1
|
Shen Y, Yang X, Zhu M, Duan S, Liu Q, Yang J. The Cryptochrome CryA Regulates Lipid Droplet Accumulation, Conidiation, and Trap Formation via Responses to Light in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:626. [PMID: 39330386 PMCID: PMC11432822 DOI: 10.3390/jof10090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.
Collapse
Affiliation(s)
- Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming 650091, China; (Y.S.); (X.Y.); (M.Z.); (S.D.); (Q.L.)
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
2
|
Zhang Y, Oberg CP, Hu Y, Xu H, Yan M, Scholes GD, Wang M. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. J Phys Chem Lett 2024:3294-3316. [PMID: 38497707 DOI: 10.1021/acs.jpclett.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The past two decades have witnessed immense advances in quantum information technology (QIT), benefited by advances in physics, chemistry, biology, and materials science and engineering. It is intriguing to consider whether these diverse molecular and supramolecular structures and materials, partially inspired by quantum effects as observed in sophisticated biological systems such as light-harvesting complexes in photosynthesis and the magnetic compass of migratory birds, might play a role in future QIT. If so, how? Herein, we review materials and specify the relationship between structures and quantum properties, and we identify the challenges and limitations that have restricted the intersection of QIT and chemical materials. Examples are broken down into two categories: materials for quantum sensing where nonclassical function is observed on the molecular scale and systems where nonclassical phenomena are present due to intermolecular interactions. We discuss challenges for materials chemistry and make comparisons to related systems found in nature. We conclude that if chemical materials become relevant for QIT, they will enable quite new kinds of properties and functions.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Catrina P Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yue Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongxue Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mengwen Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Dufor T, Lohof AM, Sherrard RM. Magnetic Stimulation as a Therapeutic Approach for Brain Modulation and Repair: Underlying Molecular and Cellular Mechanisms. Int J Mol Sci 2023; 24:16456. [PMID: 38003643 PMCID: PMC10671429 DOI: 10.3390/ijms242216456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological and psychiatric diseases generally have no cure, so innovative non-pharmacological treatments, including non-invasive brain stimulation, are interesting therapeutic tools as they aim to trigger intrinsic neural repair mechanisms. A common brain stimulation technique involves the application of pulsed magnetic fields to affected brain regions. However, investigations of magnetic brain stimulation are complicated by the use of many different stimulation parameters. Magnetic brain stimulation is usually divided into two poorly connected approaches: (1) clinically used high-intensity stimulation (0.5-2 Tesla, T) and (2) experimental or epidemiologically studied low-intensity stimulation (μT-mT). Human tests of both approaches are reported to have beneficial outcomes, but the underlying biology is unclear, and thus optimal stimulation parameters remain ill defined. Here, we aim to bring together what is known about the biology of magnetic brain stimulation from human, animal, and in vitro studies. We identify the common effects of different stimulation protocols; show how different types of pulsed magnetic fields interact with nervous tissue; and describe cellular mechanisms underlying their effects-from intracellular signalling cascades, through synaptic plasticity and the modulation of network activity, to long-term structural changes in neural circuits. Recent advances in magneto-biology show clear mechanisms that may explain low-intensity stimulation effects in the brain. With its large breadth of stimulation parameters, not available to high-intensity stimulation, low-intensity focal magnetic stimulation becomes a potentially powerful treatment tool for human application.
Collapse
Affiliation(s)
- Tom Dufor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ann M. Lohof
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| | - Rachel M. Sherrard
- Sorbonne Université and CNRS, UMR8256 Biological Adaptation and Ageing, 75005 Paris, France;
| |
Collapse
|
4
|
Thoradit T, Thongyoo K, Kamoltheptawin K, Tunprasert L, El-Esawi MA, Aguida B, Jourdan N, Buddhachat K, Pooam M. Cryptochrome and quantum biology: unraveling the mysteries of plant magnetoreception. FRONTIERS IN PLANT SCIENCE 2023; 14:1266357. [PMID: 37860259 PMCID: PMC10583551 DOI: 10.3389/fpls.2023.1266357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Magnetoreception, the remarkable ability of organisms to perceive and respond to Earth's magnetic field, has captivated scientists for decades, particularly within the field of quantum biology. In the plant science, the exploration of the complicated interplay between quantum phenomena and classical biology in the context of plant magnetoreception has emerged as an attractive area of research. This comprehensive review investigates into three prominent theoretical models: the Radical Pair Mechanism (RPM), the Level Crossing Mechanism (LCM), and the Magnetite-based MagR theory in plants. While examining the advantages, limitations, and challenges associated with each model, this review places a particular weight on the RPM, highlighting its well-established role of cryptochromes and in-vivo experiments on light-independent plant magnetoreception. However, alternative mechanisms such as the LCM and the MagR theory are objectively presented as convincing perspectives that permit further investigation. To shed light on these theoretical frameworks, this review proposes experimental approaches including cutting-edge experimental techniques. By integrating these approaches, a comprehensive understanding of the complex mechanisms driving plant magnetoreception can be achieved, lending support to the fundamental principle in the RPM. In conclusion, this review provides a panoramic overview of plant magnetoreception, highlighting the exciting potential of quantum biology in unraveling the mysteries of magnetoreception. As researchers embark on this captivating scientific journey, the doors to deciphering the diverse mechanisms of magnetoreception in plants stand wide open, offering a profound exploration of nature's adaptations to environmental cues.
Collapse
Affiliation(s)
- Thawatchai Thoradit
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Kanjana Thongyoo
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Lalin Tunprasert
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi’an Jiaotong University, Xi’an, China
| | | | - Blanche Aguida
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- UMR CNRS 8256 Adaptation biologique et vieillissement (B2A), Institute of Biology Paris Seine, Sorbonne Université, Paris, France
| | - Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
5
|
Zhang Y, Hu Z, Wang Y, Kais S. Quantum Simulation of the Radical Pair Dynamics of the Avian Compass. J Phys Chem Lett 2023; 14:832-837. [PMID: 36655839 DOI: 10.1021/acs.jpclett.2c03617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The simulation of open quantum dynamics on quantum circuits has attracted wide interests recently with a variety of quantum algorithms developed and demonstrated. Among these, one particular design of a unitary-dilation-based quantum algorithm is capable of simulating general and complex physical systems. In this paper, we apply this quantum algorithm to simulating the dynamics of the radical pair mechanism in the avian compass. This application is demonstrated on the IBM QASM quantum simulator. This work is the first application of any quantum algorithm to simulating the radical pair mechanism in the avian compass, which not only demonstrates the generality of the quantum algorithm but also opens new opportunities for studying the avian compass with quantum computing devices.
Collapse
Affiliation(s)
| | - Zixuan Hu
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana47907, United States
| | - Yuchen Wang
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana47907, United States
| | - Sabre Kais
- Department of Chemistry, Department of Physics, and Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana47907, United States
| |
Collapse
|
6
|
Direct experimental observation of blue-light-induced conformational change and intermolecular interactions of cryptochrome. Commun Biol 2022; 5:1103. [PMID: 36257983 PMCID: PMC9579160 DOI: 10.1038/s42003-022-04054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Cryptochromes are blue light receptors that mediate circadian rhythm and magnetic sensing in various organisms. A typical cryptochrome consists of a conserved photolyase homology region domain and a varying carboxyl-terminal extension across species. The structure of the flexible carboxyl-terminal extension and how carboxyl-terminal extension participates in cryptochrome’s signaling function remain mostly unknown. In this study, we uncover the potential missing link between carboxyl-terminal extension conformational changes and downstream signaling functions. Specifically, we discover that the blue-light induced opening of carboxyl-terminal extension in C. reinhardtii animal-like cryptochrome can structurally facilitate its interaction with Rhythm Of Chloroplast 15, a circadian-clock-related protein. Our finding is made possible by two technical advances. Using single-molecule Förster resonance energy transfer technique, we directly observe the displacement of carboxyl-terminal extension by about 15 Å upon blue light excitation. Combining structure prediction and solution X-ray scattering methods, we propose plausible structures of full-length cryptochrome under dark and lit conditions. The structures provide molecular basis for light active conformational changes of cryptochrome and downstream regulatory functions. Refined structures, protein-docking analysis and single molecule assays provides insights into light-induced conformational changes in the cryptochrome CraCRY.
