1
|
Alananzeh WA, Al-Qattan MN, Ayipo YO, Mordi MN. N-substituted tetrahydro-beta-carboline as mu-opioid receptors ligands: in silico study; molecular docking, ADMET and molecular dynamics approach. Mol Divers 2024; 28:1273-1289. [PMID: 37133710 DOI: 10.1007/s11030-023-10655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Manipulating intracellular signals by interaction with transmembranal G-protein-coupled receptors (GPCRs) is the way of action of more than 30% of available medicines. Designing molecules against GPCRs is most challenging due to their flexible binding orthosteric and allosteric pockets, a property that lead to different mode and extent of activation of intracellular mediators. Here, in the current study we aimed to design N-substituted tetrahydro-beta-carbolines (THβC's) targeting Mu Opioid Receptors (MORs). We performed ligand docking study for reference and designed compounds against active and inactive states of MOR, as well as the active state bound to intracellular mediator of Gi. The reference compounds include 40 known agonists and antagonists, while the designed compounds include 25,227 N-substituted THβC analogues. Out of the designed compounds, 15 compounds were comparatively having better extra precision (XP) Gscore and were analyzed for absorption, distribution, metabolism, and excretion-toxicity (ADMET) properties, drug-likness, and molecular dynamic (MD) simulation. The results showed that N-substituted tetrahydro-beta-carbolines with and without C6-methoxy group substitutions (THBC/6MTHBC) analogues of A1/B1 and A9/B9 have relatively acceptable affinity and within pocket-stability toward MOR compared to the reference compounds of morphine (agonist) and naloxone (antagonist). Moreover, the designed analogues interact with key residue within the binding pocket of Asp 147 that is reported to be involved in receptor activation. In conclusion, the designed THBC analogues represent a good starting point for designing opioid receptor ligands other than morphinan scaffold, that have good synthetic accessibility which promotes feasible structural manipulation to tailor pharmacological effects with minimal side effects.
Collapse
Affiliation(s)
- Waleed A Alananzeh
- Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia.
| | - Mohammed N Al-Qattan
- College of Pharmacy, Knowledge University, Erbīl, Iraq
- College of Pharmacy, Nineveh University, Mosul, Iraq
| | - Yusuf Oloruntoyin Ayipo
- Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Ilorin, Nigeria
| | - Mohd N Mordi
- Center for Drug Research, Universiti Sains Malaysia, 11800, George Town, Pulau Penang, Malaysia
| |
Collapse
|
2
|
Imam MZ, Kuo A, Ghassabian S, Cai Y, Qin Y, Li T, Smith MT. CYX-5, a G-protein biassed MOP receptor agonist, DOP receptor antagonist and KOP receptor agonist, evokes constipation but not respiratory depression relative to morphine in rats. Pharmacol Rep 2023; 75:634-646. [PMID: 36637684 PMCID: PMC10227131 DOI: 10.1007/s43440-023-00446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Strong opioid analgesics such as morphine alleviate moderate to severe acute nociceptive pain (e.g. post-surgical or post-trauma pain) as well as chronic cancer pain. However, they evoke many adverse effects and so there is an unmet need for opioid analgesics with improved tolerability. Recently, a prominent hypothesis has been that opioid-related adverse effects are mediated by β-arrestin2 recruitment at the µ-opioid (MOP) receptor and this stimulated research on discovery of G-protein biassed opioid analgesics. In other efforts, opioids with MOP agonist and δ-opioid (DOP) receptor antagonist profiles are promising for reducing side effects c.f. morphine. Herein, we report on the in vivo pharmacology of a novel opioid peptide (CYX-5) that is a G-protein biassed MOP receptor agonist, DOP receptor antagonist and kappa opioid (KOP) receptor agonist. METHODS Male Sprague-Dawley received intracerebroventricular bolus doses of CYX-5 (3, 10, 20 nmol), morphine (100 nmol) or vehicle, and antinociception (tail flick) was assessed relative to constipation (charcoal meal and castor oil-induced diarrhoea tests) and respiratory depression (whole body plethysmography). RESULTS CYX-5 evoked naloxone-sensitive, moderate antinociception, at the highest dose tested. Although CYX-5 did not inhibit gastrointestinal motility, it reduced stool output markedly in the castor oil-induced diarrhoea test. In contrast to morphine that evoked respiratory depression, CYX-5 increased tidal volume, thereby stimulating respiration. CONCLUSION Despite its lack of recruitment of β-arrestin2 at MOP, DOP and KOP receptors, CYX-5 evoked constipation, implicating a mechanism other than β-arrestin2 recruitment at MOP, DOP and KOP receptors, mediating constipation evoked by CYX-5 and potentially other opioid ligands.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Sussan Ghassabian
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Yunxin Cai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
3
|
Hou Y, Zou G, Wang X, Guo H, Ma X, Cheng X, Xie Z, Zuo X, Xia J, Mao H, Yuan M, Chen Q, Cao P, Yang Y, Zhang L, Xiong W. Coordinated activity of a central pathway drives associative opioid analgesic tolerance. SCIENCE ADVANCES 2023; 9:eabo5627. [PMID: 36753548 PMCID: PMC9908028 DOI: 10.1126/sciadv.abo5627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Opioid analgesic tolerance, a root cause of opioid overdose and misuse, can develop through an associative learning. Despite intensive research, the locus and central pathway subserving the associative opioid analgesic tolerance (AOAT) remains unclear. Using a combination of chemo/optogenetic manipulation with calcium imaging and slice physiology, here we identify neuronal ensembles in a hierarchically organized pathway essential for AOAT. The association of morphine-induced analgesia with an environmental condition drives glutamatergic signaling from ventral hippocampus (vHPC) to dorsomedial prefrontal cortex (dmPFC) cholecystokininergic (CCKergic) neurons. Excitation of CCKergic neurons, which project and release CCK to basolateral amygdala (BLA) glutamatergic neurons, relays AOAT signal through inhibition of BLA μ-opioid receptor function, thereby leading to further loss of morphine analgesic efficacy. This work provides evidence for a circuit across different brain regions distinct for opioid analgesic tolerance. The components of this pathway are potential targets to treat opioid overdose and abuse.
Collapse
Affiliation(s)
- Yiwen Hou
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Guichang Zou
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Xianglian Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hui Guo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiao Ma
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Cheng
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhiyong Xie
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Zuo
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jing Xia
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huanhuan Mao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Man Yuan
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qi Chen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Peng Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yupeng Yang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Xiong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
- Anhui Province Key Laboratory of Biomedical Aging Research, Hefei 230026, China
| |
Collapse
|
4
|
Shi Y, Chen Y, Deng L, Du K, Lu S, Chen T. Structural Understanding of Peptide-Bound G Protein-Coupled Receptors: Peptide-Target Interactions. J Med Chem 2023; 66:1083-1111. [PMID: 36625741 DOI: 10.1021/acs.jmedchem.2c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The activation of G protein-coupled receptors (GPCRs) is triggered by ligand binding to their orthosteric sites, which induces ligand-specific conformational changes. Agonists and antagonists bound to GPCR orthosteric sites provide detailed information on ligand-binding modes. Among these, peptide ligands play an instrumental role in GPCR pharmacology and have attracted increased attention as therapeutic drugs. The recent breakthrough in GPCR structural biology has resulted in the remarkable availability of peptide-bound GPCR complexes. Despite the several structural similarities shared by these receptors, they exhibit distinct features in terms of peptide recognition and receptor activation. From this perspective, we have summarized the current status of peptide-bound GPCR structural complexes, largely focusing on the interactions between the receptor and its peptide ligand at the orthosteric site. In-depth structural investigations have yielded valuable insights into the molecular mechanisms underlying peptide recognition. This study would contribute to the discovery of GPCR peptide drugs with improved therapeutic effects.
