and VASH2-SVBP are ubiquitous enzymes involved in microtubule detyrosination, whose mode of action is little known. Here, we show in reconstituted systems and cells that VASH1-SVBP and VASH2-SVBP drive the global and local detyrosination of microtubules, respectively. We solved the cryo-electron microscopy structure of VASH2-SVBP bound to microtubules, revealing a different microtubule-binding configuration of its central catalytic region compared to VASH1-SVBP. We show that the divergent mode of detyrosination between the two enzymes is correlated with the microtubule-binding properties of their disordered N- and C-terminal regions. Specifically, the N-terminal region is responsible for a significantly longer residence time of VASH2-SVBP on microtubules compared to VASH1-SVBP. We suggest that this VASH region is critical for microtubule detachment and diffusion of VASH-SVBP enzymes on lattices. Our results suggest a mechanism by which VASH1-SVBP and VASH2-SVBP could generate distinct microtubule subpopulations and confined areas of detyrosinated lattices to drive various microtubule-based cellular functions.
Collapse
Affiliation(s)
- Sacnicte Ramirez-Rios
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Sung Ryul Choi
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Thorsten B. Blum
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Fatma Krichen
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Jean-Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Blot
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Carsten Janke
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Virginie Stoppin-Mellet
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Maria M. Magiera
- Institut Curie, Université Paris Sciences et Lettres, Centre National de la Recherche Scientifique UMR3348, Orsay, France,Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Isabelle Arnal
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland,Biozentrum, University of Basel, Basel, Switzerland
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Grenoble Institut Neurosciences, Grenoble, France,Correspondence to Marie-Jo Moutin:
| |
Collapse
|
8
|
Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK, Li Y, Roll-Mecak A. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev Cell 2022; 57:2497-2513.e6. [PMID: 36347241 PMCID: PMC9665884 DOI: 10.1016/j.devcel.2022.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. How cells interpret this tubulin modification code is largely unknown. We show that C. elegans katanin, a microtubule severing AAA ATPase mutated in microcephaly and critical for cell division, axonal elongation, and cilia biogenesis, responds precisely, differentially, and combinatorially to three chemically distinct tubulin modifications-glycylation, glutamylation, and tyrosination-but is insensitive to acetylation. Glutamylation and glycylation are antagonistic rheostats with glycylation protecting microtubules from severing. Katanin exhibits graded and divergent responses to glutamylation on the α- and β-tubulin tails, and these act combinatorially. The katanin hexamer central pore constrains the polyglutamate chain patterns on β-tails recognized productively. Elements distal to the katanin AAA core sense α-tubulin tyrosination, and detyrosination downregulates severing. The multivalent microtubule recognition that enables katanin to read multiple tubulin modification inputs explains in vivo observations and illustrates how effectors can integrate tubulin code signals to produce diverse functional outcomes.
Collapse
Affiliation(s)
- Ewa Szczesna
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Agnieszka Szyk
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Kishore K Mahalingan
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomic Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Zheng Y, Yang M, Chen X, Zhang G, Wan S, Zhang B, Huo J, Liu H. Decreased tubulin-binding cofactor B was involved in the formation disorder of nascent astrocyte processes by regulating microtubule plus-end growth through binding with end-binding proteins 1 and 3 after chronic alcohol exposure. Front Cell Neurosci 2022; 16:989945. [PMID: 36385945 PMCID: PMC9641617 DOI: 10.3389/fncel.2022.989945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Fetal alcohol syndrome (FAS) is a neurological disease caused by excessive drinking during pregnancy and characterized by congenital abnormalities in the structure and function of the fetal brain. This study was proposed to provide new insights into the pathogenesis of FAS by revealing the possible mechanisms of alcohol-induced astrocyte injury. First, a chronic alcohol exposure model of astrocytes was established, and the formation disorder was found in astrocyte processes where tubulin-binding cofactor B (TBCB) was decreased or lost, accompanied by disorganized microtubules (MT). Second, to understand the relationship between TBCB reduction and the formation disorder of astrocyte processes, TBCB was silenced or overexpressed. It caused astrocyte processes to retract or lose after silencing, while the processes increased with expending basal part and obtuse tips after overexpressing. It confirmed that TBCB was one of the critical factors for the formation of astrocyte processes through regulating MT plus-end and provided a new view on the pathogenesis of FAS. Third, to explore the mechanism of TBCB regulating MT plus-ends, we first proved end-binding proteins 1 and 3 (EB1/3) were bound at MT plus-ends in astrocytes. Then, through interference experiments, we found that both EB1 and EB3, which formed in heterodimers, were necessary to mediate TBCB binding to MT plus-ends and thus regulated the formation of astrocyte processes. Finally, the regulatory mechanism was studied and the ERK1/2 signaling pathway was found as one of the main pathways regulating the expression of TBCB in astrocytes after alcohol injury.
Collapse
Affiliation(s)
- Yin Zheng
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- Department of Basic Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, China
| | - Mei Yang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Xiaoqiao Chen
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gaoli Zhang
- Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanshan Wan
- Department of Blood Transfusion, Sichuan Cancer Hospital and Institute, Chengdu, China
| | - Bingqiu Zhang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jiechao Huo
- Fujian Province University Engineering Research Center of Mindong She Medicine, Medical College, Ningde Normal University, Ningde, China
| | - Hui Liu
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
- *Correspondence: Hui Liu
| |
Collapse
|
10
|
Hosseini S, van Ham M, Erck C, Korte M, Michaelsen-Preusse K. The role of α-tubulin tyrosination in controlling the structure and function of hippocampal neurons. Front Mol Neurosci 2022; 15:931859. [PMCID: PMC9627282 DOI: 10.3389/fnmol.2022.931859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules (MTs) are central components of the neuronal cytoskeleton and play a critical role in CNS integrity, function, and plasticity. Neuronal MTs are diverse due to extensive post-translational modifications (PTMs), particularly detyrosination/tyrosination, in which the C-terminal tyrosine of α-tubulin is cyclically removed by a carboxypeptidase and reattached by a tubulin-tyrosine ligase (TTL). The detyrosination/tyrosination cycle of MTs has been shown to be an important regulator of MT dynamics in neurons. TTL-null mice exhibit impaired neuronal organization and die immediately after birth, indicating TTL function is vital to the CNS. However, the detailed cellular role of TTL during development and in the adult brain remains elusive. Here, we demonstrate that conditional deletion of TTL in the neocortex and hippocampus during network development results in a pathophysiological phenotype defined by incomplete development of the corpus callosum and anterior commissures due to axonal growth arrest. TTL loss was also associated with a deficit in spatial learning, impaired synaptic plasticity, and reduced number of spines in hippocampal neurons, suggesting that TTL also plays a critical role in hippocampal network development. TTL deletion after postnatal development, specifically in the hippocampus and in cultured hippocampal neurons, led to a loss of spines and impaired spine structural plasticity. This indicates a novel and important function of TTL for synaptic plasticity in the adult brain. In conclusion, this study reveals the importance of α-tubulin tyrosination, which defines the dynamics of MTs, in controlling proper network formation and suggests TTL-mediated tyrosination as a new key determinant of synaptic plasticity in the adult brain.
