1
|
Teng X, Li M, He H, Jia D, Yin J, Bolarinho R, Cheng JX. Mid-infrared Photothermal Imaging: Instrument and Life Science Applications. Anal Chem 2024; 96:7895-7906. [PMID: 38702858 DOI: 10.1021/acs.analchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Affiliation(s)
- Xinyan Teng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Mingsheng Li
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Hongjian He
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Danchen Jia
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Farooq S, Del-Valle M, Dos Santos SN, Bernardes ES, Zezell DM. Recognition of breast cancer subtypes using FTIR hyperspectral data. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123941. [PMID: 38290283 DOI: 10.1016/j.saa.2024.123941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
Fourier-transform infrared spectroscopy (FTIR) is a powerful, non-destructive, highly sensitive and a promising analytical technique to provide spectrochemical signatures of biological samples, where markers like carbohydrates, proteins, and phosphate groups of DNA can be recognized in biological micro-environment. However, method of measurements of large cells need an excessive time to achieve high quality images, making its clinical use difficult due to speed of data-acquisition and lack of optimized computational procedures. To address such challenges, Machine Learning (ML) based technologies can assist to assess an accurate prognostication of breast cancer (BC) subtypes with high performance. Here, we applied FTIR spectroscopy to identify breast cancer subtypes in order to differentiate between luminal (BT474) and non-luminal (SKBR3) molecular subtypes. For this reason, we tested multivariate classification technique to extract feature information employing three-dimension (3D)-discriminant analysis approach based on 3D-principle component analysis-linear discriminant analysis (3D-PCA-LDA) and 3D-principal component analysis-quadratic discriminant analysis (3D-PCA-QDA), showing an improvement in sensitivity (98%), specificity (94%) and accuracy (98%) parameters compared to conventional unfolded methods. Our results evidence that 3D-PCA-LDA and 3D-PCA-QDA are potential tools for discriminant analysis of hyperspectral dataset to obtain superior classification assessment.
Collapse
Affiliation(s)
- Sajid Farooq
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN, Address One, Sao Paulo, 05508-000, Sao Paulo, Brazil
| | - Matheus Del-Valle
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN, Address One, Sao Paulo, 05508-000, Sao Paulo, Brazil
| | - Sofia Nascimento Dos Santos
- Center for Radiopharmaceutics, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN, Address One, Sao Paulo, 05508-000, Sao Paulo, Brazil
| | - Emerson Soares Bernardes
- Center for Radiopharmaceutics, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN, Address One, Sao Paulo, 05508-000, Sao Paulo, Brazil
| | - Denise Maria Zezell
- Center for Lasers and Applications, Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN, Address One, Sao Paulo, 05508-000, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Crisp AR, Short B, Rowan L, Ramage G, Rehman IU, Short RD, Williams C. Investigating the chemical pathway to the formation of a single biofilm using infrared spectroscopy. Biofilm 2023; 6:100141. [PMID: 37449091 PMCID: PMC10336410 DOI: 10.1016/j.bioflm.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Diagnosing biofilm infections has remained a constant challenge for the last 50 years. Existing diagnostic methods struggle to identify the biofilm phenotype. Moreover, most methods of biofilm analysis destroy the biofilm making the resultant data interpretation difficult. In this study we introduce Fourier Transform Infra-Red (FTIR) spectroscopy as a label-free, non-destructive approach to monitoring biofilm progression. We have utilised FTIR in a novel application to evaluate the chemical composition of bacterial biofilms without disrupting the biofilm architecture. S. epidermidis (RP62A) was grown onto calcium fluoride slides for periods of 30 min-96 h, before semi-drying samples for analysis. We report the discovery of a chemical marker to distinguish between planktonic and biofilm samples. The appearance of new proteins in biofilm samples of varying maturity is exemplified in the spectroscopic data, highlighting the potential of FTIR for identifying the presence and developmental stage of a single biofilm.
Collapse
Affiliation(s)
- Amy R. Crisp
- Engineering Department, Lancaster University, Bailrigg, Lancaster, LA1 4YW, UK
| | - Bryn Short
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laurence Rowan
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gordon Ramage
- School of Medicine, Dentistry and Nursing, MVLS, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Robert D. Short
- Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | | |
Collapse
|
4
|
Hsieh PH, Phal Y, Prasanth KV, Bhargava R. Cell Phase Identification in a Three-Dimensional Engineered Tumor Model by Infrared Spectroscopic Imaging. Anal Chem 2023; 95:3349-3357. [PMID: 36574385 PMCID: PMC10214899 DOI: 10.1021/acs.analchem.2c04554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell cycle progression plays a vital role in regulating proliferation, metabolism, and apoptosis. Three-dimensional (3D) cell cultures have emerged as an important class of in vitro disease models, and incorporating the variation occurring from cell cycle progression in these systems is critical. Here, we report the use of Fourier transform infrared (FT-IR) spectroscopic imaging to identify subtle biochemical changes within cells, indicative of the G1/S and G2/M phases of the cell cycle. Following previous studies, we first synchronized samples from two-dimensional (2D) cell cultures, confirmed their states by flow cytometry and DNA quantification, and recorded spectra. We determined two critical wavenumbers (1059 and 1219 cm-1) as spectral indicators of the cell cycle for a set of isogenic breast cancer cell lines (MCF10AT series). These two simple spectral markers were then applied to distinguish cell cycle stages in a 3D cell culture model using four cell lines that represent the main stages of cancer progression from normal cells to metastatic disease. Temporal dependence of spectral biomarkers during acini maturation validated the hypothesis that the cells are more proliferative in the early stages of acini development; later stages of the culture showed stability in the overall composition but unique spatial differences in cells in the two phases. Altogether, this study presents a computational and quantitative approach for cell phase analysis in tissue-like 3D structures without any biomarker staining and provides a means to characterize the impact of the cell cycle on 3D biological systems and disease diagnostic studies using IR imaging.
Collapse
Affiliation(s)
- Pei-Hsuan Hsieh
- Department of Bioengineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yamuna Phal
- Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Departments of Bioengineering, Electrical and Computer Engineering, Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Stefanakis M, Bassler MC, Walczuch TR, Gerhard-Hartmann E, Youssef A, Scherzad A, Stöth MB, Ostertag E, Hagen R, Steinke MR, Hackenberg S, Brecht M, Meyer TJ. The Impact of Tissue Preparation on Salivary Gland Tumors Investigated by Fourier-Transform Infrared Microspectroscopy. J Clin Med 2023; 12:569. [PMID: 36675498 PMCID: PMC9864841 DOI: 10.3390/jcm12020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Due to the wide variety of benign and malignant salivary gland tumors, classification and malignant behavior determination based on histomorphological criteria can be difficult and sometimes impossible. Spectroscopical procedures can acquire molecular biological information without destroying the tissue within the measurement processes. Since several tissue preparation procedures exist, our study investigated the impact of these preparations on the chemical composition of healthy and tumorous salivary gland tissue by Fourier-transform infrared (FTIR) microspectroscopy. Sequential tissue cross-sections were prepared from native, formalin-fixed and formalin-fixed paraffin-embedded (FFPE) tissue and analyzed. The FFPE cross-sections were dewaxed and remeasured. By using principal component analysis (PCA) combined with a discriminant analysis (DA), robust models for the distinction of sample preparations were built individually for each parotid tissue type. As a result, the PCA-DA model evaluation showed a high similarity between native and formalin-fixed tissues based on their chemical composition. Thus, formalin-fixed tissues are highly representative of the native samples and facilitate a transfer from scientific laboratory analysis into the clinical routine due to their robust nature. Furthermore, the dewaxing of the cross-sections entails the loss of molecular information. Our study successfully demonstrated how FTIR microspectroscopy can be used as a powerful tool within existing clinical workflows.