Collapse
|
7
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
8
|
Mouli MSSV, Agrawal HG, Maddeshiya T, Tamrakar A, Tripathy SR, Pandey MD, Mishra AK. Investigating the spectral and electrochemical properties of novel flavin‐pyrene dyads separated via variable spacer. LUMINESCENCE 2022. [PMID: 35851741 DOI: 10.1002/bio.4339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
The present manuscript describes the synthesis and the photophysical properties of a pair of novel flavin-pyrene dyads where the donor and the acceptor entities are separated via variable spacer. The dyads were well characterized using standard techniques and investigated for their photophysical and electrochemical nature. The observed absorption spectra of the dyads mainly display peaks corresponding to the individual pyrene and flavin units, with some contribution from the flavin entity in the pyrene region. While, strong emission quenching was observed for both the dyads if compared to its individual constituents. However, a careful analysis of the emission spectra and the solvent dependent studies reveals subtle difference between the two dyads. While no significant difference could be observed when excited in the flavin region; excitation at the pyrene region displays a weak and broad emission band in case of closely connected dyad. Further, the electrochemical properties were investigated by cyclic voltammetry and the reduction ability was observed to follow the trend as FlPy2 < FlPy1 < Fl.
Collapse
Affiliation(s)
- M. S. S. Vinod Mouli
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Harsha Gopal Agrawal
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| | - Soumya Ranjan Tripathy
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy Telangana India
| | - Mrituanjay D. Pandey
- Department of Chemistry, Institute of Science Banaras Hindu University Varanasi Uttar Pradesh India
| | - Ashutosh Kumar Mishra
- Department of Chemistry Indian Institute of Technology Hyderabad Sangareddy Telangana India
| |
Collapse
|
9
|
Roles of a Cryptochrome in Carbon Fixation and Sucrose Metabolism in the Liverwort Marchantia polymorpha. Cells 2021; 10:cells10123387. [PMID: 34943893 PMCID: PMC8699372 DOI: 10.3390/cells10123387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
In vascular plants, cryptochromes acting as blue-light photoreceptors have various functions to adapt plants to the fluctuating light conditions on land, while the roles of cryptochromes in bryophytes have been rarely reported. In this study, we investigated functions of a single-copy ortholog of cryptochrome (MpCRY) in the liverwort Marchantia polymorpha. Knock-out of MpCRY showed that a large number of the mutant plants exhibited asymmetric growth of thalli under blue light. Transcriptome analyses indicated that MpCRY is mainly involved in photosynthesis and sugar metabolism. Further physiological analysis showed that Mpcry mutant exhibited a reduction in CO2 uptake and sucrose metabolism. In addition, exogenous application of sucrose or glucose partially restored the symmetrical growth of the Mpcry mutant thalli. Together, these results suggest that MpCRY is involved in the symmetrical growth of thallus and the regulation of carbon fixation and sucrose metabolism in M. polymorpha.
Collapse
|
10
|
Babcock N, Kattnig DR. Radical Scavenging Could Answer the Challenge Posed by Electron-Electron Dipolar Interactions in the Cryptochrome Compass Model. JACS AU 2021; 1:2033-2046. [PMID: 34841416 PMCID: PMC8611662 DOI: 10.1021/jacsau.1c00332] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Many birds are endowed with a visual magnetic sense that may exploit magnetosensitive radical recombination processes in the protein cryptochrome. In this widely accepted but unproven model, geomagnetic sensitivity is suggested to arise from variations in the recombination rate of a pair of radicals, whose unpaired electron spins undergo coherent singlet-triplet interconversion in the geomagnetic field by coupling to nuclear spins via hyperfine interactions. However, simulations of this conventional radical pair mechanism (RPM) predicted only tiny magnetosensitivities for realistic conditions because the RPM's directional sensitivity is strongly suppressed by the intrinsic electron-electron dipolar (EED) interactions, casting doubt on its viability as a magnetic sensor. We show how this RPM-suppression problem is overcome in a three-radical system in which a third "scavenger" radical reacts with one member of the primary pair. We use this finding to predict substantial magnetic field effects that exceed those of the RPM in the presence of EED interactions in animal cryptochromes.
Collapse
Affiliation(s)
- Nathan
Sean Babcock
- Quantum
Biology Laboratory, Howard University, 2400 Sixth Street NW, Washington District of Columbia, 20059, United States of America
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Daniel R. Kattnig
- Living
Systems Institute and Department of Physics University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| |
Collapse
|
11
|
Rredhi A, Petersen J, Schubert M, Li W, Oldemeyer S, Li W, Westermann M, Wagner V, Kottke T, Mittag M. DASH cryptochrome 1, a UV-A receptor, balances the photosynthetic machinery of Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2021; 232:610-624. [PMID: 34235760 DOI: 10.1111/nph.17603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Drosophila, Arabidopsis, Synechocystis, Homo (DASH) cryptochromes belong to the cryptochrome/photolyase family and can act as DNA repair enzymes. In bacteria and fungi, they also can play regulatory roles, but in plants their biological functions remain elusive. Here, we characterize CRY-DASH1 from the green alga Chlamydomonas reinhardtii. We perform biochemical and in vitro photochemical analysis. For functional characterization, a knock-out mutant of cry-dash1 is used. CRY-DASH1 protein is localized in the chloroplast and accumulates at midday. Although the photoautotrophic growth of the mutant is significantly reduced compared to the wild-type (WT), the mutant has increased levels of photosynthetic pigments and a higher maximum photochemical efficiency of photosystem II (PS II). Hyper-stacking of thylakoid membranes occurs together with an increase in proteins of the PS II reaction center, D1 and its antenna CP43, but not of their transcripts. CRY-DASH1 binds fully reduced flavin adenine dinucleotide and the antenna 5,10-methenyltetrahydrofolate, leading to an absorption peak in the UV-A range. Supplementation of white light with UV-A increases photoautotrophic growth of the WT but not of the cry-dash1 mutant. These results suggest a balancing function of CRY-DASH1 in the photosynthetic machinery and point to its role as a photoreceptor for the UV-A range separated from the absorption of photosynthetic pigments.
Collapse
Affiliation(s)
- Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Melvin Schubert
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Wei Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Sabine Oldemeyer
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
| | - Wenshuang Li
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Jena, 07743, Germany
| | - Volker Wagner
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Bielefeld, 33615, Germany
- Medical School OWL, Bielefeld University, Bielefeld, 33615, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena, 07743, Germany
| |
Collapse
|
12
|
Hamada M, Iwata T, Fuki M, Kandori H, Weber S, Kobori Y. Orientations and water dynamics of photoinduced secondary charge-separated states for magnetoreception by cryptochrome. Commun Chem 2021; 4:141. [PMID: 36697801 PMCID: PMC9814139 DOI: 10.1038/s42004-021-00573-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/02/2021] [Indexed: 01/28/2023] Open
Abstract
In the biological magnetic compass, blue-light photoreceptor protein of cryptochrome is thought to conduct the sensing of the Earth's magnetic field by photoinduced sequential long-range charge-separation (CS) through a cascade of tryptophan residues, WA(H), WB(H) and WC(H). Mechanism of generating the weak-field sensitive radical pair (RP) is poorly understood because geometries, electronic couplings and their modulations by molecular motion have not been investigated in the secondary CS states generated prior to the terminal RP states. In this study, water dynamics control of the electronic coupling is revealed to be a key concept for sensing the direction of weak magnetic field. Geometry and exchange coupling (singlet-triplet energy gap: 2J) of photoinduced secondary CS states composed of flavin adenine dinucleotide radical anion (FAD-•) and radical cation WB(H)+• in the cryptochrome DASH from Xenopus laevis were clarified by time-resolved electron paramagnetic resonance. We found a time-dependent energetic disorder in 2J and was interpreted by a trap CS state capturing one reorientated water molecule at 120 K. Enhanced electron-tunneling by water-libration was revealed for the terminal charge-separation event at elevated temperature. This highlights importance of optimizing the electronic coupling for regulation of the anisotropic RP yield on the possible magnetic compass senses.
Collapse
Affiliation(s)
- Misato Hamada
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Tatsuya Iwata
- grid.265050.40000 0000 9290 9879Department of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274‒8510 Japan
| | - Masaaki Fuki
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| | - Hideki Kandori
- grid.47716.330000 0001 0656 7591Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan ,grid.47716.330000 0001 0656 7591OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555 Japan
| | - Stefan Weber
- grid.5963.9Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Yasuhiro Kobori
- grid.31432.370000 0001 1092 3077Department of Chemistry, Graduate School of Science, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan ,grid.31432.370000 0001 1092 3077Molecular Photoscience Research Center, Kobe University, 1‒1 Rokkodai‒cho, Nada‒ku, Kobe, 657‒8501 Japan
| |
Collapse
|
13
|
Fay TP, Limmer DT. Origin of Chirality Induced Spin Selectivity in Photoinduced Electron Transfer. NANO LETTERS 2021; 21:6696-6702. [PMID: 34291928 DOI: 10.1021/acs.nanolett.1c02370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we propose a mechanism by which spin-polarization can be generated dynamically in chiral molecular systems undergoing photoinduced electron transfer. The proposed mechanism explains how spin-polarization emerges in systems where charge transport is dominated by incoherent hopping, mediated by spin-orbit and electronic exchange couplings through an intermediate charge transfer state. We derive a simple expression for the spin-polarization that predicts a nonmonotonic temperature dependence, consistent with recent experiments, and a maximum spin-polarization that is independent of the magnitude of the spin-orbit coupling. We validate this theory using approximate quantum master equations and the numerically exact hierarchical equations of motion. The proposed mechanism of chirality induced spin selectivity should apply to many chiral systems, and the ideas presented here have implications for the study of spin transport at temperatures relevant to biology and provide simple principles for the molecular control of spins in fluctuating environments.