Collapse
Affiliation(s)
- Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marco van Ham
- Research Group Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christian Erck
- Research Group Cellular Proteome Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kristin Michaelsen-Preusse,
| |
Collapse
|
11
|
Hotta T, McAlear TS, Yue Y, Higaki T, Haynes SE, Nesvizhskii AI, Sept D, Verhey KJ, Bechstedt S, Ohi R. EML2-S constitutes a new class of proteins that recognizes and regulates the dynamics of tyrosinated microtubules. Curr Biol 2022; 32:3898-3910.e14. [PMID: 35963242 PMCID: PMC9530018 DOI: 10.1016/j.cub.2022.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/13/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023]
Abstract
Tubulin post-translational modifications (PTMs) alter microtubule properties by affecting the binding of microtubule-associated proteins (MAPs). Microtubule detyrosination, which occurs by proteolytic removal of the C-terminal tyrosine from ɑ-tubulin, generates the oldest known tubulin PTM, but we lack comprehensive knowledge of MAPs that are regulated by this PTM. We developed a screening pipeline to identify proteins that discriminate between Y- and ΔY-microtubules and found that echinoderm microtubule-associated protein-like 2 (EML2) preferentially interacts with Y-microtubules. This activity depends on a Y-microtubule interaction motif built from WD40 repeats. We show that EML2 tracks the tips of shortening microtubules, a behavior not previously seen among human MAPs in vivo, and influences dynamics to increase microtubule stability. Our screening pipeline is readily adapted to identify proteins that specifically recognize a wide range of microtubule PTMs.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas S McAlear
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Takumi Higaki
- Faculty of Advanced Science and Technology (FAST), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Susanne Bechstedt
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Ryoma Ohi
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Sanyal C, Pietsch N, Ramirez Rios S, Peris L, Carrier L, Moutin MJ. The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin Cell Dev Biol 2021; 137:46-62. [PMID: 34924330 DOI: 10.1016/j.semcdb.2021.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022]
Abstract
Among the variety of post-translational modifications to which microtubules are subjected, the detyrosination/re-tyrosination cycle is specific to tubulin. It is conserved by evolution and characterized by the enzymatic removal and re-addition of a gene-encoded tyrosine residue at the C-terminus of α-tubulin. Detyrosinated tubulin can be further converted to Δ2-tubulin by the removal of an additional C-terminal glutamate residue. Detyrosinated and Δ2-tubulin are carried by stable microtubules whereas tyrosinated microtubules are present on dynamic polymers. The cycle regulates trafficking of many cargo transporting molecular motors and is linked to the microtubule dynamics via regulation of microtubule interactions with specific cellular effectors such as kinesin-13. Here, we give an historical overview of the general features discovered for the cycle. We highlight the recent progress toward structure and functioning of the enzymes that keep the levels of tyrosinated and detyrosinated tubulin in cells, the long-known tubulin tyrosine ligase and the recently discovered vasohibin-SVBP complexes. We further describe how the cycle controls microtubule functions in healthy neurons and cardiomyocytes and how deregulations of the cycle are involved in dysfunctions of these highly differentiated cells, leading to neurodegeneration and heart failure in humans.
Collapse
Affiliation(s)
- Chadni Sanyal
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Niels Pietsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sacnicte Ramirez Rios
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Marie-Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France.
| |
Collapse
|
13
|
Abstract
The dynein-dynactin nanomachine transports cargoes along microtubules in cells. Why dynactin interacts separately with the dynein motor and also with microtubules is hotly debated. Here we disrupted these interactions in a targeted manner on phagosomes extracted from cells, followed by optical trapping to interrogate native dynein-dynactin teams on single phagosomes. Perturbing the dynactin-dynein interaction reduced dynein's on rate to microtubules. In contrast, perturbing the dynactin-microtubule interaction increased dynein's off rate markedly when dynein was generating force against the optical trap. The dynactin-microtubule link is therefore required for persistence against load, a finding of importance because disease-relevant mutations in dynein-dynactin are known to interfere with "high-load" functions of dynein in cells. Our findings call attention to a less studied property of dynein-dynactin, namely, its detachment against load, in understanding dynein dysfunction.
Collapse
|
14
|
Kesarwani S, Lama P, Chandra A, Reddy PP, Jijumon AS, Bodakuntla S, Rao BM, Janke C, Das R, Sirajuddin M. Genetically encoded live-cell sensor for tyrosinated microtubules. J Cell Biol 2021; 219:152071. [PMID: 32886100 PMCID: PMC7659708 DOI: 10.1083/jcb.201912107] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions. Using a yeast display library, we identified a binder against terminal tyrosine of α-tubulin, a unique PTM site. Extensive characterization validates the robustness and nonperturbing nature of our binder as tyrosination sensor, a live-cell tubulin nanobody specific towards tyrosinated microtubules. Using this sensor, we followed nocodazole-, colchicine-, and vincristine-induced depolymerization events of tyrosinated microtubules in real time and found each distinctly perturbs the microtubule polymer. Together, our work describes a novel tyrosination sensor and its potential applications to study the dynamics of microtubule and their PTM processes in living cells.
Collapse
Affiliation(s)
- Shubham Kesarwani
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Lama
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anchal Chandra
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - P Purushotam Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - A S Jijumon
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| |
Collapse
|
15
|
Ayyappan S, Dharan PS, Krishnan A, Marira RR, Lambert M, Manna TK, Vijayan V. SxIP binding disrupts the constitutive homodimer interface of EB1 and stabilizes EB1 monomer. Biophys J 2021; 120:2019-2029. [PMID: 33737159 DOI: 10.1016/j.bpj.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
SxIP is a microtubule tip localizing signal found in many +TIP proteins that bind to the hydrophobic cavity of the C-terminal domain of end binding protein 1 (EB1) and then positively regulate the microtubule plus-end tracking of EBs. However, the exact mechanism of microtubule activation of EBs in the presence of SxIP signaling motif is not known. Here, we studied the effect of SxIP peptide on the native conformation of EB1 in solution. Using various NMR experiments, we found that SxIP peptide promoted the dissociation of natively formed EB1 dimer. We also discovered that I224A mutation of EB1 resulted in an unfolded C-terminal domain, which upon binding with the SxIP motif folded to its native structure. Molecular dynamics simulations also confirmed the relative structural stability of EB1 monomer in the SxIP bound state. Residual dipolar couplings and heteronuclear NOE analysis suggested that the binding of SxIP peptide at the C-terminal domain of EB1 decreased the dynamics and conformational flexibility of the N-terminal domain involved in EB1-microtubule interaction. The SxIP-induced disruption of the dimeric interactions in EB1, coupled with the reduction in conformational flexibility of the N-terminal domain of EB1, might facilitate the microtubule association of EB1.
Collapse
Affiliation(s)
- Shine Ayyappan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Pooja S Dharan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Arya Krishnan
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Renjith R Marira
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Mahil Lambert
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
16
|
Métivier M, Gallaud E, Thomas A, Pascal A, Gagné JP, Poirier GG, Chrétien D, Gibeaux R, Richard-Parpaillon L, Benaud C, Giet R. Drosophila Tubulin-Specific Chaperone E Recruits Tubulin around Chromatin to Promote Mitotic Spindle Assembly. Curr Biol 2021; 31:684-695.e6. [PMID: 33259793 DOI: 10.1016/j.cub.2020.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022]
Abstract
Proper assembly of mitotic spindles requires microtubule nucleation not only at the centrosomes but also around chromatin. In this study, we found that the Drosophila tubulin-specific chaperone dTBCE is required for the enrichment of tubulin in the nuclear space after nuclear envelope breakdown and for subsequent promotion of spindle microtubule nucleation. These events depend on the CAP-Gly motif found in dTBCE and are regulated by Ran and lamin proteins. Our data suggest that during early mitosis, dTBCE and nuclear pore proteins become enriched in the nucleus, where they interact with the Ran GTPase to promote dynamic tubulin enrichment. We propose that this novel mechanism enhances microtubule nucleation around chromatin, thereby facilitating mitotic spindle assembly.
