1
|
Hao Y, Guo T, Li H, Liu W, Chen Z, Zhang W, Wang X, Guo J. Fe/GMP functional nanomaterial enhancing the denitrification efficiency by bi-signal regulation: Electron transfer and microbial community. BIORESOURCE TECHNOLOGY 2024; 413:131533. [PMID: 39326537 DOI: 10.1016/j.biortech.2024.131533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
A novel functional nanomaterial composed of guanosine monophosphate (GMP) and Fe enhanced denitrification efficiency by regulating electron transfer and microbial community. Fe/GMP enhanced nitrate (NO3-) degradation rates by 3.00-fold in serum vial batch experiments, with a rate constant of 17.39 mg/(L·h) in sequencing batch reactor. Fe/GMP-mediated interface promoted the secretion of redox-active substances in the extracellular polymeric substances to enhance the extracellular electron transfer. Specifically, Fe/GMP regulated electron transfer and metabolism activity by dynamic conversion of Fe3+/Fe2+ redox signal. Additionally, enzyme activity assays verified the optimized electron distribution function of Fe/GMP and thus enhanced intracellular electron transfer. High-throughput sequencing confirmed Fe/GMP selectively enriched microorganisms (especially Thauera 50.70 %). The tetraethylammonium stress experiment demonstrated Fe/GMP as an exogenous signaling molecule to restore microbial communication for microbial community regulation. The study proposes a multifaceted synergistic mechanism based on the repeater function of Fe/GMP in denitrification and offers insights for practical applications.
Collapse
Affiliation(s)
- Yunzhe Hao
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Tingting Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Wenli Liu
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China
| | - Zhi Chen
- Department of Building, Civil, and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec, Canada
| | - Wenjuan Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin 300384, China
| | - Xiaoping Wang
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
2
|
Zhao Y, Yuan X, Du Z, Niu J, Song J, Zhai S, Liu Y, Nuramkhaan M. New insights into N 2O emission and electron competition under different chemical oxygen demand to nitrogen ratios in a biofilm system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175265. [PMID: 39102953 DOI: 10.1016/j.scitotenv.2024.175265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Nitrous oxide (N2O) is a greenhouse gas that could accumulate during the heterotrophic denitrification process. In this study, the effects of different chemical oxygen demand to nitrogen ratio (COD/N) on N2O production and electron competition was investigated. The electron competition was intensified with the decrease of electron supply, and Nos had the best electron competition ability. The model simulation results indicated that the degradation of NOx-Ns was a combination of diffusion and biological degradation. As reaction proceeding, N2O could accumulate inside biofilm. A thinner biofilm and a longer hydraulic retention time (HRT) might be an effective way to control N2O emission. The application of mathematical model is an opportunity to gain deep understanding of substrate degradation and electron competition inside biofilm.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Yuan
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Zihan Du
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China; Hebei Construction & Investment Group Rong Carbon Asset Management CO., LTD, 18F, Building 3, Hongrui Building, No. 6 Yuguang Street, Qiaoxi District, Shijiazhuang City, Hebei 050000, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China.
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, No.135 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Marjangul Nuramkhaan
- Laboratory of Microbiology, Institute of Biology, Mongolian Academy of Sciences, Peace avenue-54b, Ulaanbaatar, Mongolia
| |
Collapse
|
3
|
Tan E, Chen B, Han L, Zou W, Yan X, Huang Z, Han Y, Zheng Z, Zheng L, Xu M, Yang JYT, Bao H, Kao SJ. Labile organic matter favors a low N 2O yield during nitrogen removal in estuarine sediments. MARINE POLLUTION BULLETIN 2024; 209:117190. [PMID: 39454393 DOI: 10.1016/j.marpolbul.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Estuary harbors the active sediment denitrification and nitrous oxide (N2O) emission, while the knowledge of environmental controls on the denitrification-derived N2O yield remains underexplored. Here, we quantitatively assess the potential and in situ rates of N2O production during sediment denitrification in the Pearl River Estuary (PRE), China. Organic matter determines the product stoichiometry and capacity of nitrogen removal. In particular, labile organic matter (LOM) reduces N2O yield via enhancing the complete coupled nitrification-denitrification. Our results reveal that the chain processes, primary production-LOM settling-sedimentary respiration-coupled nitrification-denitrification, control the sediment denitrification and N2O production, linking the carbon and nitrogen biogeochemical cycles in the atmosphere-water column-sediment continuum. The PRE sediments serve as nitrogen removal hotspots but with low efficiency (~25 % of riverine input) and strong N2O release (~66 % of daily sea-air N2O efflux). These findings contribute to policy makers to develop knowledge-based management actions for achieving sustainable coastal environments and mitigating N2O emission.
Collapse
Affiliation(s)
- Ehui Tan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China.
| | - Bin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Lili Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Wenbin Zou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiuli Yan
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou, China
| | - Zhixiong Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Yu Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Zhenzhen Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Liwei Zheng
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Min Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China
| | - Jin-Yu Terence Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hongyan Bao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Xiang J, Zhang N, Li J, Zhu Y, Cao T, Wang Y. Unveiling the Hidden Responses: Metagenomic Insights into Dwarf Bamboo ( Fargesia denudata) Rhizosphere under Drought and Nitrogen Challenges. Int J Mol Sci 2024; 25:10790. [PMID: 39409119 PMCID: PMC11477272 DOI: 10.3390/ijms251910790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Dwarf bamboo (Fargesia denudata) is a crucial food source for the giant pandas. With its shallow root system and rapid growth, dwarf bamboo is highly sensitive to drought stress and nitrogen deposition, both major concerns of global climate change affecting plant growth and rhizosphere environments. However, few reports address the response mechanisms of the dwarf bamboo rhizosphere environment to these two factors. Therefore, this study investigated the effects of drought stress and nitrogen deposition on the physicochemical properties and microbial community composition of the arrow bamboo rhizosphere soil, using metagenomic sequencing to analyze functional genes involved in carbon and nitrogen cycles. Both drought stress and nitrogen deposition significantly altered the soil nutrient content, but their combination had no significant impact on these indicators. Nitrogen deposition increased the relative abundance of the microbial functional gene nrfA, while decreasing the abundances of nirK, nosZ, norB, and nifH. Drought stress inhibited the functional genes of key microbial enzymes involved in starch and sucrose metabolism, but promoted those involved in galactose metabolism, inositol phosphate metabolism, and hemicellulose degradation. NO3--N showed the highest correlation with N-cycling functional genes (p < 0.01). Total C and total N had the greatest impact on the relative abundance of key enzyme functional genes involved in carbon degradation. This research provides theoretical and technical references for the sustainable management and conservation of dwarf bamboo forests in giant panda habitats under global climate change.
Collapse
Affiliation(s)
- Jun Xiang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (J.X.); (J.L.); (Y.Z.); (T.C.)
| | - Nannan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China;
| | - Jiangtao Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (J.X.); (J.L.); (Y.Z.); (T.C.)
| | - Yue Zhu
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (J.X.); (J.L.); (Y.Z.); (T.C.)
| | - Tingying Cao
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (J.X.); (J.L.); (Y.Z.); (T.C.)
| | - Yanjie Wang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China; (J.X.); (J.L.); (Y.Z.); (T.C.)
| |
Collapse
|
5
|
Miralles-Robledillo JM, Martínez-Espinosa RM, Pire C. Transcriptomic profiling of haloarchaeal denitrification through RNA-Seq analysis. Appl Environ Microbiol 2024; 90:e0057124. [PMID: 38814058 PMCID: PMC11218638 DOI: 10.1128/aem.00571-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Denitrification, a crucial biochemical pathway prevalent among haloarchaea in hypersaline ecosystems, has garnered considerable attention in recent years due to its ecological implications. Nevertheless, the underlying molecular mechanisms and genetic regulation governing this respiration/detoxification process in haloarchaea remain largely unexplored. In this study, RNA-sequencing was used to compare the transcriptomes of the haloarchaeon Haloferax mediterranei under oxic and denitrifying conditions, shedding light on the intricate metabolic alterations occurring within the cell, such as the accurate control of the metal homeostasis. Furthermore, the investigation identifies several genes encoding transcriptional regulators and potential accessory proteins with putative roles in denitrification. Among these are bacterioopsin-like transcriptional activators, proteins harboring a domain of unknown function (DUF2249), and cyanoglobin. In addition, the study delves into the genetic regulation of denitrification, finding a regulatory motif within promoter regions that activates numerous denitrification-related genes. This research serves as a starting point for future molecular biology studies in haloarchaea, offering a promising avenue to unravel the intricate mechanisms governing haloarchaeal denitrification, a pathway of paramount ecological importance.IMPORTANCEDenitrification, a fundamental process within the nitrogen cycle, has been subject to extensive investigation due to its close association with anthropogenic activities, and its contribution to the global warming issue, mainly through the release of N2O emissions. Although our comprehension of denitrification and its implications is generally well established, most studies have been conducted in non-extreme environments with mesophilic microorganisms. Consequently, there is a significant knowledge gap concerning extremophilic denitrifiers, particularly those inhabiting hypersaline environments. The significance of this research was to delve into the process of haloarchaeal denitrification, utilizing the complete denitrifier haloarchaeon Haloferax mediterranei as a model organism. This research led to the analysis of the metabolic state of this microorganism under denitrifying conditions and the identification of regulatory signals and genes encoding proteins potentially involved in this pathway, serving as a valuable resource for future molecular studies.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, Universitat d'Alacant, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| |
Collapse
|
6
|
Selden CR, LaBrie R, Ganley LC, Crocker DR, Peleg O, Perry DC, Reich HG, Sasaki M, Thibodeau PS, Isanta-Navarro J. Is our understanding of aquatic ecosystems sufficient to quantify ecologically driven climate feedbacks? GLOBAL CHANGE BIOLOGY 2024; 30:e17351. [PMID: 38837306 DOI: 10.1111/gcb.17351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.