Collapse
Affiliation(s)
- Thomas P Fay
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy Nanoscience Institute at Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Cellini A, Yuan Wahlgren W, Henry L, Pandey S, Ghosh S, Castillon L, Claesson E, Takala H, Kübel J, Nimmrich A, Kuznetsova V, Nango E, Iwata S, Owada S, Stojković EA, Schmidt M, Ihalainen JA, Westenhoff S. The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature. Acta Crystallogr D Struct Biol 2021; 77:1001-1009. [PMID: 34342273 PMCID: PMC8329860 DOI: 10.1107/s2059798321005830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
(6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Å resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Å resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Valentyna Kuznetsova
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, IL 60625, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Janne A. Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| |
Collapse
|
15
|
Grajek H, Kubicki J, Gryczyński I, Karolczak J, Żurkowska G, Piotrowicz-Cieślak AI, Bojarski P. Effect of Dimer Structure and Inhomogeneous Broadening of Energy Levels on the Action of Flavomononucleotide in Rigid Polyvinyl Alcohol Films. Int J Mol Sci 2021; 22:ijms22147759. [PMID: 34299377 PMCID: PMC8304321 DOI: 10.3390/ijms22147759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.66 ns (at λexc = 445 nm) and τfl = 2.02 (at λexc = 487 nm) at λobs = 600 nm and T = 253 K from H and J state of dimers, respectively. We show that inhomogeneous orientational broadening of energy levels (IOBEL) affects the shape of the fluorescence decay and leads to the dependence of the average monomer fluorescence lifetime on excitation wavelength. IOBEL affected the nonradiative energy transfer and indicated that different flavin positioning in the protein pocket could (1) change the spectroscopic properties of flavins due to the existence of “blue” and “red” fluorescence centers, and (2) diminish the effectiveness of energy transfer between FMN molecules.
Collapse
Affiliation(s)
- Hanna Grajek
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
- Correspondence: (H.G.); (A.I.P.-C.)
| | - Jacek Kubicki
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Ignacy Gryczyński
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center at Ft. Worth, 3500 Camp Bowie Blvd, Ft. Worth, TX 76107, USA;
| | - Jerzy Karolczak
- Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Grażyna Żurkowska
- Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Agnieszka I. Piotrowicz-Cieślak
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland
- Correspondence: (H.G.); (A.I.P.-C.)
| | - Piotr Bojarski
- Faculty of Mathematics, Physics and Informatics, Institute of Experimental Physics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland;
| |
Collapse
|
16
|
Goett-Zink L, Toschke AL, Petersen J, Mittag M, Kottke T. C-Terminal Extension of a Plant Cryptochrome Dissociates from the β-Sheet of the Flavin-Binding Domain. J Phys Chem Lett 2021; 12:5558-5563. [PMID: 34101477 DOI: 10.1021/acs.jpclett.1c00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant cryptochromes are central blue light receptors in land plants and algae. Photoreduction of the flavin bound to the photolyase homology region (PHR) causes a dissociation of the C-terminal extension (CCT) as effector via an unclear pathway. We applied the recently developed in-cell infrared difference (ICIRD) spectroscopy to study the response of the full-length pCRY from Chlamydomonas reinhardtii in living bacterial cells, because the receptor degraded upon isolation. We demonstrate a stabilization of the flavin neutral radical as photoproduct and of the resulting β-sheet reorganization by binding of cellular ATP. Comparison between light-induced structural responses of full-length pCRY and PHR reveals a downshift in frequency of the β-sheet signal, implying an association of the CCT close to the only β-sheet of the PHR in the dark. We provide a missing link in activation of plant cryptochromes after flavin photoreduction by indicating that β-sheet reorganization causes the CCT release and restructuring.
Collapse
Affiliation(s)
- Lukas Goett-Zink
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Anna Lena Toschke
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, 07743 Jena, Germany
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Pinzon-Rodriguez A, Muheim R. Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor. Sci Rep 2021; 11:12683. [PMID: 34135416 PMCID: PMC8209128 DOI: 10.1038/s41598-021-92056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cryptochromes (CRY) have been proposed as putative magnetoreceptors in vertebrates. Localisation of CRY1 in the UV cones in the retinas of birds suggested that it could be the candidate magnetoreceptor. However, recent findings argue against this possibility. CRY1 is a type II cryptochrome, a subtype of cryptochromes that may not be inherently photosensitive, and it exhibits a clear circadian expression in the retinas of birds. Here, we reassessed the localisation and distribution of CRY1 in the retina of the zebra finch. Zebra finches have a light-dependent magnetic compass based on a radical-pair mechanism, similar to migratory birds. We found that CRY1 colocalised with the UV/V opsin (SWS1) in the outer segments of UV cones, but restricted to the tip of the segments. CRY1 was found in all UV cones across the entire retina, with the highest densities near the fovea. Pre-exposure of birds to different wavelengths of light did not result in any difference in CRY1 detection, suggesting that CRY1 did not undergo any detectable functional changes as result of light activation. Considering that CRY1 is likely not involved in magnetoreception, our findings open the possibility for an involvement in different, yet undetermined functions in the avian UV/V cones.
Collapse
Affiliation(s)
- Atticus Pinzon-Rodriguez
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| | - Rachel Muheim
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| |
Collapse
|
18
|
Abstract
Species throughout the animal kingdom use the Earth's magnetic field (MF) to navigate using either or both of two mechanisms. The first relies on magnetite crystals in tissue where their magnetic moments align with the MF to transduce a signal transmitted to the central nervous system. The second and the subject of this paper involves cryptochrome (CRY) proteins located in cone photoreceptors distributed across the retina, studied most extensively in birds. According to the "Radical Pair Mechanism" (RPM), blue/UV light excites CRY's flavin cofactor (FAD) to generate radical pairs whose singlet-to-triplet interconversion rate is modulated by an external MF. The signaling product of the RPM produces an impression of the field across the retinal surface. In birds, the resulting signal on the optic nerve is transmitted along the thalamofugal pathway to the primary visual cortex, which projects to brain regions concerned with image processing, memory, and executive function. The net result is a bird's orientation to the MF's inclination: its vector angle relative to the Earth's surface. The quality of ambient light (e.g., polarization) provides additional input to the compass. In birds, the Type IV CRY isoform appears pivotal to the compass, given its positioning within retinal cones; a cytosolic location therein indicating no role in the circadian clock; relatively steady diurnal levels (unlike Type II CRY's cycling); and a full complement of FAD (essential for photosensitivity). The evidence indicates that mammalian Type II CRY isoforms play a light-independent role in the cellular molecular clock without a photoreceptive function.
Collapse
Affiliation(s)
| | - Joseph Brain
- Environmental Physiology, Molecular, and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
19
|
Xue X, Ali YF, Luo W, Liu C, Zhou G, Liu NA. Biological Effects of Space Hypomagnetic Environment on Circadian Rhythm. Front Physiol 2021; 12:643943. [PMID: 33767637 PMCID: PMC7985258 DOI: 10.3389/fphys.2021.643943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The intrinsic earth magnetic field (geomagnetic field, GMF) provides an essential environmental condition for most living organisms to adapt the solar cycle by rhythmically synchronizing physiological and behavioral processes. However, hypomagnetic field (HMF) of outer space, the Moon, and the Mars differs much from GMF, which poses a critical problem to astronauts during long-term interplanetary missions. Multiple experimental works have been devoted to the HMF effects on circadian rhythm and found that HMF perturbs circadian rhythms and profoundly contributes to health problems such as sleep disorders, altered metabolic as well as neurological diseases. By systemizing the latest progress on interdisciplinary cooperation between magnetobiology and chronobiology, this review sheds light on the health effects of HMF on circadian rhythms by elaborating the underlying circadian clock machinery and molecular processes.