Collapse
Affiliation(s)
- Mathieu Métivier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Emmanuel Gallaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Alexandre Thomas
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Aude Pascal
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jean-Philippe Gagné
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Pavillon CHUL, Université Laval, Québec City, QC, Canada
| | - Guy G Poirier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec - Pavillon CHUL, Université Laval, Québec City, QC, Canada
| | - Denis Chrétien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Laurent Richard-Parpaillon
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Christelle Benaud
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Régis Giet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000 Rennes, France.
| |
Collapse
|
17
|
Kobayashi M, Wakabayashi I, Suzuki Y, Fujiwara K, Nakayama M, Watabe T, Sato Y. Tubulin carboxypeptidase activity of vasohibin-1 inhibits angiogenesis by interfering with endocytosis and trafficking of pro-angiogenic factor receptors. Angiogenesis 2020; 24:159-176. [PMID: 33052495 DOI: 10.1007/s10456-020-09754-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023]
Abstract
Receptor endocytosis is crucial for integrating extracellular stimuli of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), into the cell via signal transduction. VEGF not only triggers various angiogenic events including endothelial cell (EC) migration, but also induces the expression of negative regulators of angiogenesis, including vasohibin-1 (VASH1). While we have previously reported that VASH1 inhibits angiogenesis in vitro and in vivo, its mode of action on EC behavior remains elusive. Recently VASH1 was shown to have tubulin carboxypeptidase (TCP) activity, mediating the post-translational modification of microtubules (MTs) by detyrosination of α-tubulin within cells. However, the role of VASH1 TCP activity in angiogenesis has not yet been clarified. Here, we showed that VASH1 detyrosinated α-tubulin in ECs and suppressed in vitro and in vivo angiogenesis. In cultured ECs, VASH1 impaired endocytosis and trafficking of VEGF receptor 2 (VEGFR2), which resulted in the decreased signal transduction and EC migration. These effects of VASH1 could be restored by tubulin tyrosine ligase (TTL) in ECs, suggesting that detyrosination of α-tubulin negatively regulates angiogenesis. Furthermore, we found that detyrosinated tubulin-rich MTs were not adequate as trafficking rails for VEGFR2 endocytosis. Consistent with these results, inhibition of TCP activity of VASH1 led to the inhibition of VASH1-mediated suppression of VEGF-induced signals, EC migration, and in vivo angiogenesis. Our results indicate a novel mechanism of VASH1-mediated inhibition of pro-angiogenic factor receptor trafficking via modification of MTs.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan. .,Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.
| | - Ikumi Wakabayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.,Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yasuhiro Suzuki
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan.,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, 980-8575, Japan. .,New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
18
|
Wang L, Yan M, Wu S, Mao B, Wong CKC, Ge R, Sun F, Cheng CY. Microtubule Cytoskeleton and Spermatogenesis-Lesson From Studies of Toxicant Models. Toxicol Sci 2020; 177:305-315. [PMID: 32647867 PMCID: PMC7548287 DOI: 10.1093/toxsci/kfaa109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Studies have shown that mammalian testes, in particular the Sertoli cells, are highly susceptible to exposure of environmental toxicants, such as cadmium, perfluorooctanesulfonate, phthalates, 2,5-hexanedione and bisphenol A. However, important studies conducted by reproductive toxicologists and/or biologists in the past have been treated as toxicology reports per se. Yet, many of these studies provided important mechanistic insights on the toxicant-induced testis injury and reproductive dysfunction, relevant to the biology of the testis and spermatogenesis. Furthermore, recent studies have shown that findings obtained from toxicant models are exceedingly helpful tools to unravel the biology of testis function in particular spermatogenesis, including specific cellular events associated with spermatid transport to support spermiogenesis and spermiation. In this review, we critically evaluate some recent data, focusing primarily on the molecular structure and role of microtubules in cellular function, illustrating the importance of toxicant models to unravel the biology of microtubule cytoskeleton in supporting spermatogenesis, well beyond information on toxicology. These findings have opened up some potential areas of research which should be carefully evaluated in the years to come.
Collapse
Affiliation(s)
- Lingling Wang
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ming Yan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Siwen Wu
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
19
|
Zhang X, Yu Y, Bai B, Wang T, Zhao J, Zhang N, Zhao Y, Wang X, Wang B. PTPN22 interacts with EB1 to regulate T-cell receptor signaling. FASEB J 2020; 34:8959-8974. [PMID: 32469452 DOI: 10.1096/fj.201902811rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/14/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
The PTPN22 gene encoding the Lyp/Pep protein tyrosine phosphatase is a negative regulator of T-cell receptor (TCR) signaling. Recent studies have shown that phosphorylation of end-binding protein 1 (EB1) is associated with the TCR activation. In this study, using 2-hybrid and mass spectrometry analyses, we identified EB1 as a protein associated with PTPN22. Furthermore, we discovered that EB1 specifically bound to the P1 domain of PTPN22 by competing with CSK, and the variant PTPN22-R620W does not affect the association with EB1, which is instrumental with respect to the regulation of TCR signaling. In addition, PTPN22 dephosphorylates EB1 at tyrosine-247 (Y247), which decreases the expression of the T-cell activation markers CD25 and CD69 and the phosphorylation levels of the TCR molecules ZAP-70, LAT, and Erk, leading to the eventual downregulation of the transcription factor NFAT and reduced the levels of secreted IL-2. The findings of this study provide new insights into the TCR signaling and the T-cell immune response, which are important for clarifying the mechanism of PTPN22-related autoimmune diseases.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yang Yu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Bin Bai
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Tao Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Jiahui Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Na Zhang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Yanjiao Zhao
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Xipeng Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| | - Bing Wang
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang, P.R. China
| |
Collapse
|
20
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Saito K, Murayama T, Hata T, Kobayashi T, Shibata K, Kazuno S, Fujimura T, Sakurai T, Toyoshima YY. Conformational diversity of dynactin sidearm and domain organization of its subunit p150. Mol Biol Cell 2020; 31:1218-1231. [PMID: 32238103 PMCID: PMC7353146 DOI: 10.1091/mbc.e20-01-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynactin is a principal regulator of the minus-end directed microtubule motor dynein. The sidearm of dynactin is essential for binding to microtubules and regulation of dynein activity. Although our understanding of the structure of the dynactin backbone (Arp1 rod) has greatly improved recently, structural details of the sidearm subcomplex remain elusive. Here, we report the flexible nature and diverse conformations of dynactin sidearm observed by electron microscopy. Using nanogold labeling and deletion mutant analysis, we determined the domain organization of the largest subunit p150 and discovered that its coiled-coil (CC1), dynein-binding domain, adopted either a folded or an extended form. Furthermore, the entire sidearm exhibited several characteristic forms, and the equilibrium among them depended on salt concentrations. These conformational diversities of the dynactin complex provide clues to understanding how it binds to microtubules and regulates dynein.