Collapse
Affiliation(s)
- Yuxin Shi
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yi Chen
- Department of Ultrasound Interventional, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai 200433, China
| | - Liping Deng
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.,Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
5
|
Diaz MM, Caylor J, Strigo I, Lerman I, Henry B, Lopez E, Wallace MS, Ellis RJ, Simmons AN, Keltner JR. Toward Composite Pain Biomarkers of Neuropathic Pain-Focus on Peripheral Neuropathic Pain. FRONTIERS IN PAIN RESEARCH 2022; 3:869215. [PMID: 35634449 PMCID: PMC9130475 DOI: 10.3389/fpain.2022.869215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Chronic pain affects ~10-20% of the U.S. population with an estimated annual cost of $600 billion, the most significant economic cost of any disease to-date. Neuropathic pain is a type of chronic pain that is particularly difficult to manage and leads to significant disability and poor quality of life. Pain biomarkers offer the possibility to develop objective pain-related indicators that may help diagnose, treat, and improve the understanding of neuropathic pain pathophysiology. We review neuropathic pain mechanisms related to opiates, inflammation, and endocannabinoids with the objective of identifying composite biomarkers of neuropathic pain. In the literature, pain biomarkers typically are divided into physiological non-imaging pain biomarkers and brain imaging pain biomarkers. We review both types of biomarker types with the goal of identifying composite pain biomarkers that may improve recognition and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Jacob Caylor
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Irina Strigo
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Imanuel Lerman
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Brook Henry
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Lopez
- Department of Psychiatry, San Francisco Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Mark S. Wallace
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Department of Psychiatry, San Diego & Center of Excellence in Stress and Mental Health, Veteran Affairs Health Care System, University of California, San Diego, San Diego, CA, United States
| | - John R. Keltner
- Department of Psychiatry, San Diego & San Diego VA Medical Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Porta A, Rodríguez L, Bai X, Batallé G, Roch G, Pouso-Vázquez E, Balboni G, Pol O. Hydrogen Sulfide Inhibits Inflammatory Pain and Enhances the Analgesic Properties of Delta Opioid Receptors. Antioxidants (Basel) 2021; 10:antiox10121977. [PMID: 34943080 PMCID: PMC8750936 DOI: 10.3390/antiox10121977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic inflammatory pain is present in many pathologies and diminishes the patient's quality of life. Moreover, most current treatments have a low efficacy and significant side effects. Recent studies demonstrate the analgesic properties of slow-releasing hydrogen sulfide (H2S) donors in animals with osteoarthritis or neuropathic pain, but their effects in inflammatory pain and related pathways are not completely understood. Several treatments potentiate the analgesic actions of δ-opioid receptor (DOR) agonists, but the role of H2S in modulating their effects and expression during inflammatory pain remains untested. In C57BL/6J male mice with inflammatory pain provoked by subplantar injection of complete Freund's adjuvant, we evaluated: (1) the antiallodynic and antihyperalgesic effects of different doses of two slow-releasing H2S donors, i.e., diallyl disulfide (DADS) and phenyl isothiocyanate (P-ITC) and their mechanism of action; (2) the pain-relieving effects of DOR agonists co-administered with H2S donors; (3) the effects of DADS and P-ITC on the oxidative stress and molecular changes caused by peripheral inflammation. Results demonstrate that both H2S donors inhibited allodynia and hyperalgesia in a dose-dependent manner, potentiated the analgesic effects and expression of DOR, activated the antioxidant system, and reduced the nociceptive and apoptotic pathways. The data further demonstrate the possible participation of potassium channels and the Nrf2 transcription factor signaling pathway in the pain-relieving activities of DADS and P-ITC. This study suggests that the systemic administration of DADS and P-ITC and local application of DOR agonists in combination with slow-releasing H2S donors are two new strategies for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Aina Porta
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Laura Rodríguez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerad Roch
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Enric Pouso-Vázquez
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.P.); (L.R.); (X.B.); (G.B.); (G.R.); (E.P.-V.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
7
|
Liu Q, He H, Mai L, Yang S, Fan W, Huang F. Peripherally Acting Opioids in Orofacial Pain. Front Neurosci 2021; 15:665445. [PMID: 34017236 PMCID: PMC8129166 DOI: 10.3389/fnins.2021.665445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of opioid receptors by exogenous or endogenous opioids can produce significant analgesic effects in peripheral tissues. Numerous researchers have demonstrated the expression of peripheral opioid receptors (PORs) and endogenous opioid peptides (EOPs) in the orofacial region. Growing evidence has shown the involvement of PORs and immune cell-derived EOPs in the modulation of orofacial pain. In this review, we discuss the role of PORs and EOPs in orofacial pain and the possible cellular mechanisms involved. Furthermore, the potential development of therapeutic strategies for orofacial pain is also summarized.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lijia Mai
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Jaschke N, Pählig S, Pan YX, Hofbauer LC, Göbel A, Rachner TD. From Pharmacology to Physiology: Endocrine Functions of μ-Opioid Receptor Networks. Trends Endocrinol Metab 2021; 32:306-319. [PMID: 33676828 PMCID: PMC8035298 DOI: 10.1016/j.tem.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/04/2023]
Abstract
The steady rise in opioid users and abusers has uncovered multiple detrimental health consequences of perturbed opioid receptor signaling, thereby creating the need to better understand the biology of these systems. Among endogenous opioid networks, μ-receptors have received special attention due to their unprecedented biological complexity and broad implications in homeostatic functions. Here, we review the origin, molecular biology, and physiology of endogenous opioids with a special focus on μ-opioid receptor networks within the endocrine system. Moreover, we summarize the current evidence supporting an involvement of the latter in regulating distinct endocrine functions. Finally, we combine these insights to present an integrated perspective on μ-opioid receptor biology and provide an outlook on future studies and unresolved questions in this field.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
| | - Sophie Pählig
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Andy Göbel
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Tilman D Rachner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
9
|
Uprety R, Che T, Zaidi SA, Grinnell SG, Varga BR, Faouzi A, Slocum ST, Allaoa A, Varadi A, Nelson M, Bernhard SM, Kulko E, Le Rouzic V, Eans SO, Simons CA, Hunkele A, Subrath J, Pan YX, Javitch JA, McLaughlin JP, Roth BL, Pasternak GW, Katritch V, Majumdar S. Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. eLife 2021; 10:e56519. [PMID: 33555255 PMCID: PMC7909954 DOI: 10.7554/elife.56519] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 02/07/2021] [Indexed: 12/12/2022] Open
Abstract
Controlling receptor functional selectivity profiles for opioid receptors is a promising approach for discovering safer analgesics; however, the structural determinants conferring functional selectivity are not well understood. Here, we used crystal structures of opioid receptors, including the recently solved active state kappa opioid complex with MP1104, to rationally design novel mixed mu (MOR) and kappa (KOR) opioid receptor agonists with reduced arrestin signaling. Analysis of structure-activity relationships for new MP1104 analogs points to a region between transmembrane 5 (TM5) and extracellular loop (ECL2) as key for modulation of arrestin recruitment to both MOR and KOR. The lead compounds, MP1207 and MP1208, displayed MOR/KOR Gi-partial agonism with diminished arrestin signaling, showed efficient analgesia with attenuated liabilities, including respiratory depression and conditioned place preference and aversion in mice. The findings validate a novel structure-inspired paradigm for achieving beneficial in vivo profiles for analgesia through different mechanisms that include bias, partial agonism, and dual MOR/KOR agonism.
Collapse
Affiliation(s)
- Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Tao Che
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Steven G Grinnell
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Balázs R Varga
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| | - Abdelfattah Faouzi
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| | - Samuel T Slocum
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - András Varadi
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Melissa Nelson
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Sarah M Bernhard
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
| | - Elizaveta Kulko
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of FloridaGainesvilleUnited States
| | - Chloe A Simons
- Department of Pharmacodynamics, University of FloridaGainesvilleUnited States
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joan Subrath
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Department of Anesthesiology, Rutgers New Jersey Medical School, New JerseyNewarkUnited States
| | - Jonathan A Javitch
- Division of Molecular Therapeutics, New York State Psychiatric Institute and Departments of Psychiatry, Pharmacology, Columbia University Vagelos College of Physicians & SurgeonsNew YorkUnited States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of FloridaGainesvilleUnited States
| | - Bryan L Roth
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern CaliforniaLos AngelesUnited States
| | - Susruta Majumdar
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University in St. Louis School of MedicineSt. LouisUnited States
| |
Collapse
|
10
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
11
|
Design, Synthesis and Functional Analysis of Cyclic Opioid Peptides with Dmt-Tic Pharmacophore. Molecules 2020; 25:molecules25184260. [PMID: 32957550 PMCID: PMC7570497 DOI: 10.3390/molecules25184260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Abstract
The opioid receptors are members of the G-protein-coupled receptor (GPCR) family and are known to modulate a variety of biological functions, including pain perception. Despite considerable advances, the mechanisms by which opioid agonists and antagonists interact with their receptors and exert their effect are still not completely understood. In this report, six new hybrids of the Dmt-Tic pharmacophore and cyclic peptides, which were shown before to have a high affinity for the µ-opioid receptor (MOR) were synthesized and characterized pharmacologically in calcium mobilization functional assays. All obtained ligands turned out to be selective antagonists of the δ-opioid receptor (DOR) and did not activate or block the MOR. The three-dimensional structural determinants responsible for the DOR antagonist properties of these analogs were further investigated by docking studies. The results indicate that these compounds attach to the DOR in a slightly different orientation with respect to the Dmt-Tic pharmacophore than Dmt-TicΨ[CH2-NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]), a prototypical DOR antagonist peptide. Key pharmacophoric contacts between the DOR and the ligands were maintained through an analogous spatial arrangement of pharmacophores, which could provide an explanation for the predicted high-affinity binding and the experimentally observed functional properties of the novel synthetic ligands.
Collapse
|
12
|
Machine-learned analysis of the association of next-generation sequencing-based genotypes with persistent pain after breast cancer surgery. Pain 2020; 160:2263-2277. [PMID: 31107411 DOI: 10.1097/j.pain.0000000000001616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer and its surgical treatment are among the most important triggering events for persistent pain, but additional factors need to be present for the clinical manifestation, such as variants in pain-relevant genes. In a cohort of 140 women undergoing breast cancer surgery, assigned based on a 3-year follow-up to either a persistent or nonpersistent pain phenotype, next-generation sequencing was performed for 77 genes selected for known functional involvement in persistent pain. Applying machine-learning and item categorization techniques, 21 variants in 13 different genes were found to be relevant to the assignment of a patient to either the persistent pain or the nonpersistent pain phenotype group. In descending order of importance for correct group assignment, the relevant genes comprised DRD1, FAAH, GCH1, GPR132, OPRM1, DRD3, RELN, GABRA5, NF1, COMT, TRPA1, ABHD6, and DRD4, of which one in the DRD4 gene was a novel discovery. Particularly relevant variants were found in the DRD1 and GPR132 genes, or in a cis-eCTL position of the OPRM1 gene. Supervised machine-learning-based classifiers, trained with 2/3 of the data, identified the correct pain phenotype group in the remaining 1/3 of the patients at accuracies and areas under the receiver operator characteristic curves of 65% to 72%. When using conservative classical statistical approaches, none of the variants passed α-corrected testing. The present data analysis approach, using machine learning and training artificial intelligences, provided biologically plausible results and outperformed classical approaches to genotype-phenotype association.