Collapse
Affiliation(s)
- Corday R Selden
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA
| | - Richard LaBrie
- Interdisciplinary Environmental Research Centre, TU Bergakademie Freiberg, Freiberg, Germany
| | - Laura C Ganley
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, Massachusetts, USA
| | - Daniel R Crocker
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Ohad Peleg
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Danielle C Perry
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Hannah G Reich
- Department of Biological Sciences, Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Matthew Sasaki
- Department of Marine Sciences, University of Connecticut, Mansfield, Connecticut, USA
| | - Patricia S Thibodeau
- School of Marine and Environmental Programs, University of New England, Biddeford, Maine, USA
| | | |
Collapse
|
7
|
Nguyen Quoc B, Cavanaugh SK, Hunt KA, Bryson SJ, Winkler MKH. Impact of aerobic granular sludge sizes and dissolved oxygen concentration on greenhouse gas N 2O emission. WATER RESEARCH 2024; 255:121479. [PMID: 38520777 DOI: 10.1016/j.watres.2024.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Aerobic granular sludge (AGS) at wastewater treatment plants (WWTPs) are known to produce nitrous oxide (N2O), a greenhouse gas which has a ∼300 times higher global warming potential than carbon dioxide. In this research, we studied N2O emissions from different sizes of AGS developed at a dissolved oxygen (DO) level of 2 mgO2/L while exposing them to disturbances at various DO concentrations ranging from 1 to 4 mgO2/L. Five different AGS size classes were studied: 212-600 µm, 600-1000 µm, 1000-1400 µm, 1400-2000 µm, and > 2000 µm. Metagenomic data showed N2O reductase genes (nosZ) were more abundant in the smaller AGS sizes which aligned with the observation of higher N2O reduction rates in small AGS under anaerobic conditions. However, when oxygen was present, the activity measurements of N2O emission showed an opposite trend compared to metagenomic data, smaller AGS (212 to 1000 µm) emitted significantly higher N2O (p < 0.05) than larger AGS (1000 µm to >2000 µm) at DO of 2, 3, and 4 mgO2/L. The N2O emission rate showed positive correlation with both oxygen levels and nitrification rate. This pattern indicates a connection between N2O emission and nitrification. In addition, the data suggested the penetration of oxygen into the anoxic zone of granules might have hindered nitrous oxide reduction, resulting in incomplete denitrification stopping at N2O and consequently contributing to an increase in N2O emissions. This work sets the stage to better understand the impacts of AGS size on N2O emissions in WWTPs under different disturbance of DO conditions, and thus ensure that wastewater treatment will comply with possible future regulations demanding lowering greenhouse gas emissions in an effort to combat climate change.
Collapse
Affiliation(s)
- Bao Nguyen Quoc
- Department of Civil and Environmental Engineering, University of Washington, United States.
| | - Shannon K Cavanaugh
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Kristopher A Hunt
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Samuel J Bryson
- Department of Civil and Environmental Engineering, University of Washington, United States
| | - Mari K H Winkler
- Department of Civil and Environmental Engineering, University of Washington, United States
| |
Collapse
|
8
|
Gios E, Verbruggen E, Audet J, Burns R, Butterbach-Bahl K, Espenberg M, Fritz C, Glatzel S, Jurasinski G, Larmola T, Mander Ü, Nielsen C, Rodriguez AF, Scheer C, Zak D, Silvennoinen HM. Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology. BIOGEOCHEMISTRY 2024; 167:609-629. [PMID: 38707517 PMCID: PMC11068585 DOI: 10.1007/s10533-024-01122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/22/2024] [Indexed: 05/07/2024]
Abstract
Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10533-024-01122-6.
Collapse
Affiliation(s)
- Emilie Gios
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| | - Erik Verbruggen
- Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Rachel Burns
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
- Department of Agroecology, Pioneer Center for Research in Sustainable Agricultural Futures (Land-CRAFT), Aarhus University, 8000 Aarhus, Denmark
| | - Mikk Espenberg
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Christian Fritz
- Aquatic Ecology and Environmental Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Stephan Glatzel
- Department of Geography and Regional Research, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Gerald Jurasinski
- Faculty of Agriculture and Environment, Landscape Ecology and Site Evaluation, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department of Maritime Systems, Faculty of Interdisciplinary Research, University of Rostock, Albert- Einstein-Straße 3, 18059 Rostock, Germany
| | - Tuula Larmola
- Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
| | - Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 St., Vanemuise, 51003 Tartu, Estonia
| | - Claudia Nielsen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
- CBIO, Centre for Circular Bioeconomy, Aarhus University, 8830 Tjele, Denmark
| | - Andres F. Rodriguez
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - Clemens Scheer
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, 82467 Garmisch-Partenkirchen, Germany
| | - Dominik Zak
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Hanna M. Silvennoinen
- NINA, Norwegian Institute for Nature Research, PO Box 5685, Torgarden, NO-7485 Trondheim, Norway
| |
Collapse
|
9
|
Fu M, Qiu S, Wang J, Zhu Y, Yuan M, Wang L. Tourmaline mediated enhanced autotrophic denitrification: The mechanisms of electron transfer and Paracoccus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169847. [PMID: 38185169 DOI: 10.1016/j.scitotenv.2023.169847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate‑nitrogen (NO3--N) removal rate with reduced nitrite‑nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China.
| | - Jue Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Yingshi Zhu
- Zhejiang Environment Technology Co., Ltd, Hangzhou 311100, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mu Yuan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Liang Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| |
Collapse
|
10
|
Deng D, He G, Ding B, Liu W, Yang Z, Ma L. Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e17256. [PMID: 38532549 DOI: 10.1111/gcb.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) are three competing processes of microbial nitrate reduction that determine the degree of ecosystem nitrogen (N) loss versus recycling. However, the global patterns and drivers of relative contributions of these N cycling processes to soil or sediment nitrate reduction remain unknown, limiting our understanding of the global N balance and management. Here, we compiled a global dataset of 1570 observations from a wide range of terrestrial and aquatic ecosystems. We found that denitrification contributed up to 66.1% of total nitrate reduction globally, being significantly greater in estuarine and coastal ecosystems. Anammox and DNRA could account for 12.7% and 21.2% of total nitrate reduction, respectively. The contribution of denitrification to nitrate reduction increased with longitude, while the contribution of anammox and DNRA decreased. The local environmental factors controlling the relative contributions of the three N cycling processes to nitrate reduction included the concentrations of soil organic carbon, ammonium, nitrate, and ferrous iron. Our results underline the dominant role of denitrification over anammox and DNRA in ecosystem nitrate transformation, which is crucial to improving the current global soil N cycle model and achieving sustainable N management.
Collapse
Affiliation(s)
- Danli Deng
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Gang He
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Bangjing Ding
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| | - Zhengjian Yang
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang, China
| | - Lin Ma
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, China
| |
Collapse
|
11
|
Feng R, Li Z, Qi Z. China's anthropogenic N 2O emissions with analysis of economic costs and social benefits from reductions in 2022. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120234. [PMID: 38308993 DOI: 10.1016/j.jenvman.2024.120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
We assess China's overall anthropogenic N2O emissions via the official guidebook published by Chinese government. Results show that China's overall anthropogenic N2O emissions in 2022 were around 1593.1 (1508.7-1680.7) GgN, about 47.0 %, 27.0 %, 13.4 %, 4.9 %, and 7.7 % of which were caused by agriculture, industry, energy utilization, wastewater, and indirect sources, respectively. Maximum reduction rate for N2O emissions from agriculture, industry, energy utilization, wastewater, and indirect sources can achieve 69 %, 99 %, 79 %, 86 %, and 48 %, respectively, in 2022. However, given current global scenarios with a rapidly changing population and geopolitical and energy tension, the emission reduction may not be fully fulfilled. Without compromising yields, China's theoretical minimum anthropogenic N2O emissions would be 600.6 (568.8-633.6) GgN. In terms of the economic costs for reducing one kg of N2O-N emissions, the price ranged from €12.9 to €81.1 for agriculture, from €0.08 to €0.16 for industry, and from €104.8 to €1571.5 for energy utilization. We acknowledge the emission reduction rates may not be completely realistic for large-scale application in China. The social benefits gained from reducing one kg of N2O-N emissions in China was about €5.2, indicating anthropogenic N2O emissions caused a loss 0.03 % of China's GDP, but only justifying reduction in industrial N2O emissions from the economic perspective. We perceive that the present monetized values will be trustworthy for at least three to five years, but later the numerical monetized values need to be considered in inflation and other currency-dependent conditions.
Collapse
Affiliation(s)
- Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Zhenhua Li
- Xiacheng District Study-Aid Science & Technology Studio, Hangzhou, 310004, China
| | - Zhuangzhou Qi
- School of Economics and Management, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
Yang S, Hou LJ, Dong HP, Zhang JW, Gao DZ, Li XF, Zheng YL, Liang X, Liu M. Natural chalcopyrite mitigates nitrous oxide emissions in sediment from coastal wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168766. [PMID: 38008310 DOI: 10.1016/j.scitotenv.2023.168766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/29/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Coastal wetlands are one of the most important natural sources of nitrous oxide (N2O). Previous studies have shown that copper-containing chemicals are able to reduce N2O emissions from these ecosystems. However, these chemicals may harm organisms present in coastal waters and sediment, and disturb the ecological balance of these areas. Here, we first investigated the physiological characteristics and genetic potential of denitrifying bacteria isolated from coastal wetlands. Based on an isolated denitrifier carrying a complete denitrification pathway, we tested the effect of the natural mineral chalcopyrite on N2O production by the bacteria. The results demonstrated that chalcopyrite addition lowers N2O emissions from the bacteria while increasing its N2 production rate. Among the four denitrification genes of the isolate, only nosZ gene expression was significantly upregulated following the addition of 2 mg L-1 chalcopyrite. Furthermore, chalcopyrite was applied to coastal wetland sediments. The N2O flux was significantly reduced in 50-100 mg L-1 chalcopyrite-amended sets relative to the controls. Notably, the dissolved Cu concentration in chalcopyrite-amended sediment remained within the limit set by the National Sewage Treatment Discharge Standard. qPCR and metagenomic analysis revealed that the abundance of N2O-reducing bacteria with the nosZ or nirK + nosZ genotype increased significantly in the chalcopyrite-amended groups relative to the controls, suggesting their active involvement in the reduction of N2O emissions. Our findings offer valuable insights for the use of natural chalcopyrite in large-scale field applications to reduce N2O emissions.
Collapse
Affiliation(s)
- Sai Yang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Jia-Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Deng-Zhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Xiao-Fei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Song X, Parker J, Jones SK, Zhang L, Bingham I, Rees RM, Ju X. Labile Carbon from Artificial Roots Alters the Patterns of N 2O and N 2 Production in Agricultural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38329046 DOI: 10.1021/acs.est.3c10833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Labile carbon (C) continuously delivered from the rhizosphere profoundly affects terrestrial nitrogen (N) cycling. However, nitrous oxide (N2O) and dinitrogen (N2) production in agricultural soils in the presence of continuous root C exudation with applied N remains poorly understood. We conducted an incubation experiment using artificial roots to continuously deliver small-dose labile C combined with 15N tracers to investigate N2O and N2 emissions in agricultural soils with pH and organic C (SOC) gradients. A significantly negative exponential relationship existed between N2O and N2 emissions under continuous C exudation. Increasing soil pH significantly promoted N2 emissions while reducing N2O emissions. Higher SOC further promoted N2 emissions in alkaline soils. Native soil-N (versus fertilizer-N) was the main source of N2O (average 67%) and N2 (average 80%) emissions across all tested soils. Our study revealed the overlooked high N2 emissions, mainly derived from native soil-N and strengthened by increasing soil pH, under relatively real-world conditions with continuous root C exudation. This highlights the important role of N2O and N2 production from native soil-N in terrestrial N cycling when there is a continuous C supply (e.g., plant-root exudate) and helps mitigate emissions and constrain global budgets of the two concerned nitrogenous gases.