Collapse
Affiliation(s)
- Kei Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomone Hata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Keitaro Shibata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tsutomu Fujimura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoko Y Toyoshima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.,Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
22
|
BAG6 is a novel microtubule-binding protein that regulates ciliogenesis by modulating the cell cycle and interacting with γ-tubulin. Exp Cell Res 2019; 387:111776. [PMID: 31838060 DOI: 10.1016/j.yexcr.2019.111776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Microtubule-binding proteins provide an alternative and vital pathway to the functional diversity of microtubules. Considerable work is still required to understand the complexities of microtubule-associated cellular processes and to identify novel microtubule-binding proteins. In this study, we identify Bcl2-associated athanogene cochaperone 6 (BAG6) as a novel microtubule-binding protein and reveal that it is crucial for primary ciliogenesis. By immunofluorescence we show that BAG6 largely colocalizes with intracellular microtubules and by co-immunoprecipitation we demonstated that it can interact with α-tubulin. Additionally, both the UBL and BAG domains of BAG6 are indispensable for its interaction with α-tubulin. Moreover, the assembly of primary cilia in RPE-1 cells is significantly inhibited upon the depletion of BAG6. Notably, BAG6 inhibition leads to an abnormal G0/G1 transition during the cell cycle. In addition, BAG6 colocalizes and interactes with the centrosomal protein γ-tubulin, suggesting that BAG6 might regulate primary ciliogenesis through its action in centrosomal function. Collectively, our findings suggest that BAG6 is a novel microtubule-bindng protein crucial for primary ciliogenesis.
Collapse
|
23
|
Mills J, Hanada T, Hase Y, Liscum L, Chishti AH. LDL receptor related protein 1 requires the I 3 domain of discs-large homolog 1/DLG1 for interaction with the kinesin motor protein KIF13B. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118552. [PMID: 31487503 DOI: 10.1016/j.bbamcr.2019.118552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/25/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
KIF13B, a kinesin-3 family motor, was originally identified as GAKIN due to its biochemical interaction with human homolog of Drosophila discs-large tumor suppressor (hDLG1). Unlike its homolog KIF13A, KIF13B contains a carboxyl-terminal CAP-Gly domain. To investigate the function of the CAP-Gly domain, we developed a mouse model that expresses a truncated form of KIF13B protein lacking its CAP-Gly domain (KIF13BΔCG), whereas a second mouse model lacks the full-length KIF13A. Here we show that the KIF13BΔCG mice exhibit relatively higher serum cholesterol consistent with the reduced uptake of [3H]CO-LDL in KIF13BΔCG mouse embryo fibroblasts. The plasma level of factor VIII was not significantly elevated in the KIF13BΔCG mice, suggesting that the CAP-Gly domain region of KIF13B selectively regulates LRP1-mediated lipoprotein endocytosis. No elevation of either serum cholesterol or plasma factor VIII was observed in the full length KIF13A null mouse model. The deletion of the CAP-Gly domain region caused subcellular mislocalization of truncated KIF13B concomitant with the mislocalization of LRP1. Mechanistically, the cytoplasmic domain of LRP1 interacts specifically with the alternatively spliced I3 domain of DLG1, which complexes with KIF13B via their GUK-MBS domains, respectively. Importantly, double mutant mice generated by crossing KIF13A null and KIF13BΔCG mice suffer from perinatal lethality showing potential craniofacial defects. Together, this study provides first evidence that the carboxyl-terminal region of KIF13B containing the CAP-Gly domain is important for the LRP1-DLG1-KIF13B complex formation with implications in the regulation of metabolism, cell polarity, and development.
Collapse
Affiliation(s)
- Joslyn Mills
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Toshihiko Hanada
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Yoichi Hase
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Laura Liscum
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
24
|
Structural basis of tubulin detyrosination by vasohibins. Nat Struct Mol Biol 2019; 26:583-591. [PMID: 31235910 PMCID: PMC6609488 DOI: 10.1038/s41594-019-0242-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
Microtubules are regulated by posttranslational modifications (PTMs) of tubulin. The ligation and cleavage of the C-terminal tyrosine of α tubulin impact microtubule functions during mitosis, cardiomyocyte contraction, and neuronal processes. Tubulin tyrosination and detyrosination are mediated by tubulin tyrosine ligase (TTL) and the recently discovered tubulin detyrosinases, vasohibin 1 and 2 (VASH1 and VASH2) bound to the small vasohibin-binding protein (SVBP). Here, we report the crystal structures of human VASH1–SVBP alone, in complex with a tyrosine-derived covalent inhibitor, and bound to the natural product parthenolide. The structures and subsequent mutagenesis analyses explain the requirement for SVBP during tubulin detyrosination, and reveal the basis for the recognition of the C-terminal tyrosine and the acidic α tubulin tail by VASH1. The VASH1–SVBP–parthenolide structure provides a framework for designing more effective chemical inhibitors of vasohibins, which can be valuable for dissecting their biological functions and may have therapeutic potential.
Collapse
|
25
|
Structural basis of tubulin detyrosination by the vasohibin–SVBP enzyme complex. Nat Struct Mol Biol 2019; 26:571-582. [DOI: 10.1038/s41594-019-0241-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
|
26
|
Li J, Sekine‐Aizawa Y, Ebrahimi S, Tanaka S, Okabe S. Tumor suppressor protein
CYLD
regulates morphogenesis of dendrites and spines. Eur J Neurosci 2019; 50:2722-2739. [DOI: 10.1111/ejn.14421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Li
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Yoko Sekine‐Aizawa
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Saman Ebrahimi
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology Graduate School of Medicine University of Tokyo Tokyo Japan
| |
Collapse
|
27
|
Chen Y, Wang P, Slep KC. Mapping multivalency in the CLIP-170-EB1 microtubule plus-end complex. J Biol Chem 2018; 294:918-931. [PMID: 30455356 DOI: 10.1074/jbc.ra118.006125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/09/2018] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic linker protein 170 (CLIP-170) is a microtubule plus-end factor that links vesicles to microtubules and recruits the dynein-dynactin complex to microtubule plus ends. CLIP-170 plus-end localization is end binding 1 (EB1)-dependent. CLIP-170 contains two N-terminal cytoskeleton-associated protein glycine-rich (CAP-Gly) domains flanked by serine-rich regions. The CAP-Gly domains are known EB1-binding domains, and the serine-rich regions have also been implicated in CLIP-170's microtubule plus-end localization mechanism. However, the determinants in these serine-rich regions have not been identified. Here we elucidated multiple EB1-binding modules in the CLIP-170 N-terminal region. Using isothermal titration calorimetry and size-exclusion chromatography, we mapped and biophysically characterized these EB1-binding modules, including the two CAP-Gly domains, a bridging SXIP motif, and a unique array of divergent SXIP-like motifs located N-terminally to the first CAP-Gly domain. We found that, unlike the EB1-binding mode of the CAP-Gly domain in the dynactin-associated protein p150Glued, which dually engages the EB1 C-terminal EEY motif as well as the EB homology domain and sterically occludes SXIP motif binding, the CLIP-170 CAP-Gly domains engage only the EEY motif, enabling the flanking SXIP and SXIP-like motifs to bind the EB homology domain. These multivalent EB1-binding modules provided avidity to the CLIP-170-EB1 interaction, likely clarifying why CLIP-170 preferentially binds EB1 rather than the α-tubulin C-terminal EEY motif. Our finding that CLIP-170 has multiple non-CAP-Gly EB1-binding modules may explain why autoinhibition of CLIP-170 GAP-Gly domains does not fully abrogate its microtubule plus-end localization. This work expands our understanding of EB1-binding motifs and their multivalent networks.
