1
|
Shah MZ, Rotich NC, Okorafor EA, Oestreicher Z, Demidovich G, Eapen J, Henoch Q, Kilbey J, Prempeh G, Bates A, Page RC, Lorigan GA, Konkolewicz D. Vinyl Ether Maleic Acid Polymers: Tunable Polymers for Self-Assembled Lipid Nanodiscs and Environments for Membrane Proteins. Biomacromolecules 2024; 25:6611-6623. [PMID: 39283997 PMCID: PMC11473226 DOI: 10.1021/acs.biomac.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Native lipid bilayer mimetics, including those that use amphiphilic polymers, are important for the effective study of membrane-bound peptides and proteins. Copolymers of vinyl ether monomers and maleic anhydride were developed with controlled molecular weights and hydrophobicity through reversible addition-fragmentation chain-transfer polymerization. After polymerization, the maleic anhydride units can be hydrolyzed, giving dicarboxylates. The vinyl ether and maleic anhydride copolymerized in a close to alternating manner, giving essentially alternating hydrophilic maleic acid units and hydrophobic vinyl ether units along the backbone after hydrolysis. The vinyl ether monomers and maleic acid polymers self-assembled with lipids, giving vinyl ether maleic acid lipid particles (VEMALPs) with tunable sizes controlled by either the vinyl ether hydrophobicity or the polymer molecular weight. These VEMALPs were able to support membrane-bound proteins and peptides, creating a new class of lipid bilayer mimetics.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shah
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Nancy C. Rotich
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Evelyn A. Okorafor
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Zachery Oestreicher
- Center for Advanced Microscopy and Imaging, Miami University, Oxford, OH, 45056, USA
| | - Gabrielle Demidovich
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Jeremy Eapen
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Quinton Henoch
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Julia Kilbey
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Godfred Prempeh
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
2
|
Khakimzhan A, Izri Z, Thompson S, Dmytrenko O, Fischer P, Beisel C, Noireaux V. Cell-free expression with a quartz crystal microbalance enables rapid, dynamic, and label-free characterization of membrane-interacting proteins. Commun Biol 2024; 7:1005. [PMID: 39152195 PMCID: PMC11329788 DOI: 10.1038/s42003-024-06690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Integral and interacting membrane proteins (IIMPs) constitute a vast family of biomolecules that perform essential functions in all forms of life. However, characterizing their interactions with lipid bilayers remains limited due to challenges in purifying and reconstituting IIMPs in vitro or labeling IIMPs without disrupting their function in vivo. Here, we report cell-free transcription-translation in a quartz crystal microbalance with dissipation (TXTL-QCMD) to dynamically characterize interactions between diverse IIMPs and membranes without protein purification or labeling. As part of TXTL-QCMD, IIMPs are synthesized using cell-free transcription-translation (TXTL), and their interactions with supported lipid bilayers are measured using a quartz crystal microbalance with dissipation (QCMD). TXTL-QCMD reconstitutes known IIMP-membrane dependencies, including specific association with prokaryotic or eukaryotic membranes, and the multiple-IIMP dynamical pattern-forming association of the E. coli division-coordinating proteins MinCDE. Applying TXTL-QCMD to the recently discovered Zorya anti-phage system that is unamenable to labeling, we discovered that ZorA and ZorB integrate within the lipids found at the poles of bacteria while ZorE diffuses freely on the non-pole membrane. These efforts establish the potential of TXTL-QCMD to broadly characterize the large diversity of IIMPs.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ziane Izri
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Oleg Dmytrenko
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Patrick Fischer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
| | - Chase Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Lo CH, Zeng J. Application of polymersomes in membrane protein study and drug discovery: Progress, strategies, and perspectives. Bioeng Transl Med 2023; 8:e10350. [PMID: 36684106 PMCID: PMC9842050 DOI: 10.1002/btm2.10350] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane proteins (MPs) play key roles in cellular signaling pathways and are responsible for intercellular and intracellular interactions. Dysfunctional MPs are directly related to the pathogenesis of various diseases, and they have been exploited as one of the most sought-after targets in the pharmaceutical industry. However, working with MPs is difficult given that their amphiphilic nature requires protection from biological membrane or membrane mimetics. Polymersomes are bilayered nano-vesicles made of self-assembled block copolymers that have been widely used as cell membrane mimetics for MP reconstitution and in engineering of artificial cells. This review highlights the prevailing trend in the application of polymersomes in MP study and drug discovery. We begin with a review on the techniques for synthesis and characterization of polymersomes as well as methods of MP insertion to form proteopolymersomes. Next, we review the structural and functional analysis of the different types of MPs reconstituted in polymersomes, including membrane transport proteins, MP complexes, and membrane receptors. We then summarize the factors affecting reconstitution efficiency and the quality of reconstituted MPs for structural and functional studies. Additionally, we discuss the potential in using proteopolymersomes as platforms for high-throughput screening (HTS) in drug discovery to identify modulators of MPs. We conclude by providing future perspectives and recommendations on advancing the study of MPs and drug development using proteopolymersomes.
Collapse
Affiliation(s)
- Chih Hung Lo
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jialiu Zeng
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
- Department of Biomedical EngineeringBoston UniversityBostonMassachusettsUSA
- Department of ChemistryBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
5
|
Rouchidane Eyitayo A, Giraud MF, Daury L, Lambert O, Gonzalez C, Manon S. Cell-free synthesis and reconstitution of Bax in nanodiscs: Comparison between wild-type Bax and a constitutively active mutant. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184075. [PMID: 36273540 DOI: 10.1016/j.bbamem.2022.184075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.
Collapse
Affiliation(s)
| | - Marie-France Giraud
- IBGC, UMR5095, CNRS, Université de Bordeaux, France; CBMN, UMR5248, CNRS, Université de Bordeaux, France
| | | | | | | | - Stéphen Manon
- IBGC, UMR5095, CNRS, Université de Bordeaux, France.
| |
Collapse
|
6
|
Hao W, Cui W, Suo F, Han L, Cheng Z, Zhou Z. Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion. Chem Sci 2022; 13:14395-14409. [PMID: 36545152 PMCID: PMC9749471 DOI: 10.1039/d2sc05824c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
The functionally evolved bacterial chassis is of great importance to manufacture a group of assorted high value-added chemicals, from small molecules to biologically active macromolecules. However, the current evolution frameworks are less efficienct in generating in vivo genomic diversification because of insufficient tunability, rendering limited evolution spacing for chassis. Here, an engineered genomic diversification platform (CRISPR-ABE8e-CDA-nCas9) leveraging a programmable dual-deaminases base editor was fabricated for rapidly evolving bacterial chassis. The dual-base editor was constructed by reprogramming the CRISPR array, nCas9, and cytidine and adenosine deaminase, enabling single or multiple base conversion at the genomic scale by simultaneous C-to-T and A-to-G conversion in vivo. Employing titration of the Cas-deaminase fusion protein, the platform enabled editing any pre-defined genomic loci with tunable conversion efficiency and editable window, generating a repertoire of mutants with highly diversified genomic sequences. Leveraging the genomic diversification platform, we successfully evolved the nisin-resistant capability of Bacillus subtilis through directed evolution of the subunit of lantibiotic ATP-binding cassette. Therefore, our work provides a portable and programmable genomic diversification platform, which is promising to expedite the fabrication of high-performance and robust bacterial chassis used in the development of biomanufacturing and biopharmaceuticals.