Collapse
Affiliation(s)
- Xunwen Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.,Academy of Space Life Sciences, Soochow University, Suzhou, China
| | - Yasser F Ali
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.,Academy of Space Life Sciences, Soochow University, Suzhou, China.,Biophysics lab, Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Wanrong Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.,Academy of Space Life Sciences, Soochow University, Suzhou, China
| | - Caorui Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.,Academy of Space Life Sciences, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.,Academy of Space Life Sciences, Soochow University, Suzhou, China
| | - Ning-Ang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.,Academy of Space Life Sciences, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Abstract
This is a review of the research on the genetic effects of non-ionizing electromagnetic field (EMF), mainly on radiofrequency radiation (RFR) and static and extremely low frequency EMF (ELF-EMF). The majority of the studies are on genotoxicity (e.g., DNA damage, chromatin conformation changes, etc.) and gene expression. Genetic effects of EMF depend on various factors, including field parameters and characteristics (frequency, intensity, wave-shape), cell type, and exposure duration. The types of gene expression affected (e.g., genes involved in cell cycle arrest, apoptosis and stress responses, heat-shock proteins) are consistent with the findings that EMF causes genetic damages. Many studies reported effects in cells and animals after exposure to EMF at intensities similar to those in the public and occupational environments. The mechanisms by which effects are induced by EMF are basically unknown. Involvement of free radicals is a likely possibility. EMF also interacts synergistically with different entities on genetic functions. Interactions, particularly with chemotherapeutic compounds, raise the possibility of using EMF as an adjuvant for cancer treatment to increase the efficacy and decrease side effects of traditional chemotherapeutic drugs. Other data, such as adaptive effects and mitotic spindle aberrations after EMF exposure, further support the notion that EMF causes genetic effects in living organisms.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Einwich A, Dedek K, Seth PK, Laubinger S, Mouritsen H. A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci Rep 2020; 10:15794. [PMID: 32978454 PMCID: PMC7519125 DOI: 10.1038/s41598-020-72579-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
The primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye. Here, we report on the identification of a novel isoform of erCry4, which we named erCry4b. Cry4b includes an additional exon of 29 amino acids compared to the previously described form of Cry4, now called Cry4a. When comparing the retinal circadian mRNA expression pattern of the already known isoform erCry4a and the novel erCry4b isoform, we find that erCry4a is stably expressed throughout day and night, whereas erCry4b shows a diurnal mRNA oscillation. The differential characteristics of the two erCry4 isoforms regarding their 24-h rhythmicity in mRNA expression leads us to suggest that they might have different functions. Based on the 24-h expression pattern, erCry4a remains the more likely cryptochrome to be involved in radical-pair-based magnetoreception, but at the present time, an involvement of erCry4b cannot be excluded.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Sascha Laubinger
- Institute for Biology and Environmental Sciences, Evolutionäre Genetik der Pflanzen, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.
| |
Collapse
|
22
|
Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Ihtisham M, Liu S. Magnetic Field (MF) Applications in Plants: An Overview. PLANTS 2020; 9:plants9091139. [PMID: 32899332 PMCID: PMC7570196 DOI: 10.3390/plants9091139] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 01/21/2023]
Abstract
Crop yield can be raised by establishment of adequate plant stand using seeds with high germination ratio and vigor. Various pre-sowing treatments are adopted to achieve this objective. One of these approaches is the exposure of seeds to a low-to-medium level magnetic field (MF), in pulsed and continuous modes, as they have shown positive results in a number of crop seeds. On the basis of the sensitivity of plants to MF, different types of MF have been used for magnetopriming studies, such as weak static homogeneous magnetic fields (0–100 μT, including GMF), strong homogeneous magnetic fields (milliTesla to Tesla), and extremely low frequency (ELF) magnetic fields of low-to-moderate (several hundred μT) magnetic flux densities. The agronomic application of MFs in plants has shown potential in altering conventional plant production systems; increasing mean germination rates, and root and shoot growth; having high productivity; increasing photosynthetic pigment content; and intensifying cell division, as well as water and nutrient uptake. Furthermore, different studies suggest that MFs prevent the large injuries produced/inflicted by diseases and pests on agricultural crops and other economically important plants and assist in reducing the oxidative damage in plants caused by stress situations. An improved understanding of the interactions between the MF and the plant responses could revolutionize crop production through increased resistance to disease and stress conditions, as well as the superiority of nutrient and water utilization, resulting in the improvement of crop yield. In this review, we summarize the potential applications of MF and the key processes involved in agronomic applications. Furthermore, in order to ensure both the safe usage and acceptance of this new opportunity, the adverse effects are also discussed.
Collapse
Affiliation(s)
- Mohammad Sarraf
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran
| | - Sunita Kataria
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Houda Taimourya
- Department of Horticulture, Horticol complex of Agadir (CHA), Agronomy and Veterinary Institute Hassan II, Agadir 80000, Morocco;
| | - Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande-RS 96203-900, Brazil;
| | - Renata Diane Menegatti
- Department of Botany, Institute of Biology, Federal University of Pelotas, Rio Grande-RS 96203-900, Brazil;
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya Vishwavidyalaya, Indore 452001, India; (S.K.); (M.J.)
| | - Muhammad Ihtisham
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (M.I.); (S.L.); Tel.: +86-139-8064-5789 (S.L.)
| |
Collapse
|
23
|
Magnetic field effect on the photochemistry of chromium complex. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Chevalier Y, Lock Toy Ki Y, Herrero C, le Nouën D, Mahy JP, Goddard JP, Avenier F. Characterization in aqueous medium of an FMN semiquinone radical stabilized by the enzyme-like microenvironment of a modified polyethyleneimine. Org Biomol Chem 2020; 18:4386-4389. [PMID: 32469356 DOI: 10.1039/d0ob00864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The elusive flavin semiquinone intermediate found in flavoproteins such as cryptochromes has been obtained in aqueous solution by single electron reduction of the natural FMN cofactor using sodium ascorbate. This species was formed in the local hydrophobic microenvironment of a modified polyethyleneimine and characterized by UV-Visible, fluorescence and EPR spectroscopies.
Collapse
Affiliation(s)
- Yoan Chevalier
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| | - Yvette Lock Toy Ki
- LIMA, UMR CNRS 7042, Université de Haute-Alsace, Université de Strasbourg, 68100 Mulhouse, France.
| | - Christian Herrero
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| | - Didier le Nouën
- LIMA, UMR CNRS 7042, Université de Haute-Alsace, Université de Strasbourg, 68100 Mulhouse, France.
| | - Jean-Pierre Mahy
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| | - Jean-Philippe Goddard
- LIMA, UMR CNRS 7042, Université de Haute-Alsace, Université de Strasbourg, 68100 Mulhouse, France.
| | - Frédéric Avenier
- ICMMO, UMR CNRS 8182, Université Paris Saclay, rue du doyen Georges Poitou, 91405 Orsay, France.
| |
Collapse
|
25
|
Damulewicz M, Mazzotta GM. One Actor, Multiple Roles: The Performances of Cryptochrome in Drosophila. Front Physiol 2020; 11:99. [PMID: 32194430 PMCID: PMC7066326 DOI: 10.3389/fphys.2020.00099] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 01/19/2023] Open
Abstract
Cryptochromes (CRYs) are flavoproteins that are sensitive to blue light, first identified in Arabidopsis and then in Drosophila and mice. They are evolutionarily conserved and play fundamental roles in the circadian clock of living organisms, enabling them to adapt to the daily 24-h cycles. The role of CRYs in circadian clocks differs among different species: in plants, they have a blue light-sensing activity whereas in mammals they act as light-independent transcriptional repressors within the circadian clock. These two different functions are accomplished by two principal types of CRYs, the light-sensitive plant/insect type 1 CRY and the mammalian type 2 CRY acting as a negative autoregulator in the molecular circadian clockwork. Drosophila melanogaster possesses just one CRY, belonging to type 1 CRYs. Nevertheless, this single CRY appears to have different functions, specific to different organs, tissues, and even subset of cells in which it is expressed. In this review, we will dissect the multiple roles of this single CRY in Drosophila, focusing on the regulatory mechanisms that make its pleiotropy possible.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
26
|
Player TC, Hore PJ. Viability of superoxide-containing radical pairs as magnetoreceptors. J Chem Phys 2020; 151:225101. [PMID: 31837685 DOI: 10.1063/1.5129608] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ability of night-migratory songbirds to sense the direction of the Earth's magnetic field is increasingly attributed to a photochemical mechanism in which the magnetic field acts on transient radical pairs in cryptochrome flavoproteins located in the birds' eyes. The magnetically sensitive species is commonly assumed to be [FAD•- TrpH•+], formed by sequential light-induced intraprotein electron transfers from a chain of tryptophan residues to the flavin adenine dinucleotide chromophore. However, some evidence points to superoxide, O2 •-, as an alternative partner for the flavin radical. The absence of hyperfine interactions in O2 •- could lead to a more sensitive magnetic compass, but only if the electron spin relaxation of the O2 •- radical is much slower than normally expected for a small mobile radical with an orbitally degenerate electronic ground state. In this study we use spin dynamics simulations to model the sensitivity of a flavin-superoxide radical pair to the direction of a 50 μT magnetic field. By varying parameters that characterize the local environment and molecular dynamics of the radicals, we identify the highly restrictive conditions under which a O2 •--containing radical pair could form the basis of a geomagnetic compass sensor. We conclude that the involvement of superoxide in compass magnetoreception must remain highly speculative until further experimental evidence is forthcoming.