Collapse
Affiliation(s)
- Yaodong Chen
- From the Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.,the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| | - Ping Wang
- the Department of Neurology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kevin C Slep
- the Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, and
| |
Collapse
|
28
|
Wang LL, Lee KT, Jung KW, Lee DG, Bahn YS. The novel microtubule-associated CAP-glycine protein Cgp1 governs growth, differentiation, and virulence of Cryptococcus neoformans. Virulence 2018; 9:566-584. [PMID: 29338542 PMCID: PMC5955475 DOI: 10.1080/21505594.2017.1423189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Microtubules are involved in mechanical support, cytoplasmic organization, and several cellular processes by interacting with diverse microtubule-associated proteins such as plus-end tracking proteins, motor proteins, and tubulin-folding cofactors. A number of the cytoskeleton-associated proteins (CAPs) contain the CAP-glycine-rich (CAP-Gly) domain, which is evolutionarily conserved and generally considered to bind to α-tubulin to regulate the function of microtubules. However, there has been a dearth of research on CAP-Gly proteins in fungal pathogens, including Cryptococcus neoformans, which is a global cause of fatal meningoencephalitis in immunocompromised patients. In this study, we identified five CAP-Gly protein-encoding genes in C. neoformans. Among these, Cgp1 encoded by CNAG_06352 has a unique domain structure containing CAP-Gly, SPEC, and Spc7 domains that is not orthologous to CAPs in other eukaryotes. Supporting the role of Cgp1 in microtubule-related function, we demonstrate that deletion or overexpression of CGP1 alters cellular susceptibility to thiabendazole, a microtubule destabilizer and that Cgp1 is co-localized with cytoplasmic microtubules. Related to the cellular function of microtubules, Cgp1 governs the maintenance of membrane stability and genotoxic stress responses. Deletion of CGP1 also reduces production of melanin pigment and attenuates the virulence of C. neoformans. Furthermore, we demonstrate that Cgp1 uniquely regulates the sexual differentiation of C. neoformans with distinct roles in the early and late stage of mating. Domain analysis revealed that the CAP-Gly domain plays a major role in all Cgp1 functions examined. In conclusion, this novel CAP-Gly protein, Cgp1, has pleotropic roles in regulating growth, stress responses, differentiation, and virulence in C. neoformans.
Collapse
Affiliation(s)
- Li Li Wang
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| | - Kyung-Tae Lee
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| | - Kwang-Woo Jung
- b Research Division for Biotechnology, Korea Atomic Energy Research Institute , Jeongeup , Republic of Korea
| | - Dong-Gi Lee
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| | - Yong-Sun Bahn
- a Department of Biotechnology , College of Life Science and Biotechnology, Yonsei University , Seoul , Republic of Korea
| |
Collapse
|
29
|
Abstract
Microtubules act as "railways" for motor-driven intracellular transport, interact with accessory proteins to assemble into larger structures such as the mitotic spindle, and provide an organizational framework to the rest of the cell. Key to these functions is the fact that microtubules are "dynamic." As with actin, the polymer dynamics are driven by nucleotide hydrolysis and influenced by a host of specialized regulatory proteins, including microtubule-associated proteins. However, microtubule turnover involves a surprising behavior-termed dynamic instability-in which individual polymers switch stochastically between growth and depolymerization. Dynamic instability allows microtubules to explore intracellular space and remodel in response to intracellular and extracellular cues. Here, we review how such instability is central to the assembly of many microtubule-based structures and to the robust functioning of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
30
|
Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 2018; 360:1126-1129. [PMID: 29773668 DOI: 10.1126/science.aar4142] [Citation(s) in RCA: 597] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/12/2018] [Indexed: 01/01/2023]
Abstract
Some pathogens and pests deliver small RNAs (sRNAs) into host cells to suppress host immunity. Conversely, hosts also transfer sRNAs into pathogens and pests to inhibit their virulence. Although sRNA trafficking has been observed in a wide variety of interactions, how sRNAs are transferred, especially from hosts to pathogens and pests, is still unknown. Here, we show that host Arabidopsis cells secrete exosome-like extracellular vesicles to deliver sRNAs into fungal pathogen Botrytis cinerea These sRNA-containing vesicles accumulate at the infection sites and are taken up by the fungal cells. Transferred host sRNAs induce silencing of fungal genes critical for pathogenicity. Thus, Arabidopsis has adapted exosome-mediated cross-kingdom RNA interference as part of its immune responses during the evolutionary arms race with the pathogen.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Lulu Qiao
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.,Department of Plant Protection, Nanjing Agriculture University, Nanjing, 210095, China
| | - Ming Wang
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Feng-Mao Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Jared Palmquist
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Sienna-Da Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
31
|
Affiliation(s)
- Angie Gelli
- a Department of Pharmacology , SOM, University of California , GBSF 3503, 451 Health Sciences Dr. Davis CA
| |
Collapse
|
32
|
Stangier MM, Kumar A, Chen X, Farcas AM, Barral Y, Steinmetz MO. Structure-Function Relationship of the Bik1-Bim1 Complex. Structure 2018; 26:607-618.e4. [PMID: 29576319 DOI: 10.1016/j.str.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 11/30/2022]
Abstract
In budding yeast, the microtubule plus-end tracking proteins Bik1 (CLIP-170) and Bim1 (EB1) form a complex that interacts with partners involved in spindle positioning, including Stu2 and Kar9. Here, we show that the CAP-Gly and coiled-coil domains of Bik1 interact with the C-terminal ETF peptide of Bim1 and the C-terminal tail region of Stu2, respectively. The crystal structures of the CAP-Gly domain of Bik1 (Bik1CG) alone and in complex with an ETF peptide revealed unique, functionally relevant CAP-Gly elements, establishing Bik1CG as a specific C-terminal phenylalanine recognition domain. Unlike the mammalian CLIP-170-EB1 complex, Bik1-Bim1 forms ternary complexes with the EB1-binding motifs SxIP and LxxPTPh, which are present in diverse proteins, including Kar9. Perturbation of the Bik1-Bim1 interaction in vivo affected Bik1 localization and astral microtubule length. Our results provide insight into the role of the Bik1-Bim1 interaction for cell division, and demonstrate that the CLIP-170-EB1 module is evolutionarily flexible.
Collapse
Affiliation(s)
- Marcel M Stangier
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Anil Kumar
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Xiuzhen Chen
- Institute of Biochemistry, ETH Zürich, 8049 Zürich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, ETH Zürich, 8049 Zürich, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland.
| |
Collapse
|
33
|
Ran J, Luo Y, Zhang Y, Yang Y, Chen M, Liu M, Li D, Zhou J. Phosphorylation of EB1 regulates the recruitment of CLIP-170 and p150glued to the plus ends of astral microtubules. Oncotarget 2018; 8:9858-9867. [PMID: 28039481 PMCID: PMC5354776 DOI: 10.18632/oncotarget.14222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/24/2016] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of end-binding protein 1 (EB1), a key member of microtubule plus end-tracking proteins (+TIPs), by apoptosis signal-regulating kinase 1 (ASK1) has been demonstrated to promote the stability of astral microtubules during mitosis by stimulating the binding of EB1 to microtubule plus ends. However, the roles of other members of the +TIPs family in ASK1/EB1-mediated regulation of astral microtubules are unknown. Herein, we show that ASK1-mediated phosphorylation of EB1 enhances the localization of cytoplasmic linker protein 170 (CLIP-170) and p150glued to the plus ends of astral microtubules. Depletion of ASK1 or expression of phospho-deficient or phospho-mimetic EB1 mutants results in changes in the levels of plus-end localized CLIP-170 or p150glued. Mechanistic studies reveal that EB1 phosphorylation promotes its interactions with CLIP-170 and p150glued, thereby recruiting these +TIPs to microtubules. Structural analysis suggests that serine-40 is the primary phosphorylation site on EB1 that exerts these effects. Together, these findings provide novel insight into the molecular mechanisms that regulate the interactions of EB1 with other +TIPs.