Collapse
Affiliation(s)
- Wenliang Hao
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Feiya Suo
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Laichuang Han
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhongyi Cheng
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University1800 Lihu AvenueWuxi 214122JiangsuChina
| |
Collapse
|
7
|
Wang Y, Jin B, Li B, Luo Y, Ma M, Chen Y, Liu H, Xie H, Yang T, Zhao X, Ding P. Cell-free protein synthesis of influenza virus hemagglutinin HA2-integrated virosomes for siRNA delivery. Int J Pharm 2022; 623:121890. [PMID: 35690307 DOI: 10.1016/j.ijpharm.2022.121890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
It is well known that the difficulty of siRNA therapeutic application is the lack of safe and effective delivery vector. Virosome is a nano vesicle composed of lipid membrane and membrane protein. It retains fusion protein without virus genetic material, and therefore has the reduced immunogenicity compared with viral vector. Virosomes have the potential to deliver protein and nucleic acid drugs, but the traditional preparation method of virosomes is quite limited. In this study, we firstly proposed to synthesize influenza virus hemagglutinin HA2 virosomes by cell-free protein synthesis. In this study, liposomes provided the hydrophobic lipid bilayer environment for the formation of HA2 protein multimer, which inhibited the aggregation of hydrophobic HA2 and improved HA2 protein expression. Chitosan as a rigid core adsorbed siRNA and improved the encapsulation efficiency of siRNA. In conclusion, the cell-free protein synthesis was used to prepare HA2 virosomes, which paves the way for constructing a novel nano vector with high delivery efficiency and biosafety for the delivery of siRNA.
Collapse
Affiliation(s)
- Yichen Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Jin
- The First Hospital, China Medical University, Department of Medical Oncology, Shenyang 110001, China
| | - Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yucen Luo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengrui Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huichao Xie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
8
|
Nakai H, Isshiki K, Hattori M, Maehira H, Yamaguchi T, Masuda K, Shimizu Y, Watanabe T, Hohsaka T, Shihoya W, Nureki O, Kato Y, Watanabe H, Matsuura T. Cell-Free Synthesis of Human Endothelin Receptors and Its Application to Ribosome Display. Anal Chem 2022; 94:3831-3839. [PMID: 35188389 DOI: 10.1021/acs.analchem.1c04714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Engineering G-protein-coupled receptors (GPCRs) for improved stability or altered function is of great interest, as GPCRs consist of the largest protein family, are involved in many important signaling pathways, and thus, are one of the major drug targets. Here, we report the development of a high-throughput screening method for GPCRs using a reconstituted in vitro transcription-translation (IVTT) system. Human endothelin receptor type-B (ETBR), a class A GPCR that binds endothelin-1 (ET-1), a 21-residue peptide hormone, was synthesized in the presence of nanodisc (ND) composed of a phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG). The ET-1 binding of ETBR was significantly reduced or was undetectable when other phospholipids were used for ND preparation. However, when functional ETBR purified from Sf9 cells was reconstituted into NDs, ET-1 binding was observed with two different phospholipids tested, including POPG. These results suggest that POPG likely supports the folding of ETBR into its functional form in the IVTT system. Using the same conditions as ETBR, whose three-dimensional structure has been solved, human endothelin receptor type-A (ETAR), whose three-dimensional structure remains unsolved, was also synthesized in its functional form. By adding POPG-ND to the IVTT system, both ETAR and ETBR were successfully subjected to ribosome display, a method of in vitro directed evolution that facilitates the screening of up to 1012 mutants. Finally, using a mock library, we showed that ribosome display can be applied for gene screening of ETBR, suggesting that high-throughput screening and directed evolution of GPCRs is possible in vitro.
Collapse
Affiliation(s)
- Hiroki Nakai
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kinuka Isshiki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masato Hattori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiromasa Maehira
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsumi Yamaguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1-i7E-307, Meguro-Ku, Tokyo 152-8550, Japan
| | - Keiko Masuda
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystem Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystem Dynamics Research (BDR), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.,Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama 2-12-1-i7E-307, Meguro-Ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Makrydaki E, Marshall O, Heide C, Buldum G, Kontoravdi C, Polizzi KM. Cell-free protein synthesis using Chinese hamster ovary cells. Methods Enzymol 2021; 659:411-435. [PMID: 34752298 DOI: 10.1016/bs.mie.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free protein synthesis (CFPS) platforms can be used for rapid and flexible expression of proteins. The use of CFPS platforms from mammalian, specifically Chinese hamster ovary (CHO) cells, offers the possibility of a rapid prototyping platform for recombinant protein production with the capabilities of post-translational modifications. In this chapter, we discuss a refined CFPS system based on CHO cells, including: extract preparation, reaction mix composition, and accessory protein supplementation to enhance expression. Specifically, when the CHO cell extract is combined with a truncated version of GADD34 and K3L, stress-induced eIF2 phosphorylation is reduced and inhibition of translation initiation is relieved, increasing yields. A brief summary of the protocol for running the CFPS reactions is also described. Overall, the method is reliable and leads to a highly reproducible expression system. Finally, the advantages and disadvantages of the platform, in addition to expected outcomes, are also discussed.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Oscar Marshall
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Chiara Heide
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Gizem Buldum
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
10
|
The Clone Wars: Diagnosing and Treating Dysproteinemic Kidney Disease in the Modern Era. J Clin Med 2021; 10:jcm10081633. [PMID: 33921394 PMCID: PMC8069250 DOI: 10.3390/jcm10081633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/17/2022] Open
Abstract
Dysproteinemic kidney diseases are disorders that occur as the result of lymphoproliferative (B cell or plasma cell) disorders that cause kidney damage via production of nephrotoxic monoclonal immunoglobulins or their components. These monoclonal immunoglobulins have individual physiochemical characteristics that confer specific nephrotoxic properties. There has been increased recognition and revised characterization of these disorders in the last decade, and in some cases, there have been substantial advances in disease understanding and treatments, which has translated to improved patient outcomes. These disorders still present challenges to nephrologists and patients, since they are rare, and the field of hematology is rapidly changing with the introduction of novel testing and treatment strategies. In this review, we will discuss the clinical presentation, kidney biopsy features, hematologic characteristics and treatment of dysproteinemic kidney diseases.