Collapse
Affiliation(s)
- Xiaotong Song
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - John Parker
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | | | - Limei Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ian Bingham
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | - Robert M Rees
- SRUC, West Mains Road, Edinburgh, Scotland EH9 3JG, U.K
| | - Xiaotang Ju
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Li D, Sun Z, Luo G, Lu L, Zhang S, Xi J. Enhancing biological conversion of NO to N 2O by utilizing thermophiles instead of mesophiles. CHEMOSPHERE 2024; 350:141037. [PMID: 38147927 DOI: 10.1016/j.chemosphere.2023.141037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/24/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The production of nitrous oxide (N2O) through the biological denitrification of nitric oxide (NO) from flue gases has recently been achieved. Although the temperature of flue gas after desulphurization is usually 45-70 °C, all previous studies conducted microbial denitrification of NO under mesophilic conditions (22-35 °C). This study investigated the biological conversion of NO to N2O in both mesophilic (35-45 °C) and thermophilic conditions (45-50 °C). The results showed that temperature has a great impact on N2O production, with a maximum conversion efficiency (from NO to N2O) of 82% achieved at 45 °C, which is obviously higher than the reported conversion efficiencies (24-71%) under mesophilic conditions. Additionally, high-throughput sequencing result showed that the genera Enterococcus, Clostridium, Romboutsia, and Streptococcus were closely related to NO denitrification and N2O production. Microbial communities at 40 and 45 °C had greater metabolizing capacities for polymeric carbon sources. This study suggests that thermophilic condition (45 °C) is more suitable for biological production of N2O from NO.
Collapse
Affiliation(s)
- Dan Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhuqiu Sun
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Ga Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Lichao Lu
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Shaobo Zhang
- Beijing Capital Sludge Disposal Technology Co. LTD, 100044, Beijing, China
| | - Jinying Xi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Li H, Tang Y, Gao W, Pan W, Jiang C, Lee X, Cheng J. Response of soil N 2O production pathways to biochar amendment and its isotope discrimination methods. CHEMOSPHERE 2024; 350:141002. [PMID: 38145843 DOI: 10.1016/j.chemosphere.2023.141002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Reducing nitrous oxide (N2O) emission from farmland is crucial for alleviating global warming since agriculture is an important contributor of atmospheric N2O. Returning biochar to agricultural fields is an important measure to mitigate soil N2O emissions. Accurately quantifying the effect of biochar on the process of N2O production and its driving factors is critical for achieving N2O emission mitigation. Recently, stable isotope techniques such as isotope labeling, natural abundance, and site preference (SP) value, have been widely used to distinguish N2O production pathways. However, the different isotope methods have certain limitations in distinguishing N2O production in biochar-amended soils where it is difficult to identify the relative contribution of individual pathways for N2O production. This paper systematically reviews the pathways of soil N2O production (nitrification, nitrifier denitrification, bacterial denitrification, fungal denitrification, coupled nitrification-denitrification, dissimilatory nitrate reduction to ammonium and abiotic processes) and their response mechanism to the addition of biochar, as well as the development history and advantages of isotopes in differentiating N2O production pathways in biochar-amended soils. Moreover, the limitations of current research methods and future research directions are proposed. These results will help resolve how biochar affects different processes that lead to soil N2O generation and provide a scientific basis for sustainable agricultural carbon sequestration and the fulfilment of carbon neutrality goals.
Collapse
Affiliation(s)
- Huan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou Province, China
| | - Wenjie Pan
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou Province, China
| | - Chaoying Jiang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou Province, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China.
| |
Collapse
|
16
|
Ma X, Li Y, Wang L, Niu L, Shang J, Zheng J. Hypoxia and salinity constrain the sediment microbiota-mediated N removal potential in an estuary: A multi-trophic interrelationship perspective. WATER RESEARCH 2024; 248:120872. [PMID: 38006831 DOI: 10.1016/j.watres.2023.120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Reactive nitrogen (N) enrichment is a common environmental problem in estuarine ecosystems, while the microbial-mediated N removal process is complicated for other multi-environmental factors. Therefore, A systematic investigation is necessary to understand the multi-trophic microbiota-mediated N removal characteristics under various environmental factors in estuaries. Here, we studied how multiple factors affect the multi-trophic microbiota-mediated N removal potential (denitrification and anammox) and N2O emission along a river-estuary-bay continuum in southeastern China using the environmental DNA (eDNA) approach. Results suggested that hypoxia and salinity were the dominant environmental factors affecting multi-trophic microbiota-mediated N removal in the estuary. The synergistic effect of hypoxia and salinity contributed to the loss of taxonomic (MultiTaxa) and phylogenetic (MultiPhyl) diversity across multi-trophic microbiota and enhanced the interdependence among multi-trophic microbiota in the estuary. The N removal potential calculated as the activities of key N removal enzymes was also significantly constrained in the estuary (0.011), compared with the river (0.257) and bay (0.461). Structural equation modeling illustrated that metazoans were central to all sediment N removal potential regulatory pathways. The top-down forces (predation by metazoans) restrained the growth of heterotrophic bacteria, which may affect microbial N removal processes in the sediment. Furthermore, we found that the hypoxia and salinity exacerbated the N2O emission in the estuary. This study clarifies that hypoxia and salinity constrain estuarine multi-trophic microbiota-mediated N removal potential and highlights the important role of multi-trophic interactions in estuarine N removal, providing a new perspective on mitigating estuarine N accumulation.
Collapse
Affiliation(s)
- Xin Ma
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Yi Li
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China.
| | - Linqiong Wang
- College of Oceanography, Hohai University, Nanjing 210098, China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China; Research Institute of Mulan Ecological River, Putian 351100, China
| |
Collapse
|
17
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
18
|
Zhu T, Ding J, Liu Y, Li X, Wang Z, Liu Y. The effect of organic sources on the electron distribution and N 2O emission in sulfur-driven autotrophic denitrification biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166126. [PMID: 37562622 DOI: 10.1016/j.scitotenv.2023.166126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SAD) is considered as an effective alternative to traditional heterotrophic denitrification (HD) due to its cheap, low sludge production and non-toxicity. Nitrous oxide (N2O) as an intermediate product inevitably was generated at the limited supply of electron donor or unbalanced electron distribution condition during the denitrification process. Recently, autotrophic denitrification biofilters were conclusively implemented for advanced nitrogen removal in wastewater treatment plant (WWTP). However, residual organic sources after wastewater treatment could affect the electron distribution among denitrifying reductases and few studies are known about this issue. In this study, several lab-scale biofilters packed with elemental sulfur slices were applied to explore the electron distribution characteristics of autotrophic denitrification through the combination of different nitrogen oxides (NOx). The results clearly delineated that the different combination of nitrogen oxides had a remarkable effect on the electron distribution. In any case, the electrons likely flow toward nitrate reductase (Nar) under a single nitrogen oxide combination, followed by nitrite reductase (Nir) and nitrous oxide reductase (Nos). The concurrent presence of multiple electron acceptors resulted in most electrons flowing toward Nar, and least toward Nos. Compared to traditional SAD, the reduction rate of nitrogen oxide in the sulfur-driven autotrophic denitrification with influent of organic source (OSAD) was greatly improved. The maximum value of the true specific rates of NO3- in OSAD process was 9.43 mg-N/g-VSS/h. It was increased by 8.26 folds higher than that in traditional SAD. The electrons were more easily distributed to Nos with the addition of sodium acetate, which further promoted the N2O reduction. This study will provide theoretical support for controlling N2O release in SAD biofilters.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiazeng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xufeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
19
|
Feng R, Li Z. Current investigations on global N 2O emissions and reductions: Prospect and outlook. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122664. [PMID: 37813141 DOI: 10.1016/j.envpol.2023.122664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/14/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Global nitrous oxide (N2O) emissions merit scrutiny, because N2O is the third most important greenhouse gas for global warming and the predominant ozone-depleting substance in this century. Here we recapitulate global natural and anthropogenic N2O sources, comprehensively depict global sectoral human-induced N2O emissions by country, thoroughly survey all existing approaches for mitigating human-induced N2O emissions, preview the economic costs and social benefits from abating N2O emissions, and summarize roadblocks for achieving its emission reductions. From 1970 to 2018, the annual global anthropogenic N2O emissions increased by 64%-about 3.6 teragrams (Tg); agricultural sources primarily accounted for 78% of this increment. We find the social benefits from reducing N2O emissions override the economic costs for abatements, only except precision farming for agricultural sources and replacement by Xe for anesthetic, thus justifying the motivation for crafting policies to limit its emissions. Net zero N2O emissions cannot be achieved via applying current technologies and breeding N2O-reducing microbes is a potential method to accrue N2O sinks.
Collapse
Affiliation(s)
- Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Zhenhua Li
- Xiacheng District Study-Aid Science & Technology Studio, Hangzhou, 310004, China
| |
Collapse
|
20
|
Martinez J, Schneider JE, Anferov SW, Anderson JS. Electrochemical Reduction of N 2O with a Molecular Copper Catalyst. ACS Catal 2023; 13:12673-12680. [PMID: 37822863 PMCID: PMC10563017 DOI: 10.1021/acscatal.3c02658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Indexed: 10/13/2023]
Abstract
Deoxygenation of nitrous oxide (N2O) has significant environmental implications, as it is not only a potent greenhouse gas but is also the main substance responsible for the depletion of ozone in the stratosphere. This has spurred significant interest in molecular complexes that mediate N2O deoxygenation. Natural N2O reduction occurs via a Cu cofactor, but there is a notable dearth of synthetic molecular Cu catalysts for this process. In this work, we report a selective molecular Cu catalyst for the electrochemical reduction of N2O to N2 using H2O as the proton source. Cyclic voltammograms show that increasing the H2O concentration facilitates the deoxygenation of N2O, and control experiments with a Zn(II) analogue verify an essential role for Cu. Theory and spectroscopy support metal-ligand cooperative catalysis between Cu(I) and a reduced tetraimidazolyl-substituted radical pyridine ligand (MeIm4P2Py = 2,6-(bis(bis-2-N-methylimidazolyl)phosphino)pyridine), which can be observed by Electron Paramagnetic Resonance (EPR) spectroscopy. Comparison with biological processes suggests a common theme of supporting electron transfer moieties in enabling Cu-mediated N2O reduction.