Collapse
|
13
|
Pol O. The role of carbon monoxide, heme oxygenase 1, and the Nrf2 transcription factor in the modulation of chronic pain and their interactions with opioids and cannabinoids. Med Res Rev 2020; 41:136-155. [PMID: 32820550 DOI: 10.1002/med.21726] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Chronic pain and its associated comorbidities are difficult to treat, even when the most potent analgesic compounds are used. Thus, research on new strategies to effectively relieve nociceptive and/or emotional disorders accompanying chronic pain is essential. Several studies have demonstrated the anti-inflammatory and antinociceptive effects of different carbon monoxide-releasing molecules (CO-RMs), inducible heme oxygenase 1 (HO-1), and nuclear factor-2 erythroid factor-2 (Nrf2) transcription factor activators in several models of acute and chronic pain caused by inflammation, nerve injury or diabetes. More recently, the antidepressant and/or anxiolytic effects of several Nrf2 transcription factor inducers were demonstrated in a model of chronic neuropathic pain. These effects are mainly produced by inhibition of oxidative stress, inflammation, glial activation, mitogen-activated protein kinases and/or phosphoinositide 3-kinase/phospho-protein kinase B phosphorylation in the peripheral and/or central nervous system. Other studies also demonstrated that the analgesic effects of opioids and cannabinoids are improved when these drugs are coadministered with CO-RMs, HO-1 or Nrf2 activators in different preclinical pain models and that these improvements are generally mediated by upregulation or prevention of the downregulation of µ-opioid receptors, δ-opioid receptors and/or cannabinoid 2 receptors in the setting of chronic pain. We reviewed all these studies as well as studies on the mechanisms of action underlying the effects of CO-RMs, HO-1, and Nrf2 activators in chronic pain. In summary, activation of the Nrf2/HO-1/carbon monoxide signaling pathway alone and/or in combination with the administration of specific analgesics is a valid strategy for the treatment of chronic pain and some associated emotional disorders.
Collapse
Affiliation(s)
- Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
Wtorek K, Piekielna-Ciesielska J, Janecki T, Janecka A. The search for opioid analgesics with limited tolerance liability. Peptides 2020; 130:170331. [PMID: 32497566 DOI: 10.1016/j.peptides.2020.170331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Reducing the well-known side effects of opioids prescribed to treat chronic pain remains unresolved, despite extensive research in this field. Among several options to tackle this problem the synthesis of multifunctional compounds containing hybridized structures gained a lot of interest. Recently, extensively investigated are combinations of opioid agonist and antagonist pharmacophores embodied in a single molecule. To this end, agonism at the μ opioid receptor (MOR) with simultaneous antagonism at the δ opioid receptor (DOR) emerged as a promising avenue to obtaining novel analogs devoid of serious adverse effects associated with morphine-based analgesics. In this review we covered up-to-date research on the synthesis of peptide-based ligands with MOR agonist/DOR antagonist profile.
Collapse
Affiliation(s)
- Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | | | - Tomasz Janecki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
15
|
Liu Q, Fan W, He H, Huang F. The role of peripheral opioid receptors in orofacial pain. Oral Dis 2020; 27:1106-1114. [PMID: 32437594 DOI: 10.1111/odi.13435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Opioid receptors are widely distributed in the central and peripheral nervous systems and non-neuronal tissues. Numerous researchers have noted the pivotal role of peripheral opioid receptors (PORs) in analgesia. Accumulating evidence has shown the existence of PORs in the trigeminal nerve system, indicating that PORs may be involved in the modulation of orofacial pain. In this review, we summarise the recent evidence for the role of PORs in orofacial pain and discuss the possible cellular mechanisms.
Collapse
Affiliation(s)
- Qing Liu
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
16
|
Imam MZ, Kuo A, Ghassabian S, Cai Y, Qin Y, Li T, Smith MT. Intracerebroventricular administration of CYX-6, a potent μ-opioid receptor agonist, a δ- and κ-opioid receptor antagonist and a biased ligand at μ, δ & κ-opioid receptors, evokes antinociception with minimal constipation and respiratory depression in rats in contrast to morphine. Eur J Pharmacol 2020; 871:172918. [PMID: 31958457 DOI: 10.1016/j.ejphar.2020.172918] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 01/10/2023]
Abstract
Mu opioid receptor (MOPr) agonists are thought to produce analgesia via modulation of G-protein-coupled intracellular signalling pathways whereas the β-arrestin2 pathway is proposed to mediate opioid-related adverse effects. Here, we report the antinociception, constipation and respiratory depressant profile of CYX-6, a potent MOPr agonist that is also a delta and a kappa opioid receptor (DOPr/KOPr) antagonist and that lacks β-arrestin2 recruitment at each of the MOPr, DOPr and the KOPr. In anaesthetised male Sprague Dawley rats, an intracerebroventricular (i.c.v.) guide cannula was stereotaxically implanted. After 5-7 days post-surgical recovery, rats received a single i.c.v. bolus dose of CYX-6 (3-30 nmol), morphine (100 nmol) or vehicle. Antinociception was assessed using the warm water tail flick test (52.5 ± 0.5 °C). Constipation was assessed using the charcoal meal gut motility test and the castor oil-induced diarrhoea test. Respiratory depression was measured by whole-body plethysmography in awake, freely moving animals, upon exposure to a hypercapnic gas mixture (8% CO2, 21% O2 and 71% N2). The intrinsic pharmacology of CYX-6 given by the i.c.v. route in rats showed that it produced dose-dependent antinociception. It also produced respiratory stimulation rather than depression and it had a minimal effect on intestinal motility in contrast to the positive control, morphine. CYX-6 is an endomorphin-2 analogue that dissociates antinociception from constipation and respiratory depression in rats. Our findings provide useful insight to inform the discovery and development of novel opioid analgesics with a superior tolerability profile compared with morphine.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Constipation/chemically induced
- Infusions, Intraventricular
- Ligands
- Male
- Morphine/adverse effects
- Morphine/pharmacology
- Opioid Peptides/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Respiratory Insufficiency/chemically induced
- Nociceptin
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Yunxin Cai
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
17
|
Claff T, Yu J, Blais V, Patel N, Martin C, Wu L, Han GW, Holleran BJ, Van der Poorten O, White KL, Hanson MA, Sarret P, Gendron L, Cherezov V, Katritch V, Ballet S, Liu ZJ, Müller CE, Stevens RC. Elucidating the active δ-opioid receptor crystal structure with peptide and small-molecule agonists. SCIENCE ADVANCES 2019; 5:eaax9115. [PMID: 31807708 PMCID: PMC6881160 DOI: 10.1126/sciadv.aax9115] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 05/13/2023]
Abstract
Selective activation of the δ-opioid receptor (DOP) has great potential for the treatment of chronic pain, benefitting from ancillary anxiolytic and antidepressant-like effects. Moreover, DOP agonists show reduced adverse effects as compared to μ-opioid receptor (MOP) agonists that are in the spotlight of the current "opioid crisis." Here, we report the first crystal structures of the DOP in an activated state, in complex with two relevant and structurally diverse agonists: the potent opioid agonist peptide KGCHM07 and the small-molecule agonist DPI-287 at 2.8 and 3.3 Å resolution, respectively. Our study identifies key determinants for agonist recognition, receptor activation, and DOP selectivity, revealing crucial differences between both agonist scaffolds. Our findings provide the first investigation into atomic-scale agonist binding at the DOP, supported by site-directed mutagenesis and pharmacological characterization. These structures will underpin the future structure-based development of DOP agonists for an improved pain treatment with fewer adverse effects.
Collapse
Affiliation(s)
- Tobias Claff
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jing Yu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Véronique Blais
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Nilkanth Patel
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Brian J. Holleran
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Kate L. White
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Quebec J1H 5N4, Canada
| | - Vadim Cherezov
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Vsevolod Katritch
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Christa E. Müller
- PharmaCenter Bonn, University of Bonn, Pharmaceutical Chemistry I, An der Immenburg 4, D-53121 Bonn, Germany
- Corresponding author. (C.E.M.); (R.C.S.)
| | - Raymond C. Stevens
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Rd, Pudong, Shanghai 201210, China
- Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA 90089, USA
- Corresponding author. (C.E.M.); (R.C.S.)
| |
Collapse
|
18
|
Abstract
This article reviews the role of analgesic drugs with a particular emphasis on opioids. Opioids are the oldest and most potent drugs for the treatment of severe pain, but they are burdened by detrimental side effects such as respiratory depression, addiction, sedation, nausea, and constipation. Their clinical application is undisputed in acute (e.g., perioperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny and has contributed to the current opioid crisis. We discuss epidemiological data, pharmacological principles, clinical applications, and research strategies aiming at novel opioids with reduced side effects.