Collapse
|
11
|
Cell-Free Expression of a Plant Membrane Protein BrPT2 From Boesenbergia Rotunda. Mol Biotechnol 2021; 63:316-326. [PMID: 33565047 DOI: 10.1007/s12033-021-00304-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
Prenylation of aromatic natural products by membrane-bound prenyltransferases (PTs) is an important biosynthesis step of many bioactive compounds. At present, only a few plant flavonoid-related PT genes have been functionally characterized, mainly due to the difficulties of expressing these membrane proteins. Rapid and effective methods to produce functional plant membrane proteins are thus indispensable. Here, we evaluated expression systems through cell-based and cell-free approaches to express Boesenbergia rotunda BrPT2 encoding a membrane-bound prenyltransferase. We attempted to express BrPT2 in Escherichia coli and tobacco plants but failed to detect this protein using the Western-blot technique, whereas an intact single band of 43 kDa was detected when BrPT2 was expressed using a cell-free protein synthesis system (PURE). Under in vitro enzymatic condition, the synthesized BrPT2 successfully catalyzed pinostrobin chalcone to pinostrobin. Molecular docking analysis showed that pinostrobin chalcone interacts with BrPT2 at two cavities: (1) the main binding site at the central cavity and (2) the allosteric binding site located away from the central cavity. Our findings suggest that cell-free protein synthesis could be an alternative for rapid production of valuable difficult-to-express membrane proteins.
Collapse
|
12
|
Abarghooi Kahaki F, Monzavi S, Bamehr H, Bandani E, Payandeh Z, Jahangiri A, Khalili S. Expression and Purification of Membrane Proteins in Different Hosts. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-10009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Fazeli L, Golkar P, Mirakhorli N, Jalali SAH, Mohammadinezhad R. Transient expression of the full-length glycoprotein from infectious hematopoietic necrosis virus in bean (Phaseolus vulgaris) leaves via agroinfiltration. Biotechnol Appl Biochem 2020; 68:648-658. [PMID: 32578912 DOI: 10.1002/bab.1975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/20/2020] [Indexed: 11/07/2022]
Abstract
The glycoprotein of infectious hematopoietic necrosis virus (IHNV), the causative agent of acute disease in salmonids, is the only structural protein of the virus that can induce protective immunity in the fish host. Here, the reliability of bean (Phaseolus vulgaris) plant for the production of this viral protein was examined by the transient expression method. Using the syringe agroinfiltration method, leaves of bean plants were transformed with the expression construct encoding the full-length of IHNV glycoprotein (IHNV-G) gene. Furthermore, the transformation efficacy of two infiltration buffers including PBS-A (PBS+acetosyringone) and MMS-A (MES buffer + MgSO4 + sucrose + acetosyringone) was compared. The analysis of mRNA and dot-blot assay confirmed the transcription and translation of IHNV-G protein in bean leaves. Moreover, Western blotting verified the production of intact, full-length (∼57 kDa) IHNV-G protein in the agroinfiltrated plants. Of note, the production level of IHNV-G using MMS-A agroinfiltration buffer was approximately five times higher compared to PBS-A buffer (0.48 vs. 0.1% of total soluble protein), indicating the effect of infiltration buffer on the transient transformation efficiency. The recombinant protein was purified at the final yield of 0.35 μg/g of fresh leaf tissue, using nickel affinity chromatography. The present work is the first report describing the feasibility of the plant expression platform for the production of IHNV-G protein, which can be served as an oral vaccine against IHNV infection.
Collapse
Affiliation(s)
- Leila Fazeli
- Department of Plant Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Pooran Golkar
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Neda Mirakhorli
- Department of Plant Biotechnology, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Seyed Amir Hossein Jalali
- Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.,Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Rezvan Mohammadinezhad
- Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
14
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
15
|
Cell-free soluble expression of the membrane protein PsbS. Protein Expr Purif 2019; 159:17-20. [DOI: 10.1016/j.pep.2019.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 11/20/2022]
|
16
|
Li J, Liu X, Man Y, Chen Q, Pei D, Wu W. Cell-free expression, purification and characterization of Drosophila melanogaster odorant receptor OR42a and its co-receptor. Protein Expr Purif 2019; 159:27-33. [PMID: 30872132 DOI: 10.1016/j.pep.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/06/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Olfactory receptors (OR), a group of classic membrane proteins, plays a vital role in insect reproduction and acclimatization. Deciphering the molecular mechanism of insect olfaction could enhance pest control and environmental protection. Studies on ORs have faced a major bottleneck due to the notoriously strong hydrophobicity of ORs, which results in difficult expression in heterologous cell systems. Here, we demonstrated that insect ORs could be functionally produced using the E. coli cell-free protein synthesis system (CFPS), in which the highest yield of total ORs is 350 μg per 1 ml reaction. We tested the effects of detergent types and concentrations on soluble expression of ORs. The ORs showed a classic α-helical infrared spectrum. Quartz crystal microbalance (QCM) was used to demonstrate that ORs fold correctly and respond to their ligands. This is the first report that insect OR42a could be functionally produced in vitro. This approach may facilitate the development of biomimetic olfactory biosensors and may also be utilized for drug positioning and development, environmental protection and agriculture.
Collapse
Affiliation(s)
- Jianyong Li
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Xingping Liu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Yahui Man
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Qian Chen
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Di Pei
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Wenjian Wu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China.
| |
Collapse
|
17
|
Viennet T, Bungert-Plümke S, Elter S, Viegas A, Fahlke C, Etzkorn M. Reconstitution and NMR Characterization of the Ion-Channel Accessory Subunit Barttin in Detergents and Lipid-Bilayer Nanodiscs. Front Mol Biosci 2019; 6:13. [PMID: 30931313 PMCID: PMC6427064 DOI: 10.3389/fmolb.2019.00013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
Barttin is an accessory subunit of ClC-K chloride channels expressed in the kidney and the inner ear. Main functions of ClC-K/barttin channels are the generation of the cortico-medullary osmotic gradients in the kidney and the endocochlear potential in the inner ear. Mutations in the gene encoding barttin, BSND, result in impaired urinary concentration and sensory deafness. Barttin is predicted to be a two helical integral membrane protein that directly interacts with its ion channel in the membrane bilayer where it stabilizes the channel complex, promotes its incorporation into the surface membrane and leads to channel activation. It therefore is an attractive target to address fundamental questions of intermolecular communication within the membrane. However, so far inherent challenges in protein expression and stabilization prevented comprehensive in vitro studies and structural characterization. Here we demonstrate that cell-free expression enables production of sufficient quantities of an isotope-labeled barttin variant (I72X Barttin, capable to promote surface membrane insertion and channel activation) for NMR-based structural studies. Additionally, we established purification protocols as well as reconstitution strategies in detergent micelles and phospholipid bilayer nanodiscs. Stability, folding, and NMR data quality are reported as well as a suitable assignment strategy, paving the way to its structural characterization.