Collapse
Affiliation(s)
- Jorge
L. Martinez
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E. Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W. Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S. Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Zhang Y, Chen J, Cheng X. Revisiting the relationships between soil nitrous oxide emissions and microbial functional gene abundances. GLOBAL CHANGE BIOLOGY 2023; 29:4697-4699. [PMID: 37430461 DOI: 10.1111/gcb.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
A conceptual framework proposes that soil N2 O emissions are more likely related to microbial functional gene abundances based on laboratory experiments than in-situ observations. This framework has largely contributed to reconciling the disputation on linking soil N2 O emissions with functional gene abundances, but the direct evidence is lacking. Wei et al. (2023) provided new evidence to support this framework, showing that O2 dynamics were a better predictor of in-situ soil N2 O emissions than were functional gene abundances. Before the observations can inform N2 O modeling and support sustainable nitrogen management, however, some additional efforts are needed to revisit the relationships between in-situ soil N2 O emissions and functional gene abundances.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Xiaoli Cheng
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| |
Collapse
|
22
|
Alessio F, Lennert D, Sandra VD, Frederik W, Verhaeghe K, Koen VL, Joris R, Rosalia D. Glycerol used for denitrification in full-scale wastewater treatment plants: nitrous oxide emissions, sludge acclimatization, and other insights. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:645-657. [PMID: 37578880 PMCID: wst_2023_240 DOI: 10.2166/wst.2023.240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Glycerol is commonly employed for denitrification purposes in full-scale wastewater treatment. In non-acclimatized biomass, the glycerol is very inefficient resulting in a high C/N ratio and low-standard denitrification rates. The acclimatization is driven by the microbial enrichment of Saccharimonadales and Propionibacteriales as found in different sampled municipal sludges flanking the dominant presence of Burkholderiales. The selective strategy is based on a very efficient process in terms of C/N ratios and standard denitrification rates, but it leads to nitrite accumulation. As a result, severe and unexpected nitrous oxide emissions were found in full-scale with emission factors up to 2.5% kgN2O (kgKJNremoved)-1. Simultaneous dosage of isobutirate in a full-scale experiment could counter the nitrous oxide emissions. As nitrous oxide emissions were found proportional to the dosed glycerol-based COD, the authors suggest that, in case of acclimatization of biomass to glycerol, an emission factor based on the dosed COD should substitute the general nitrous oxide emission factors based on incoming or removed nitrogen to the plant.
Collapse
Affiliation(s)
- Fenu Alessio
- Aquafin NV, Dijkstraat 8, Aartselaar, Belgium E-mail:
| | | | | | | | | | | | - Roels Joris
- Aquafin NV, Dijkstraat 8, Aartselaar, Belgium
| | | |
Collapse
|
23
|
Dasi EA, Cunningham JA, Talla E, Ergas SJ. Autotrophic denitrification supported by sphalerite and oyster shells: Chemical and microbiome analysis. BIORESOURCE TECHNOLOGY 2023; 375:128820. [PMID: 36871699 DOI: 10.1016/j.biortech.2023.128820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
This research evaluated the metal-sulfide mineral, sphalerite, as an electron donor for autotrophic denitrification, with and without oyster shells (OS). Batch reactors containing sphalerite simultaneously removed NO3- and PO43- from groundwater. OS addition minimized NO2- accumulation and removed 100% PO43- in approximately half the time compared with sphalerite alone. Further investigation using domestic wastewater revealed that sphalerite and OS removed NO3- at a rate of 0.76 ± 0.36 mg NO3--N/(L · d), while maintaining consistent PO43- removal (∼97%) over 140 days. Increasing the sphalerite and OS dose did not improve the denitrification rate. 16S rRNA amplicon sequencing indicated that sulfur-oxidizing species of Chromatiales, Burkholderiales, and Thiobacillus played a role in N removal during sphalerite autotrophic denitrification. This study provides a comprehensive understanding of N removal during sphalerite autotrophic denitrification, which was previously unknown. Knowledge from this work could be used to develop novel technologies for addressing nutrient pollution.
Collapse
Affiliation(s)
- Erica A Dasi
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Jeffrey A Cunningham
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA
| | - Emmanuel Talla
- Aix Marseille Univ, CNRS, Laboratoire de Chimie Bactérienne (LCB), F-13009, Marseille, France
| | - Sarina J Ergas
- Department of Civil & Environmental Engineering, University of South Florida (USF), 4202 E. Fowler Ave, ENG 030, Tampa, FL 33620, USA.
| |
Collapse
|
24
|
Miralles-Robledillo JM, Martínez-Espinosa RM, Pire C. Analysis of the external signals driving the transcriptional regulation of the main genes involved in denitrification in Haloferax mediterranei. Front Microbiol 2023; 14:1109550. [PMID: 37007523 PMCID: PMC10062603 DOI: 10.3389/fmicb.2023.1109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
Haloferax mediterranei is the model microorganism for the study of the nitrogen cycle in haloarchaea. This archaeon not only assimilate N-species such as nitrate, nitrite, or ammonia, but also it can perform denitrification under low oxygen conditions, using nitrate or nitrite as alternative electron acceptors. However, the information currently available on the regulation of this alternative respiration in this kind of microorganism is scarce. Therefore, in this research, the study of haloarchaeal denitrification using H. mediterranei has been addressed by analyzing the promoter regions of the four main genes of denitrification (narGH, nirK, nor, and nosZ) through bioinformatics, reporter gene assays under oxic and anoxic conditions and by site-directed mutagenesis of the promoter regions. The results have shown that these four promoter regions share a common semi-palindromic motif that plays a role in the control of the expression levels of nor and nosZ (and probably nirK) genes. Regarding the regulation of the genes under study, it has been concluded that nirK, nor, and nosZ genes share some expression patterns, and therefore their transcription could be under the control of the same regulator whereas nar operon expression displays differences, such as the activation by dimethyl sulfoxide with respect to the expression in the absence of an electron acceptor, which is almost null under anoxic conditions. Finally, the study with different electron acceptors demonstrated that this haloarchaea does not need complete anoxia to perform denitrification. Oxygen concentrations around 100 μM trigger the activation of the four promoters. However, a low oxygen concentration per se is not a strong signal to activate the promoters of the main genes involved in this pathway; high activation also requires the presence of nitrate or nitrite as final electron acceptors.
Collapse
Affiliation(s)
- Jose María Miralles-Robledillo
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
- *Correspondence: Carmen Pire,
| |
Collapse
|
25
|
Wang Z, Vishwanathan N, Kowaliczko S, Ishii S. Clarifying Microbial Nitrous Oxide Reduction under Aerobic Conditions: Tolerant, Intolerant, and Sensitive. Microbiol Spectr 2023; 11:e0470922. [PMID: 36926990 PMCID: PMC10100939 DOI: 10.1128/spectrum.04709-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/18/2023] [Indexed: 03/17/2023] Open
Abstract
One of the major challenges for the bioremediation application of microbial nitrous oxide (N2O) reduction is its oxygen sensitivity. While a few strains were reported capable of reducing N2O under aerobic conditions, the N2O reduction kinetics of phylogenetically diverse N2O reducers are not well understood. Here, we analyzed and compared the kinetics of clade I and clade II N2O-reducing bacteria in the presence or absence of oxygen (O2) by using a whole-cell assay with N2O and O2 microsensors. Among the seven strains tested, N2O reduction of Stutzerimonas stutzeri TR2 and ZoBell was not inhibited by oxygen (i.e., oxygen tolerant). Paracoccus denitrificans, Azospirillum brasilense, and Gemmatimonas aurantiaca reduced N2O in the presence of O2 but slower than in the absence of O2 (i.e., oxygen sensitive). N2O reduction of Pseudomonas aeruginosa and Dechloromonas aromatica did not occur when O2 was present (i.e., oxygen intolerant). Amino acid sequences and predicted structures of NosZ were highly similar among these strains, whereas oxygen-tolerant N2O reducers had higher oxygen consumption rates. The results suggest that the mechanism of O2 tolerance is not directly related to NosZ structure but is rather related to the scavenging of O2 in the cells and/or accessory proteins encoded by the nos cluster. IMPORTANCE Some bacteria can reduce N2O in the presence of O2, whereas others cannot. It is unclear whether this trait of aerobic N2O reduction is related to the phylogeny and structure of N2O reductase. The understanding of aerobic N2O reduction is critical for guiding emission control, due to the common concurrence of N2O and O2 in natural and engineered systems. This study provided the N2O reduction kinetics of various bacteria under aerobic and anaerobic conditions and classified the bacteria into oxygen-tolerant, -sensitive, and -intolerant N2O reducers. Oxygen-tolerant N2O reducers rapidly consumed O2, which could help maintain the low O2 concentration in the cells and keep their N2O reductase active. These findings are important and useful when selecting N2O reducers for bioremediation applications.
Collapse
Affiliation(s)
- Zhiyue Wang
- Department of Civil and Environmental Engineering, University of Hawai'i, Honolulu, Hawai'i, USA
- Water Resources Research Center, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Nisha Vishwanathan
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Sophie Kowaliczko
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
26
|
Wang S, Li B, Li F. Nitric oxide and Nitrous oxide accumulation, oxygen production during nitrite denitrification in an anaerobic/anoxic sequencing batch reactor: exploring characteristics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35958-35971. [PMID: 36539664 DOI: 10.1007/s11356-022-24874-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nitrite denitrification has received increasing attention due to its high efficiency, low energy consumption, and sludge yield. However, the nitric oxide (NO) and nitrous oxide (N2O) which are harmful to the environment, microorganisms, and humans are produced in this process. In order to mitigate NO and N2O production, the biological mechanisms of NO and N2O accumulation, as well as NO detoxification during nitrite denitrification in a sequencing batch reactor were studied. Results showed that the peak of NO accumulation increased from 0.29 [Formula: see text] 0.01 to 3.12 [Formula: see text] 0.34 mg L-1 with the increase of carbon to nitrogen ratio (COD/N), which is caused by the sufficient electron donor supply for NO2--N reduction process at high COD/N. Furthermore, the result suggested that NO accumulation with no pH adjustment was 12 times higher than that with pH adjustment. It is related to the inhibition on NO reductase caused by the high free nitrous acid (FNA) and NO concentration with no pH adjustment. The pathways of NO detoxification included NO emission, reduction, and dismutation, and the more NO produced, the high proportion of NO dismutation pathway. Result showed that the maximum of oxygen production during NO dismutation reached to 1.39 mg L-1. N2O accumulation was mainly associated with FNA and NO inhibition, COD/N. The peak of N2O accumulation presented a completely opposite trend at pH adjustment and no pH adjustment, it is because that the higher FNA and NO concentration at high COD/N without pH adjustment will inhibit the N2O reductase activity, resulting in the N2O reduction was hindered during nitrite denitrification.
Collapse
Affiliation(s)
- Sha Wang
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714099, Shaanxi, China.
- Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province, Weinan, 714099, Shaanxi, China.
| | - Bin Li
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714099, Shaanxi, China
| | - Fang Li
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714099, Shaanxi, China
- Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province, Weinan, 714099, Shaanxi, China
| |
Collapse
|
27
|
Button ES, Marsden KA, Nightingale PD, Dixon ER, Chadwick DR, Jones DL, Cárdenas LM. Separating N 2O production and consumption in intact agricultural soil cores at different moisture contents and depths. EUROPEAN JOURNAL OF SOIL SCIENCE 2023; 74:e13363. [PMID: 38529015 PMCID: PMC10962597 DOI: 10.1111/ejss.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 03/27/2024]
Abstract
Agricultural soils are a major source of the potent greenhouse gas and ozone depleting substance, N2O. To implement management practices that minimize microbial N2O production and maximize its consumption (i.e., complete denitrification), we must understand the interplay between simultaneously occurring biological and physical processes, especially how this changes with soil depth. Meaningfully disentangling of these processes is challenging and typical N2O flux measurement techniques provide little insight into subsurface mechanisms. In addition, denitrification studies are often conducted on sieved soil in altered O2 environments which relate poorly to in situ field conditions. Here, we developed a novel incubation system with headspaces both above and below the soil cores and field-relevant O2 concentrations to better represent in situ conditions. We incubated intact sandy clay loam textured agricultural topsoil (0-10 cm) and subsoil (50-60 cm) cores for 3-4 days at 50% and 70% water-filled pore space, respectively. 15N-N2O pool dilution and an SF6 tracer were injected below the cores to determine the relative diffusivity and the net N2O emission and gross N2O emission and consumption fluxes. The relationship between calculated fluxes from the below and above soil core headspaces confirmed that the system performed well. Relative diffusivity did not vary with depth, likely due to the preservation of preferential flow pathways in the intact cores. Gross N2O emission and uptake also did not differ with depth but were higher in the drier cores, contrary to expectation. We speculate this was due to aerobic denitrification being the primary N2O consuming process and simultaneously occurring denitrification and nitrification both producing N2O in the drier cores. We provide further evidence of substantial N2O consumption in drier soil but without net negative N2O emissions. The results from this study are important for the future application of the 15N-N2O pool dilution method and N budgeting and modelling, as required for improving management to minimize N2O losses.
Collapse
Affiliation(s)
- Erik S. Button
- School of Natural SciencesBangor UniversityBangorGwyneddUK
| | | | - Philip D. Nightingale
- Plymouth Marine Laboratory, Prospect Pl, Marine Biogeochemical ObservationsPlymouthDevonUK
| | - Elizabeth R. Dixon
- Rothamsted Research North Wyke, Net Zero and Resilient FarmingOkehamptonDevonUK
| | | | - David L. Jones
- School of Natural SciencesBangor UniversityBangorGwyneddUK
- Centre for Sustainable Farming Systems, Food Futures InstituteMurdochWestern AustraliaAustralia
| | - Laura M. Cárdenas
- Rothamsted Research North Wyke, Net Zero and Resilient FarmingOkehamptonDevonUK
| |
Collapse
|
28
|
Yu C, Qiao S, Zhou J. Sulfide-driven nitrous oxide recovery during the mixotrophic denitrification process. J Environ Sci (China) 2023; 125:443-452. [PMID: 36375927 DOI: 10.1016/j.jes.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/16/2023]
Abstract
We propose a novel sulfide-driven process to recover N2O during the traditional denitrification process. The optimum initial sulfide concentration was 120 mg/L, and the N2O percentage in the gaseous products (N2O+N2) was up to 82.9%. Moreover, sulfide involved in denitrification processes could substitute for organic carbon as an electron donor, e.g., 1 g sulfide was equivalent to 0.5-2 g COD when sulfide was oxidized to sulfur and sulfate. The accumulation of N2O was mainly due to the inhibiting effect of sulfide on nitrous oxide reductase (N2OR), which was induced by the supply insufficiency of electrons from cytochrome c (cyt c) to N2OR. When the initial sulfide concentration was 120 mg/L, the N2OR activity was only 36.8% of its original level. According to the results of cyclic voltammetry, circular dichroism spectra and fluorescence spectra, significant changes in the conformations and protein structures of cyt c were caused by sulfide, and cyt c completely lost its electron transport capacity. This study provides a new concept for N2O recovery driven by sulfide in the denitrification process. In addition, the findings regarding the mechanism of the inhibition of N2OR activity have important implications both for reducing emissions of N2O and recovering N2O in the sulfide-driven denitrification process.
Collapse
Affiliation(s)
- Cong Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
30
|
Denitrification by Bradyrhizobia under Feast and Famine and the Role of the bc1 Complex in Securing Electrons for N 2O Reduction. Appl Environ Microbiol 2023; 89:e0174522. [PMID: 36662572 PMCID: PMC9972998 DOI: 10.1128/aem.01745-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rhizobia living as microsymbionts inside nodules have stable access to carbon substrates, but also must survive as free-living bacteria in soil where they are starved for carbon and energy most of the time. Many rhizobia can denitrify, thus switch to anaerobic respiration under low O2 tension using N-oxides as electron acceptors. The cellular machinery regulating this transition is relatively well known from studies under optimal laboratory conditions, while little is known about this regulation in starved organisms. It is, for example, not known if the strong preference for N2O- over NO3- reduction in bradyrhizobia is retained under carbon limitation. Here, we show that starved cultures of a Bradyrhizobium strain with respiration rates 1 to 18% of well-fed cultures reduced all available N2O before touching provided NO3-. These organisms, which carry out complete denitrification, have the periplasmic nitrate reductase NapA but lack the membrane-bound nitrate reductase NarG. Proteomics showed similar levels of NapA and NosZ (N2O reductase), excluding that the lack of NO3- reduction was due to low NapA abundance. Instead, this points to a metabolic-level phenomenon where the bc1 complex, which channels electrons to NosZ via cytochromes, is a much stronger competitor for electrons from the quinol pool than the NapC enzyme, which provides electrons to NapA via NapB. The results contrast the general notion that NosZ activity diminishes under carbon limitation and suggest that bradyrhizobia carrying NosZ can act as strong sinks for N2O under natural conditions, implying that this criterion should be considered in the development of biofertilizers. IMPORTANCE Legume cropped farmlands account for substantial N2O emissions globally. Legumes are commonly inoculated with N2-fixing bacteria, rhizobia, to improve crop yields. Rhizobia belonging to Bradyrhizobium, the microsymbionts of several economically important legumes, are generally capable of denitrification but many lack genes encoding N2O reductase and will be N2O sources. Bradyrhizobia with complete denitrification will instead act as sinks since N2O-reduction efficiently competes for electrons over nitrate reduction in these organisms. This phenomenon has only been demonstrated under optimal conditions and it is not known how carbon substrate limitation, which is the common situation in most soils, affects the denitrification phenotype. Here, we demonstrate that bradyrhizobia retain their strong preference for N2O under carbon starvation. The findings add basic knowledge about mechanisms controlling denitrification and support the potential for developing novel methods for greenhouse gas mitigation based on legume inoculants with the dual capacity to optimize N2 fixation and minimize N2O emission.
Collapse
|
31
|
Wei Q, Zhang J, Luo F, Shi D, Liu Y, Liu S, Zhang Q, Sun W, Yuan J, Fan H, Wang H, Qi L, Liu G. Molecular mechanisms through which different carbon sources affect denitrification by Thauera linaloolentis: Electron generation, transfer, and competition. ENVIRONMENT INTERNATIONAL 2022; 170:107598. [PMID: 36395558 DOI: 10.1016/j.envint.2022.107598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Characterizing the molecular mechanism through which different carbon sources affect the denitrification process would provide a basis for the proper selection of carbon sources, thus avoiding excessive carbon source dosing and secondary pollution while also improving denitrification efficiency. Here, we selected Thauera linaloolentis as a model organism of denitrification, whose genomic information was elucidated by draft genome sequencing and KEGG annotations, to investigate the growth kinetics, denitrification performances and characteristics of metabolic pathways under diverse carbon source conditions. We reconstructed a metabolic network of Thauera linaloolentis based on genomic analysis to help develop a systematic method of researching electron pathways. Our findings indicated that carbon sources with simple metabolic pathways (e.g., ethanol and sodium acetate) promoted the reproduction of Thauera linaloolentis, and its maximum growth density reached OD600 = 0.36 and maximum specific growth rate reached 0.145 h-1. These carbon sources also accelerated the denitrification process without the accumulation of intermediates. Nitrate could be reduced completely under any carbon source condition; but in the "glucose group", the maximum accumulation of nitrite was 117.00 mg/L (1.51 times more than that in the "ethanol group", which was 77.41 mg/L), the maximum accumulation of nitric oxide was 363.02 μg/L (7.35 times more than that in the "ethanol group", which was 49.40 μg/L), and the maximum accumulation of nitrous oxide was 22.58 mg/L (26.56 times more than that in the "ethanol group", which was 0.85 mg/L). Molecular biological analyses demonstrated that diverse types of carbon sources directly induced different carbon metabolic activities, resulting in variations in electron generation efficiency. Furthermore, the activities of the electron transport system were positively correlated with different carbon metabolic activities. Finally, these differences were reflected in the phenomenon of electronic competition between denitrifying reductases. Thus we concluded that this was the main molecular mechanism through which the carbon source type affected the denitrification process. In brief, carbon sources with simple metabolic pathways induced higher efficiency of electron generation, transfer, and competition, which promoted rapid proliferation and complete denitrification; otherwise Thauera linaloolentis would grow slowly and intermediate products would accumulate seriously. Our study established a method to evaluate and optimize carbon source utilization efficiency based on confirmed molecular mechanisms.
Collapse
Affiliation(s)
- Qi Wei
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Jinsen Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Fangzhou Luo
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Dinghuan Shi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Yuchen Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Shuai Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Qian Zhang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Wenzhuo Sun
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Junli Yuan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Haitao Fan
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| | - Hongchen Wang
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Lu Qi
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China.
| | - Guohua Liu
- Low-carbon Water Environmental Technology Center, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, PR China
| |
Collapse
|
32
|
Rõõm EI, Lauringson V, Laas A, Kangro K, Viik M, Meinson P, Cremona F, Nõges P, Nõges T. Summer greenhouse gas fluxes in different types of hemiboreal lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156732. [PMID: 35716743 DOI: 10.1016/j.scitotenv.2022.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Lakes are considered important regulators of atmospheric greenhouse gases (GHG). We estimated late summer open water GHG fluxes in nine hemiboreal lakes in Estonia classified under different lake types according to the European Water Framework Directive (WFD). We also used the WFD typology to provide an improved estimate of the total GHG emission from all Estonian lakes with a gross surface area of 2204 km2 representing 45,227 km2 of hemiboreal landscapes (the territory of Estonia). The results demonstrate largely variable CO2 fluxes among the lake types with most active emissions from Alkalitrophic (Alk), Stratified Alkalitrophic (StratAlk), Dark Soft and with predominant binding in Coastal, Very Large, and Light Soft lakes. The CO2 fluxes correlated strongly with dissolved CO2 saturation (DCO2) values at the surface. Highest CH4 emissions were measured from the Coastal lake type, followed by Light Soft, StratAlk, and Alk types; Coastal, Light Soft, and StratAlk were emitting CH4 partly as bubbles. The only emitter of N2O was the Alk type. We measured weak binding of N2O in Dark Soft and Coastal lakes, while in all other studied lake types, the N2O fluxes were too small to be quantified. Diversely from the common viewpoint of lakes as net sources of both CO2 and CH4, it turns out from our results that at least in late summer, Estonian lakes are net sinks of both CO2 alone and the sum of CO2 and CH4. This is mainly caused by the predominant CO2 sink function of Lake Peipsi forming ¾ of the total lake area and showing negative net emissions even after considering the Global Warming Potential (GWP) of other GHGs. Still, by converting CH4 data into CO2 equivalents, the combined emission of all Estonian lakes (8 T C day-1) is turned strongly positive: 2720 T CO2 equivalents per day.