Collapse
Affiliation(s)
- Mona Stefanakis
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Miriam C. Bassler
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Tobias R. Walczuch
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Elena Gerhard-Hartmann
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Almoatazbellah Youssef
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Manuel Bernd Stöth
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Edwin Ostertag
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Maria R. Steinke
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Röntgenring 11, 97070 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology—Head and Neck Surgery, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762 Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Till Jasper Meyer
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
6
|
Zhang K, Liu R, Tuo Y, Ma K, Zhang D, Wang Z, Huang P. Distinguishing Asphyxia from Sudden Cardiac Death as the Cause of Death from the Lung Tissues of Rats and Humans Using Fourier Transform Infrared Spectroscopy. ACS OMEGA 2022; 7:46859-46869. [PMID: 36570197 PMCID: PMC9773813 DOI: 10.1021/acsomega.2c05968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The ability to determine asphyxia as a cause of death is important in forensic practice and helps us to judge whether a case is criminal. However, in some cases where the deceased has underlying heart disease, death by asphyxia cannot be determined by traditional autopsy and morphological observation under a microscope because there are no specific morphological features for either asphyxia or sudden cardiac death (SCD). Here, Fourier transform infrared (FTIR) spectroscopy was employed to distinguish asphyxia from SCD. A total of 40 lung tissues (collected at 0 h and 24 h postmortem) from 20 rats (10 died from asphyxia and 10 died from SCD) and 16 human lung tissues from 16 real cases were used for spectral data acquisition. After data preprocessing, 2675 spectra from rat lung tissues and 1526 spectra from human lung tissues were obtained for subsequent analysis. First, we found that there were biochemical differences in the rat lung tissues between the two causes of death by principal component analysis and partial least-squares discriminant analysis (PLS-DA), which were related to alterations in lipids, proteins, and nucleic acids. In addition, a PLS-DA classification model can be built to distinguish asphyxia from SCD. Second, based on the spectral data obtained from lung tissues allowed to decompose for 24 h, we could still distinguish asphyxia from SCD even when decomposition occurred in animal models. Nine important spectral features that contributed to the discrimination in the animal experiment were selected and further analyzed. Third, 7 of the 9 differential spectral features were also found to be significantly different in human lung tissues from 16 real cases. A support vector machine model was finally built by using the seven variables to distinguish asphyxia from SCD in the human samples. Compared with the linear PLS-DA model, its accuracy was significantly improved to 0.798, and the correct rate of determining the cause of death was 100%. This study shows the application potential of FTIR spectroscopy for exploring the subtle biochemical differences resulting from different death processes and determining the cause of death even after decomposition.
Collapse
Affiliation(s)
- Kai Zhang
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ruina Liu
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ya Tuo
- Department
of Biochemistry and Physiology, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, People’s Republic of China
| | - Kaijun Ma
- Shanghai
Key Laboratory of Crime Scene Evidence, Institute of Criminal Science
and Technology, Shanghai Municipal Public
Security Bureau, Shanghai 200042, People’s Republic
of China
| | - Dongchuan Zhang
- Shanghai
Key Laboratory of Crime Scene Evidence, Institute of Criminal Science
and Technology, Shanghai Municipal Public
Security Bureau, Shanghai 200042, People’s Republic
of China
| | - Zhenyuan Wang
- Department
of Forensic Pathology, College of Forensic Medicine, Xi’an Jiaotong University, Xi’an 710061, People’s
Republic of China
| | - Ping Huang
- Shanghai
Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai 200063, People’s Republic of China
| |
Collapse
|
7
|
Leal LB, Nogueira MS, Mageski JGA, Martini TP, Barauna VG, Dos Santos L, de Carvalho LFDCES. Diagnosis of Systemic Diseases Using Infrared Spectroscopy: Detection of Iron Overload in Plasma-Preliminary Study. Biol Trace Elem Res 2021; 199:3737-3751. [PMID: 33415581 DOI: 10.1007/s12011-020-02510-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Despite the important role of iron in cellular homeostasis, iron overload (IO) is associated with systemic and tissue deposits which damage several organs. In order to reduce the impact caused by IO, invasive diagnosis exams (e.g., biopsies) and minimally invasive methods were developed including computed tomography and magnetic resonance imaging. However, current diagnostic methods are still time-consuming and expensive. A cost-effective solution is using Fourier-transform infrared spectroscopy (FTIR) for real-time and molecular-sensitive biofluid analysis during conventional laboratory exams. In this study, we performed the first evaluation of the accuracy of FTIR for IO diagnosis. The study was performed by collecting FTIR spectra of plasma samples of five rats intravenously injected with iron-dextran and five control rats. We developed a classification model based on principal component analysis and supervised methods including J48, random forest, multilayer perceptron, and radial basis function network. We achieved 100% accuracy for the classification of the IO status and provided a list of possible biomolecules related to the vibrational modes detected. In this preliminary study, we give a first step towards real-time diagnosis for acute IO or intoxication. Furthermore, we have expanded the literature knowledge regarding the pathophysiological changes induced by iron overload.
Collapse
Affiliation(s)
- Leonardo Barbosa Leal
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil.
| | - Marcelo Saito Nogueira
- Tyndall National Institute/University College Cork - Lee Maltings Complex, Dyke Parade, Cork, T12R5CP, Ireland
| | - Jandinay Gonzaga Alexandre Mageski
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Thiago Pereira Martini
- Institute of Science and Technology, Federal University of Sao Paulo, São José dos Campos, Brazil
| | - Valério Garrone Barauna
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Leonardo Dos Santos
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Marechal Campos Ave, 1468, Maruípe, Vitória, Espírito Santo, 29040-090, Brazil
| | - Luis Felipe das Chagas E Silva de Carvalho
- Universidade de Taubaté. R. dos Operários, 09 - Centro, Taubaté, São Paulo, 12020-340, Brazil
- Centro Universitário Braz Cubas, Av. Francisco Rodrigues Filho, 1233 - Vila Mogilar, Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
8
|
Dicke SS, Alperstein AM, Schueler KL, Stapleton DS, Simonett SP, Fields CR, Chalyavi F, Keller MP, Attie AD, Zanni MT. Application of 2D IR Bioimaging: Hyperspectral Images of Formalin-Fixed Pancreatic Tissues and Observation of Slow Protein Degradation. J Phys Chem B 2021; 125:9517-9525. [PMID: 34396779 PMCID: PMC8769495 DOI: 10.1021/acs.jpcb.1c05554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used two-dimensional IR bioimaging to study the structural heterogeneity of formalin-fixed mouse pancreas. Images were generated from the hyperspectral data sets by plotting quantities associated with the amide I vibrational mode, which is created by the backbone carbonyl stretch. Images that measure the fundamental vibrational frequencies, cross peaks, and anharmonic shifts are presented. Histograms are generated for each quantity, providing averaged values and distributions around the mean that serve as metrics for protein structures. Images were generated from tissue that had been stored in a formalin fixation for 3, 8, and 48 weeks. Over this period, all three metrics show that that the β-sheet content of the samples increased, consistent with protein aggregation. Our results indicate that formalin fixation does not entirely arrest the degradation of a protein structure in pancreas tissue.