Collapse
|
19
|
Abstract
BACKGROUND Opioids are the oldest and most potent drugs for the treatment of severe pain but they are burdened by detrimental side effects, such as respiratory depression, addiction potential, sedation, nausea and constipation. Their clinical application is undisputed in the treatment of acute (e.g. perioperative) and cancer pain but their long-term use in chronic pain has met increasing criticism and has contributed to the current "opioid crisis". OBJECTIVES This article reviews the pharmacological principles and new research strategies aiming at novel opioids with reduced side effects. The basic mechanisms underlying pain and opioid analgesia and other effects of opioids are outlined. To illustrate the clinical situation and medical problems, the plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic and side effects are discussed. CONCLUSION The epidemic of opioid misuse has shown that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be more intensively considered in the context of drug development and that novel analgesics with less addictive potential are urgently needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and the selective activation of peripheral opioid receptors.
Collapse
Affiliation(s)
- C Stein
- Klinik für Anästhesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| |
Collapse
|
20
|
Civciristov S, Halls ML. Signalling in response to sub-picomolar concentrations of active compounds: Pushing the boundaries of GPCR sensitivity. Br J Pharmacol 2019; 176:2382-2401. [PMID: 30801691 DOI: 10.1111/bph.14636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
There is evidence for ultra-sensitive responses to active compounds at concentrations below picomolar levels by proteins and receptors found in species ranging from bacteria to mammals. We have recently shown that such ultra-sensitivity is also demonstrated by a wide range of prototypical GPCRs, and we have determined the molecular mechanisms behind these responses for three family A GPCRs: the relaxin receptor, RXFP1; the β2 -adrenoceptor; and the M3 muscarinic ACh receptor. Interestingly, there are reports of similar ultra-sensitivity by more than 15 human GPCR families, in addition to other human receptors and channels. These occur through a diverse range of signalling pathways and produce modulation of important physiological processes, including neuronal transmission, chemotaxis, gene transcription, protein/ion uptake and secretion, muscle contraction and relaxation, and phagocytosis. Here, we summarise the accumulating evidence of ultra-sensitive receptor signalling to show that this is a common, though currently underappreciated, property of GPCRs. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
21
|
Koh GH, Song H, Kim SH, Yoon MH, Lim KJ, Oh SH, Jung KT. Effect of sec-O-glucosylhamaudol on mechanical allodynia in a rat model of postoperative pain. Korean J Pain 2019; 32:87-96. [PMID: 31091507 PMCID: PMC6549587 DOI: 10.3344/kjp.2019.32.2.87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background This study was performed in order to examine the effect of intrathecal sec-O-glucosylhamaudol (SOG), an extract from the root of the Peucedanum japonicum Thunb., on incisional pain in a rat model. Methods The intrathecal catheter was inserted in male Sprague-Dawley rats (n = 55). The postoperative pain model was made and paw withdrawal thresholds (PWTs) were evaluated. Rats were randomly treated with a vehicle (70% dimethyl sulfoxide) and SOG (10 μg, 30 μg, 100 μg, and 300 μg) intrathecally, and PWT was observed for four hours. Dose-responsiveness and ED50 values were calculated. Naloxone was administered 10 min prior to treatment of SOG 300 μg in order to assess the involvement of SOG with an opioid receptor. The protein levels of the δ-opioid receptor, κ-opioid receptor, and μ-opioid receptor (MOR) were analyzed by Western blotting of the spinal cord. Results Intrathecal SOG significantly increased PWT in a dose-dependent manner. Maximum effects were achieved at a dose of 300 μg at 60 min after SOG administration, and the maximal possible effect was 85.35% at that time. The medial effective dose of intrathecal SOG was 191.3 μg (95% confidence interval, 102.3–357.8). The antinociceptive effects of SOG (300 μg) were significantly reverted until 60 min by naloxone. The protein levels of MOR were decreased by administration of SOG. Conclusions Intrathecal SOG showed a significant antinociceptive effect on the postoperative pain model and reverted by naloxone. The expression of MOR were changed by SOG. The effects of SOG seem to involve the MOR.
Collapse
Affiliation(s)
- Gi-Ho Koh
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Song
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea
| | - Sang Hun Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea.,Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju, Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Medical School, Chonnam National University, Gwangju, Korea
| | - Kyung Joon Lim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea.,Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju, Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, Gwangju, Korea
| | - Ki Tae Jung
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju, Korea.,Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju, Korea
| |
Collapse
|
22
|
Weggel LA, Pandya AA. Acute Administration of Desformylflustrabromine Relieves Chemically Induced Pain in CD-1 Mice. Molecules 2019; 24:molecules24050944. [PMID: 30866543 PMCID: PMC6432607 DOI: 10.3390/molecules24050944] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/28/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors are cell membrane-bound ion channels that are widely distributed in the central nervous system. The α4β2 subtype of neuronal nicotinic acetylcholine receptor plays an important role in modulating the signaling pathways for pain. Previous studies have shown that agonists, partial agonists, and positive allosteric modulators for the α4β2 receptors are effective in relieving pain. Desformylflustrabromine is a compound that acts as an allosteric modulator of α4β2 receptors. The aim of this study was to assess the effects of desformylflustrabromine on chemically induced pain. For this purpose, the formalin-induced pain test and the acetic acid-induced writhing response test were carried out in CD-1 mice. Both tests represent chemical assays for nociception. The results show that desformylflustrabromine is effective in producing an analgesic effect in both tests used for assessing nociception. These results suggest that desformylflustrabromine has the potential to become a clinically used drug for pain relief.
Collapse
Affiliation(s)
- Loni A Weggel
- Department of Biosciences, College of Rural and Community Development, 101D Harper Building, 810 Draanjik Drive, University of Alaska Fairbanks, Fairbanks, AK 99709-3419, USA.
| | - Anshul A Pandya
- Department of Biosciences, College of Rural and Community Development, 101D Harper Building, 810 Draanjik Drive, University of Alaska Fairbanks, Fairbanks, AK 99709-3419, USA.
| |
Collapse
|
23
|
Abstract
BACKGROUND Opioids are the oldest and most potent drugs for the treatment of severe pain but they are burdened by detrimental side effects, such as respiratory depression, addiction potential, sedation, nausea and constipation. Their clinical application is undisputed in the treatment of acute (e.g. perioperative) and cancer pain but their long-term use in chronic pain has met increasing criticism and has contributed to the current "opioid crisis". OBJECTIVES This article reviews the pharmacological principles and new research strategies aiming at novel opioids with reduced side effects. The basic mechanisms underlying pain and opioid analgesia and other effects of opioids are outlined. To illustrate the clinical situation and medical problems, the plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic and side effects are discussed. CONCLUSION The epidemic of opioid misuse has shown that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be more intensively considered in the context of drug development and that novel analgesics with less addictive potential are urgently needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and the selective activation of peripheral opioid receptors.
Collapse
Affiliation(s)
- C Stein
- Klinik für Anästhesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| |
Collapse
|
24
|
Kringel D, Kaunisto MA, Lippmann C, Kalso E, Lötsch J. Development of an AmpliSeq TM Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain. Front Pharmacol 2018; 9:1008. [PMID: 30283335 PMCID: PMC6156278 DOI: 10.3389/fphar.2018.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Many gene variants modulate the individual perception of pain and possibly also its persistence. The limited selection of single functional variants is increasingly being replaced by analyses of the full coding and regulatory sequences of pain-relevant genes accessible by means of next generation sequencing (NGS). Methods: An NGS panel was created for a set of 77 human genes selected following different lines of evidence supporting their role in persisting pain. To address the role of these candidate genes, we established a sequencing assay based on a custom AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian ethnicity. To identify the systems biology of the genes, the biological functions associated with these genes were assessed by means of a computational over-representation analysis. Results: Sequencing generated a median of 2.85 ⋅ 106 reads per run with a mean depth close to 200 reads, mean read length of 205 called bases and an average chip loading of 71%. A total of 3,185 genetic variants were called. A computational functional genomics analysis indicated that the proposed NGS gene panel covers biological processes identified previously as characterizing the functional genomics of persisting pain. Conclusion: Results of the NGS assay suggested that the produced nucleotide sequences are comparable to those earned with the classical Sanger sequencing technique. The assay is applicable for small to large-scale experimental setups to target the accessing of information about any nucleotide within the addressed genes in a study cohort.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Catharina Lippmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|
25
|
Abstract
INTRODUCTION Opioids are the oldest and most potent drugs for the treatment of severe pain, but they are burdened by detrimental side effects such as respiratory depression, addiction, sedation, nausea, and constipation. Their clinical application is undisputed in acute (e.g. perioperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny and has contributed to the current 'opioid crisis.' AREAS COVERED This article reviews pharmacological principles and research strategies aiming at novel opioids with reduced side effects. Basic mechanisms underlying pain, opioid analgesia, and other opioid actions are outlined. To illustrate the clinical situation and medical needs, plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic, and side effects are discussed. EXPERT OPINION The epidemic of opioid misuse has taught us that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be considered in the context of drug development, and that novel analgesics with less abuse liability are badly needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and selectively targeting pathological conformations of peripheral opioid receptors.