Collapse
Affiliation(s)
- Thomas C Player
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Pompe N, Chen J, Illarionov B, Panter S, Fischer M, Bacher A, Weber S. Methyl groups matter: Photo-CIDNP characterizations of the semiquinone radicals of FMN and demethylated FMN analogs. J Chem Phys 2019; 151:235103. [PMID: 31864274 DOI: 10.1063/1.5130557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this contribution, the relative hyperfine couplings are determined for the 1H nuclei of the flavin mononucleotide (FMN) radical in an aqueous environment. In addition, three structural analogs with different methylation patterns are characterized and the influence of the substituents at the isoalloxazine moiety on the electronic structure of the radicals is explored. By exploiting nuclear hyperpolarization generated via the photo-CIDNP (chemically induced dynamic nuclear polarization) effect, it is possible to study the short-lived radical species generated by in situ light excitation. Experimental data are extracted by least-squares fitting and supported by quantum chemical calculations and published values from electron paramagnetic resonance and electron-nuclear double resonance. Furthermore, mechanistic details of the photoreaction of the investigated flavin analogs with l-tryptophan are derived from the photo-CIDNP spectra recorded at different pH values. Thereby, the neutral and anionic radicals of FMN and three structural analogs are, for the first time, characterized in terms of their electronic structure in an aqueous environment.
Collapse
Affiliation(s)
- Nils Pompe
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Jing Chen
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Sabrina Panter
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Adelbert Bacher
- Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
28
|
Paul S, Roy U, Böckers M, Neugebauer J, Alia A, Matysik J. 15N photo-CIDNP MAS NMR analysis of a bacterial photosynthetic reaction center of Rhodobacter sphaeroides wildtype. J Chem Phys 2019; 151:195101. [PMID: 31757137 DOI: 10.1063/1.5128783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect has been studied in a quinone-depleted uniformly (u-)13C,15N-labeled photosynthetic reaction center (RC) protein from purple bacterium Rhodobacter (R.) sphaeroides wild type (WT). As a method for investigation, solid-state 15N NMR under magic-angle spinning (MAS) is applied under both continuous illumination (steady state) and nanosecond-laser flashes (time-resolved). While all previous 15N photo-CIDNP MAS NMR studies on the purple bacterial RC used the carotenoid-less mutant R26, this is the first using WT samples. The absence of further photo-CIDNP mechanisms (compared to R26) and various couplings (compared to 13C NMR experiments on 13C-labeled samples) allows the simplification of the spin-system. We report 15N signals of the three cofactors forming the spin-correlated radical pair (SCRP) and, based on density-functional theory calculations, their assignment. The simulation of photo-CIDNP intensities and time-resolved 15N photo-CIDNP MAS NMR data matches well to the frame of the mechanistic interpretation. Three spin-chemical processes, namely, radical pair mechanism, three spin mixing, and differential decay, generate emissive (negative) 15N polarization in the singlet decay channel and absorptive (positive) polarization in the triplet decay channel of the SCRP. The absorptive 15N polarization of the triplet decay channel is transiently obscured during the lifetime of the triplet state of the carotenoid (3Car); therefore, the observed 15N signals are strongly emissive. Upon decay of 3Car, the transiently obscured polarization becomes visible by reducing the excess of emissive polarization. After the decline of 3Car, the remaining nuclear hyperpolarization decays with nuclear T1 relaxation kinetics.
Collapse
Affiliation(s)
- Shubhajit Paul
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Upasana Roy
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| | - Michael Böckers
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - Johannes Neugebauer
- Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Universität Münster, Corrensstraße 40, D-48149 Münster, Germany
| | - A Alia
- Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16, D-04107 Leipzig, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, D-04103 Leipzig, Germany
| |
Collapse
|
29
|
Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light. Q Rev Biophys 2019; 52:e9. [DOI: 10.1017/s0033583519000076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.
Collapse
|
30
|
Dufor T, Grehl S, Tang AD, Doulazmi M, Traoré M, Debray N, Dubacq C, Deng ZD, Mariani J, Lohof AM, Sherrard RM. Neural circuit repair by low-intensity magnetic stimulation requires cellular magnetoreceptors and specific stimulation patterns. SCIENCE ADVANCES 2019; 5:eaav9847. [PMID: 31692960 PMCID: PMC6821463 DOI: 10.1126/sciadv.aav9847] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/16/2019] [Indexed: 05/10/2023]
Abstract
Although electromagnetic brain stimulation is a promising treatment in neurology and psychiatry, clinical outcomes are variable, and underlying mechanisms are ill-defined, which impedes the development of new effective stimulation protocols. Here, we show, in vivo and ex vivo, that repetitive transcranial magnetic stimulation at low-intensity (LI-rTMS) induces axon outgrowth and synaptogenesis to repair a neural circuit. This repair depends on stimulation pattern, with complex biomimetic patterns being particularly effective, and the presence of cryptochrome, a putative magnetoreceptor. Only repair-promoting LI-rTMS patterns up-regulated genes involved in neuronal repair; almost 40% of were cryptochrome targets. Our data open a new framework to understand the mechanisms underlying structural neuroplasticity induced by electromagnetic stimulation. Rather than neuronal activation by induced electric currents, we propose that weak magnetic fields act through cryptochrome to activate cellular signaling cascades. This information opens new routes to optimize electromagnetic stimulation and develop effective treatments for different neurological diseases.
Collapse
Affiliation(s)
- T. Dufor
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - S. Grehl
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia, Perth, Australia
| | - A. D. Tang
- Experimental and Regenerative Neuroscience, School of Animal Biology, University of Western Australia, Perth, Australia
| | - M. Doulazmi
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | | | - N. Debray
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - C. Dubacq
- Sorbonne Université, IBPS, CNRS UMR 8246 and INSERM U1130 Neuroscience Paris Seine, Paris, France
| | - Z.-D. Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - J. Mariani
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
- Sorbonne Université and Assistance Publique Hôpitaux de Paris, Institut de la Longévité, Charles Foix Hospital, Ivry-sur-Seine, France
| | - A. M. Lohof
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
| | - R. M. Sherrard
- Sorbonne Université and CNRS, IBPS, UMR 8256 Biological Adaptation and Ageing, Paris, France
- Sorbonne Université and Assistance Publique Hôpitaux de Paris, Institut de la Longévité, Charles Foix Hospital, Ivry-sur-Seine, France
- Corresponding author.
| |
Collapse
|
31
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
32
|
Kerpal C, Richert S, Storey JG, Pillai S, Liddell PA, Gust D, Mackenzie SR, Hore PJ, Timmel CR. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat Commun 2019; 10:3707. [PMID: 31420558 PMCID: PMC6697675 DOI: 10.1038/s41467-019-11655-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/15/2019] [Indexed: 12/02/2022] Open
Abstract
The fact that many animals, including migratory birds, use the Earth's magnetic field for orientation and compass-navigation is fascinating and puzzling in equal measure. The physical origin of these phenomena has not yet been fully understood, but arguably the most likely hypothesis is based on the radical pair mechanism (RPM). Whilst the theoretical framework of the RPM is well-established, most experimental investigations have been conducted at fields several orders of magnitude stronger than the Earth's. Here we use transient absorption spectroscopy to demonstrate a pronounced orientation-dependence of the magnetic field response of a molecular triad system in the field region relevant to avian magnetoreception. The chemical compass response exhibits the properties of an inclination compass as found in migratory birds. The results underline the feasibility of a radical pair based avian compass and also provide further guidelines for the design and operation of exploitable chemical compass systems.