Collapse
Affiliation(s)
- Thibault Viennet
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems 6, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems 4, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Shantha Elter
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Aldino Viegas
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| | - Manuel Etzkorn
- Institute of Physical Biology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Complex Systems 6, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, Jülich, Germany
| |
Collapse
|
18
|
Novikova IV, Sharma N, Moser T, Sontag R, Liu Y, Collazo MJ, Cascio D, Shokuhfar T, Hellmann H, Knoblauch M, Evans JE. Protein structural biology using cell-free platform from wheat germ. ADVANCED STRUCTURAL AND CHEMICAL IMAGING 2018; 4:13. [PMID: 30524935 PMCID: PMC6244559 DOI: 10.1186/s40679-018-0062-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
One of the biggest bottlenecks for structural analysis of proteins remains the creation of high-yield and high-purity samples of the target protein. Cell-free protein synthesis technologies are powerful and customizable platforms for obtaining functional proteins of interest in short timeframes, while avoiding potential toxicity issues and permitting high-throughput screening. These methods have benefited many areas of genomic and proteomics research, therapeutics, vaccine development and protein chip constructions. In this work, we demonstrate a versatile and multiscale eukaryotic wheat germ cell-free protein expression pipeline to generate functional proteins of different sizes from multiple host organism and DNA source origins. We also report on a robust purification procedure, which can produce highly pure (> 98%) proteins with no specialized equipment required and minimal time invested. This pipeline successfully produced and analyzed proteins in all three major geometry formats used for structural biology including single particle analysis with electron microscopy, and both two-dimensional and three-dimensional protein crystallography. The flexibility of the wheat germ system in combination with the multiscale pipeline described here provides a new workflow for rapid production and purification of samples that may not be amenable to other recombinant approaches for structural characterization.
Collapse
Affiliation(s)
- Irina V. Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Noopur Sharma
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Trevor Moser
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Ryan Sontag
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Yan Liu
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - Michael J. Collazo
- Department of Biological Chemistry, University of California Los Angeles, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095 USA
| | - Duilio Cascio
- Department of Biological Chemistry, University of California Los Angeles, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles, Howard Hughes Medical Institute, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095 USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Blvd, Richland, WA 99354 USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
19
|
Schoborg JA, Jewett MC. Cell-Free Protein Synthesis: An Emerging Technology for Understanding, Harnessing, and Expanding the Capabilities of Biological Systems. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road, Evanston, IL; 60208-3120 USA
- Chemistry of Life Processes Institute; 2170 Campus Drive, Evanston, IL; 60208-3120 USA
- Robert H. Lurie Comprehensive Cancer Center; Northwestern University, 676 N. St Clair St; Suite 1200 Chicago IL 60611-3068 USA
- Simpson Querrey Institute; Northwestern University; 303 E. Superior St; Suite 11-131, Chicago IL 60611-2875 USA
- Center for Synthetic Biology; Northwestern University, 2145 Sheridan Road; Evanston IL 60208-3120 USA
| |
Collapse
|
20
|
Suzuki Y, Ogasawara T, Tanaka Y, Takeda H, Sawasaki T, Mogi M, Liu S, Maeyama K. Functional G-Protein-Coupled Receptor (GPCR) Synthesis: The Pharmacological Analysis of Human Histamine H1 Receptor (HRH1) Synthesized by a Wheat Germ Cell-Free Protein Synthesis System Combined with Asolectin Glycerosomes. Front Pharmacol 2018; 9:38. [PMID: 29467651 PMCID: PMC5808195 DOI: 10.3389/fphar.2018.00038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are membrane proteins distributed on the cell surface, and they may be potential drug targets. However, synthesizing GPCRs in vitro can be challenging. Recently, some cell-free protein synthesis systems have been shown to produce a large amount of membrane protein combined with chemical chaperones that include liposomes and glycerol. Liposomes containing high concentrations of glycerol are known as glycerosomes, which are used in new drug delivery systems. Glycerosomes have greater morphological stability than liposomes. Proteoglycerosomes are defined as glycerosomes that contain membrane proteins. Human histamine H1 receptor (HRH1) is one of the most studied GPCRs. In this study, we synthesized wild-type HRH1 (WT-HRH1) proteoglycerosomes and D107A-HRH1, (in which Asp107 was replaced by Ala) in a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. The mutant HRH1 has been reported to have low affinity for the H1 antagonist. In this study, the amount of synthesized WT-HRH1 in one synthesis reaction was 434 ± 66.6 μg (7.75 ± 1.19 × 103pmol). The specific binding of [3H]pyrilamine to the WT-HRH1 proteoglycerosomes became saturated as the concentration of the radioligand increased. The dissociation constant (Kd) and maximum density (Bmax) of the synthesized WT-HRH1 were 9.76 ± 1.25 nM and 21.4 ± 0.936 pmol/mg protein, respectively. However, specific binding to D107A-HRH1 was reduced compared with WT-HRH1 and the binding did not become saturated. The findings of this study highlight that HRH1 synthesized using a wheat germ cell-free protein synthesis system combined with glycerosomes has the ability to bind to H1 antagonists.
Collapse
Affiliation(s)
- Yasuyuki Suzuki
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | | | - Yuki Tanaka
- Advanced Research Support Center, Division of Analytical Bio-Medicine, Ehime University, Toon, Japan
| | | | | | - Masaki Mogi
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Shuang Liu
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kazutaka Maeyama
- Department of Pharmacology, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
21
|
Woznicka-Misaila A, Juillan-Binard C, Baud D, Pebay-Peyroula E, Ravaud S. Cell-free production, purification and characterization of human mitochondrial ADP/ATP carriers. Protein Expr Purif 2017; 144:46-54. [PMID: 29217202 DOI: 10.1016/j.pep.2017.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 11/17/2022]
Abstract
Mitochondrial Carriers (MCs) are responsible for fluent traffic of a variety of compounds that need to be shuttled via mitochondrial inner membranes to maintain cell metabolism. The ADP/ATP Carriers (AACs) are responsible for the import of ADP inside the mitochondria and the export of newly synthesized ATP. In human, four different AACs isoforms are described which are expressed in tissue-specific manner. They are involved in different genetic diseases and play a role in cancerogenesis. Up to now only the structures of the bovine (isoform 1) and yeast (isoforms 2 and 3) AAC have been determined in one particular conformation, obtained in complex with the CATR inhibitor. Herein, we report that full-length human ADP/ATP Carriers isoform 1 and 3 were successfully expressed in cell-free system and purified in milligram amounts in detergent-solubilized state. The proteins exhibited the expected secondary structure content. Thermostability profiles showing stabilization by the CATR inhibitor suggest that the carriers are well folded.