Collapse
Affiliation(s)
- Christoph Stein
- a Department of Anesthesiology and Intensive Care Medicine Campus Benjamin Franklin , Charité Universitätsmedizin , Berlin , Germany
| |
Collapse
|
26
|
Kaye AD, Cornett EM, Patil SS, Gennuso SA, Colontonio MM, Latimer DR, Kaye AJ, Urman RD, Vadivelu N. New opioid receptor modulators and agonists. Best Pract Res Clin Anaesthesiol 2018; 32:125-136. [PMID: 30322454 DOI: 10.1016/j.bpa.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
There has been significant research to develop an ideal synthetic opioid. Opioids with variable properties possessing efficacy and with reduced side effects have been synthesized when compared to previously used agents. An opioid modulator is a drug that can produce both agonistic and antagonistic effects by binding to different opioid receptors and therefore cannot be classified as one or the other alone. These compounds can differ in their structures while still possessing opioid-mediated actions. This review will discuss TRV130 receptor modulators and other novel opioid receptor modulators, including Mitragyna "Kratom," Ignavine, Salvinorin-A, DPI-289, UFP-505, LP1, SKF-10,047, Cebranopadol, Naltrexone-14-O-sulfate, and Naloxegol. In summary, the structural elucidation of opioid receptors, allosteric modulation of opioid receptors, new opioid modulators and agonists, the employment of optogenetics, optopharmacology, and next-generation sequencing of opioid receptor genes and related functionality should create exciting new avenues for research and therapeutic development to treat conditions including pain, opioid abuse, and addiction.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Shilpa S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Sonja A Gennuso
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Matthew M Colontonio
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Dustin R Latimer
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Nalini Vadivelu
- Department of Anesthesiology, Yale School of Medicine, 333 Cedar Street, TMP 3, PO Box 208051, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Rogacki MK, Golfetto O, Tobin SJ, Li T, Biswas S, Jorand R, Zhang H, Radoi V, Ming Y, Svenningsson P, Ganjali D, Wakefield DL, Sideris A, Small AR, Terenius L, Jovanović‐Talisman T, Vukojević V. Dynamic lateral organization of opioid receptors (kappa, mu wt and mu N40D ) in the plasma membrane at the nanoscale level. Traffic 2018; 19:690-709. [PMID: 29808515 PMCID: PMC6120469 DOI: 10.1111/tra.12582] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/06/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
Abstract
Opioid receptors are important pharmacological targets for the management of numerous medical conditions (eg, severe pain), but they are also the gateway to the development of deleterious side effects (eg, opiate addiction). Opioid receptor signaling cascades are well characterized. However, quantitative information regarding their lateral dynamics and nanoscale organization in the plasma membrane remains limited. Since these dynamic properties are important determinants of receptor function, it is crucial to define them. Herein, the nanoscale lateral dynamics and spatial organization of kappa opioid receptor (KOP), wild type mu opioid receptor (MOPwt ), and its naturally occurring isoform (MOPN40D ) were quantitatively characterized using fluorescence correlation spectroscopy and photoactivated localization microscopy. Obtained results, supported by ensemble-averaged Monte Carlo simulations, indicate that these opioid receptors dynamically partition into different domains. In particular, significant exclusion from GM1 ganglioside-enriched domains and partial association with cholesterol-enriched domains was observed. Nanodomain size, receptor population density and the fraction of receptors residing outside of nanodomains were receptor-specific. KOP-containing domains were the largest and most densely populated, with the smallest fraction of molecules residing outside of nanodomains. The opposite was true for MOPN40D . Moreover, cholesterol depletion dynamically regulated the partitioning of KOP and MOPwt , whereas this effect was not observed for MOPN40D .
Collapse
Affiliation(s)
- Maciej K. Rogacki
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Ottavia Golfetto
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Steven J. Tobin
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Tianyi Li
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Sunetra Biswas
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Raphael Jorand
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Huiying Zhang
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Vlad Radoi
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Yu Ming
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Per Svenningsson
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| | - Daniel Ganjali
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Devin L. Wakefield
- Department of Molecular Medicine, Beckman Research Institute, City of HopeDuarteCalifornia
| | - Athanasios Sideris
- Department of Mechanical and Aerospace EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineCalifornia
| | - Alexander R. Small
- Department of Physics and AstronomyCalifornia State Polytechnic UniversityPomonaCalifornia
| | - Lars Terenius
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
- Department of Molecular and Cellular NeurosciencesThe Scripps Research InstituteLa JollaCalifornia
| | | | - Vladana Vukojević
- Department of Clinical NeuroscienceCenter for Molecular Medicine, Karolinska InstituteStockholmSweden
| |
Collapse
|
28
|
Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 2017; 131:238-255. [PMID: 29273520 DOI: 10.1016/j.neuropharm.2017.12.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Opioids evoke analgesia through activation of opioid receptors (predominantly the μ opioid receptor) in the central nervous system. Opioid receptors are abundant in multiple regions of the central nervous system and the peripheral nervous system including enteric neurons. Opioid-related adverse effects such as constipation, nausea, and vomiting pose challenges for compliance and continuation of the therapy for chronic pain management. In the post-operative setting opioid-induced depression of respiration can be fatal. These critical limitations warrant a better understanding of their underpinning cellular and molecular mechanisms to inform the design of novel opioid analgesic molecules that are devoid of these unwanted side-effects. Research efforts on opioid receptor signalling in the past decade suggest that differential signalling pathways and downstream molecules preferentially mediate distinct pharmacological effects. Additionally, interaction among opioid receptors and, between opioid receptor and non-opioid receptors to form signalling complexes shows that opioid-induced receptor signalling is potentially more complicated than previously thought. This complexity provides an opportunity to identify and probe relationships between selective signalling pathway specificity and in vivo production of opioid-related adverse effects. In this review, we focus on current knowledge of the mechanisms thought to transduce opioid-induced gastrointestinal adverse effects (constipation, nausea, vomiting) and respiratory depression.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Roeckel LA, Utard V, Reiss D, Mouheiche J, Maurin H, Robé A, Audouard E, Wood JN, Goumon Y, Simonin F, Gaveriaux-Ruff C. Morphine-induced hyperalgesia involves mu opioid receptors and the metabolite morphine-3-glucuronide. Sci Rep 2017; 7:10406. [PMID: 28871199 PMCID: PMC5583172 DOI: 10.1038/s41598-017-11120-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Opiates are potent analgesics but their clinical use is limited by side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). The Opiates produce analgesia and other adverse effects through activation of the mu opioid receptor (MOR) encoded by the Oprm1 gene. However, MOR and morphine metabolism involvement in OIH have been little explored. Hence, we examined MOR contribution to OIH by comparing morphine-induced hyperalgesia in wild type (WT) and MOR knockout (KO) mice. We found that repeated morphine administration led to analgesic tolerance and hyperalgesia in WT mice but not in MOR KO mice. The absence of OIH in MOR KO mice was found in both sexes, in two KO global mutant lines, and for mechanical, heat and cold pain modalities. In addition, the morphine metabolite morphine-3beta-D-glucuronide (M3G) elicited hyperalgesia in WT but not in MOR KO animals, as well as in both MOR flox and MOR-Nav1.8 sensory neuron conditional KO mice. M3G displayed significant binding to MOR and G-protein activation when using membranes from MOR-transfected cells or WT mice but not from MOR KO mice. Collectively our results show that MOR is involved in hyperalgesia induced by chronic morphine and its metabolite M3G.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Valérie Utard
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Jinane Mouheiche
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Hervé Maurin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Anne Robé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Emilie Audouard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - John N Wood
- Molecular Nociception group, Wolson Institute for Biomedical Research, University College London, WCIE 6BT, London, UK
| | - Yannick Goumon
- CNRS UPR3212, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Frédéric Simonin
- Université de Strasbourg, Illkirch, France.,Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Illkirch, France
| | - Claire Gaveriaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Université de Strasbourg, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France. .,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.
| |
Collapse
|
30
|
Weinberg ZY, Zajac AS, Phan T, Shiwarski DJ, Puthenveedu MA. Sequence-Specific Regulation of Endocytic Lifetimes Modulates Arrestin-Mediated Signaling at the µ Opioid Receptor. Mol Pharmacol 2017; 91:416-427. [PMID: 28153854 PMCID: PMC5363713 DOI: 10.1124/mol.116.106633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Functional selectivity at the µ opioid receptor (µR), a prototypical G-protein-coupled receptor that is a physiologically relevant target for endogenous opioid neurotransmitters and analgesics, has been a major focus for drug discovery in the recent past. Functional selectivity is a cumulative effect of the magnitudes of individual signaling pathways, e.g., the Gαi-mediated and the arrestin-mediated pathways for µR. The present work tested the hypothesis that lifetimes of agonist-induced receptor-arrestin clusters at the cell surface control the magnitude of arrestin signaling, and therefore functional selectivity, at µR. We show that endomorphin-2 (EM2), an arrestin-biased ligand for µR, lengthens surface lifetimes of receptor-arrestin clusters significantly compared with morphine. The lengthening of lifetimes required two specific leucines on the C-terminal tail of µR. Mutation of these leucines to alanines decreased the magnitude of arrestin-mediated signaling by EM2 without affecting G-protein signaling, suggesting that lengthened endocytic lifetimes were required for arrestin-biased signaling by EM2. Lengthening surface lifetimes by pharmacologically slowing endocytosis was sufficient to increase arrestin-mediated signaling by both EM2 and the clinically relevant agonist morphine. Our findings show that distinct ligands can leverage specific sequence elements on µR to regulate receptor endocytic lifetimes and the magnitude of arrestin-mediated signaling, and implicate these sequences as important determinants of functional selectivity in the opioid system.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Amanda S Zajac
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Tiffany Phan
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Daniel J Shiwarski
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Manojkumar A Puthenveedu
- Department of Biological Sciences, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Adamska-Bartłomiejczyk A, Janecka A, Szabó MR, Cerlesi MC, Calo G, Kluczyk A, Tömböly C, Borics A. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues. Bioorg Med Chem Lett 2017; 27:1644-1648. [PMID: 28318942 DOI: 10.1016/j.bmcl.2017.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/26/2022]
Abstract
In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis.