Collapse
Affiliation(s)
- Christian Kerpal
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Sabine Richert
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jonathan G Storey
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Smitha Pillai
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Paul A Liddell
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Devens Gust
- School of Molecular Sciences, Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ, 85281, USA
| | - Stuart R Mackenzie
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Christiane R Timmel
- Centre for Advanced Electron Spin Resonance (CÆSR), Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
33
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Berntsson O, Rodriguez R, Henry L, Panman MR, Hughes AJ, Einholz C, Weber S, Ihalainen JA, Henning R, Kosheleva I, Schleicher E, Westenhoff S. Photoactivation of Drosophila melanogaster cryptochrome through sequential conformational transitions. SCIENCE ADVANCES 2019; 5:eaaw1531. [PMID: 31328161 PMCID: PMC6636987 DOI: 10.1126/sciadv.aaw1531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/13/2019] [Indexed: 05/27/2023]
Abstract
Cryptochromes are blue-light photoreceptor proteins, which provide input to circadian clocks. The cryptochrome from Drosophila melanogaster (DmCry) modulates the degradation of Timeless and itself. It is unclear how light absorption by the chromophore and the subsequent redox reactions trigger these events. Here, we use nano- to millisecond time-resolved x-ray solution scattering to reveal the light-activated conformational changes in DmCry and the related (6-4) photolyase. DmCry undergoes a series of structural changes, culminating in the release of the carboxyl-terminal tail (CTT). The photolyase has a simpler structural response. We find that the CTT release in DmCry depends on pH. Mutation of a conserved histidine, important for the biochemical activity of DmCry, does not affect transduction of the structural signal to the CTT. Instead, molecular dynamics simulations suggest that it stabilizes the CTT in the resting-state conformation. Our structural photocycle unravels the first molecular events of signal transduction in an animal cryptochrome.
Collapse
Affiliation(s)
- Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Ryan Rodriguez
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Matthijs R. Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Ashley J. Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Christopher Einholz
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Stefan Weber
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Janne A. Ihalainen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Robert Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Erik Schleicher
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
35
|
Sjulstok E, Lüdemann G, Kubař T, Elstner M, Solov'yov IA. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome. Biophys J 2019; 114:2563-2572. [PMID: 29874607 DOI: 10.1016/j.bpj.2018.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Cryptochrome proteins are activated by the absorption of blue light, leading to the formation of radical pairs through electron transfer in the active site. Recent experimental studies have shown that once some of the amino acid residues in the active site of Xenopus laevis cryptochrome DASH are mutated, radical-pair formation is still observed. In this study, we computationally investigate electron-transfer pathways in the X. laevis cryptochrome DASH by extensively equilibrating a previously established homology model using molecular dynamics simulations and then mutating key amino acids involved in the electron transfer. The electron-transfer pathways are then probed by using tight-binding density-functional theory. We report the alternative electron-transfer pathways resolved at the molecular level and, through comparison of amino acid sequences for cryptochromes from different species, we demonstrate that one of these alternative electron-transfer pathways could be general for all cryptochrome DASH proteins.
Collapse
Affiliation(s)
- Emil Sjulstok
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Gesa Lüdemann
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ilia A Solov'yov
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
36
|
Gonçalves LCP, Mansouri HR, Bastos EL, Abdellah M, Fadiga BS, Sá J, Rudroff F, Mihovilovic MD. Morpholine-based buffers activate aerobic photobiocatalysis via spin correlated ion pair formation. Catal Sci Technol 2019; 9:1365-1371. [PMID: 31131076 PMCID: PMC6468414 DOI: 10.1039/c8cy02524j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/08/2019] [Indexed: 11/21/2022]
Abstract
The use of enzymes for synthetic applications is a powerful and environmentally-benign approach to increase molecular complexity. Oxidoreductases selectively introduce oxygen and hydrogen atoms into myriad substrates, catalyzing the synthesis of chemical and pharmaceutical building blocks for chemical production. However, broader application of this class of enzymes is limited by the requirements of expensive cofactors and low operational stability. Herein, we show that morpholine-based buffers, especially 3-(N-morpholino)propanesulfonic acid (MOPS), promote photoinduced flavoenzyme-catalyzed asymmetric redox transformations by regenerating the flavin cofactor via sacrificial electron donation and by increasing the operational stability of flavin-dependent oxidoreductases. The stabilization of the active forms of flavin by MOPS via formation of the spin correlated ion pair 3[flavin˙--MOPS˙+] ensemble reduces the formation of hydrogen peroxide, circumventing the oxygen dilemma under aerobic conditions detrimental to fragile enzymes.
Collapse
Affiliation(s)
- Leticia C P Gonçalves
- Institute of Applied Synthetic Chemistry , TU Wien , Getreidemarkt 9/163 , 1060 Vienna , Austria .
| | - Hamid R Mansouri
- Institute of Applied Synthetic Chemistry , TU Wien , Getreidemarkt 9/163 , 1060 Vienna , Austria .
| | - Erick L Bastos
- Department of Fundamental Chemistry , Institute of Chemistry , University of São Paulo , 03178-200 São Paulo , Brazil
| | - Mohamed Abdellah
- Physical Chemistry Division , Department of Chemistry , Ångström Laboratory , Uppsala University , 75120 Uppsala , Sweden
- Department of Chemistry , Qena Faculty of Science , South Valley University , 83523 Qena , Egypt
| | - Bruna S Fadiga
- Department of Fundamental Chemistry , Institute of Chemistry , University of São Paulo , 03178-200 São Paulo , Brazil
- Physical Chemistry Division , Department of Chemistry , Ångström Laboratory , Uppsala University , 75120 Uppsala , Sweden
| | - Jacinto Sá
- Physical Chemistry Division , Department of Chemistry , Ångström Laboratory , Uppsala University , 75120 Uppsala , Sweden
- Institute of Physical Chemistry , Polish Academy of Sciences , 01-224 Warsaw , Poland
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry , TU Wien , Getreidemarkt 9/163 , 1060 Vienna , Austria .
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry , TU Wien , Getreidemarkt 9/163 , 1060 Vienna , Austria .
| |
Collapse
|
37
|
Pooam M, Arthaut LD, Burdick D, Link J, Martino CF, Ahmad M. Magnetic sensitivity mediated by the Arabidopsis blue-light receptor cryptochrome occurs during flavin reoxidation in the dark. PLANTA 2019; 249:319-332. [PMID: 30194534 DOI: 10.1007/s00425-018-3002-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis cryptochrome mediates responses to magnetic fields that have been applied in the absence of light, consistent with flavin reoxidation as the primary detection mechanism. Cryptochromes are highly conserved blue-light-absorbing flavoproteins which have been linked to the perception of electromagnetic stimuli in numerous organisms. These include sensing the direction of the earth's magnetic field in migratory birds and the intensity of magnetic fields in insects and plants. When exposed to light, cryptochromes undergo flavin reduction/reoxidation redox cycles leading to biological activation which generate radical pairs thought to be the basis for magnetic sensitivity. However, the nature of the magnetically sensitive radical pairs and the steps at which they act during the cryptochrome redox cycle are currently a matter of debate. Here, we investigate the response of Arabidopsis cryptochrome-1 in vivo to a static magnetic field of 500 μT (10 × earth's field) using both plant growth and light-dependent phosphorylation as an assay. Cryptochrome responses to light were enhanced by the magnetic field, as indicated by increased inhibition of hypocotyl elongation and increased cryptochrome phosphorylation. However, when light and dark intervals were given intermittently, a plant response to the magnetic field was observed even when the magnetic field was given exclusively during the dark intervals between light exposures. This indicates that the magnetically sensitive reaction step in the cryptochrome photocycle must occur during flavin reoxidation, and likely involves the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Marootpong Pooam
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France
| | - Louis-David Arthaut
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France
| | - Derek Burdick
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France
- Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA
| | - Justin Link
- Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA
| | - Carlos F Martino
- Department of Biomedical Engineering, Florida Institute of Technology, 150W University Blvd, Melbourne, FL, 32901, USA
| | - Margaret Ahmad
- Sorbonne Universités, CNRS, UMR8256, IBPS, Photobiology Research Group, 7 Quai St. Bernard, 75005, Paris, France.
- Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA.
| |
Collapse
|
38
|
Gonçalves LCP, Mansouri HR, PourMehdi S, Abdellah M, Fadiga BS, Bastos EL, Sá J, Mihovilovic MD, Rudroff F. Boosting photobioredox catalysis by morpholine electron donors under aerobic conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00496c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Morpholine derivatives expand the applicability of photobiocatalysis towards stabilization of flavin-based bio- and photocatalysts.