Collapse
Affiliation(s)
- Sidney S Dicke
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Donald S Stapleton
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Shane P Simonett
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Caitlyn R Fields
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Farzaneh Chalyavi
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA, Chakkumpulakkal Puthan Veettil T, Martin M, Roy S, Pebotuwa S, Heraud P, Wood BR. Infrared Spectroscopy of Blood. APPLIED SPECTROSCOPY 2021; 75:611-646. [PMID: 33331179 DOI: 10.1177/0003702820985856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.
Collapse
Affiliation(s)
- Kamila Kochan
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Diana E Bedolla
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - David Perez-Guaita
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - John A Adegoke
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | | | - Miguela Martin
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Supti Roy
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Savithri Pebotuwa
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Philip Heraud
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Bayden R Wood
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Rakib F, Al-Saad K, Ahmed T, Ullah E, Barreto GE, Md Ashraf G, Ali MHM. Biomolecular alterations in acute traumatic brain injury (TBI) using Fourier transform infrared (FTIR) imaging spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119189. [PMID: 33277210 DOI: 10.1016/j.saa.2020.119189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Acute injury is one of the substantial stage post-traumatic brain injury (TBI) occurring at the moment of impact. Decreased metabolism, unregulated cerebral blood flow and direct tissue damage are triggered by acute injury. Understating the biochemical alterations associated with acute TBI is critical for brain plasticity and recovery. The objective of this study was to investigate the biochemical and molecular changes in hippocampus, corpus callosum and thalamus brain regions post-acute TBI in rats. Fourier Transform Infrared (FTIR) imaging spectroscopy were used to collect chemical images from control and 3 hrs post-TBI (Marmarou model was used for the TBI induction) rat brains and adjacent sections were treated by hematoxylin and eosin (H&E) staining to correlate with the disruption in tissue morphology and injured brain biochemistry. Our results revealed that the total lipid and total protein content decreased significantly in the hippocampus, corpus callosum and thalamus after brain injury. Reduction in lipid acyl chains (-CH2) associated with an increase in methyl (-CH3) and unsaturated lipids olefin = CH concentrations is observed. Furthermore, there is a decrease in the lipid order (disorder), which leads to an increase in acyl chain fluidity in injured rats. The results suggest acute TBI damages brain tissues mechanically rather than chemical alterations. This will help in assessing successful therapeutic strategy in order to mitigate tissue damage in acute TBI period.
Collapse
Affiliation(s)
- Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Tariq Ahmed
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Limerick, Ireland
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohamed H M Ali
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
11
|
Locke A, Fitzgerald S, Mahadevan-Jansen A. Advances in Optical Detection of Human-Associated Pathogenic Bacteria. Molecules 2020; 25:E5256. [PMID: 33187331 PMCID: PMC7696695 DOI: 10.3390/molecules25225256] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial infection is a global burden that results in numerous hospital visits and deaths annually. The rise of multi-drug resistant bacteria has dramatically increased this burden. Therefore, there is a clinical need to detect and identify bacteria rapidly and accurately in their native state or a culture-free environment. Current diagnostic techniques lack speed and effectiveness in detecting bacteria that are culture-negative, as well as options for in vivo detection. The optical detection of bacteria offers the potential to overcome these obstacles by providing various platforms that can detect bacteria rapidly, with minimum sample preparation, and, in some cases, culture-free directly from patient fluids or even in vivo. These modalities include infrared, Raman, and fluorescence spectroscopy, along with optical coherence tomography, interference, polarization, and laser speckle. However, these techniques are not without their own set of limitations. This review summarizes the strengths and weaknesses of utilizing each of these optical tools for rapid bacteria detection and identification.
Collapse
Affiliation(s)
- Andrea Locke
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sean Fitzgerald
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Nashville, TN 37232, USA; (A.L.); (S.F.)
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
12
|
He Y, Shi J, Pleitez MA, Maslov K, Wagenaar DA, Wang LV. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200145RR. [PMID: 33118344 PMCID: PMC7720905 DOI: 10.1117/1.jbo.25.10.106506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/14/2020] [Indexed: 05/29/2023]
Abstract
SIGNIFICANCE Mid-infrared (IR) imaging based on the vibrational transition of biomolecules provides good chemical-specific contrast in label-free imaging of biology tissues, making it a popular tool in both biomedical studies and clinical applications. However, the current technology typically requires thin and dried or extremely flat samples, whose complicated processing limits this technology's broader translation. AIM To address this issue, we report mid-IR photoacoustic microscopy (PAM), which can readily work with fresh and thick tissue samples, even when they have rough surfaces. APPROACH We developed a transmission-mode mid-IR PAM system employing an optical parametric oscillation laser operating in the wavelength range from 2.5 to 12 μm. Due to its high sensitivity to optical absorption and the low ultrasonic attenuation of tissue, our PAM achieved greater probing depth than Fourier transform IR spectroscopy, thus enabling imaging fresh and thick tissue samples with rough surfaces. RESULTS In our spectroscopy study, the CH2 symmetric stretching at 2850 cm - 1 (3508 nm) was found to be an excellent source of endogenous contrast for lipids. At this wavenumber, we demonstrated label-free imaging of the lipid composition in fresh, manually cut, and unprocessed tissue sections of up to 3-mm thickness. CONCLUSIONS Our technology requires no time-consuming sample preparation procedure and has great potential in both fast clinical histological analysis and fundamental biological studies.