Collapse
Affiliation(s)
- Anna Adamska-Bartłomiejczyk
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Márton Richárd Szabó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Maria Camilla Cerlesi
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology and National Institute of Neuroscience, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Alicja Kluczyk
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, Hungary.
| |
Collapse
|
32
|
Paton KF, Kumar N, Crowley RS, Harper JL, Prisinzano TE, Kivell BM. The analgesic and anti-inflammatory effects of Salvinorin A analogue β-tetrahydropyran Salvinorin B in mice. Eur J Pain 2017; 21:1039-1050. [PMID: 28158929 DOI: 10.1002/ejp.1002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND Drugs activating the mu opioid receptor are routinely used to treat severe acute and chronic pain. Unfortunately, side effects including nausea, constipation, respiratory depression, addiction and tolerance can limit clinical utility. In contrast, kappa opioid receptor (KOPr) agonists, such as Salvinorin A (SalA), have analgesic properties with little potential for abuse. METHODS We evaluated SalA and the novel analogue β-tetrahydropyran Salvinorin B (β-THP SalB) for the ability to modulate pain and inflammation in vivo. The hot water tail-withdrawal assay, intradermal formalin-induced inflammatory pain and paclitaxel-induced neuropathic pain models were used to evaluate analgesic properties in mice. Tissue infiltration of inflammatory cells was measured by histology and flow cytometry. RESULTS β-tetrahydropyran Salvinorin B produced a longer duration of action in the tail-withdrawal assay compared to the parent compound SalA, and, like SalA and U50,488, β-THP SalB is a full agonist at the KOPr. In the formalin-induced inflammatory pain model, β-THP SalB and SalA significantly reduced pain score, paw oedema and limited the infiltration of neutrophils into the inflamed tissue. β-THP SalB and SalA supressed both mechanical and cold allodynia in the paclitaxel-induced neuropathic pain model, in a dose-dependent manner. CONCLUSIONS Structural modification of SalA at the C-2 position alters its analgesic potency and efficacy in vivo. Substitution with a tetrahydropyran group at C-2 produced potent analgesic and anti-inflammatory effects, including a reduction in paclitaxel-induced neuropathic pain. This study highlights the potential for KOPr agonists as analgesics with anti-inflammatory action and little risk of abuse. SIGNIFICANCE Salvinorin A and the novel analogue β-THP Salvinorin B show analgesic effects in the tail-withdrawal and formalin assays. They reduce oedema and decrease neutrophil infiltration into inflamed tissue, and suppress mechanical and cold allodynia in paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
- K F Paton
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - N Kumar
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| | - R S Crowley
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, USA
| | - J L Harper
- Malaghan Institute of Medical Research, Wellington, New Zealand.,WelTec, Petone, Lower Hutt, New Zealand
| | - T E Prisinzano
- Department of Medicinal Chemistry, School of Pharmacy, University of Kansas, Lawrence, USA
| | - B M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, New Zealand
| |
Collapse
|
33
|
Yaksh TL, Fisher CJ, Hockman TM, Wiese AJ. Current and Future Issues in the Development of Spinal Agents for the Management of Pain. Curr Neuropharmacol 2017; 15:232-259. [PMID: 26861470 PMCID: PMC5412694 DOI: 10.2174/1570159x14666160307145542] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/02/2015] [Accepted: 02/05/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting analgesic drugs for spinal delivery reflects the fact that while the conscious experience of pain is mediated supraspinally, input initiated by high intensity stimuli, tissue injury and/or nerve injury is encoded at the level of the spinal dorsal horn and this output informs the brain as to the peripheral environment. This encoding process is subject to strong upregulation resulting in hyperesthetic states and downregulation reducing the ongoing processing of nociceptive stimuli reversing the hyperesthesia and pain processing. The present review addresses the biology of spinal nociceptive processing as relevant to the effects of intrathecally-delivered drugs in altering pain processing following acute stimulation, tissue inflammation/injury and nerve injury. The review covers i) the major classes of spinal agents currently employed as intrathecal analgesics (opioid agonists, alpha 2 agonists; sodium channel blockers; calcium channel blockers; NMDA blockers; GABA A/B agonists; COX inhibitors; ii) ongoing developments in the pharmacology of spinal therapeutics focusing on less studied agents/targets (cholinesterase inhibition; Adenosine agonists; iii) novel intrathecal targeting methodologies including gene-based approaches (viral vectors, plasmids, interfering RNAs); antisense, and toxins (botulinum toxins; resniferatoxin, substance P Saporin); and iv) issues relevant to intrathecal drug delivery (neuraxial drug distribution), infusate delivery profile, drug dosing, formulation and principals involved in the preclinical evaluation of intrathecal drug safety.
Collapse
Affiliation(s)
- Tony L. Yaksh
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Casey J. Fisher
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Tyler M. Hockman
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| | - Ashley J. Wiese
- University of California, San Diego, Anesthesia Research Lab 0818, 9500 Gilman Dr. LaJolla, CA 92093, USA
| |
Collapse
|
34
|
Ronsisvalle S, Aricò G, Panarello F, Spadaro A, Pasquinucci L, Pappalardo MS, Parenti C, Ronsisvalle N. An LP1 analogue, selective MOR agonist with a peculiar pharmacological profile, used to scrutiny the ligand binding domain. Bioorg Med Chem 2016; 24:5280-5290. [DOI: 10.1016/j.bmc.2016.08.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/18/2022]
|
35
|
Váradi A, Marrone GF, Palmer TC, Narayan A, Szabó MR, Le Rouzic V, Grinnell SG, Subrath JJ, Warner E, Kalra S, Hunkele A, Pagirsky J, Eans SO, Medina JM, Xu J, Pan YX, Borics A, Pasternak GW, McLaughlin JP, Majumdar S. Mitragynine/Corynantheidine Pseudoindoxyls As Opioid Analgesics with Mu Agonism and Delta Antagonism, Which Do Not Recruit β-Arrestin-2. J Med Chem 2016; 59:8381-97. [PMID: 27556704 DOI: 10.1021/acs.jmedchem.6b00748] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural products found in Mitragyna speciosa, commonly known as kratom, represent diverse scaffolds (indole, indolenine, and spiro pseudoindoxyl) with opioid activity, providing opportunities to better understand opioid pharmacology. Herein, we report the pharmacology and SAR studies both in vitro and in vivo of mitragynine pseudoindoxyl (3), an oxidative rearrangement product of the corynanthe alkaloid mitragynine. 3 and its corresponding corynantheidine analogs show promise as potent analgesics with a mechanism of action that includes mu opioid receptor agonism/delta opioid receptor antagonism. In vitro, 3 and its analogs were potent agonists in [(35)S]GTPγS assays at the mu opioid receptor but failed to recruit β-arrestin-2, which is associated with opioid side effects. Additionally, 3 developed analgesic tolerance more slowly than morphine, showed limited physical dependence, respiratory depression, constipation, and displayed no reward or aversion in CPP/CPA assays, suggesting that analogs might represent a promising new generation of novel pain relievers.