Collapse
Affiliation(s)
| | - Céline Juillan-Binard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Delphine Baud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Eva Pebay-Peyroula
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stéphanie Ravaud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France.
| |
Collapse
|
22
|
Katsura K, Matsuda T, Tomabechi Y, Yonemochi M, Hanada K, Ohsawa N, Sakamoto K, Takemoto C, Shirouzu M. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis. J Biochem 2017; 162:357-369. [PMID: 28992119 PMCID: PMC7109869 DOI: 10.1093/jb/mvx039] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/21/2017] [Indexed: 01/30/2023] Open
Abstract
Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates.
Collapse
Affiliation(s)
- Kazushige Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takayoshi Matsuda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuharu Hanada
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noboru Ohsawa
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
23
|
Hu Z, Ho JC, Nallani M. Synthetic (polymer) biology (membrane): functionalization of polymer scaffolds for membrane proteins. Curr Opin Biotechnol 2017; 46:51-56. [DOI: 10.1016/j.copbio.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022]
|
24
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
25
|
Su D, Wang M, Ye C, Fang J, Duan Y, Zhang Z, Hua Q, Shi C, Zhang L, Zhang R, Xie X. One-step generation of mice carrying a conditional allele together with an HA-tag insertion for the delta opioid receptor. Sci Rep 2017; 7:44476. [PMID: 28300205 PMCID: PMC5353682 DOI: 10.1038/srep44476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important modulators of many physiological functions and excellent drug targets for many diseases. However, to study the functions of endogenous GPCRs is still a challenging task, partially due to the low expression level of GPCRs and the lack of highly potent and selective GPCR antibodies. Overexpression or knock-in of tagged GPCRs, or knockout of specific GPCRs in mice, are common strategies used to study the in vivo functions of these receptors. However, generating separate mice carrying tagged GPCRs or conditional alleles for GPCRs is labor intensive, and requires additional breeding costs. Here we report the generation of mice carrying an HA-tagged DOR (delta opioid receptor) flanked by LoxP sequences at the endogenous DOR locus using a single recombination step, aided by the TALEN system. These animals can be used directly to study the expression, localization, protein-protein interaction and signal transduction of endogenous DOR using anti-HA antibodies. By crossing with mice expressing tissue-specific Cre, these mice can also generate offspring with DOR knockout within specific tissues. These mice are powerful tools to study the in vivo functions of DOR. Furthermore, the gene modification strategy could also be used to study the functions of many other GPCRs.
Collapse
Affiliation(s)
- Dongru Su
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenli Ye
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiahui Fang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhui Duan
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhenghong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lihong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xin Xie
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
26
|
Tang Y, Qiu J, Machner M, LaBaer J. Discovering Protein-Protein Interactions Using Nucleic Acid Programmable Protein Arrays. CURRENT PROTOCOLS IN CELL BIOLOGY 2017; 74:15.21.1-15.21.14. [PMID: 28256722 DOI: 10.1002/cpcb.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have developed a protocol enabling the study of protein-protein interactions (PPIs) at the proteome level using in vitro-synthesized proteins. Assay preparation requires molecular cloning of the query gene into a vector that supports in vitro transcription/translation (IVTT) and appends a HaloTag to the query protein of interest. In parallel, protein microarrays are prepared by printing plasmids encoding glutathione S-transferase (GST)-tagged target proteins onto a carrier matrix/glass slide coated with antibody directed against GST. At the time of the experiment, the query protein and the target protein are produced separately through IVTT. The query protein is then applied to nucleic acid programmable protein arrays (NAPPA) that display thousands of freshly produced target proteins captured by anti-GST antibody. Interactions between the query and immobilized target proteins are detected through addition of a fluorophore-labeled HaloTag ligand. Our protocol allows the elucidation of PPIs in a high-throughput fashion using proteins produced in vitro, obviating the scientific challenges, high cost, and laborious work, as well as concerns about protein stability, which are usually present in protocols using conventional protein arrays. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yanyang Tang
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Ji Qiu
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Matthias Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
27
|
Ohta N, Kato Y, Watanabe H, Mori H, Matsuura T. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes. Sci Rep 2016; 6:36466. [PMID: 27808179 PMCID: PMC5093552 DOI: 10.1038/srep36466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach.
Collapse
Affiliation(s)
- Naoki Ohta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-tyou, Ikoma, Nara, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
28
|
Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: A review. Crit Rev Microbiol 2016; 43:31-42. [PMID: 27387055 DOI: 10.3109/1040841x.2016.1150959] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.
Collapse
Affiliation(s)
- Sanjeev Kumar Gupta
- a Advanced Biotech Lab, Ipca Laboratories Ltd., Kandivli Industrial Estate, Kandivli (west) , Mumbai , Mahrashtra , India
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , Haryana , India
| |
Collapse
|
29
|
Schinn SM, Broadbent A, Bradley WT, Bundy BC. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA. N Biotechnol 2016; 33:480-7. [PMID: 27085957 DOI: 10.1016/j.nbt.2016.04.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
Abstract
A rapid, versatile method of protein expression and screening can greatly facilitate the future development of therapeutic biologics, proteomic drug targets and biocatalysts. An attractive candidate is cell-free protein synthesis (CFPS), a cell-lysate-based in vitro expression system, which can utilize linear DNA as expression templates, bypassing time-consuming cloning steps of plasmid-based methods. Traditionally, such linear DNA expression templates (LET) have been vulnerable to degradation by nucleases present in the cell lysate, leading to lower yields. This challenge has been significantly addressed in the recent past, propelling LET-based CFPS as a useful tool for studying, screening and engineering proteins in a high-throughput manner. Currently, LET-based CFPS has promise in fields such as functional proteomics, protein microarrays, and the optimization of complex biological systems.