Collapse
Affiliation(s)
- Yun He
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
| | - Junhui Shi
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
| | - Miguel A. Pleitez
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Konstantin Maslov
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
| | - Daniel A. Wagenaar
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California, United States
| | - Lihong V. Wang
- California Institute of Technology, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Pasadena, California, United States
| |
Collapse
|
13
|
Identifying muscle hemorrhage in rat cadavers with advanced decomposition by FT-IR microspectroscopy combined with chemometrics. Leg Med (Tokyo) 2020; 47:101748. [PMID: 32682296 DOI: 10.1016/j.legalmed.2020.101748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/10/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
The identification of muscle hemorrhage in a cadaver that is in an advanced stage of decomposition is an important but challenging task. Our study investigated whether Fourier transform infrared (FT-IR) microspectroscopy in conjunction with chemometrics could identify muscle hemorrhage using rat cadavers with advanced decomposition. In this study, an intramuscular blood injection method, instead of a mechanical injury method, was used to construct a muscle hemorrhage model, and the modeling idea of muscle hemorrhage identification was to discriminate and classify hemoglobin-leaking myofibrils from negative myofibrils. First, the optical images of hematoxylin/eosin (H&E) stained hemorrhagic muscle at different postmortem intervals (PMIs) were observed and showed that the morphological features of whole erythrocytes disappeared since the PMI of 4 d. Subsequently, principle component analysis (PCA) was performed and indicated that the biochemical differences in protein structures between fresh erythrocytes and myofibrils can be detected by the IR spectroscopic method. Ultimately, several classification models based on the partial least square discriminant analysis (PLS-DA) algorithm were successfully constructed for different PMIs and PMI ranges and achieved great prediction performances in external validations. This preliminary study demonstrates the feasibility of using FT-IR microspectroscopy combined with chemometrics as a potential approach for identifying muscle hemorrhage in cadavers with advanced decomposition for offering vital evidences in judicial process.
Collapse
|
14
|
Beć KB, Grabska J, Huck CW. Biomolecular and bioanalytical applications of infrared spectroscopy - A review. Anal Chim Acta 2020; 1133:150-177. [PMID: 32993867 DOI: 10.1016/j.aca.2020.04.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Infrared (IR; or mid-infrared, MIR; 4000-400 cm-1; 2500-25,000 nm) spectroscopy has become one of the most powerful and versatile tools at the disposal of modern bioscience. Because of its high molecular specificity, applicability to wide variety of samples, rapid measurement and non-invasivity, IR spectroscopy forms a potent approach to elucidate qualitative and quantitative information from various kinds of biological material. For these reasons, it became an established bioanalytical technique with diverse applications. This work aims to be a comprehensive and critical review of the recent accomplishments in the field of biomolecular and bioanalytical IR spectroscopy. That progress is presented on a wider background, with fundamental characteristics, the basic principles of the technique outlined, and its scientific capability directly compared with other methods being used in similar fields (e.g. near-infrared, Raman, fluorescence). The article aims to present a complete examination of the topic, as it touches the background phenomena, instrumentation, spectra processing and data analytical methods, spectra interpretation and related information. To suit this goal, the article includes a tutorial information essential to obtain a thorough perspective of bio-related applications of the reviewed methodologies. The importance of the fundamental factors to the final performance and applicability of IR spectroscopy in various areas of bioscience is explained. This information is interpreted in critical way, with aim to gain deep understanding why IR spectroscopy finds extraordinarily intensive use in this remarkably diverse and dynamic field of research and utility. The major focus is placed on the diversity of the applications in which IR biospectroscopy has been established so far and those onto which it is expanding nowadays. This includes qualitative and quantitative analytical spectroscopy, spectral imaging, medical diagnosis, monitoring of biophysical processes, and studies of physicochemical properties and dynamics of biomolecules. The application potential of IR spectroscopy in light of the current accomplishments and the future prospects is critically evaluated and its significance in the progress of bioscience is comprehensively presented.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| | - Justyna Grabska
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria
| | - Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, A-6020, Innsbruck, Austria.
| |
Collapse
|
15
|
Rakib F, Ali CM, Yousuf M, Afifi M, Bhatt PR, Ullah E, Al-Saad K, Ali MHM. Investigation of Biochemical Alterations in Ischemic Stroke Using Fourier Transform Infrared Imaging Spectroscopy-A Preliminary Study. Brain Sci 2019; 9:brainsci9110293. [PMID: 31717715 PMCID: PMC6895834 DOI: 10.3390/brainsci9110293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Brain damage, long-term disability and death are the dreadful consequences of ischemic stroke. It causes imbalance in the biochemical constituents that distorts the brain dynamics. Understanding the sub-cellular alterations associated with the stroke will contribute to deeper molecular understanding of brain plasticity and recovery. Current routine approaches examining lipid and protein biochemical changes post stoke can be difficult. Fourier Transform Infrared (FTIR) imaging spectroscopy can play a vital role in detecting these molecular alterations on a sub-cellular level due to its high spatial resolution, accuracy and sensitivity. This study investigates the biochemical and molecular changes in peri-infract zone (PIZ) (contiguous area not completely damaged by stroke) and ipsi-lesional white matter (WM) (right below the stroke and PIZ regions) nine weeks post photothrombotic ischemic stroke in rats. Materials and Methods: FTIR imaging spectroscopy and transmission electron microscopy (TEM) techniques were applied to investigate brain tissue samples while hematoxylin and eosin (H&E) stained images of adjacent sections were prepared for comparison and examination the morphological changes post stroke. Results: TEM results revealed shearing of myelin sheaths and loss of cell membrane, structure and integrity after ischemic stroke. FTIR results showed that ipsi-lesional PIZ and WM experienced reduction in total protein and total lipid content compared to contra-lesional hemisphere. The lipid/protein ratio reduced in PIZ and adjacent WM indicated lipid peroxidation, which results in lipid chain fragmentation and an increase in olefinic content. Protein structural change is observed in PIZ due to the shift from random coli and α-helical structures to β-sheet conformation. Conclusion: FTIR imaging bio-spectroscopy provide novel biochemical information at sub-cellular levels that be difficult to be obtained by routine approaches. The results suggest that successful therapeutic strategy that is based on administration of anti-oxidant therapy, which could reduce and prevent neurotoxicity by scavenging the lipid peroxidation products. This approach will mitigate tissue damage in chronic ischemic period. FTIR imaging bio-spectroscopy can be used as a powerful tool and offer new approach in stroke and neurodegenerative diseases research.
Collapse
Affiliation(s)
- Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Carmen M. Ali
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Mohammed Yousuf
- Central Laboratory Unit (CLU), Qatar University, Doha 2713, Qatar;
| | - Mohammed Afifi
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Pooja R. Bhatt
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha 34110, Qatar;
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University, Doha 2713, Qatar; (F.R.); (C.M.A.); (M.A.); (P.R.B.)
- Correspondence: (K.A.-S.); (M.H.M.A.)
| | - Mohamed H. M. Ali
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha 34110, Qatar
- Qatar National Library, Doha 5825, Qatar
- Correspondence: (K.A.-S.); (M.H.M.A.)
| |
Collapse
|
16
|
Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G, Botezat D, Gardikiotis I. Vibrational Spectroscopy Fingerprinting in Medicine: from Molecular to Clinical Practice. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2884. [PMID: 31489927 PMCID: PMC6766044 DOI: 10.3390/ma12182884] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In the last two decades, Fourier Transform Infrared (FTIR) and Raman spectroscopies turn out to be valuable tools, capable of providing fingerprint-type information on the composition and structural conformation of specific molecular species. Vibrational spectroscopy's multiple features, namely highly sensitive to changes at the molecular level, noninvasive, nondestructive, reagent-free, and waste-free analysis, illustrate the potential in biomedical field. In light of this, the current work features recent data and major trends in spectroscopic analyses going from in vivo measurements up to ex vivo extracted and processed materials. The ability to offer insights into the structural variations underpinning pathogenesis of diseases could provide a platform for disease diagnosis and therapy effectiveness evaluation as a future standard clinical tool.