Collapse
Affiliation(s)
- Jie Ran
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yijun Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
34
|
Siddiqui N, Straube A. Intracellular Cargo Transport by Kinesin-3 Motors. BIOCHEMISTRY (MOSCOW) 2017; 82:803-815. [PMID: 28918744 DOI: 10.1134/s0006297917070057] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracellular transport along microtubules enables cellular cargoes to efficiently reach the extremities of large, eukaryotic cells. While it would take more than 200 years for a small vesicle to diffuse from the cell body to the growing tip of a one-meter long axon, transport by a kinesin allows delivery in one week. It is clear from this example that the evolution of intracellular transport was tightly linked to the development of complex and macroscopic life forms. The human genome encodes 45 kinesins, 8 of those belonging to the family of kinesin-3 organelle transporters that are known to transport a variety of cargoes towards the plus end of microtubules. However, their mode of action, their tertiary structure, and regulation are controversial. In this review, we summarize the latest developments in our understanding of these fascinating molecular motors.
Collapse
Affiliation(s)
- N Siddiqui
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
35
|
Barbosa DJ, Duro J, Prevo B, Cheerambathur DK, Carvalho AX, Gassmann R. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport. PLoS Genet 2017; 13:e1006941. [PMID: 28759579 PMCID: PMC5552355 DOI: 10.1371/journal.pgen.1006941] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 07/25/2017] [Indexed: 12/01/2022] Open
Abstract
The microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin's microtubule binding activity, located in the p150 CAP-Gly domain and an adjacent basic patch, in the C. elegans zygote. Analysis of p150 mutants engineered by genome editing suggests that microtubule tip tracking of dynein-dynactin is dispensable for targeting the motor to the cell cortex and for generating robust cortical pulling forces. Instead, mutations in p150's CAP-Gly domain inhibit cytoplasmic pulling forces responsible for centration of centrosomes and attached pronuclei. The centration defects are mimicked by mutations of α-tubulin's C-terminal tyrosine, and both p150 CAP-Gly and tubulin tyrosine mutants decrease the frequency of early endosome transport from the cell periphery towards centrosomes during centration. Our results suggest that p150 GAP-Gly domain binding to tyrosinated microtubules promotes initiation of dynein-mediated organelle transport in the dividing one-cell embryo, and that this function of p150 is critical for generating cytoplasmic pulling forces for centrosome centration.
Collapse
Affiliation(s)
- Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Joana Duro
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Bram Prevo
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Dhanya K. Cheerambathur
- Ludwig Institute for Cancer Research/Dept of Cellular & Molecular Medicine UCSD, La Jolla, CA, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Wong JH, Hashimoto T. Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC PLANT BIOLOGY 2017; 17:33. [PMID: 28148225 PMCID: PMC5288973 DOI: 10.1186/s12870-017-0987-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/25/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Microtubules (MTs) are polarized polymers with highly dynamic plus ends that stochastically switch between growth and shrinkage phases. In eukaryotic cells, a plethora of MT-associated proteins (MAPs) regulate the dynamics and higher-order organization of MTs to mediate distinct cellular functions. Plus-end tracking proteins (+TIPs) are a group of MAPs that specifically accumulate at the growing MT plus ends, where they modulate the behavior of the MT plus ends and mediate interactions with cellular targets. Although several functionally important + TIP proteins have been characterized in yeast and animals, little is known about this group of proteins in plants. RESULTS We report here that two homologous MAPs from Arabidopsis thaliana, Growing Plus-end Tracking 1 (GPT1) and GPT2 (henceforth GPT1/2), contain basic MT-binding regions at their central and C-terminal regions, and bind directly to MTs in vitro. Interestingly, GPT1/2 preferentially accumulated at the growing plus ends of cortical MTs in interphase Arabidopsis cells. When the GPT1/12-decorated growing plus ends switched to rapid depolymerization, GPT1/2 dissociated from the MT plus ends. Conversely, when the depolymerizing ends were rescued and started to polymerize again, GPT1/2 were immediately recruited to the growing MT tips. This tip tracking behavior of GPT proteins does not depend on the two established plant + TIPs, End-Binding protein 1 (EB1) and SPIRAL1 (SPR1). CONCLUSIONS The Arabidopsis MAPs GPT1 and GPT2 bind MTs directly through their basic regions. These MAPs track the plus ends of growing MTs independently of EB1 and SPR1 and represent a novel plant-specific + TIP family.
Collapse
Affiliation(s)
- Jeh Haur Wong
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| | - Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
37
|
Insights into the process of EB1-dependent tip-tracking of kinesin-14 Ncd. The role of the microtubule. Eur J Cell Biol 2016; 95:521-530. [PMID: 27608966 DOI: 10.1016/j.ejcb.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 01/13/2023] Open
Abstract
End-binding proteins are capable of tracking the plus-ends of growing microtubules (MTs). The motor protein Ncd, a member of the kinesin-14 family, interacts with EB1 protein and becomes a non-autonomous tip-tracker. Here, we attempted to find out whether at least for Ncd, the efficient EB1-mediated tip-tracking involves the interaction of the kinesin with the MT surface. We prepared a series of Ncd tail mutants in which the MT-binding sites were altered or eliminated. Using TIRF microscopy, we characterized their behavior as tip-trackers and measured the dwell times of single molecules of EB1 and Ncd tail or its mutated forms. The mutated forms of Ncd tail exhibited tip-tracking in the presence of EB1 and the effectiveness of this process was proportional to the affinity of the mutant's tail to MT. Even though the interaction of Ncd with EB1 was weak (Kd∼9μM) the half saturating concentration of EB1 for tip-tracking was 7nM. The dwell time of Ncd tail in the presence of EB1 was ∼1s. The dwell time of EB1 alone was shorter (∼0.3s) and increased considerably in the presence of a large excess of Ncd tail. We demonstrated that tip-tracking of kinesin-14 occurs through several concurrent mechanisms: binding of kinesin only to EB1 located at the MT end, interaction of the kinesin molecules with a composite site formed by EB1 and the MT tip, and probably surface diffusion of the tail along MT. The second mechanism seems to play a crucial role in efficient tip-tracking.
Collapse
|
38
|
Yang Y, Zhou J. CYLD - a deubiquitylase that acts to fine-tune microtubule properties and functions. J Cell Sci 2016; 129:2289-95. [PMID: 27173491 DOI: 10.1242/jcs.183319] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microtubules are dynamic structures that are crucially involved in a variety of cellular activities. The dynamic properties and functions of microtubules are regulated by various factors, such as tubulin isotype composition and microtubule-binding proteins. Initially identified as a deubiquitylase with tumor-suppressing functions, the protein cylindromatosis (CYLD) has recently been revealed to interact with microtubules, modulate microtubule dynamics, and participate in the regulation of cell migration, cell cycle progression, chemotherapeutic drug sensitivity and ciliogenesis. These findings have greatly enriched our understanding of the roles of CYLD in physiological and pathological conditions. Here, we focus on recent literature that shows how CYLD impacts on microtubule properties and functions in various biological processes, and discuss the challenges we face when interpreting results obtained from different experimental systems.