Collapse
Affiliation(s)
- Song-Min Schinn
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Andrew Broadbent
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - William T Bradley
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
30
|
Schoborg JA, Clark LG, Choudhury A, Hodgman CE, Jewett MC. Yeast knockout library allows for efficient testing of genomic mutations for cell-free protein synthesis. Synth Syst Biotechnol 2016; 1:2-6. [PMID: 29062921 PMCID: PMC5640588 DOI: 10.1016/j.synbio.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 12/31/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems from crude lysates have benefitted from modifications to their enzyme composition. For example, functionally deleting enzymes in the source strain that are deleterious to CFPS can improve protein synthesis yields. However, making such modifications can take substantial time. As a proof-of-concept to accelerate prototyping capabilities, we assessed the feasibility of using the yeast knockout collection to identify negative effectors in a Saccharomyces cerevisiae CFPS platform. We analyzed extracts made from six deletion strains that targeted the single deletion of potentially negative effectors (e.g., nucleases). We found a statistically significant increase in luciferase yields upon loss of function of GCN3, PEP4, PPT1, NGL3, and XRN1 with a maximum increase of over 6-fold as compared to the wild type. Our work has implications for yeast CFPS and for rapidly prototyping strains to enable cell-free synthetic biology applications.
Collapse
Key Words
- ANOVA, analysis of variance
- ATP, adenosine triphosphate
- CFPS, cell-free protein synthesis
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cell-free biology
- Cell-free protein synthesis
- In vitro translation
- NTP, nucleoside triphosphate
- OD, optical density
- Protein expression
- SC, synthetic complete media
- Saccharomyces cerevisiae
- Synthetic biology
- YKO, yeast knockout
- cAMP, cyclic adenosine monophosphate
- eIF, eukaryotic initiation factor
Collapse
Affiliation(s)
- Jennifer A. Schoborg
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Lauren G. Clark
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Alaksh Choudhury
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Masters in Biotechnology Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
| | - C. Eric Hodgman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Chemistry of Life Processes Institute, 2170 Campus Drive, Evanston, IL 60208-3120, USA
- Masters in Biotechnology Program, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3120, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 N. St Clair St, Suite 1200, Chicago, IL 60611-3068, USA
- Simpson Querrey Institute, Northwestern University, 303 E. Superior St, Suite 11-131, Chicago, IL 60611-2875, USA
- Corresponding author. 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3120, USA.2145 Sheridan RoadTech E-136EvanstonIL60208-3120USA
| |
Collapse
|
31
|
Schmitt C, Lippert AH, Bonakdar N, Sandoghdar V, Voll LM. Compartmentalization and Transport in Synthetic Vesicles. Front Bioeng Biotechnol 2016; 4:19. [PMID: 26973834 PMCID: PMC4770187 DOI: 10.3389/fbioe.2016.00019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/11/2016] [Indexed: 12/03/2022] Open
Abstract
Nanoscale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, such as permeability, stability, or chemical reactivity. In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multicompartmented vesosomes as compartmentalized nanoscale bioreactors. In the bottom-up development of protocells from vesicular nanoreactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore, we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Christine Schmitt
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna H. Lippert
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Navid Bonakdar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max-Planck-Institute for the Science of Light, Erlangen, Germany
| | - Lars M. Voll
- Division of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
32
|
Georgi V, Georgi L, Blechert M, Bergmeister M, Zwanzig M, Wüstenhagen DA, Bier FF, Jung E, Kubick S. On-chip automation of cell-free protein synthesis: new opportunities due to a novel reaction mode. LAB ON A CHIP 2016; 16:269-81. [PMID: 26554896 DOI: 10.1039/c5lc00700c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many pharmaceuticals are proteins or their development is based on proteins. Cell-free protein synthesis (CFPS) is an innovative alternative to conventional cell based systems which enables the production of proteins with complex and even new characteristics. However, the short lifetime, low protein production and expensive reagent costs are still limitations of CFPS. Novel automated microfluidic systems might allow continuous, controllable and resource conserving CFPS. The presented microfluidic TRITT platform (TRITT for Transcription - RNA Immobilization & Transfer - Translation) addresses the individual biochemical requirements of the transcription and the translation step of CFPS in separate compartments, and combines the reaction steps by quasi-continuous transfer of RNA templates to enable automated CFPS. In detail, specific RNA templates with 5' and 3' hairpin structures for stabilization against nucleases were immobilized during in vitro transcription by newly designed and optimized hybridization oligonucleotides coupled to magnetizable particles. Transcription compatibility and reusability for immobilization of these functionalized particles was successfully proven. mRNA transfer was realized on-chip by magnetic actuated particle transfer, RNA elution and fluid flow to the in vitro translation compartment. The applicability of the microfluidic TRITT platform for the production of the cytotoxic protein Pierisin with simultaneous incorporation of a non-canonical amino acid for fluorescence labeling was demonstrated. The new reaction mode (TRITT mode) is a modified linked mode that fulfills the precondition for an automated modular reactor system. By continual transfer of new mRNA, the novel procedure overcomes problems caused by nuclease digestion and hydrolysis of mRNA during TL in standard CFPS reactions.
Collapse
Affiliation(s)
- V Georgi
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany. and Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| | - L Georgi
- Technische Universität Berlin, Faculty Electrical Engineering Computer Science, Microperipheric Technologies, Berlin, Germany
| | - M Blechert
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany.
| | - M Bergmeister
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany.
| | - M Zwanzig
- Technische Universität Berlin, Faculty Electrical Engineering Computer Science, Microperipheric Technologies, Berlin, Germany
| | - D A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| | - F F Bier
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| | - E Jung
- Fraunhofer Institute for Reliability Microintegration, Department System Integration & Interconnection Technologies, Working Group Medical Microystems, Berlin, Germany.
| | - S Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam, Germany.
| |
Collapse
|
33
|
Ando M, Akiyama M, Okuno D, Hirano M, Ide T, Sawada S, Sasaki Y, Akiyoshi K. Liposome chaperon in cell-free membrane protein synthesis: one-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method. Biomater Sci 2016; 4:258-64. [DOI: 10.1039/c5bm00285k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chaperoning functions of liposomes were investigated using cell-free membrane protein synthesis.