Collapse
Affiliation(s)
- Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cosmin-Teodor Mihai
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Florina-Daniela Cojocaru
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cristina-Mariana Uritu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Doru Botezat
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania
| |
Collapse
|
17
|
Biochemical detection of fatal hypothermia and hyperthermia in affected rat hypothalamus tissues by Fourier transform infrared spectroscopy. Biosci Rep 2019; 39:BSR20181633. [PMID: 30824563 PMCID: PMC6418404 DOI: 10.1042/bsr20181633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/16/2019] [Accepted: 02/27/2019] [Indexed: 12/27/2022] Open
Abstract
It is difficult to determinate the cause of death from exposure to fatal hypothermia and hyperthermia in forensic casework. Here, we present a state-of-the-art study that employs Fourier-transform infrared (FTIR) spectroscopy to investigate the hypothalamus tissues of fatal hypothermic, fatal hyperthermic and normothermic rats to determine forensically significant biomarkers related to fatal hypothermia and hyperthermia. Our results revealed that the spectral variations in the lipid, protein, carbohydrate and nucleic acid components are highly different for hypothalamuses after exposure to fatal hypothermic, fatal hyperthermic and normothermic conditions. In comparison with the normothermia group, the fatal hypothermia and hyperthermia groups contained higher total lipid amounts but were lower in unsaturated lipids. Additionally, their cell membranes were found to have less motional freedom. Among these three groups, the fatal hyperthermia group contained the lowest total proteins and carbohydrates and the highest aggregated and dysfunctional proteins, while the fatal hypothermia group contained the highest level of nucleic acids. In conclusion, this study demonstrates that FTIR spectroscopy has the potential to become a reliable method for the biochemical characterization of fatal hypothermia and hyperthermia hypothalamus tissues, and this could be used as a postmortem diagnostic feature in fatal hypothermia and hyperthermia deaths.
Collapse
|
18
|
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-018-9255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Ali MHM, Rakib F, Abdelalim EM, Limbeck A, Mall R, Ullah E, Mesaeli N, McNaughton D, Ahmed T, Al-Saad K. Fourier-Transform Infrared Imaging Spectroscopy and Laser Ablation -ICPMS New Vistas for Biochemical Analyses of Ischemic Stroke in Rat Brain. Front Neurosci 2018; 12:647. [PMID: 30283295 PMCID: PMC6157330 DOI: 10.3389/fnins.2018.00647] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
Objective: Stroke is the main cause of adult disability in the world, leaving more than half of the patients dependent on daily assistance. Understanding the post-stroke biochemical and molecular changes are critical for patient survival and stroke management. The aim of this work was to investigate the photo-thrombotic ischemic stroke in male rats with particular focus on biochemical and elemental changes in the primary stroke lesion in the somatosensory cortex and surrounding areas, including the corpus callosum. Materials and Methods: FT-IR imaging spectroscopy and LA-ICPMS techniques examined stroke brain samples, which were compared with standard immunohistochemistry studies. Results: The FTIR results revealed that in the lesioned gray matter the relative distribution of lipid, lipid acyl and protein contents decreased significantly. Also at this locus, there was a significant increase in aggregated protein as detected by high-levels Aβ1-42. Areas close to the stroke focus experienced decrease in the lipid and lipid acyl contents associated with an increase in lipid ester, olefin, and methyl bio-contents with a novel finding of Aβ1-42 in the PL-GM and L-WM. Elemental analyses realized major changes in the different brain structures that may underscore functionality. Conclusion: In conclusion, FTIR bio-spectroscopy is a non-destructive, rapid, and a refined technique to characterize oxidative stress markers associated with lipid degradation and protein denaturation not characterized by routine approaches. This technique may expedite research into stroke and offer new approaches for neurodegenerative disorders. The results suggest that a good therapeutic strategy should include a mechanism that provides protective effect from brain swelling (edema) and neurotoxicity by scavenging the lipid peroxidation end products.
Collapse
Affiliation(s)
- Mohamed H M Ali
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Fazle Rakib
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasrin Mesaeli
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Donald McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, VIC, Australia
| | - Tariq Ahmed
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Khalid Al-Saad
- Department of Chemistry and Earth Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Chen HH, Lee TT, Chen A, Hwu Y, Petibois C. 3D Digital Pathology for a Chemical-Functional Analysis of Glomeruli in Health and Pathology. Anal Chem 2018; 90:3811-3818. [PMID: 29504770 DOI: 10.1021/acs.analchem.7b04265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Determining the filtration function and biochemical status of kidney at the single glomerulus level remains hardly accessible, even from biopsies. Here, we provide evidence that IR spectro-microscopy is a suitable method to account for the filtration capacity of individual glomeruli along with related physio-pathological condition. A ∼4 μm voxel resolution 3D IR image reconstruction is built from consecutive tissue sections, thus, providing a 3D IR spectrum matrix of an individual glomerulus. The filtration capacity of glomeruli was quantitatively determined after BaSO4 perfusion, and additional chemical data could be used to determined oxidative stress effects and fibrosis, thus, combining functional and biochemical information from the same 3D IR spectrum matrix. This analytical approach was applied on mice with unilateral ureteral obstruction (UUO) inducing chronic kidney disease. Compared to the healthy condition, UUO induced a significant drop in glomeruli filtration capacity (-17 ± 8% at day 4 and -48 ± 14% at day 14) and volume (36 ± 10% at day 4 and 67 ± 13% at day 14), along a significant increase of oxidative stress (+61 ± 19% at day 4 and +84 ± 17% at day 14) and a change in the lipid-to-protein ratio (-8.2 ± 3.6% at day 4 and -18.1 ± 5.9% at day 14). Therefore, IR spectro-microscopy might be developed as a new 3D pathology resource for analyzing functional and biochemical parameters of glomeruli.