Collapse
Affiliation(s)
- András Váradi
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Gina F Marrone
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Travis C Palmer
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ankita Narayan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Márton R Szabó
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Valerie Le Rouzic
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Steven G Grinnell
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Joan J Subrath
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Evelyn Warner
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Sanjay Kalra
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Amanda Hunkele
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jeremy Pagirsky
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jessica M Medina
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Jin Xu
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Ying-Xian Pan
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Attila Borics
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences , Szeged, H-6726 Hungary
| | - Gavril W Pasternak
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| | - Jay P McLaughlin
- Department of Pharmacodyanamics, University of Florida , Gainesville, Florida 032610, United States
| | - Susruta Majumdar
- Molecular Pharmacology and Chemistry Program and Department of Neurology, Memorial Sloan Kettering Cancer Center , New York, New York 10065, United States
| |
Collapse
|
36
|
Roeckel LA, Le Coz GM, Gavériaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: Cellular and molecular mechanisms. Neuroscience 2016; 338:160-182. [PMID: 27346146 DOI: 10.1016/j.neuroscience.2016.06.029] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/10/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Opioids produce strong analgesia but their use is limited by a paradoxical hypersensitivity named opioid-induced hyperalgesia (OIH) that may be associated to analgesic tolerance. In the last decades, a significant number of preclinical studies have investigated the factors that modulate OIH development as well as the cellular and molecular mechanisms underlying OIH. Several factors have been shown to influence OIH including the genetic background and sex differences of experimental animals as well as the opioid regimen. Mu opioid receptor (MOR) variants and interactions of MOR with different proteins were shown important. Furthermore, at the cellular level, both neurons and glia play a major role in OIH development. Several neuronal processes contribute to OIH, like activation of neuroexcitatory mechanisms, long-term potentiation (LTP) and descending pain facilitation. Increased nociception is also mediated by neuroinflammation induced by the activation of microglia and astrocytes. Neurons and glial cells exert synergistic effects, which contribute to OIH. The molecular actors identified include the Toll-like receptor 4 and the anti-opioid systems as well as some other excitatory molecules, receptors, channels, chemokines, pro-inflammatory cytokines or lipids. This review summarizes the intracellular and intercellular pathways involved in OIH and highlights some mechanisms that may be challenged to limit OIH in the future.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Glenn-Marie Le Coz
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Claire Gavériaux-Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
37
|
Aceves M, Mathai BB, Hook MA. Evaluation of the effects of specific opioid receptor agonists in a rodent model of spinal cord injury. Spinal Cord 2016; 54:767-777. [PMID: 26927293 PMCID: PMC5009008 DOI: 10.1038/sc.2016.28] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/07/2016] [Accepted: 01/14/2016] [Indexed: 12/18/2022]
Abstract
Objective The current study aimed to evaluate the contribution(s) of specific
opioid receptor systems to the analgesic and detrimental effects of
morphine, observed after spinal cord injury in prior studies. Study Design We used specific opioid receptor agonists to assess the effects of
µ- (DAMGO), δ- (DPDPE), and κ- (GR89696) opioid
receptor activation on locomotor (BBB, tapered beam, ladder tests) and
sensory (girdle, tactile, and tail-flick tests) recovery in a rodent
contusion model (T12). We also tested the contribution of non-classic opioid
binding using [+]- morphine. Methods First, a dose-response curve for analgesic efficacy was generated for
each opioid agonist. Baseline locomotor and sensory reactivity was assessed
24 h after injury. Subjects were then treated with an intrathecal dose of a
specific agonist and re-tested after 30 min. To evaluate effects on
recovery, subjects were treated with a single dose of an agonist and both
locomotor and sensory function were monitored for 21 d. Results All agonists for the classic opioid receptors, but not the [+]-
morphine enantiomer, produced antinociception at a concentration equivalent
to a dose of morphine previously shown to produce strong analgesic effects
(0.32 μmol). DAMGO and [+]- morphine did not affect long-term
recovery. GR89696, however, significantly undermined recovery of locomotor
function at all doses tested. Conclusions Based on these data, we hypothesize that the analgesic efficacy of
morphine is primarily mediated by binding to the classic μ-opioid
receptor. Conversely, the adverse effects of morphine may be linked to
activation of the κ-opioid receptor. Ultimately, elucidating the
molecular mechanisms underlying the effects of morphine is imperative in
order to develop safe and effective pharmacological interventions in a
clinical setting. Setting USA
Collapse
Affiliation(s)
- M Aceves
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
| | - B B Mathai
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
| | - M A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, USA
| |
Collapse
|
38
|
Mosińska P, Zielińska M, Fichna J. Expression and physiology of opioid receptors in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 2016; 23:3-10. [PMID: 26702845 DOI: 10.1097/med.0000000000000219] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Stimulation of opioid receptors elicits analgesic effect not only in the central nervous system, but also in the gastrointestinal tract, where a high concentration of opioid receptors can be found within the enteric nervous system as well as muscular and immune cells. Along with antinociception, opioid receptors in the stomach and intestine relay signals crucial for secretory and motor gastrointestinal function. RECENT FINDINGS The review focuses on the utility of opioid receptor antagonists, which is generally contributing to the management of postoperative ileus and opioid bowel dysfunction in chronic pain patients nonetheless, opioid receptor antagonists can also be useful in the treatment of irritable bowel syndrome and chronic idiopathic constipation. The study also discusses several antidiarrheal opioid agonists, as well as opioids and opioid mimetics encompassing the concept of ligand-biased agonism and truncated opioid receptor splice variants. SUMMARY Good understanding of the localization and the role of opioid receptors is vital for regulation of various pathophysiological processes in the gastrointestinal tract and may simultaneously provide a tempting approach in eliminating adverse effects related to centrally acting opioids.
Collapse
Affiliation(s)
- Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
39
|
Peppin JF, Raffa RB. Delta opioid agonists: a concise update on potential therapeutic applications. J Clin Pharm Ther 2015; 40:155-66. [PMID: 25726896 DOI: 10.1111/jcpt.12244] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE The endogenous opioid system co-evolved with chemical defences, or at times symbiotic relationships, between plants and other autotrophs and heterotrophic predators - thus, it is not surprising that endogenous opioid ligands and exogenous mimetic ligands produce diverse physiological effects. Among the endogenous opioid peptides (endomorphins, enkephalins, dynorphins and nociception/orphanin FQ) derived from the precursors encoded by four genes (PNOC, PENK, PDYN and POMC) are the pentapeptides Met-enkephalin (Tyr-Gly-Gly-Phe-Met) and Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu). The physiological effects of the enkephalins are mediated via 7-transmembrane G protein-coupled receptors, including delta opioid receptor (DOR). We present a concise update on the status of progress and opportunities of this approach. METHODS A literature search of the PUBMED database and a combination of keywords including delta opioid receptor, analgesia, mood and individual compounds identified therein, from industry and other source, and from www.clinicaltrials.com. RESULTS AND DISCUSSION DOR agonist and antagonist ligands have been developed with ever increasing affinity and selectivity for DOR over other opioid receptor subtypes and studied for therapeutic utility, primarily for pain relief, but also for other clinical endpoints. WHAT IS NEW AND CONCLUSION Selective DOR agonists have been designed with a large increase in therapeutic window for a variety of potential CNS applications including pain, depression, and learning and memory among others.
Collapse
Affiliation(s)
- J F Peppin
- Center for Bioethics, Pain Management and Medicine, University City, MO, USA; Mallinckrodt Pharmaceuticals, Hazelwood, MO, USA
| | | |
Collapse
|
40
|
Abstract
Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.
Collapse
Affiliation(s)
- Christoph Stein
- Department of Anesthesiology and Critical Care Medicine, Freie Universität Berlin, Charité Campus Benjamin Franklin, 12200 Berlin, Germany; .,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, 14513 Teltow, Germany
| |
Collapse
|
41
|
Cong X, Campomanes P, Kless A, Schapitz I, Wagener M, Koch T, Carloni P. Structural Determinants for the Binding of Morphinan Agonists to the μ-Opioid Receptor. PLoS One 2015; 10:e0135998. [PMID: 26280453 PMCID: PMC4539194 DOI: 10.1371/journal.pone.0135998] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023] Open
Abstract
Atomistic descriptions of the μ-opioid receptor (μOR) noncovalently binding with two of its prototypical morphinan agonists, morphine (MOP) and hydromorphone (HMP), are investigated using molecular dynamics (MD) simulations. Subtle differences between the binding modes and hydration properties of MOP and HMP emerge from the calculations. Alchemical free energy perturbation calculations show qualitative agreement with in vitro experiments performed in this work: indeed, the binding free energy difference between MOP and HMP computed by forward and backward alchemical transformation is 1.2±1.1 and 0.8±0.8 kcal/mol, respectively, to be compared with 0.4±0.3 kcal/mol from experiment. Comparison with an MD simulation of μOR covalently bound with the antagonist β-funaltrexamine hints to agonist-induced conformational changes associated with an early event of the receptor’s activation: a shift of the transmembrane helix 6 relative to the transmembrane helix 3 and a consequent loss of the key R165-T279 interhelical hydrogen bond. This finding is consistent with a previous proposal suggesting that the R165-T279 hydrogen bond between these two helices indicates an inactive receptor conformation.
Collapse
Affiliation(s)
- Xiaojing Cong
- Laboratory of Computational Biophysics, German Research School for Simulation Sciences GmbH, Joint venture of RWTH Aachen University and Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine section (IAS-5), Institute of Advanced Simulation (IAS), Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine section (INM-9), Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Pablo Campomanes
- Laboratory of Computational Biophysics, German Research School for Simulation Sciences GmbH, Joint venture of RWTH Aachen University and Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine section (IAS-5), Institute of Advanced Simulation (IAS), Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine section (INM-9), Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Achim Kless
- Grünenthal Innovation, Grünenthal GmbH, 52078 Aachen, Germany
| | - Inga Schapitz
- Grünenthal Innovation, Grünenthal GmbH, 52078 Aachen, Germany
| | - Markus Wagener
- Grünenthal Innovation, Grünenthal GmbH, 52078 Aachen, Germany
| | - Thomas Koch
- Grünenthal Innovation, Grünenthal GmbH, 52078 Aachen, Germany
| | - Paolo Carloni
- Laboratory of Computational Biophysics, German Research School for Simulation Sciences GmbH, Joint venture of RWTH Aachen University and Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine section (IAS-5), Institute of Advanced Simulation (IAS), Forschungszentrum Jülich, 52425 Jülich, Germany
- Computational Biomedicine section (INM-9), Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, 52425 Jülich, Germany
- * E-mail:
| |
Collapse
|
42
|
Moulédous L, Froment C, Burlet-Schiltz O, Schulz S, Mollereau C. Phosphoproteomic analysis of the mouse brain mu-opioid (MOP) receptor. FEBS Lett 2015; 589:2401-8. [PMID: 26226422 DOI: 10.1016/j.febslet.2015.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/03/2015] [Accepted: 07/20/2015] [Indexed: 11/19/2022]
Abstract
Many in vitro data have shown that the efficacy of several opioid drugs is correlated with differential mu-opioid (MOP) receptor phosphorylation. Label-free semiquantitative on-line nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analyses were performed to compare the endogenous MOP receptor phosphorylation patterns of mice administered with morphine, etonitazene and fentanyl. The analysis identified S363, T370 and S375 as phosphorylated residues in the carboxy-terminus. Only T370 and S375 were regulated by agonists, with a higher propensity to promote double phosphorylation for high efficacy agonists. Our study provides confirmation that differential agonist-driven multi-site phosphorylation of MOP receptor occurs in vivo and validate the use of MS to study endogenous GPCR phosphorylation.