Collapse
Affiliation(s)
| | | | - Shadi PourMehdi
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| | - Mohamed Abdellah
- Physical Chemistry Division
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
| | - Bruna S. Fadiga
- Physical Chemistry Division
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
| | - Erick L. Bastos
- Department of Fundamental Chemistry
- Institute of Chemistry
- University of São Paulo
- 03178-200 São Paulo
- Brazil
| | - Jacinto Sá
- Physical Chemistry Division
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- 75120 Uppsala
| | | | - Florian Rudroff
- Institute of Applied Synthetic Chemistry
- TU Wien
- 1060 Vienna
- Austria
| |
Collapse
|
39
|
Chang H, Guo JL, Fu XW, Wang ML, Hou YM, Wu KM. Molecular Characterization and Expression Profiles of Cryptochrome Genes in a Long-Distance Migrant, Agrotis segetum (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5299137. [PMID: 30690535 PMCID: PMC6342827 DOI: 10.1093/jisesa/iey127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Cryptochromes act as photoreceptors or integral components of the circadian clock that involved in the regulation of circadian clock and regulation of migratory activity in many animals, and they may also act as magnetoreceptors that sensed the direction of the Earth's magnetic field for the purpose of navigation during animals' migration. Light is a major environmental signal for insect circadian rhythms, and it is also necessary for magnetic orientation. We identified the full-length cDNA encoding As-CRY1 and As-CRY2 in Agrotis segetum Denis and Schiffermaller (turnip moth (Lepidoptera: Noctuidae)). The DNA photolyase domain and flavin adenine dinucleotide-binding domain were found in both cry genes, and multiple alignments showed that those domains that are important for the circadian clock and magnetosensing were highly conserved among different animals. Quantitative polymerase chain reaction showed that cry genes were expressed in all examined body parts, with higher expression in adults during the developmental stages of the moths. Under a 14:10 (L:D) h cycle, the expression of cry genes showed a daily biological rhythm, and light can affect the expression levels of As-cry genes. The expression levels of cry genes were higher in the migratory population than in the reared population and higher in the emigration population than in the immigration population. These findings suggest that the two cryptochrome genes characterized in the turnip moth might be associated with the circadian clock and magnetosensing. Their functions deserve further study, especially for potential control of the turnip moth.
Collapse
Affiliation(s)
- Hong Chang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang-Long Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Wei Fu
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng-Lun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kong-Ming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Schäfer J, Holzapfel M, Schmiedel A, Steiner UE, Lambert C. Fine tuning of electron transfer and spin chemistry parameters in triarylamine-bridge-naphthalene diimide dyads by bridge substituents. Phys Chem Chem Phys 2018; 20:27093-27104. [PMID: 30334029 DOI: 10.1039/c8cp04910f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced charge separation and charge recombination in a set of four molecular dyads consisting of a triarylamine donor and a naphthalene diimide acceptor were investigated by time resolved transient absorption spectroscopy with fs and ns time resolution. In these dyads the donor and acceptor are bridged by a meta-conjugated diethynylbenzene bridge whose electronic nature was tuned by small electron donating (OMe, Me) or electron withdrawing (Cl, CN) substituents. While the formation of the transient charge separated states is complete within tens of ps, charge recombination is biphasic with a shorter component of several hundred ns and a longer component of several microseconds. This behaviour could be rationalized by assuming an equilibrium of singlet and triplet charge separated states. Magnetic field dependent measurements showed a strong influence on the biphasic decay kinetics and also a pronounced level crossing effect in the magnetic field affected reaction yield (MARY) spectra caused by a significant exchange coupling. An analysis of the observed kinetics using classical kinetic rate equations yields rate constants for charge separation and charge recombination as well as the exchange interaction splitting in the radical ion pair, all of them showing a delicate dependence on the bridge substituents.
Collapse
Affiliation(s)
- Julian Schäfer
- Institut für Organische Chemie and Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
41
|
Nielsen C, Kattnig DR, Sjulstok E, Hore PJ, Solov'yov IA. Ascorbic acid may not be involved in cryptochrome-based magnetoreception. J R Soc Interface 2018; 14:rsif.2017.0657. [PMID: 29263128 DOI: 10.1098/rsif.2017.0657] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/28/2017] [Indexed: 01/13/2023] Open
Abstract
Seventeen years after it was originally suggested, the photoreceptor protein cryptochrome remains the most probable host for the radical pair intermediates that are thought to be the sensors in the avian magnetic compass. Although evidence in favour of this hypothesis is accumulating, the intracellular interaction partners of the sensory protein are still unknown. It has been suggested that ascorbate ions could interact with surface-exposed tryptophan radicals in photoactivated cryptochromes, and so lead to the formation of a radical pair comprised of the reduced form of the flavin adenine dinucleotide cofactor, FAD•-, and the ascorbate radical, Asc•- This species could provide a more sensitive compass than a FAD-tryptophan radical pair. In this study of Drosophila melanogaster cryptochrome and Erithacus rubecula (European robin) cryptochrome 1a, we use molecular dynamics simulations to characterize the transient encounters of ascorbate ions with tryptophan radicals in cryptochrome in order to assess the likelihood of the [FAD•- Asc•-]-pathway. It is shown that ascorbate ions are expected to bind near the tryptophan radicals for periods of a few nanoseconds. The rate at which these encounters happen is low, and it is therefore concluded that ascorbate ions are unlikely to be involved in magnetoreception if the ascorbate concentration is only of the order of 1 mM or less.
Collapse
Affiliation(s)
- Claus Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Emil Sjulstok
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - P J Hore
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
42
|
Kimø SM, Friis I, Solov'yov IA. Atomistic Insights into Cryptochrome Interprotein Interactions. Biophys J 2018; 115:616-628. [PMID: 30078611 DOI: 10.1016/j.bpj.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 11/30/2022] Open
Abstract
It is striking that the mechanism by which birds sense geomagnetic fields during the biannual migration seasons is not entirely understood. A protein believed to be responsible for avian magnetoreception is the flavoprotein cryptochrome (CRY), which fulfills many of the criteria for a magnetic field sensor. Some experiments, however, indicate that magnetoreception in birds may be disturbed by extremely weak radio frequency fields, an effect that likely cannot be described by an isolated CRY protein. An explanation can possibly be delivered if CRY binds to another protein inside a cell that would possess certain biochemical properties, and it is, therefore, important to identify possible intracellular CRY interaction partners. The goal of this study is to investigate a possible interaction between CRY4 and the iron-sulfur-containing assembly protein (ISCA1) from Erithacus rubecula (European robin), which has recently been proposed to be relevant for magnetic field sensing. The interaction between the proteins is established through classical molecular dynamics simulations for several possible protein-docking modes. The analysis of these simulations concludes that the ISCA1 complex and CRY4 are capable of binding; however, the peculiarities of this binding argue strongly against ISCA1 as relevant for magnetoreception.
Collapse
Affiliation(s)
- Sarafina M Kimø
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ida Friis
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
43
|
Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M. Possible role of iron containing proteins in physiological responses of soybean to static magnetic field. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:163-171. [PMID: 29778670 DOI: 10.1016/j.jplph.2018.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Iron is a component of many proteins that have crucial roles in plant growth and development, such as ferritin and catalase. Iron also, as a ferromagnetic element, is assumed to be influenced by a static magnetic field (SMF). In the present study, we examined the relationship between ferrous content and gene expression and activity of ferritin and catalase in soybean plants under the influence of 0, 20, and 30 mT SMF for 5 day, 5 h each. Exposure to 20 mT decreased gene expression of Fe transporter, ferrous and H2O2 contents and gene expression, content and activity of ferritin and catalase. Opposite responses were observed under 30 mT treatments. The results suggest that SMF triggered a signaling pathway that is mediated by iron. The structure and activity of purified ferritin and apoferritin from horse spleen, and catalase from bovine liver proteins under SMF were evaluated as well. Secondary structure of proteins were not influenced by SMF (evidenced by far-UV circular dichroism), whereas their tertiary structure, size, and activity were altered (shown by fluorescence spectroscopy and dynamic light-scattering). From these results, it is likely that the number of iron atoms is involved in the nature of influence of SMF on protein structure.
Collapse
Affiliation(s)
- Sanaz Shokrollahi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohsen Sharifi
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
44
|
Zeng Z, Wei J, Liu Y, Zhang W, Mabe T. Magnetoreception of Photoactivated Cryptochrome 1 in Electrochemistry and Electron Transfer. ACS OMEGA 2018; 3:4752-4759. [PMID: 31458694 PMCID: PMC6641772 DOI: 10.1021/acsomega.8b00645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 06/10/2023]
Abstract
Cryptochromes are flavoproteins whose photochemistry is important for crucial functions associated with phototropism and circadian clocks. In this report, we, for the first time, observed a magnetic response of the cryptochrome 1 (CRY1) immobilized at a gold electrode with illumination of blue light. These results present the magnetic field-enhanced photoinduced electron transfer of CRY1 to the electrode by voltammetry, exhibiting magnetic responsive rate constant and electrical current changes. A mechanism of the electron transfer, which involves photoinduced radicals in the CRY, is sensitive to the weak magnetic field; and the long-lived free radical FAD•- is responsible for the detected electrochemical Faradaic current. As a photoreceptor, the finding of a 5.7% rate constant change in electron transfer corresponding to a 50 μT magnetic field may be meaningful in regulation of magnetic field signaling and circadian clock function under an electromagnetic field.