Collapse
Affiliation(s)
- Hsiang-Hsin Chen
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan.,University of Bordeaux, Inserm U1029 LAMC , Allée Geoffroy Saint-Hillaire, Bat. B2 , F33600 Pessac-Cedex , France
| | - Tsung-Tse Lee
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan
| | - Ann Chen
- Graduate Institute of Life Sciences , National Defense Medical Center , 161 Section 6, Minquan East Road, Neihu District, 114 , Taipei City , Taiwan
| | - Yeukuang Hwu
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan
| | - Cyril Petibois
- Academia Sinica, Institute of Physics , 128 Sec. 2, Academia Road, Nankang , Taipei 11529 , Taiwan.,University of Bordeaux, Inserm U1029 LAMC , Allée Geoffroy Saint-Hillaire, Bat. B2 , F33600 Pessac-Cedex , France
| |
Collapse
|
21
|
Ogunleke A, Recur B, Balacey H, Chen HH, Delugin M, Hwu Y, Javerzat S, Petibois C. 3D chemical imaging of the brain using quantitative IR spectro-microscopy. Chem Sci 2018; 9:189-198. [PMID: 29629087 PMCID: PMC5869290 DOI: 10.1039/c7sc03306k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Three-dimensional (3D) histology is the next frontier for modern anatomo-pathology. Characterizing abnormal parameters in a tissue is essential to understand the rationale of pathology development. However, there is no analytical technique, in vivo or histological, that is able to discover such abnormal features and provide a 3D distribution at microscopic resolution. Here, we introduce a unique high-throughput infrared (IR) microscopy method that combines automated image correction and subsequent spectral data analysis for 3D-IR image reconstruction. We performed spectral analysis of a complete organ for a small animal model, a mouse brain with an implanted glioma tumor. The 3D-IR image is reconstructed from 370 consecutive tissue sections and corrected using the X-ray tomogram of the organ for an accurate quantitative analysis of the chemical content. A 3D matrix of 89 × 106 IR spectra is generated, allowing us to separate the tumor mass from healthy brain tissues based on various anatomical, chemical, and metabolic parameters. We demonstrate that quantitative metabolic parameters can be extracted from the IR spectra for the characterization of the brain vs. tumor metabolism (assessing the Warburg effect in tumors). Our method can be further exploited by searching for the whole spectral profile, discriminating tumor vs. healthy tissue in a non-supervised manner, which we call 'spectromics'.
Collapse
Affiliation(s)
- Abiodun Ogunleke
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Benoit Recur
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hugo Balacey
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Hsiang-Hsin Chen
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Maylis Delugin
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Yeukuang Hwu
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| | - Sophie Javerzat
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
| | - Cyril Petibois
- University of Bordeaux , Inserm U1029 LAMC , Allée Geoffroy Saint-Hilaire Bat. B2, F33600 Pessac , France . ;
- Academia Sinica , Institute of Physics , 128 Sec. 2, Academia Rd., Nankang , Taipei 11529 , Taiwan , Republic of China
| |
Collapse
|
22
|
Cerusico N, Aybar JP, Lopez S, Molina SG, Chavez Jara R, Sesto Cabral ME, Valdez JC, Ben Altabef A, Ramos AN. FTIR spectroscopy of chronic venous leg ulcer exudates: an approach to spectral healing marker identification. Analyst 2018. [DOI: 10.1039/c7an01909b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic venous leg ulcer arises as a venous insufficiency complication and is a cause of great morbidity.
Collapse
Affiliation(s)
- Nicolas Cerusico
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Juan P. Aybar
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Silvana Lopez
- Servicio de Dermatología
- Hospital de Clínicas Presidente Nicolás Avellaneda
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Silvia G. Molina
- Servicio de Dermatología
- Hospital de Clínicas Presidente Nicolás Avellaneda
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Romina Chavez Jara
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Maria Eugenia Sesto Cabral
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| | - Juan C. Valdez
- Instituto de Microbiología
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
- San Miguel de Tucumán
| | - Aida Ben Altabef
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - Alberto N. Ramos
- Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)
- San Miguel de Tucumán
- Tucumán
- Argentina
| |
Collapse
|
23
|
3D Quantitative Chemical Imaging of Tissues by Spectromics. Trends Biotechnol 2017; 35:1194-1207. [DOI: 10.1016/j.tibtech.2017.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
|
24
|
Yao S, Iezzi G, Della Ventura G, Bellatreccia F, Petibois C, Marcelli A, Nazzari M, Lazzarin F, Di Gioacchino M, Petrarca C. Mineralogy and textures of riebeckitic asbestos (crocidolite): The role of single versus agglomerated fibres in toxicological experiments. JOURNAL OF HAZARDOUS MATERIALS 2017; 340:472-485. [PMID: 28763760 DOI: 10.1016/j.jhazmat.2017.07.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Asbestos may cause adverse effects, but relationship between mineralogy and texture of fibres versus toxicity is still lacking. Toxicological studies can be interpreted and compared only if quantitative features of fibres are determined. Here, riebeckitic ("crocidolite") amphibole fibres were analysed by XRPD, FTIR, SEM-EDS and EMP-WDS; only crystals with stochiometry A□BNa2C(Fe2+2.5Mg0.5)CFe3+2TSi8O22W(OH)2 are present in the starting material used for the experiments. Fibres deposited from solutions of 0.1, 1, 10, 25, 50, 75 and 100mg/L were counted by image analysis using SEM images. At 0.1 and 1mg/L the fibres are well separated, whereas between 1 and 10mg/L they start to agglomerate. In-vitro tests performed on fibres deposited at the same mg/L concentrations show that the toxic potential follows a curvilinear increasing trend with a decreasing rate. Since the range of sizes of single fibres and their mineralogy are constant, this decreasing rate can be only attributed to the increasing amount of agglomerated fibres. Hence, single versus agglomerated fibre population is a factor that cannot be neglected in defining the final adverse effects of asbestos. The analytical protocol proposed here is valuable for any aero-dispersed dust, in polluted environments, as well as in the interpretation of experimental studies.
Collapse
Affiliation(s)
- Seydou Yao
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK; Université de Bordeaux, Inserm U1029 LAMC, Avenue des facultés - Bat. B2, 33400 Talence, 33600 Pessac, France
| | - Gianluca Iezzi
- Dipartimento di Ingegneria & Geologia (INGEO), Università G. d'Annunzio, Via Dei Vestini 30, I-66013 Chieti, Italy; Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, I-00143, Roma, Italy.