Collapse
Affiliation(s)
- Eva-Ingrid Rõõm
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; Environmental Investment Centre, Narva mnt 7A, 15172 Tallinn, Estonia
| | - Velda Lauringson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Vanemuise Str 46, 51014 Tartu, Estonia.
| | - Alo Laas
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Kersti Kangro
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia; Tartu Observatory, Faculty of Science and Technology, University of Tartu, Observatooriumi 1, Tõravere, Nõo parish, 61602, Tartu County, Estonia
| | - Malle Viik
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Pille Meinson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Fabien Cremona
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Peeter Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| | - Tiina Nõges
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006 Tartu, Estonia
| |
Collapse
|
33
|
Bellido-Pedraza CM, Calatrava V, Llamas A, Fernandez E, Sanz-Luque E, Galvan A. Nitrous Oxide Emissions from Nitrite Are Highly Dependent on Nitrate Reductase in the Microalga Chlamydomonas reinhardtii. Int J Mol Sci 2022; 23:9412. [PMID: 36012676 PMCID: PMC9409008 DOI: 10.3390/ijms23169412] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas and an ozone-depleting compound whose synthesis and release have traditionally been ascribed to bacteria and fungi. Although plants and microalgae have been proposed as N2O producers in recent decades, the proteins involved in this process have been only recently unveiled. In the green microalga Chlamydomonas reinhardtii, flavodiiron proteins (FLVs) and cytochrome P450 (CYP55) are two nitric oxide (NO) reductases responsible for N2O synthesis in the chloroplast and mitochondria, respectively. However, the molecular mechanisms feeding these NO reductases are unknown. In this work, we use cavity ring-down spectroscopy to monitor N2O and CO2 in cultures of nitrite reductase mutants, which cannot grow on nitrate or nitrite and exhibit enhanced N2O emissions. We show that these mutants constitute a very useful tool to study the rates and kinetics of N2O release under different conditions and the metabolism of this greenhouse gas. Our results indicate that N2O production, which was higher in the light than in the dark, requires nitrate reductase as the major provider of NO as substrate. Finally, we show that the presence of nitrate reductase impacts CO2 emissions in both light and dark conditions, and we discuss the role of NO in the balance between CO2 fixation and release.
Collapse
Affiliation(s)
| | - Victoria Calatrava
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Angel Llamas
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emilio Fernandez
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Emanuel Sanz-Luque
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| | - Aurora Galvan
- Department of Biochemistry and Molecular Biology, University of Cordoba, 14004 Cordoba, Spain
| |
Collapse
|
34
|
Impacts of Soil Moisture and Fertilizer on N2O Emissions from Cornfield Soil in a Karst Watershed, SW China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incubation experiments using a typical cornfield soil in the Wujiang River watershed, SW China, were conducted to examine the impacts of soil moisture and fertilizer on N2O emissions and production mechanisms. According to the local fertilizer type, we added NH4NO3 (N) and glucose (C) during incubation to simulate fertilizer application in the cornfield soil. The results showed that an increase in soil moisture and fertilizer significantly stimulated N2O emissions in cornfield soil in the karst area, and it varied with soil moisture. The highest N2O emission fluxes were observed in the treatment with nitrogen and carbon addition at 70% water-filled pore space (WFPS), reaching 6.6 mg kg−1 h−1, which was 22,310, 124.9, and 1.4 times higher than those at 5%, 40%, and 110% WFPS, respectively. The variations of nitrogen species indicated that the production of extremely high N2O at 70% WFPS was dominated by nitrifier denitrification and denitrification, and N2O was the primary form of soil nitrogen loss when soil moisture was >70% WFPS. This study provides a database for estimating N2O emissions in cropland soil in the karst area, and further helped to promote proper soil nitrogen assessment and management of agricultural land of the karst watersheds.
Collapse
|
35
|
Stuchiner ER, von Fischer JC. Using isotope pool dilution to understand how organic carbon additions affect N 2 O consumption in diverse soils. GLOBAL CHANGE BIOLOGY 2022; 28:4163-4179. [PMID: 35377524 PMCID: PMC9321687 DOI: 10.1111/gcb.16190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Nitrous oxide (N2 O) is a formidable greenhouse gas with a warming potential ~300× greater than CO2 . However, its emissions to the atmosphere have gone largely unchecked because the microbial and environmental controls governing N2 O emissions have proven difficult to manage. The microbial process N2 O consumption is the only know biotic pathway to remove N2 O from soil pores and therefore reduce N2 O emissions. Consequently, manipulating soils to increase N2 O consumption by organic carbon (OC) additions has steadily gained interest. However, the response of N2 O emissions to different OC additions are inconsistent, and it is unclear if lower N2 O emissions are due to increased consumption, decreased production, or both. Simplified and systematic studies are needed to evaluate the efficacy of different OC additions on N2 O consumption. We aimed to manipulate N2 O consumption by amending soils with OC compounds (succinate, acetate, propionate) more directly available to denitrifiers. We hypothesized that N2 O consumption is OC-limited and predicted these denitrifier-targeted additions would lead to enhanced N2 O consumption and increased nosZ gene abundance. We incubated diverse soils in the laboratory and performed a 15 N2 O isotope pool dilution assay to disentangle microbial N2 O emissions from consumption using laser-based spectroscopy. We found that amending soils with OC increased gross N2 O consumption in six of eight soils tested. Furthermore, three of eight soils showed Increased N2 O Consumption and Decreased N2 O Emissions (ICDE), a phenomenon we introduce in this study as an N2 O management ideal. All three ICDE soils had low soil OC content, suggesting ICDE is a response to relaxed C-limitation wherein C additions promote soil anoxia, consequently stimulating the reduction of N2 O via denitrification. We suggest, generally, OC additions to low OC soils will reduce N2 O emissions via ICDE. Future studies should prioritize methodical assessment of different, specific, OC-additions to determine which additions show ICDE in different soils.
Collapse
Affiliation(s)
- Emily R. Stuchiner
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Joseph C. von Fischer
- Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
36
|
Fan J, Du R, Li C, Liu Q, Peng Y. Inducing high nitrite accumulation via modulating nitrate reduction power and carbon flux with Thauera spp. selection. BIORESOURCE TECHNOLOGY 2022; 354:127188. [PMID: 35452829 DOI: 10.1016/j.biortech.2022.127188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Partial-denitrification (PD, NO3--N → NO2--N) is emerging as a promising approach for application of anaerobic ammonium oxidation (anammox) process. In this study, stable PD with high nitrite (NO2--N) accumulation was achieved by modulating nitrate (NO3--N) reduction activity and carbon metabolism. With the influent NO3--N increasing from 30 to 200 mg/L, specific NO3--N reduction rates (rno3) were significantly improved, corresponding to the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 80.0% within just 70 days. The required COD/NO3--N decreased from 4.5 to 2.0 and the carbon flux was more shared in NO3--N reduction to NO2--N. Notably, Thauera spp. as core denitrifying bacteria was highly enriched with the relative abundance of 70.5%∼82.1% despite different inoculations. This study provided a new insight into inducing high NO2--N accumulation and promoting practical application of anammox technology.
Collapse
Affiliation(s)
- Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| | - Cong Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qingtao Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
37
|
Wu L, An Z, Zhou J, Chen F, Liu B, Qi L, Yin G, Dong H, Liu M, Hou L, Zheng Y. Effects of Aquatic Acidification on Microbially Mediated Nitrogen Removal in Estuarine and Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5939-5949. [PMID: 35465670 DOI: 10.1021/acs.est.2c00692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acidification of estuarine and coastal waters is anticipated to influence nitrogen (N) removal processes, which are critical pathways for eliminating excess N from these ecosystems. We found that denitrification rates decreased significantly under acidified conditions (P < 0.05), which reduced by 41-53% in estuarine and coastal sediments under an approximately 0.3 pH reduction of the overlying water. However, the N removal rates through the anaerobic ammonium oxidation (anammox) process were concomitantly promoted under the same acidification conditions (increased by 47-109%, P < 0.05), whereas the total rates of N loss were significantly inhibited by aquatic acidification (P < 0.05), as denitrification remained the dominant N removal pathway. More importantly, the emission of nitrous oxide (N2O) from estuarine and coastal sediments was greatly stimulated by aquatic acidification (P < 0.05). Molecular analyses further demonstrated that aquatic acidification also altered the functional microbial communities in estuarine and coastal sediments; and the abundance of denitrifiers was significantly reduced (P < 0.05), while the abundance of anammox bacteria remained relatively stable. Collectively, this study reveals the effects of acidification on N removal processes and the underlying mechanisms and suggests that the intensifying acidification in estuarine and coastal waters might reduce the N removal function of these ecosystems, exacerbate eutrophication, and accelerate global climate change.
Collapse
Affiliation(s)
- Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yanling Zheng
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
38
|
Oshiki M, Toyama Y, Suenaga T, Terada A, Kasahara Y, Yamaguchi T, Araki N. N 2O Reduction by Gemmatimonas aurantiaca and Potential Involvement of Gemmatimonadetes Bacteria in N 2O Reduction in Agricultural Soils. Microbes Environ 2022; 37. [PMID: 35418546 PMCID: PMC9530729 DOI: 10.1264/jsme2.me21090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Agricultural soil is the primary N2O sink limiting the emission of N2O gas into the atmosphere. Although Gemmatimonadetes bacteria are abundant in agricultural soils, limited information is currently available on N2O reduction by Gemmatimonadetes bacteria. Therefore, the effects of pH and temperature on N2O reduction activities and affinity constants for N2O reduction were examined by performing batch experiments using an isolate of Gemmatimonadetes bacteria, Gemmatimonas aurantiaca (NBRC100505T). G. aurantiaca reduced N2O at pH 5–9 and 4–50°C, with the highest activity being observed at pH 7 and 30°C. The affinity constant of G. aurantiaca cells for N2O was 4.4 μM. The abundance and diversity of the Gemmatimonadetes 16S rRNA gene and nosZ encoding nitrous oxide reductase in agricultural soil samples were also investigated by quantitative PCR (qPCR) and amplicon sequencing analyses. Four N2O-reducing agricultural soil samples were assessed, and the copy numbers of the Gemmatimonadetes 16S rRNA gene (clades G1 and G3), nosZ DNA, and nosZ mRNA were 8.62–9.65×108, 5.35–7.15×108, and 2.23–4.31×109 copies (g dry soil)–1, respectively. The abundance of the nosZ mRNA of Gemmatimonadetes bacteria and OTU91, OUT332, and OTU122 correlated with the N2O reduction rates of the soil samples tested, suggesting N2O reduction by Gemmatimonadetes bacteria. Gemmatimonadetes 16S rRNA gene reads affiliated with OTU4572 and OTU3759 were predominant among the soil samples examined, and these Gemmatimonadetes OTUs have been identified in various types of soil samples.