Collapse
Affiliation(s)
- Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance of Shandong Province, Key Laboratory of Molecular and Nano Probes of the Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
39
|
Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 2015; 16:711-26. [PMID: 26562752 DOI: 10.1038/nrm4084] [Citation(s) in RCA: 614] [Impact Index Per Article: 68.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubules have fundamental roles in many essential biological processes, including cell division and intracellular transport. They assemble and disassemble from their two ends, denoted the plus end and the minus end. Significant advances have been made in our understanding of microtubule plus-end-tracking proteins (+TIPs) such as end-binding protein 1 (EB1), XMAP215, selected kinesins and dynein. By contrast, information on microtubule minus-end-targeting proteins (-TIPs), such as the calmodulin-regulated spectrin-associated proteins (CAMSAPs) and Patronin, has only recently started to emerge. Here, we review our current knowledge of factors, including microtubule-targeting agents, that associate with microtubule ends to control the dynamics and function of microtubules during the cell cycle and development.
Collapse
|
40
|
Drechsler H, Tan AN, Liakopoulos D. Yeast GSK-3 kinase regulates astral microtubule function through phosphorylation of the microtubule-stabilizing kinesin Kip2. J Cell Sci 2015. [PMID: 26395399 DOI: 10.1242/jcs.166686/-/dc1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The S. cerevisiae kinesin Kip2 stabilises astral microtubules (MTs) and facilitates spindle positioning through transport of MT-associated proteins, such as the yeast CLIP-170 homologue Bik1, dynein and the adenomatous-polyposis-coli-related protein Kar9 to the plus ends of astral MTs. Here, we show that Kip2 associates with its processivity factor Bim1, the yeast homologue of the plus-end-tracking protein EB1. This interaction requires an EB1-binding motif in the N-terminal extension of Kip2 and is negatively regulated by phosphorylation through Mck1, the yeast glycogen synthase kinase 3. In addition, Mck1-dependent phosphorylation decreases the intrinsic MT affinity of Kip2. Reduction in Kip2 phosphorylation leads to stabilisation of astral MTs, and accumulation of Kip2, dynein and Kar9 at MT plus ends, whereas loss of Mck1 function leads to defects in spindle positioning. Furthermore, we provide evidence that a subpopulation of Mck1 at the bud-cortex phosphorylates Kip2. We propose that yeast GSK-3 spatially controls astral MT dynamics and the loading of dynein and Kar9 on astral MT plus ends by regulating Kip2 interactions with Bim1 and MTs.
Collapse
Affiliation(s)
- Hauke Drechsler
- Biochemistry Centre Heidelberg (BZH), INF 328, Heidelberg 69120, Germany
| | - Ann Na Tan
- Biochemistry Centre Heidelberg (BZH), INF 328, Heidelberg 69120, Germany
| | | |
Collapse
|
41
|
Drechsler H, Tan AN, Liakopoulos D. Yeast GSK-3 kinase regulates astral microtubule function through phosphorylation of the microtubule-stabilizing kinesin Kip2. J Cell Sci 2015; 128:3910-21. [PMID: 26395399 PMCID: PMC4657329 DOI: 10.1242/jcs.166686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
The S. cerevisiae kinesin Kip2 stabilises astral microtubules (MTs) and facilitates spindle positioning through transport of MT-associated proteins, such as the yeast CLIP-170 homologue Bik1, dynein and the adenomatous-polyposis-coli-related protein Kar9 to the plus ends of astral MTs. Here, we show that Kip2 associates with its processivity factor Bim1, the yeast homologue of the plus-end-tracking protein EB1. This interaction requires an EB1-binding motif in the N-terminal extension of Kip2 and is negatively regulated by phosphorylation through Mck1, the yeast glycogen synthase kinase 3. In addition, Mck1-dependent phosphorylation decreases the intrinsic MT affinity of Kip2. Reduction in Kip2 phosphorylation leads to stabilisation of astral MTs, and accumulation of Kip2, dynein and Kar9 at MT plus ends, whereas loss of Mck1 function leads to defects in spindle positioning. Furthermore, we provide evidence that a subpopulation of Mck1 at the bud-cortex phosphorylates Kip2. We propose that yeast GSK-3 spatially controls astral MT dynamics and the loading of dynein and Kar9 on astral MT plus ends by regulating Kip2 interactions with Bim1 and MTs. Summary: The yeast GSK-3 kinase controls astral microtubule functions by regulating the interaction of the microtubule-stabilising kinesin Kip2 with microtubules and its processivity factor Bim1/EB1.
Collapse
Affiliation(s)
- Hauke Drechsler
- Biochemistry Centre Heidelberg (BZH), INF 328, Heidelberg 69120, Germany
| | - Ann Na Tan
- Biochemistry Centre Heidelberg (BZH), INF 328, Heidelberg 69120, Germany
| | | |
Collapse
|
42
|
van der Horst A, Vromans MJM, Bouwman K, van der Waal MS, Hadders MA, Lens SMA. Inter-domain Cooperation in INCENP Promotes Aurora B Relocation from Centromeres to Microtubules. Cell Rep 2015; 12:380-7. [PMID: 26166576 DOI: 10.1016/j.celrep.2015.06.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/13/2015] [Accepted: 06/10/2015] [Indexed: 01/08/2023] Open
Abstract
The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In budding yeast, this requires dephosphorylation of the microtubule-binding (MTB) domain of the INCENP analog Sli15. The mechanistic basis for this relocalization in metazoans is incompletely understood. We demonstrate that the putative coiled-coil domain within INCENP drives midzone localization of Aurora B via a direct, electrostatic interaction with microtubules. Furthermore, we provide evidence that the CPC multimerizes via INCENP's centromere-targeting domain (CEN box), which increases the MTB affinity of INCENP. In (pro)metaphase, the MTB affinity of INCENP is outcompeted by the affinity of its CEN box for centromeres, while at anaphase onset—when the histone mark H2AT120 is dephosphorylated—INCENP and Aurora B switch from centromere to microtubule localization.
Collapse
Affiliation(s)
- Armando van der Horst
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Martijn J M Vromans
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Kim Bouwman
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Maike S van der Waal
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Michael A Hadders
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Susanne M A Lens
- Department of Medical Oncology, Department of Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
43
|
Serna M, Carranza G, Martín-Benito J, Janowski R, Canals A, Coll M, Zabala JC, Valpuesta JM. The structure of the complex between α-tubulin, TBCE and TBCB reveals a tubulin dimer dissociation mechanism. J Cell Sci 2015; 128:1824-34. [PMID: 25908846 DOI: 10.1242/jcs.167387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/16/2015] [Indexed: 11/20/2022] Open
Abstract
Tubulin proteostasis is regulated by a group of molecular chaperones termed tubulin cofactors (TBC). Whereas tubulin heterodimer formation is well-characterized biochemically, its dissociation pathway is not clearly understood. Here, we carried out biochemical assays to dissect the role of the human TBCE and TBCB chaperones in α-tubulin-β-tubulin dissociation. We used electron microscopy and image processing to determine the three-dimensional structure of the human TBCE, TBCB and α-tubulin (αEB) complex, which is formed upon α-tubulin-β-tubulin heterodimer dissociation by the two chaperones. Docking the atomic structures of domains of these proteins, including the TBCE UBL domain, as we determined by X-ray crystallography, allowed description of the molecular architecture of the αEB complex. We found that heterodimer dissociation is an energy-independent process that takes place through a disruption of the α-tubulin-β-tubulin interface that is caused by a steric interaction between β-tubulin and the TBCE cytoskeleton-associated protein glycine-rich (CAP-Gly) and leucine-rich repeat (LRR) domains. The protruding arrangement of chaperone ubiquitin-like (UBL) domains in the αEB complex suggests that there is a direct interaction of this complex with the proteasome, thus mediating α-tubulin degradation.