Collapse
Affiliation(s)
- M. Ando
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - M. Akiyama
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - D. Okuno
- Laboratory for Cell Dynamics Observation
- Quantitative Biology Center
- RIKEN
- Osaka 565-0874
- Japan
| | - M. Hirano
- Laboratory for Cell Dynamics Observation
- Quantitative Biology Center
- RIKEN
- Osaka 565-0874
- Japan
| | - T. Ide
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - S. Sawada
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Y. Sasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - K. Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
34
|
One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil-water interfaces. Proc Natl Acad Sci U S A 2015; 113:608-13. [PMID: 26721399 DOI: 10.1073/pnas.1504992113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-span membrane proteins (ssMPs) represent approximately one-half of all membrane proteins and play important roles in cellular communications. However, like all membrane proteins, ssMPs are prone to misfolding and aggregation because of the hydrophobicity of transmembrane helices, making them difficult to study using common aqueous solution-based approaches. Detergents and membrane mimetics can solubilize membrane proteins but do not always result in proper folding and functionality. Here, we use cell-free protein synthesis in the presence of oil drops to create a one-pot system for the synthesis, assembly, and display of functional ssMPs. Our studies suggest that oil drops prevent aggregation of some in vitro-synthesized ssMPs by allowing these ssMPs to localize on oil surfaces. We speculate that oil drops may provide a hydrophobic interior for cotranslational insertion of the transmembrane helices and a fluidic surface for proper assembly and display of the ectodomains. These functionalized oil drop surfaces could mimic cell surfaces and allow ssMPs to interact with cell surface receptors under an environment closest to cell-cell communication. Using this approach, we showed that apoptosis-inducing human transmembrane proteins, FasL and TRAIL, synthesized and displayed on oil drops induce apoptosis of cultured tumor cells. In addition, we take advantage of hydrophobic interactions of transmembrane helices to manipulate the assembly of ssMPs and create artificial clusters on oil drop surfaces. Thus, by coupling protein synthesis with self-assembly at the water-oil interface, we create a platform that can use recombinant ssMPs to communicate with cells.
Collapse
|
35
|
Joedicke L, Trenker R, Langer JD, Michel H, Preu J. Cell-free synthesis of isotopically labelled peptide ligands for the functional characterization of G protein-coupled receptors. FEBS Open Bio 2015; 6:90-102. [PMID: 27047736 PMCID: PMC4794788 DOI: 10.1002/2211-5463.12008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022] Open
Abstract
Cell‐free systems exploit the transcription and translation machinery of cells from different origins to produce proteins in a defined chemical environment. Due to its open nature, cell‐free protein production is a versatile tool to introduce specific labels such as heavy isotopes, non‐natural amino acids and tags into the protein while avoiding cell toxicity. In particular, radiolabelled peptides and proteins are valuable tools for the functional characterization of protein–protein interactions and for studying binding kinetics. In this study we evaluated cell‐free protein production for the generation of radiolabelled ligands for G protein‐coupled receptors (GPCRs). These receptors are seven‐transmembrane‐domain receptors activated by a plethora of extracellular stimuli including peptide ligands. Many GPCR peptide ligands contain disulphide bonds and are thus inherently difficult to produce in bacterial expression hosts or in Escherichia coli‐based cell‐free systems. Here, we established an adapted E. coli‐based cell‐free translation system for the production of disulphide bond‐containing GPCR peptide ligands and specifically introduce tritium labels for detection. The bacterial oxidoreductase DsbA is used as a chaperone to favour the formation of disulphide bonds and to enhance the yield of correctly folded proteins and peptides. We demonstrate the correct folding and formation of disulphide bonds and show high‐affinity ligand binding of the produced radio peptide ligands to the respective receptors. Thus, our system allows the fast, cost‐effective and reliable synthesis of custom GPCR peptide ligands for functional and structural studies.
Collapse
Affiliation(s)
- Lisa Joedicke
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Raphael Trenker
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Julian D Langer
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Julia Preu
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Frankfurt am Main Germany
| |
Collapse
|
36
|
|
37
|
Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 2015; 5:18025. [PMID: 26667602 PMCID: PMC4678891 DOI: 10.1038/srep18025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023] Open
Abstract
Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eri Uemura
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shugo Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Minato Akiyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mitsuru Ando
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
38
|
Soranzo T, Cortès S, Gilde F, Kreir M, Picart C, Lenormand JL. Functional characterization of p7 viroporin from hepatitis C virus produced in a cell-free expression system. Protein Expr Purif 2015; 118:83-91. [PMID: 26477501 DOI: 10.1016/j.pep.2015.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/21/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
Using a cell-free expression system we produced the p7 viroporin embedded into a lipid bilayer in a single-step manner. The protein quality was assessed using different methods. We examined the channel forming activity of p7 and verified its inhibition by 5-(N,N-Hexamethylene) amiloride (HMA). Fourier transformed infrared spectroscopy (FTIR) experiments further showed that when p7 was inserted into synthetic liposomes, the protein displayed a native-like conformation similar to p7 obtained from other sources. Photoactivable amino acid analogs used for p7 protein synthesis enabled oligomerization state analysis in liposomes by cross-linking. Therefore, these findings emphasize the quality of the cell-free produced p7 proteoliposomes which can benefit the field of the hepatitis C virus (HCV) protein production and characterization and also provide tools for the development of new inhibitors to reinforce our therapeutic arsenal against HCV.
Collapse
Affiliation(s)
- Thomas Soranzo
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France; TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France
| | - Sandra Cortès
- Synthelis SAS, 5 avenue du Grand Sablon, 38700, La Tronche, France
| | - Flora Gilde
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraβe 9, 80636, Munich, Germany
| | - Catherine Picart
- CNRS, UMR 5628 (LMGP), 3 parvis Louis Néel, 38016, Grenoble, France; University of Grenoble Alpes, Grenoble Institute of Technology, 38016, Grenoble, France
| | - Jean-Luc Lenormand
- TheREx Laboratory, TIMC-IMAG, UMR 5525, CNRS /UJF, University Joseph Fourier, UFR de Médecine, 38706, La Tronche, France.
| |
Collapse
|
39
|
Comparative analysis of eukaryotic cell-free expression systems. Biotechniques 2015; 59:149-51. [PMID: 26345507 DOI: 10.2144/000114327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/01/2015] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) allows researchers to rapidly generate functional proteins independent of cell culture. Although advances in eukaryotic lysates have increased the amount of protein that can be produced, the nuances of different translation systems lead to variability in protein production. To help overcome this problem, we have compared the relative yield and template requirements for three commonly used commercial cell-free translation systems: wheat germ extract (WGE), rabbit reticulocyte lysate (RRL), and HeLa cell lysate (HCL). Our results provide a general guide for researchers interested in using cell-free translation to generate recombinant protein for biomedical applications.
Collapse
|
40
|
Cell Surface and Membrane Engineering: Emerging Technologies and Applications. J Funct Biomater 2015; 6:454-85. [PMID: 26096148 PMCID: PMC4493524 DOI: 10.3390/jfb6020454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/31/2022] Open
Abstract
Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.