Collapse
Affiliation(s)
- Lionel Moulédous
- Institut de Pharmacologie et Biologie Structurale CNRS/Université de Toulouse, 205 route de Narbonne, 31077 Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale CNRS/Université de Toulouse, 205 route de Narbonne, 31077 Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale CNRS/Université de Toulouse, 205 route de Narbonne, 31077 Toulouse, France
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Strasse 1, 07747 Jena, Germany.
| | - Catherine Mollereau
- Institut de Pharmacologie et Biologie Structurale CNRS/Université de Toulouse, 205 route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
43
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|
44
|
Pickering G. Antiepileptics for post-herpetic neuralgia in the elderly: current and future prospects. Drugs Aging 2015; 31:653-60. [PMID: 25178422 DOI: 10.1007/s40266-014-0202-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-herpetic neuralgia is a painful condition and its prevalence increases with age. It is a burden for older patients and the association of age-related pharmacokinetic and pharmacodynamic changes, high co-morbidity and polypharmacy leads to the risk of adverse drug reactions and interactions. This type of neuropathic pain is particularly difficult to treat and guidelines recommend the use of gabapentinoids and some antidepressants, the utility of which may be hampered by adverse effects such as sedation, dizziness and impaired age-related renal function. Re-formulations of antiepileptics (anticonvulsants) are being developed and/or marketed and suggest interesting innovative profiles with improved bioavailability, low drug-drug interactions and better tolerability that need to be confirmed in future studies. However, there are no new antiepileptics being developed for post-herpetic neuralgia, and prospective studies specifically focused on the older population are still missing, while this age group is particularly at risk of developing shingles and chronic neuropathic pain with a deleterious impact on quality of life.
Collapse
Affiliation(s)
- Gisèle Pickering
- CHU Clermont-Ferrand, Centre de Pharmacologie Clinique, 63003, Clermont-Ferrand, France,
| |
Collapse
|
45
|
Khroyan TV, Wu J, Polgar WE, Cami-Kobeci G, Fotaki N, Husbands SM, Toll L. BU08073 a buprenorphine analogue with partial agonist activity at μ-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol 2014; 172:668-80. [PMID: 24903063 DOI: 10.1111/bph.12796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Buprenorphine is a potent analgesic with high affinity at μ, δ and κ and moderate affinity at nociceptin opioid (NOP) receptors. Nevertheless, NOP receptor activation modulates the in vivo activity of buprenorphine. Structure activity studies were conducted to design buprenorphine analogues with high affinity at each of these receptors and to characterize them in in vitro and in vivo assays. EXPERIMENTAL APPROACH Compounds were tested for binding affinity and functional activity using [(35) S]GTPγS binding at each receptor and a whole-cell fluorescent assay at μ receptors. BU08073 was evaluated for antinociceptive agonist and antagonist activity and for its effects on anxiety in mice. KEY RESULTS BU08073 bound with high affinity to all opioid receptors. It had virtually no efficacy at δ, κ and NOP receptors, whereas at μ receptors, BU08073 has similar efficacy as buprenorphine in both functional assays. Alone, BU08073 has anxiogenic activity and produces very little antinociception. However, BU08073 blocks morphine and U50,488-mediated antinociception. This blockade was not evident at 1 h post-treatment, but is present at 6 h and remains for up to 3-6 days. CONCLUSIONS AND IMPLICATIONS These studies provide structural requirements for synthesis of 'universal' opioid ligands. BU08073 had high affinity for all the opioid receptors, with moderate efficacy at μ receptors and reduced efficacy at NOP receptors, a profile suggesting potential analgesic activity. However, in vivo, BU08073 had long-lasting antagonist activity, indicating that its pharmacokinetics determined both the time course of its effects and what receptor-mediated effects were observed. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
|
46
|
Kuo A, Wyse BD, Meutermans W, Smith MT. In vivo profiling of seven common opioids for antinociception, constipation and respiratory depression: no two opioids have the same profile. Br J Pharmacol 2014; 172:532-48. [PMID: 24641546 DOI: 10.1111/bph.12696] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE For patients experiencing inadequate analgesia and intolerable opioid-related side effects on one strong opioid analgesic, pain relief with acceptable tolerability is often achieved by rotation to a second strong opioid. These observations suggest subtle pharmacodynamic differences between opioids in vivo. This study in rats was designed to assess differences between opioids in their in vivo profiles. EXPERIMENTAL APPROACH Male Sprague Dawley rats were given single i.c.v. bolus doses of morphine, morphine-6-glucuronide (M6G), fentanyl, oxycodone, buprenorphine, DPDPE ([D-penicillamine(2,5) ]-enkephalin) or U69,593. Antinociception, constipation and respiratory depression were assessed using the warm water tail-flick test, the castor oil-induced diarrhoea test and whole body plethysmography respectively. KEY RESULTS These opioid agonists produced dose-dependent antinociception, constipation and respiratory depression. For antinociception, morphine, fentanyl and oxycodone were full agonists, buprenorphine and M6G were partial agonists, whereas DPDPE and U69,593 had low potency. For constipation, M6G, fentanyl and buprenorphine were full agonists, oxycodone was a partial agonist, morphine produced a bell-shaped dose-response curve, whereas DPDPE and U69,593 were inactive. For respiratory depression, morphine, M6G, fentanyl and buprenorphine were full agonists, oxycodone was a partial agonist, whereas DPDPE and U69,593 were inactive. The respiratory depressant effects of fentanyl and oxycodone were of short duration, whereas morphine, M6G and buprenorphine evoked prolonged respiratory depression. CONCLUSION AND IMPLICATIONS For the seven opioids we assessed, no two had the same profile for evoking antinociception, constipation and respiratory depression, suggesting that these effects are differentially regulated. Our findings may explain the clinical success of 'opioid rotation'. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- A Kuo
- School of Pharmacy, The University of Queensland, Brisbane, Qld, Australia; Centre for Integrated Preclinical Drug Development, St Lucia Campus, The University of Queensland, Brisbane, Qld, Australia
| | | | | | | |
Collapse
|
47
|
Cai J, Song B, Cai Y, Ma Y, Lam AL, Magiera J, Sekar S, Wyse BD, Ambo A, Sasaki Y, Lazarus LH, Smith MT, Li T. Endomorphin analogues with mixed μ-opioid (MOP) receptor agonism/δ-opioid (DOP) receptor antagonism and lacking β-arrestin2 recruitment activity. Bioorg Med Chem 2014; 22:2208-19. [PMID: 24613457 DOI: 10.1016/j.bmc.2014.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/16/2022]
Abstract
Analogues of endomorphin (Dmt-Pro-Xaa-Xaa-NH2) modified at position 4 or at positions 4 and 3, and tripeptides (Dmt-Pro-Xaa-NH2) modified at position 3, with various phenylalanine analogues (Xaa=Trp, 1-Nal, 2-Nal, Tmp, Dmp, Dmt) were synthesized and their effects on in vitro opioid activity were investigated. Most of the peptides exhibited high μ-opioid (MOP) receptor binding affinity (KiMOP=0.13-0.81nM), modest MOP-selectivity (Kiδ-opioid (DOP)/KiMOP=3.5-316), and potent functional MOP agonism (GPI, IC50=0.274-249nM) without DOP and κ-opioid (KOP) receptor agonism. Among them, compounds 7 (Dmt-Pro-Tmp-Tmp-NH2) and 9 (Dmt-Pro-1-Nal-NH2) were opioids with potent mixed MOP receptor agonism/DOP receptor antagonism and devoid of β-arrestin2 recruitment activity. They may offer a unique template for the discovery of potent analgesics that produce less respiratory depression, less gastrointestinal dysfunction and that have a lower propensity to induce tolerance and dependence compared with morphine.
Collapse
Affiliation(s)
- Jun Cai
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bowen Song
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yunxin Cai
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yu Ma
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ai-Leen Lam
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Julia Magiera
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sunder Sekar
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruce D Wyse
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Akihiro Ambo
- Tohoku Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | - Yusuke Sasaki
- Tohoku Pharmaceutical University, 4-1 Komatsushima 4-chome, Aoba-ku, Sendai 981-8558, Japan
| | - Lawrence H Lazarus
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| | - Maree T Smith
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|