| | - Giancarlo Della Ventura
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, I-00143, Roma, Italy; Dipartimento di Scienze, Universita Roma Tre, Largo S. Leonardo Murialdo 1, I-00146, Roma, Italy
| | - Fabio Bellatreccia
- Dipartimento di Scienze, Universita Roma Tre, Largo S. Leonardo Murialdo 1, I-00146, Roma, Italy
| | - Cyril Petibois
- Université de Bordeaux, Inserm U1029 LAMC, Avenue des facultés - Bat. B2, 33400 Talence, 33600 Pessac, France; Academia Sinica, Institute of Physics, 128 Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan, ROC
| | - Augusto Marcelli
- INFN LNF, Via Enrico Fermi 40, I-00044 Frascati, Roma, Italy; RICMASS, Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, 00185 Rome, Italy
| | - Manuela Nazzari
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Via di Vigna Murata 605, I-00143, Roma, Italy
| | - Francesco Lazzarin
- Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Via Luigi Polacchi 11, I-66013 Chieti, Italy; Dipartimento di Medicina e Scienze dell'Invecchiamento (DMSI), Università G. d'Annunzio, Via dei Vestini 30, I-66013 Chieti, Italy
| | - Mario Di Gioacchino
- Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Via Luigi Polacchi 11, I-66013 Chieti, Italy; Dipartimento di Medicina e Scienze dell'Invecchiamento (DMSI), Università G. d'Annunzio, Via dei Vestini 30, I-66013 Chieti, Italy
| | - Claudia Petrarca
- Centro di Scienze dell'Invecchiamento e Medicina Traslazionale (CeSI-Met), Via Luigi Polacchi 11, I-66013 Chieti, Italy; Dipartimento di Medicina e Scienze dell'Invecchiamento (DMSI), Università G. d'Annunzio, Via dei Vestini 30, I-66013 Chieti, Italy
| |
Collapse
|
25
|
Ogunleke A, Bobroff V, Chen HH, Rowlette J, Delugin M, Recur B, Hwu Y, Petibois C. Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital? Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Bobroff V, Chen HH, Delugin M, Javerzat S, Petibois C. Quantitative IR microscopy and spectromics open the way to 3D digital pathology. JOURNAL OF BIOPHOTONICS 2017; 10:598-606. [PMID: 27248698 DOI: 10.1002/jbio.201600051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed.
Collapse
Affiliation(s)
- Vladimir Bobroff
- University of Bordeaux, Inserm U1029 LAMC, Allée Geoffroy Saint Hillaire, Bat B2, F33600, Pessac, France
| | - Hsiang-Hsin Chen
- University of Bordeaux, Inserm U1029 LAMC, Allée Geoffroy Saint Hillaire, Bat B2, F33600, Pessac, France
| | - Maylis Delugin
- University of Bordeaux, Inserm U1029 LAMC, Allée Geoffroy Saint Hillaire, Bat B2, F33600, Pessac, France
| | - Sophie Javerzat
- University of Bordeaux, Inserm U1029 LAMC, Allée Geoffroy Saint Hillaire, Bat B2, F33600, Pessac, France
| | - Cyril Petibois
- University of Bordeaux, Inserm U1029 LAMC, Allée Geoffroy Saint Hillaire, Bat B2, F33600, Pessac, France
| |
Collapse
|
27
|
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017; 46:5903-5924. [DOI: 10.1039/c7cs00403f] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the recent applications of QCLs in mid-IR spectroscopy of clinically relevant samples.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| | | | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| |
Collapse
|
28
|
Bunaciu AA, Hoang VD, Aboul-Enein HY. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review. Crit Rev Anal Chem 2016; 47:194-203. [PMID: 27786540 DOI: 10.1080/10408347.2016.1253454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.
Collapse
Affiliation(s)
- Andrei A Bunaciu
- a SCIENT-Research Center for Instrumental Analysis , Tancabesti-Snagov , Romania
| | - Vu Dang Hoang
- b Department of Analytical Chemistry and Toxicology , Hanoi University of Pharmacy , Hanoi , Vietnam
| | - Hassan Y Aboul-Enein
- c Pharmaceutical and Medicinal Chemistry Department , Pharmaceutical and Drug Industries Research Division , Egypt
| |
Collapse
|
29
|
|
30
|
Ami D, Lavatelli F, Rognoni P, Palladini G, Raimondi S, Giorgetti S, Monti L, Doglia SM, Natalello A, Merlini G. In situ characterization of protein aggregates in human tissues affected by light chain amyloidosis: a FTIR microspectroscopy study. Sci Rep 2016; 6:29096. [PMID: 27373200 PMCID: PMC4931462 DOI: 10.1038/srep29096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 11/09/2022] Open
Abstract
Light chain (AL) amyloidosis, caused by deposition of amyloidogenic immunoglobulin light chains (LCs), is the most common systemic form in industrialized countries. Still open questions, and premises for developing targeted therapies, concern the mechanisms of amyloid formation in vivo and the bases of organ targeting and dysfunction. Investigating amyloid material in its natural environment is crucial to obtain new insights on the molecular features of fibrillar deposits at individual level. To this aim, we used Fourier transform infrared (FTIR) microspectroscopy for studying in situ unfixed tissues (heart and subcutaneous abdominal fat) from patients affected by AL amyloidosis. We compared the infrared response of affected tissues with that of ex vivo and in vitro fibrils obtained from the pathogenic LC derived from one patient, as well as with that of non amyloid-affected tissues. We demonstrated that the IR marker band of intermolecular β-sheets, typical of protein aggregates, can be detected in situ in LC amyloid-affected tissues, and that FTIR microspectroscopy allows exploring the inter- and intra-sample heterogeneity. We extended the infrared analysis to the characterization of other biomolecules embedded within the amyloid deposits, finding an IR pattern that discloses a possible role of lipids, collagen and glycosaminoglycans in amyloid deposition in vivo.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| | - Sara Raimondi
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Luca Monti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, via Taramelli 3b, 27100 Pavia, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
- Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and Department of Molecular Medicine, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
| |
Collapse
|
31
|
Arsenite Regulates Prolongation of Glycan Residues of Membrane Glycoprotein: A Pivotal Study via Wax Physisorption Kinetics and FTIR Imaging. Int J Mol Sci 2016; 17:427. [PMID: 27011183 PMCID: PMC4813277 DOI: 10.3390/ijms17030427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Arsenic exposure results in several human cancers, including those of the skin, lung, and bladder. As skin cancers are the most common form, epidermal keratinocytes (KC) are the main target of arsenic exposure. The mechanisms by which arsenic induces carcinogenesis remains unclear, but aberrant cell proliferation and dysregulated energy homeostasis play a significant role. Protein glycosylation is involved in many key physiological processes, including cell proliferation and differentiation. To evaluate whether arsenite exposure affected protein glycosylation, the alteration of chain length of glycan residues in arsenite treated skin cells was estimated. Herein we demonstrated that the protein glycosylation was adenosine triphosphate (ATP)-dependent and regulated by arsenite exposure by using Fourier transform infrared (FTIR) reflectance spectroscopy, synchrotron-radiation-based FTIR (SR-FTIR) microspectroscopy, and wax physisorption kinetics coupled with focal-plane-array-based FTIR (WPK-FPA-FTIR) imaging. We were able to estimate the relative length of surface protein-linked glycan residues on arsenite-treated skin cells, including primary KC and two skin cancer cell lines, HSC-1 and HaCaT cells. Differential physisorption of wax adsorbents adhered to long-chain (elongated type) and short-chain (regular type) glycan residues of glycoprotein of skin cell samples treated with various concentration of arsenite was measured. The physisorption ratio of beeswax remain/n-pentacosane remain for KC cells was increased during arsenite exposure. Interestingly, this increase was reversed after oligomycin (an ATP synthase inhibitor) pretreatment, suggesting the chain length of protein-linked glycan residues is likely ATP-dependent. This is the first study to demonstrate the elongation and termination of surface protein-linked glycan residues using WPK-FPA-FTIR imaging in eukaryotes. Herein the result may provide a scientific basis to target surface protein-linked glycan residues in the process of arsenic carcinogenesis.