Collapse
|
45
|
Pinzon-Rodriguez A, Bensch S, Muheim R. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J R Soc Interface 2018; 15:20180058. [PMID: 29593090 PMCID: PMC5908540 DOI: 10.1098/rsif.2018.0058] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/05/2018] [Indexed: 12/23/2022] Open
Abstract
The light-dependent magnetic compass of birds provides orientation information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina, and be mediated by a light-induced, biochemical radical-pair mechanism involving cryptochromes as putative receptor molecules. At the same time, cryptochromes are known for their role in the negative feedback loop in the circadian clock. We measured gene expression of Cry1, Cry2 and Cry4 in the retina, muscle and brain of zebra finches over the circadian day to assess whether they showed any circadian rhythmicity. We hypothesized that retinal cryptochromes involved in magnetoreception should be expressed at a constant level over the circadian day, because birds use a light-dependent magnetic compass for orientation not only during migration, but also for spatial orientation tasks in their daily life. Cryptochromes serving in circadian tasks, on the other hand, are expected to be expressed in a rhythmic (circadian) pattern. Cry1 and Cry2 displayed a daily variation in the retina as expected for circadian clock genes, while Cry4 expressed at constant levels over time. We conclude that Cry4 is the most likely candidate magnetoreceptor of the light-dependent magnetic compass in birds.
Collapse
Affiliation(s)
| | - Staffan Bensch
- Department of Biology, Lund University, Ecology Building, Lund 223 62, Sweden
| | - Rachel Muheim
- Department of Biology, Lund University, Biology Building B, Lund 223 62, Sweden
| |
Collapse
|
46
|
Paul S, Kiryutin AS, Guo J, Ivanov KL, Matysik J, Yurkovskaya AV, Wang X. Magnetic field effect in natural cryptochrome explored with model compound. Sci Rep 2017; 7:11892. [PMID: 28928466 PMCID: PMC5605708 DOI: 10.1038/s41598-017-10356-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022] Open
Abstract
Many animals sense the Earth's magnetic-field and use it for navigation. It is proposed that a light-dependent quantum effect in cryptochrome proteins, residing in the retina, allows for such an iron-free spin-chemical compass. The photochemical processes, spin-dynamics and its magnetic field dependence in natural cryptochrome are not fully understood by the in vivo and in vitro studies. For a deeper insight into these biophysical mechanisms in cryptochrome, we had introduced a flavin-tryptophan dyad (F10T). Here we present the magnetic field dependence of 1H photo-CIDNP NMR on F10T and a theoretical model for low-field photo-CIDNP of F10T. This model provides mixing mechanism of energy-levels and spin-dynamics at low magnetic fields. Photo-CIDNP has been observed even at Earth's magnetic field (~0.05 mT). These experiments prove F10T to be an excellent model compound establishing the key mechanism of avian-magnetoreception and provide insight into the optimal behaviour of cryptochrome at Earth's magnetic field.
Collapse
Affiliation(s)
- Shubhajit Paul
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr, 3, D-04103, Leipzig, Germany
| | - Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| | - Jinping Guo
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, 410073, Changsha, China
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstr, 3, D-04103, Leipzig, Germany
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russia
| | - Xiaojie Wang
- Department of Chemistry and Biology, College of Science, National University of Defense Technology, 410073, Changsha, China.
| |
Collapse
|
47
|
Zhang M, Wang L, Zhong D. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Arch Biochem Biophys 2017; 632:158-174. [PMID: 28802828 DOI: 10.1016/j.abb.2017.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 11/16/2022]
Abstract
Photolyase, a flavoenzyme containing flavin adenine dinucleotide (FAD) molecule as a catalytic cofactor, repairs UV-induced DNA damage of cyclobutane pyrimidine dimer (CPD) and pyrimidine-pyrimidone (6-4) photoproduct using blue light. The FAD cofactor, conserved in the whole protein superfamily of photolyase/cryptochromes, adopts a unique folded configuration at the active site that plays a critical functional role in DNA repair. Here, we review our comprehensive characterization of the dynamics of flavin cofactor and its repair photocycles by different classes of photolyases on the most fundamental level. Using femtosecond spectroscopy and molecular biology, significant advances have recently been made to map out the entire dynamical evolution and determine actual timescales of all the catalytic processes in photolyases. The repair of CPD reveals seven electron-transfer (ET) reactions among ten elementary steps by a cyclic ET radical mechanism through bifurcating ET pathways, a direct tunneling route mediated by the intervening adenine and a two-step hopping path bridged by the intermediate adenine from the cofactor to damaged DNA, through the conserved folded flavin at the active site. The unified, bifurcated ET mechanism elucidates the molecular origin of various repair quantum yields of different photolyases from three life kingdoms. For 6-4 photoproduct repair, a similar cyclic ET mechanism operates and a new cyclic proton transfer with a conserved histidine residue at the active site of (6-4) photolyases is revealed.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lijuan Wang
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Dongping Zhong
- Department of Physics, Department of Chemistry and Biochemistry, Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
48
|
Abstract
Diverse animals ranging from worms and insects to birds and turtles perform impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode Caenorhabditis elegans. We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for underutilized and novel approaches to identify the elusive magnetoreceptors in animals.
Collapse
Affiliation(s)
- Benjamin L Clites
- Institute for Cell and Molecular Biology, Center for Brain, Behavior and Evolution, Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, and Department of Neuroscience, University of Texas, Austin, Texas 78712; ,
| | - Jonathan T Pierce
- Institute for Cell and Molecular Biology, Center for Brain, Behavior and Evolution, Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, and Department of Neuroscience, University of Texas, Austin, Texas 78712; ,
| |
Collapse
|
49
|
Magnetic Fields Modulate Blue-Light-Dependent Regulation of Neuronal Firing by Cryptochrome. J Neurosci 2017; 36:10742-10749. [PMID: 27798129 DOI: 10.1523/jneurosci.2140-16.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
Many animals are able to sense the Earth's geomagnetic field to enable behaviors such as migration. It is proposed that the magnitude and direction of the geomagnetic field modulates the activity of cryptochrome (CRY) by influencing photochemical radical pair intermediates within the protein. However, this proposal will remain theoretical until a CRY-dependent effect on a receptor neuron is shown to be modified by an external magnetic field (MF). It is established that blue-light (BL) photoactivation of CRY is sufficient to depolarize and activate Drosophila neurons. Here, we show that this CRY-dependent effect is significantly potentiated in the presence of an applied MF (100 mT). We use electrophysiological recordings from larval identified motoneurons, in which CRY is ectopically expressed, to show that BL-dependent depolarization of membrane potential and increased input resistance are markedly potentiated by an MF. Analysis of membrane excitability shows that these effects of MF exposure evoke increased action potential firing. Almost nothing is known about the mechanism by which a magnetically induced change in CRY activity might produce a behavioral response. We further report that specific structural changes to the protein alter the impact of the MF in ways that are strikingly similar to those from recent behavioral studies into the magnetic sense of Drosophila These observations provide the first direct experimental evidence to support the hypothesis that MF modulation of CRY activity is capable of influencing neuron activity to allow animal magnetoreception. SIGNIFICANCE STATEMENT The biophysical mechanism of animal magnetoreception is still unclear. The photoreceptor protein cryptochrome has risen to prominence as a candidate magnetoreceptor molecule based on multiple reports derived from behavioral studies. However, the role of cryptochrome as a magnetoreceptor remains controversial primarily because of a lack of direct experimental evidence linking magnetic field (MF) exposure to a change in neuronal activity. Here, we show that exposure to an MF (100 mT) is sufficient to potentiate the ability of light-activated cryptochrome to increase neuronal action potential firing. Our results provide critical missing evidence to show that the activity of cryptochrome is sensitive to an external MF that is capable of modifying animal behavior.
Collapse
|
50
|
Nohr D, Paulus B, Rodriguez R, Okafuji A, Bittl R, Schleicher E, Weber S. Bestimmung des Radikal-Radikal-Abstands in lichtaktiven Proteinen im angeregten Zustand und dessen Bedeutung für die biologische Magnetorezeption. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201700389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Nohr
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Bernd Paulus
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Ryan Rodriguez
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Asako Okafuji
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Robert Bittl
- Fachbereich Physik; Freie Universität Berlin; Arnimallee 14 14195 Berlin Deutschland
| | - Erik Schleicher
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| | - Stefan Weber
- Institut für Physikalische Chemie; Albert-Ludwigs-Universität Freiburg; Albertstraße 21 79104 Freiburg Deutschland
| |
Collapse
|