Collapse
Affiliation(s)
- Mamoru Oshiki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College.,Division of Environmental Engineering, Faculty of Engineering, Hokkaido University
| | - Yuka Toyama
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| | | | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology
| | | | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology
| | - Nobuo Araki
- Department of Civil Engineering, National Institute of Technology, Nagaoka College
| |
Collapse
|
39
|
Huo P, Chen X, Yang L, Wei W, Ni BJ. Modeling of sulfur-driven autotrophic denitrification coupled with Anammox process. BIORESOURCE TECHNOLOGY 2022; 349:126887. [PMID: 35202830 DOI: 10.1016/j.biortech.2022.126887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
While sulfur-driven autotrophic denitrification (SDAD) occurring in the anoxic reactor of the sulfate reduction, autotrophic denitrification and nitrification integrated (SANI) system has been regarded as the main nitrogen removal bioprocess, little is known about the accompanying Anammox bacteria whose presence is made possible by the co-existence of NH4+ and NO2-. Therefore, this work firstly developed an integrated SDAD-Anammox model to describe the interactions between sulfur-oxidizing bacteria and Anammox bacteria. The model was subsequently used to explore the impacts of influent conditions on the reactor performance and microbial community structure of the anoxic reactor. The results revealed that at a relatively low ratio of <1.5 mg S/mg N, Anammox bacteria could survive and even take a dominant position (up to 58.9%). Finally, a modified SANI system configuration based on the effective collaboration between SDAD and Anammox processes was proposed to improve the efficiency of the treatment of sulfate-rich saline sewage.
Collapse
Affiliation(s)
- Pengfei Huo
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China.
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
40
|
Pacheco PJ, Cabrera JJ, Jiménez-Leiva A, Bedmar EJ, Mesa S, Tortosa G, Delgado MJ. Effect of Copper on Expression of Functional Genes and Proteins Associated with Bradyrhizobium diazoefficiens Denitrification. Int J Mol Sci 2022; 23:ijms23063386. [PMID: 35328804 PMCID: PMC8951191 DOI: 10.3390/ijms23063386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Nitrous oxide (N2O) is a powerful greenhouse gas that contributes to climate change. Denitrification is one of the largest sources of N2O in soils. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model for rhizobial denitrification studies since, in addition to fixing N2, it has the ability to grow anaerobically under free-living conditions by reducing nitrate from the medium through the complete denitrification pathway. This bacterium contains a periplasmic nitrate reductase (Nap), a copper (Cu)-containing nitrite reductase (NirK), a c-type nitric oxide reductase (cNor), and a Cu-dependent nitrous oxide reductase (Nos) encoded by the napEDABC, nirK, norCBQD and nosRZDFYLX genes, respectively. In this work, an integrated study of the role of Cu in B. diazoefficiens denitrification has been performed. A notable reduction in nirK, nor, and nos gene expression observed under Cu limitation was correlated with a significant decrease in NirK, NorC and NosZ protein levels and activities. Meanwhile, nap expression was not affected by Cu, but a remarkable depletion in Nap activity was found, presumably due to an inhibitory effect of nitrite accumulated under Cu-limiting conditions. Interestingly, a post-transcriptional regulation by increasing Nap and NirK activities, as well as NorC and NosZ protein levels, was observed in response to high Cu. Our results demonstrate, for the first time, the role of Cu in transcriptional and post-transcriptional control of B. diazoefficiens denitrification. Thus, this study will contribute by proposing useful strategies for reducing N2O emissions from agricultural soils.
Collapse
|
41
|
Gillingham MD, Gomes RL, Ferrari R, West HM. Sorption, separation and recycling of ammonium in agricultural soils: A viable application for magnetic biochar? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151440. [PMID: 34742971 PMCID: PMC8811483 DOI: 10.1016/j.scitotenv.2021.151440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 11/01/2021] [Indexed: 05/24/2023]
Abstract
Recent research on the magnetisation of biochar, a carbon-based material that can be used as a sorbent, has opened novel opportunities in the field of environmental remediation, as incorporating magnetic particles into biochar can simplify subsequent separation. This could offer a sustainable circular economy-based solution in two areas of waste management; firstly, pyrolysis of agricultural waste for magnetic biochar synthesis could reduce greenhouse gas emissions derived from traditional agricultural waste processing, such as landfill and incineration, while secondly, application of magnetic biochar to remove excess nitrogen from soils (made possible through magnetic separation) could provide opportunities for this pollutant to be used as a recycled fertiliser. While sorption of pollutants by magnetic biochar has been researched in wastewater, few studies have investigated magnetic biochar use in polluted soils. Nitrogen pollution (e.g. NH4+), stemming from agricultural fertiliser management, is a major environmental and economic issue that could be significantly reduced before losses from soils occur. This review demonstrates that the use of magnetic biochar tailored to NH4+ adsorption has potential to remove (and recycle for reuse) excess nitrogen from soils. Analysis of research into recovery of NH4+ by sorption/desorption, biochar magnetisation and biochar-soil interactions, suggests that this is a promising application, but a more cohesive, interdisciplinary approach is called for to elucidate its feasibility. Furthermore, research shows variable impacts of biochar upon soil chemistry and biology, such as pH and microbial diversity. Considering wide concerns surrounding global biodiversity depletion, a more comprehensive understanding of biochar-soil dynamics is required to protect and support soil ecosystems. Finally, addressing research gaps, such as optimisation and scaling-up of magnetic biochar synthesis, would benefit from systems thinking approaches, ensuring the many complex considerations across science, industry, policy and economics are connected by circular-economy principles.
Collapse
Affiliation(s)
- Max D Gillingham
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom.
| | - Rachel L Gomes
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Ferrari
- Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Helen M West
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
42
|
Zhang X, Ma D, Lv J, Feng Q, Liang Z, Chen H, Feng J. Food waste composting based on patented compost bins: Carbon dioxide and nitrous oxide emissions and the denitrifying community analysis. BIORESOURCE TECHNOLOGY 2022; 346:126643. [PMID: 34974104 DOI: 10.1016/j.biortech.2021.126643] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Mature compost and rice bran were used as bulking agents to perform Food Waste Rapid Composting (FWRC) in a patented composting bin. The characteristics of CO2 and N2O emission and the denitrifying community were investigated. The release of CO2 and N2O concentrated in the early composting stage and reduced greatly after 28 h, and the N2O emission peak of the treatment with mature compost was 8.5 times higher than that of rice bran. The high N2O generation resulted from massive denitrifying bacteria and NOx--N in the composting material. The relative abundances of denitrifiers, correspondingly genes of narG and nirK were much higher in the treatment with mature compost, which contributed to the N2O emission. Moreover, the correlation matrices revealed that N2O fluxes correlated well with moisture, pH, temperature, and the abundances of nirK and nosZ genes during FWRC.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
| | - Dachao Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jiahao Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qingge Feng
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhengwu Liang
- Guangxi Liyuanbao Science and Technology Co., LTD, Nanning 530000, China
| | - Hongcheng Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jinghang Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
43
|
Zhao F, Xin J, Yuan M, Wang L, Wang X. A critical review of existing mechanisms and strategies to enhance N 2 selectivity in groundwater nitrate reduction. WATER RESEARCH 2022; 209:117889. [PMID: 34936974 DOI: 10.1016/j.watres.2021.117889] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
The pollution of nitrate (NO3-) in groundwater has become an environmental problem of general concern and requires immediate remediation because of adverse human and ecological impacts. NO3- removal from groundwater is conducted mainly by chemical, biological, and coupled methods, with the removal efficiency of NO3- considered the sole performance indicator. However, in addition to the harmless form of N2, the reduced NO3- could be transformed into other intermediates, such as nitrite (NO2-), nitrous oxide (N2O), and ammonia (NH4+), which may have direct or indirect negative impacts on the environment. Therefore, increasing N2 selectivity is a significant challenge in reducing NO3- in groundwater, which seriously impedes the large-scale implementation of available remediation technologies. In this work, we comprehensively overview the most recent advances in N2 selectivity regarding the understanding of emerging groundwater NO3- removal technologies. Mechanisms of by-product production and strategies to enhance the selective reduction of NO3- to N2 are discussed in detail. Furthermore, we proposed topics for further research and hope that the total environmental impacts of remediation schemes should be evaluated comprehensively by quantifying all potential intermediate products, and promising strategies should be further developed to enhance N2 selectivity, to improve the feasibility of related technologies in actual remediation.
Collapse
Affiliation(s)
- Fang Zhao
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Mengjiao Yuan
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Litao Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohui Wang
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
44
|
Bueno E, Mania D, Mesa S, Bedmar EJ, Frostegård Å, Bakken LR, Delgado MJ. Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Int J Mol Sci 2022; 23:1486. [PMID: 35163408 PMCID: PMC8836242 DOI: 10.3390/ijms23031486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/21/2022] Open
Abstract
The greenhouse gas nitrous oxide (N2O) has strong potential to drive climate change. Soils are a major source of N2O, with microbial nitrification and denitrification being the primary processes involved in such emissions. The soybean endosymbiont Bradyrhizobium diazoefficiens is a model microorganism to study denitrification, a process that depends on a set of reductases, encoded by the napEDABC, nirK, norCBQD, and nosRZDYFLX genes, which sequentially reduce nitrate (NO3-) to nitrite (NO2-), nitric oxide (NO), N2O, and dinitrogen (N2). In this bacterium, the regulatory network and environmental cues governing the expression of denitrification genes rely on the FixK2 and NnrR transcriptional regulators. To understand the role of FixK2 and NnrR proteins in N2O turnover, we monitored real-time kinetics of NO3-, NO2-, NO, N2O, N2, and oxygen (O2) in a fixK2 and nnrR mutant using a robotized incubation system. We confirmed that FixK2 and NnrR are regulatory determinants essential for NO3- respiration and N2O reduction. Furthermore, we demonstrated that N2O reduction by B. diazoefficiens is independent of canonical inducers of denitrification, such as the nitrogen oxide NO3-, and it is negatively affected by acidic and alkaline conditions. These findings advance the understanding of how specific environmental conditions and two single regulators modulate N2O turnover in B. diazoefficiens.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Daniel Mania
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Socorro Mesa
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Eulogio J. Bedmar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| | - Åsa Frostegård
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - Lars R. Bakken
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Aas, Norway; (D.M.); (Å.F.); (L.R.B.)