Collapse
Affiliation(s)
- Marina Serna
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Gerardo Carranza
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria, Santander 39011, Spain
| | - Jaime Martín-Benito
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Robert Janowski
- Departamento de Biología Estructural y Computacional, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona 08028, Spain Departamento de Biología Estructural, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Albert Canals
- Departamento de Biología Estructural y Computacional, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona 08028, Spain Departamento de Biología Estructural, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Miquel Coll
- Departamento de Biología Estructural y Computacional, Institute for Research in Biomedicine (IRB-Barcelona), Barcelona 08028, Spain Departamento de Biología Estructural, Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Juan Carlos Zabala
- Departamento de Biología Molecular, Facultad de Medicina, IDIVAL-Universidad de Cantabria, Santander 39011, Spain
| | - José María Valpuesta
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| |
Collapse
|
44
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
45
|
Liu J, Han R. The Evolution of Microtubule End-Binding Protein 1 (EB1) and Roles in Regulating Microtubule Behavior. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.613212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
47
|
Wojnacki J, Quassollo G, Marzolo MP, Cáceres A. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics. Small GTPases 2014; 5:e28430. [PMID: 24691223 DOI: 10.4161/sgtp.28430] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.
Collapse
Affiliation(s)
- José Wojnacki
- Laboratory of Neurobiology; Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET; Córdoba, Argentina
| | - Gonzalo Quassollo
- Laboratory of Neurobiology; Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET; Córdoba, Argentina
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización; Departamento de Biología Celular y Molecular; Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Alfredo Cáceres
- Laboratory of Neurobiology; Instituto Mercedes y Martin Ferreyra (INIMEC) CONICET; Córdoba, Argentina; Universidad Nacional Córdoba (UNC); Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC); Córdoba-Argentina
| |
Collapse
|
48
|
Leśniewska K, Warbrick E, Ohkura H. Peptide aptamers define distinct EB1- and EB3-binding motifs and interfere with microtubule dynamics. Mol Biol Cell 2014; 25:1025-36. [PMID: 24478452 PMCID: PMC3967968 DOI: 10.1091/mbc.e13-08-0504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study isolated many peptide aptamers containing the SxIP motif that binds to Drosophila EB1 and human EB1 and EB3. Interaction sequences are similar to but distinct from each other. Aptamers can competitively displace endogenous EB1-interacting proteins from microtubule plus ends, and their expression in developing flies alters microtubule dynamics. EB1 is a conserved protein that plays a central role in regulating microtubule dynamics and organization. It binds directly to microtubule plus ends and recruits other plus end–localizing proteins. Most EB1-binding proteins contain a Ser–any residue–Ile-Pro (SxIP) motif. Here we describe the isolation of peptide aptamers with optimized versions of this motif by screening for interaction with the Drosophila EB1 protein. The use of small peptide aptamers to competitively inhibit protein interaction and function is becoming increasingly recognized as a powerful technique. We show that SxIP aptamers can bind microtubule plus ends in cells and functionally act to displace interacting proteins by competitive binding. Their expression in developing flies can interfere with microtubules, altering their dynamics. We also identify aptamers binding to human EB1 and EB3, which have sequence requirements similar to but distinct from each other and from Drosophila EB1. This suggests that EB1 paralogues within one species may interact with overlapping but distinct sets of proteins in cells.
Collapse
Affiliation(s)
- Karolina Leśniewska
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | |
Collapse
|
49
|
Kanai Y, Wang D, Hirokawa N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. ACTA ACUST UNITED AC 2014; 204:395-408. [PMID: 24469637 PMCID: PMC3912526 DOI: 10.1083/jcb.201309066] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The motor protein KIF13B has an unconventional role as a scaffold that recruits lipoprotein receptor–related protein 1 to caveolae, thereby enhancing its endocytosis. Multifunctional low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) recognizes and internalizes a large number of diverse ligands, including LDL and factor VIII. However, little is known about the regulation of LRP1 endocytosis. Here, we show that a microtubule-based motor protein, KIF13B, in an unexpected and unconventional function, enhances caveolin-dependent endocytosis of LRP1. KIF13B was highly expressed in the liver and was localized on the sinusoidal plasma membrane of hepatocytes. KIF13B knockout (KO) mice showed elevated levels of serum cholesterol and factor VIII, and KO MEFs showed decreased uptake of LDL. Exogenous KIF13B, initially localized on the plasma membrane with caveolae, was translocated to the vesicles in the cytoplasm with LRP1 and caveolin-1. KIF13B bound to hDLG1 and utrophin, which, in turn, bound to LRP1 and caveolae, respectively. These linkages were required for the KIF13B-enhanced endocytosis of LRP1. Thus, we propose that KIF13B, working as a scaffold, recruits LRP1 to caveolae via LRP1–hDLG1–KIF13B–utrophin–caveolae linkage and enhances the endocytosis of LRP1.
Collapse
Affiliation(s)
- Yoshimitsu Kanai
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
50
|
Li D, Gao J, Yang Y, Sun L, Suo S, Luo Y, Shui W, Zhou J, Liu M. CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Cell Cycle 2014; 13:974-83. [PMID: 24552808 DOI: 10.4161/cc.27838] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cylindromatosis (CYLD), a deubiquitinase involved in inflammation and tumorigenesis via the modulation of cell signaling, has recently been identified as a critical regulator of microtubule dynamics. CYLD has also been shown to stimulate cell migration and thereby contribute to normal physiological processes. However, it remains elusive how the regulation of microtubule dynamic properties by CYLD is connected to its role in mediating cell migration. In this study, we performed yeast 2-hybrid screening with CYLD as bait and identified 7 CYLD-interacting proteins, including end-binding protein 1 (EB1). The CYLD-EB1 interaction was confirmed both in cells and in vitro, and these 2 proteins colocalized at the plus ends of microtubules. Interestingly, the association of CYLD with EB1 was significantly increased upon the stimulation of cell migration. CYLD coordinated with EB1 to orchestrate tail retraction, centrosome reorientation, and leading-edge microtubule stabilization in migratory cells. In addition, CYLD acted in concert with EB1 to regulate microtubule assembly in vitro, microtubule nucleation at the centrosome, and microtubule growth at the cell periphery. These data provide mechanistic insights into the actions of CYLD in the regulation of microtubule dynamics and cell migration. These findings also support the notion that coordinated actions of microtubule-binding proteins are critical for microtubule-mediated cellular events.
Collapse
Affiliation(s)
- Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jinmin Gao
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Yunfan Yang
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Lei Sun
- Tianjin Key Laboratory of Medical Epigenetics; School of Basic Medical Sciences; Tianjin Medical University; Tianjin, China
| | - Shaojun Suo
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Wenqing Shui
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology; College of Life Sciences; Nankai University; Tianjin, China
| | - Min Liu
- Tianjin Key Laboratory of Medical Epigenetics; School of Basic Medical Sciences; Tianjin Medical University; Tianjin, China
| |
Collapse
|