Collapse
|
41
|
|
42
|
Trötschel C, Poetsch A. Current approaches and challenges in targeted absolute quantification of membrane proteins. Proteomics 2015; 15:915-29. [DOI: 10.1002/pmic.201400427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/05/2014] [Accepted: 12/05/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ansgar Poetsch
- Department of Plant Biochemistry; Ruhr-University Bochum; Bochum Germany
| |
Collapse
|
43
|
Fujii S, Matsuura T, Yomo T. In vitro directed evolution of alpha-hemolysin by liposome display. Biophysics (Nagoya-shi) 2015; 11:67-72. [PMID: 27493517 PMCID: PMC4736788 DOI: 10.2142/biophysics.11.67] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/30/2015] [Indexed: 12/01/2022] Open
Abstract
We have developed a method to enable in vitro directed evolution that can be applied to membrane proteins. This method, termed liposome display, uses liposomes as compartments in which membrane proteins are synthesized and as scaffolds for membrane protein integration. Thus, the synthesized membrane proteins are displayed on the surface of the liposome and exhibit their functions. A randomly mutated DNA library of the membrane protein was generated, encapsulated in the liposomes at the single-molecule level, and used to generate a liposome library. Liposomes displaying the desired membrane protein function were selected, thus accumulating the DNA molecule encoding the desired membrane protein. We have applied this method to alpha-hemolysin, a membrane protein derived from Staphylococcus aureus. Alpha-hemolysin forms a nanopore in the membrane, which allows the penetration of small molecules. We aimed to improve this nanopore activity by using the liposome display method. Consequently, alpha-hemolysin evolved and attained a higher specific affinity for the liposome membrane. In this review, we describe the essential characteristics of liposome display and the properties of the evolved alpha-hemolysin obtained by this method.
Collapse
Affiliation(s)
- Satoshi Fujii
- Japan Science and Technology (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoaki Matsuura
- Japan Science and Technology (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Yomo
- Japan Science and Technology (JST), ERATO, Yomo Dynamical Micro-scale Reaction Environment Project, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan; Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-1 E-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
44
|
Damiati S, Zayni S, Schrems A, Kiene E, Sleytr UB, Chopineau J, Schuster B, Sinner EK. Inspired and stabilized by nature: ribosomal synthesis of the human voltage gated ion channel (VDAC) into 2D-protein-tethered lipid interfaces. Biomater Sci 2015; 3:1406-13. [DOI: 10.1039/c5bm00097a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The scheme of the cell-free, ribosomal synthesis of a VDAC protein in the presence of an S-layer supported lipid membrane. The VDAC protein is adapted from S. Hiller et al., Science, 2008, 321, 1206–1210.
Collapse
Affiliation(s)
- Samar Damiati
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Sonja Zayni
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Angelika Schrems
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Elisabeth Kiene
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Uwe B. Sleytr
- Institute for Biophysics
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Joël Chopineau
- Institute Charles Gerhardt
- UMR 5253 CNRS/ENSCM/UM2/UM1
- Montpellier
- France
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| | - Eva-Kathrin Sinner
- Institute for Synthetic Bioarchitectures
- Department of NanoBiotechnology
- University of Natural Resources and Life Sciences
- Vienna 1190
- Austria
| |
Collapse
|
45
|
Folding membrane proteins in vitro: A table and some comments. Arch Biochem Biophys 2014; 564:314-26. [DOI: 10.1016/j.abb.2014.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
|
46
|
Pramanik S, Tateishi-Karimata H, Sugimoto N. Organelle-mimicking liposome dissociates G-quadruplexes and facilitates transcription. Nucleic Acids Res 2014; 42:12949-59. [PMID: 25336617 PMCID: PMC4227800 DOI: 10.1093/nar/gku998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Important biological reactions involving nucleic acids occur near the surface of membranes such as the nuclear membrane (NM) and rough endoplasmic reticulum (ER); however, the interactions between biomembranes and nucleic acids are poorly understood. We report here that transcription was facilitated in solution with liposomes, which mimic a biomembrane surface, relative to the reaction in a homogeneous aqueous solution when the template was able to form a G-quadruplex. The G-quadruplex is known to be an inhibitor of transcription, but the stability of the G-quadruplex was decreased at the liposome surface because of unfavourable enthalpy. The destabilization of the G-quadruplex was greater at the surface of NM- and ER-mimicking liposomes than at the surfaces of liposomes designed to mimic other organelles. Thermodynamic analyses revealed that the G-rich oligonucleotides adopted an extended structure at the liposome surface, whereas in solution the compact G-quadruplex was formed. Our data suggest that changes in structure and stability of nucleic acids regulate biological reactions at membrane surfaces.
Collapse
Affiliation(s)
- Smritimoy Pramanik
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
47
|
Abstract
Mapping the precise position of endonucleolytic cleavage sites is a fundamental experimental technique used to describe the function of a homing endonuclease. However, these proteins are often recalcitrant to cloning and over-expression in biological systems because of toxicity induced by spurious DNA cleavage events. In this chapter we outline the steps to successfully express a homing endonuclease in vitro and use this product in nucleotide-resolution cleavage assays.
Collapse
|
48
|
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| |
Collapse
|
49
|
Developing cell-free protein synthesis systems: a focus on mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Soga H, Fujii S, Yomo T, Kato Y, Watanabe H, Matsuura T. In vitro membrane protein synthesis inside cell-sized vesicles reveals the dependence of membrane protein integration on vesicle volume. ACS Synth Biol 2014; 3:372-9. [PMID: 24328098 DOI: 10.1021/sb400094c] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Giant unilamellar vesicles (GUVs) are vesicles>1 μm in diameter that provide an environment in which the effect of a confined reaction volume on intravesicular reactions can be investigated. By synthesizing EmrE, a multidrug transporter from Escherichia coli, as a model membrane protein using a reconstituted in vitro transcription-translation system inside GUVs, we investigated the effect of a confined volume on the synthesis and membrane integration of EmrE. Flow cytometry was used to analyze multiple properties of the vesicles and to quantify EmrE synthesis inside GUVs composed of only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. We found that EmrE was synthesized and integrated into the GUV membrane in its active form. We also found that the ratio of membrane-integrated EmrE to total synthesized EmrE increased with decreasing vesicle volume; this finding is explained by the effect of an increased surface-area-to-volume ratio in smaller vesicles. In vitro membrane synthesis inside GUVs is a useful approach to study quantitatively the properties of membrane proteins and their interaction with the membrane under cell-mimicking environments.
Collapse
Affiliation(s)
- Haruka Soga
- Department
of Biotechnology, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka, Japan
| | - Satoshi Fujii
- Exploratory
Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka, Japan
| | - Tetsuya Yomo
- Exploratory
Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka, Japan
- Department
of Bioinformatic Engineering, Graduate School of Information Science
and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department
of Biotechnology, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department
of Biotechnology, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka, Japan
| | - Tomoaki Matsuura
- Department
of Biotechnology, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka, Japan
- Exploratory
Research for Advanced Technology, Japan Science and Technology Agency, 1-5 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|