| | - María J. Delgado
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain; (S.M.); (E.J.B.)
| |
Collapse
|
45
|
Song X, Wei H, Rees RM, Ju X. Soil oxygen depletion and corresponding nitrous oxide production at hot moments in an agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118345. [PMID: 34648834 DOI: 10.1016/j.envpol.2021.118345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Hot moments of nitrous oxide (N2O) emissions induced by interactions between weather and management make a major contribution to annual N2O budgets in agricultural soils. The causes of N2O production during hot moments are not well understood under field conditions, but emerging evidence suggests that short-term fluctuations in soil oxygen (O2) concentration can be critically important. We conducted high time-resolution field observations of O2 and N2O concentrations during hot moments in a dryland agricultural soil in Northern China. Three typical management and weather events, including irrigation (Irr.), fertilization coupled with irrigation (Fer.+Irr.) or with extreme precipitation (Fer.+Pre.), were observed. Soil O2 and N2O concentrations were measured hourly for 24 h immediately following events and measured daily for at least one week before and after the events. Soil moisture, temperature, and mineral N were simultaneously measured. Soil O2 concentrations decreased rapidly within 4 h following irrigation in both the Irr. and Fer.+Irr. events. In the Fer.+Pre. event, soil O2 depletion did not occur immediately following fertilization but began following subsequent continuous rainfall. The soil O2 concentration dropped to as low as 0.2% (with the highest soil N2O concentration of up to 180 ppmv) following the Fer.+Pre. event, but only fell to 11.7% and 13.6% after the Fer.+Irr. and Irr. events, which were associated with soil N2O concentrations of 27 ppmv and 3 ppmv, respectively. During the hot moments of all three events, soil N2O concentrations were negatively correlated with soil O2 concentrations (r = -0.5, P < 0.01), showing a quadratic increase as soil O2 concentrations declined. Our results provide new understanding of the rapid short response of N2O production to O2 dynamics driven by changes in soil environmental factors during hot moments. Such understanding helps improve soil management to avoid transitory O2 depletion and reduce the risk of N2O production.
Collapse
Affiliation(s)
- Xiaotong Song
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Huanhuan Wei
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Robert M Rees
- SRUC, West Mains Road, Edinburgh, EH9 3JG, Scotland, UK
| | - Xiaotang Ju
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China.
| |
Collapse
|
46
|
Hu L, Wang X, Chen C, Chen J, Wang Z, Chen J, Hrynshpan D, Savitskaya T. NosZ gene cloning, reduction performance and structure of Pseudomonas citronellolis WXP-4 nitrous oxide reductase. RSC Adv 2022; 12:2549-2557. [PMID: 35425296 PMCID: PMC8979117 DOI: 10.1039/d1ra09008a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022] Open
Abstract
Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. To alleviate the N2O emission, emerging approaches aim at microbiome biotechnology. In this study, the genome sequence of facultative anaerobic bacteria Pseudomonas citronellolis WXP-4, which efficiently degrades N2O, was obtained by de novo sequencing for the first time, and then, four key reductase structure coding genes related to complete denitrification were identified. The single structural encoding gene nosZ with a length of 1914 bp from strain WXP-4 was cloned in Escherichia coli BL21(DE3), and the N2OR protein (76 kDa) was relatively highly efficiently expressed under the optimal inducing conditions of 1.0 mM IPTG, 5 h, and 30 °C. Denitrification experiment results confirmed that recombinant E. coli had strong denitrification ability and reduced 10 mg L−1 of N2O to N2 within 15 h under the optimal conditions of pH 7.0 and 40 °C, its corresponding N2O reduction rate was almost 2.3 times that of Alcaligenes denitrificans strain TB, but only 80% of that of wild strain WXP-4, meaning that nos gene cluster auxiliary gene deletion decreased the activity of N2OR. The 3D structure of N2OR predicted on the basis of sequence homology found that electron transfer center CuA had only five amino acid ligands, and the S2 of the catalytically active center CuZ only bound one CuI atom. The unique 3D structure was different from previous reports and may be closely related to the strong N2O reduction ability of strain WXP-4 and recombinant E. coli. The findings show a potential application of recombinant E. coli in alleviating the greenhouse effect and provide a new perspective for researching the relationship between structure and function of N2OR. Nitrous oxide reductase (N2OR) is the only known enzyme that can reduce the powerful greenhouse gas nitrous oxide (N2O) to harmless nitrogen at the final step of bacterial denitrification. The recombinant E. coli and wild strain WXP-4 demonstrate strong N2O reduction ability.![]()
Collapse
Affiliation(s)
- Liyong Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoping Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dzmitry Hrynshpan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Tatsiana Savitskaya
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
47
|
Gallarotti N, Barthel M, Verhoeven E, Pereira EIP, Bauters M, Baumgartner S, Drake TW, Boeckx P, Mohn J, Longepierre M, Mugula JK, Makelele IA, Ntaboba LC, Six J. In-depth analysis of N 2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. THE ISME JOURNAL 2021; 15:3357-3374. [PMID: 34035444 PMCID: PMC8528805 DOI: 10.1038/s41396-021-01004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world's second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin's lowland forests (0.97 ± 0.53 kg N ha-1 year-1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha-1 year-1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.
Collapse
Affiliation(s)
- Nora Gallarotti
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Matti Barthel
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Elizabeth Verhoeven
- grid.4391.f0000 0001 2112 1969College of Agricultural Sciences, Oregon State University, Corvallis, OR USA
| | - Engil Isadora Pujol Pereira
- grid.449717.80000 0004 5374 269XSchool of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Edinburg, TX USA
| | - Marijn Bauters
- grid.5342.00000 0001 2069 7798Isotope Bioscience Laboratory, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Computational and Applied Vegetation Ecology Lab, Department of Environment, Ghent University, Ghent, Belgium
| | - Simon Baumgartner
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland ,grid.7942.80000 0001 2294 713XEarth and Life Institute, Université Catholique de Louvain, Louvain, Belgium
| | - Travis W. Drake
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Pascal Boeckx
- grid.5342.00000 0001 2069 7798Isotope Bioscience Laboratory, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Joachim Mohn
- grid.7354.50000 0001 2331 3059Laboratory for Air Pollution/Environmental Technology, Swiss Federal Laboratories of Materials Science and Technology, Empa Dubendorf, Switzerland
| | - Manon Longepierre
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - John Kalume Mugula
- grid.442836.f0000 0004 7477 7760Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo
| | - Isaac Ahanamungu Makelele
- grid.442836.f0000 0004 7477 7760Département de Biologie, Université Officielle de Bukavu, Bukavu, Democratic Republic of Congo ,grid.5342.00000 0001 2069 7798Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
| | - Landry Cizungu Ntaboba
- grid.442834.d0000 0004 6011 4325Département d’ Agronomie, Université Catholique de Bukavu, Bukavu, Democratic Republic of Congo
| | - Johan Six
- grid.5801.c0000 0001 2156 2780Department of Environmental Systems Science, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Wu L, Wang LK, Wei W, Song L, Ni BJ. Sulfur-driven autotrophic denitrification of nitric oxide for efficient nitrous oxide recovery. Biotechnol Bioeng 2021; 119:257-267. [PMID: 34693996 DOI: 10.1002/bit.27970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022]
Abstract
Nitrous oxide (N2 O) was previously deemed as a potent greenhouse gas but is actually an untapped energy source, which can accumulate during the microbial denitrification of nitric oxide (NO). Compared with the organic electron donor required in heterotrophic denitrification, elemental sulfur (S0 ) is a promising electron donor alternative due to its cheap cost and low biomass yield in sulfur-driven autotrophic denitrification. However, no effort has been made to test N2 O recovery from sulfur-driven denitrification of NO so far. Therefore, in this study, batch and continuous experiments were carried out to investigate the NO removal performance and N2 O recovery potential via sulfur-driven NO-based denitrification under various Fe(II)EDTA-NO concentrations. Efficient energy recovery was achieved, as up to 35.5%-40.9% of NO was converted to N2 O under various NO concentrations. N2 O recovery from Fe(II)EDTA-NO could be enhanced by the low bioavailability of sulfur and the acid environment caused by sulfur oxidation. The NO reductase (NOR) and N2 O reductase (N2 OR) were inhibited distinctively at relatively low NO levels, leading to efficient N2 O accumulation, but were suppressed irreversibly at NO level beyond 15 mM in continuous experiments. Such results indicated that the regulation of NO at a relatively low level would benefit the system stability and NO removal capacity during long-term system operation. The continuous operation of the sulfur-driven Fe(II)EDTA-NO-based denitrification reduced the overall microbial diversity but enriched several key microbial community. Thauera, Thermomonas, and Arenimonas that are able to carry out sulfur-driven autotrophic denitrification became the dominant organisms with their relative abundance increased from 25.8% to 68.3%, collectively.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Li-Kun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Liu TY, Ye N, Wang X, Das D, Tan Y, You X, Long M, Hu T, Dai L, Zhang J, Chen MX. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1753-1774. [PMID: 34288433 DOI: 10.1111/jipb.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/18/2021] [Indexed: 05/27/2023]
Abstract
The rhizosheath, a layer of soil grains that adheres firmly to roots, is beneficial for plant growth and adaptation to drought environments. Switchgrass is a perennial C4 grass which can form contact rhizosheath under drought conditions. In this study, we characterized the microbiomes of four different rhizocompartments of two switchgrass ecotypes (Alamo and Kanlow) grown under drought or well-watered conditions via 16S ribosomal RNA amplicon sequencing. These four rhizocompartments, the bulk soil, rhizosheath soil, rhizoplane, and root endosphere, harbored both distinct and overlapping microbial communities. The root compartments (rhizoplane and root endosphere) displayed low-complexity communities dominated by Proteobacteria and Firmicutes. Compared to bulk soil, Cyanobacteria and Bacteroidetes were selectively enriched, while Proteobacteria and Firmicutes were selectively depleted, in rhizosheath soil. Taxa from Proteobacteria or Firmicutes were specifically selected in Alamo or Kanlow rhizosheath soil. Following drought stress, Citrobacter and Acinetobacter were further enriched in rhizosheath soil, suggesting that rhizosheath microbiome assembly is driven by drought stress. Additionally, the ecotype-specific recruitment of rhizosheath microbiome reveals their differences in drought stress responses. Collectively, these results shed light on rhizosheath microbiome recruitment in switchgrass and lay the foundation for the improvement of drought tolerance in switchgrass by regulating the rhizosheath microbiome.
Collapse
Affiliation(s)
- Tie-Yuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Xinyu Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Debatosh Das
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Yuxiang Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiangkai You
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Mingxiu Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, Yangling, 712100, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, China
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China
| | - Mo-Xian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
50
|
Response of the reactor performances and bacterial communities to the evolution of sulfide-based mixotrophic denitrification processes from nitrate-type to nitrite-type. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|