Collapse
|
32
|
Jung IK, Park SC, Bin SA, Roh YS, Lee JH, Kim BM. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector. Anal Bioanal Chem 2016; 408:2363-72. [PMID: 26905862 DOI: 10.1007/s00216-016-9309-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 11/30/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair.
Collapse
Affiliation(s)
- In-Keun Jung
- Amore Pacific Corporation Research and Development Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Sang-Chul Park
- Amore Pacific Corporation Research and Development Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Sung-Ah Bin
- Amore Pacific Corporation Research and Development Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Young Sup Roh
- Bruker Optics Korea, Seongnam-si, Gyeonggi-do, 463-847, Republic of Korea
| | - John Hwan Lee
- Amore Pacific Corporation Research and Development Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea
| | - Boo-Min Kim
- Amore Pacific Corporation Research and Development Center, Yongin-si, Gyeonggi-do, 446-729, Republic of Korea.
| |
Collapse
|
33
|
Bobroff V, Rubio C, Vigier V, Petibois C. FTIR spectroscopy characterization of fatty-acyl-chain conjugates. Anal Bioanal Chem 2015; 408:319-26. [DOI: 10.1007/s00216-015-9111-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 11/24/2022]
|
34
|
Strug I, Utzat C, Cappione A, Gutierrez S, Amara R, Lento J, Capito F, Skudas R, Chernokalskaya E, Nadler T. Development of a univariate membrane-based mid-infrared method for protein quantitation and total lipid content analysis of biological samples. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2014; 2014:657079. [PMID: 25371845 PMCID: PMC4211209 DOI: 10.1155/2014/657079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/01/2014] [Indexed: 05/13/2023]
Abstract
Biological samples present a range of complexities from homogeneous purified protein to multicomponent mixtures. Accurate qualification of such samples is paramount to downstream applications. We describe the development of an MIR spectroscopy-based analytical method offering simultaneous protein quantitation (0.25-5 mg/mL) and analysis of total lipid or detergent species, as well as the identification of other biomolecules present in biological samples. The method utilizes a hydrophilic PTFE membrane engineered for presentation of aqueous samples in a dried format compatible with fast infrared analysis. Unlike classical quantification techniques, the reported method is amino acid sequence independent and thus applicable to complex samples of unknown composition. By comparison to existing platforms, this MIR-based method enables direct quantification using minimal sample volume (2 µL); it is well-suited where repeat access and limited sample size are critical parameters. Further, accurate results can be derived without specialized training or knowledge of IR spectroscopy. Overall, the simplified application and analysis system provides a more cost-effective alternative to high-throughput IR systems for research laboratories with minimal throughput demands. In summary, the MIR-based system provides a viable alternative to current protein quantitation methods; it also uniquely offers simultaneous qualification of other components, notably lipids and detergents.
Collapse
Affiliation(s)
- Ivona Strug
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Christopher Utzat
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Amedeo Cappione
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Sara Gutierrez
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Ryan Amara
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Joseph Lento
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| | - Florian Capito
- Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Romas Skudas
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | | | - Timothy Nadler
- EMD Millipore Corporation, 17 Cherry Hill Drive, Danvers, MA 01923, USA
| |
Collapse
|
35
|
Sulé-Suso J, Forsyth N, Untereiner V, Sockalingum G. Vibrational spectroscopy in stem cell characterisation: is there a niche? Trends Biotechnol 2014; 32:254-62. [DOI: 10.1016/j.tibtech.2014.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
|
36
|
Grootendorst DJ, Steenbergen W, Manohar S, Ruers TJM. Optical techniques for the intraoperative assessment of nodal status. Future Oncol 2013; 9:1741-55. [PMID: 24156334 DOI: 10.2217/fon.13.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lymphatic system is an important pathway in the metastatic spread of many malignancies and a key prognostic indicator. Nondestructive assessment of the nodal status during surgery could limit the amount of lymph nodes that need to be resected and allow for immediate regional lymphadenectomy during sentinel lymph node biopsy procedures. This review looks into the possibilities of conventional medical imaging methods that are capable of intraoperative nodal assessment and discusses multiple newly developed optical techniques. The physical background behind these techniques is reviewed and a concise overview of their main advantages and disadvantages is provided. These recent innovations show that while the application of optical modalities for intraoperative nodal staging is not yet applied routinely, there is reason enough to expect their introduction in the near future.
Collapse
Affiliation(s)
- Diederik J Grootendorst
- Biomedical Photonic Imaging Group, MIRA Institute for Biomedical Technology & Technical Medicine, Science & Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|
37
|
Optical spectroscopic methods for intraoperative diagnosis. Anal Bioanal Chem 2013; 406:21-5. [PMID: 24136252 DOI: 10.1007/s00216-013-7401-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/12/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
Abstract
Molecular analytical methods are increasingly needed for a quick and reliable analysis of tissue in an operating room to provide more information during operations. In this Trends article, we highlight the current state and the developments of optical spectroscopic methods as intra operative tools. The clinical problem and challenges are illustrated on the example of brain tumor surgery. While fluorescence microscopy is already used, vibrational spectroscopy techniques will complement the standard method for brain tissue diagnostics. New portable instruments are currently available and can be stationed in the operating room for quick evaluation of tissue. The promise and limitations of fluorescence and vibrational spectroscopy as intraoperative tools are surveyed in this report.
Collapse
|
38
|
Hackett MJ, Borondics F, Brown D, Hirschmugl C, Smith SE, Paterson PG, Nichol H, Pickering IJ, George GN. Subcellular biochemical investigation of purkinje neurons using synchrotron radiation fourier transform infrared spectroscopic imaging with a focal plane array detector. ACS Chem Neurosci 2013; 4:1071-80. [PMID: 23638613 DOI: 10.1021/cn4000346] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Coupling Fourier transform infrared spectroscopy with focal plane array detectors at synchrotron radiation sources (SR-FTIR-FPA) has provided a rapid method to simultaneously image numerous biochemical markers in situ at diffraction limited resolution. Since cells and nuclei are well resolved at this spatial resolution, a direct comparison can be made between FTIR functional group images and the histology of the same section. To allow histological analysis of the same section analyzed with infrared imaging, unfixed air-dried tissue sections are typically fixed (after infrared spectroscopic analysis is completed) via immersion fixation. This post fixation process is essential to allow histological staining of the tissue section. Although immersion fixation is a common practice in this filed, the initial rehydration of the dehydrated unfixed tissue can result in distortion of subcellular morphology and confound correlation between infrared images and histology. In this study, vapor fixation, a common choice in other research fields where postfixation of unfixed tissue sections is required, was employed in place of immersion fixation post spectroscopic analysis. This method provided more accurate histology with reduced distortions as the dehydrated tissue section is fixed in vapor rather than during rehydration in an aqueous fixation medium. With this approach, accurate correlation between infrared images and histology of the same section revealed that Purkinje neurons in the cerebellum are rich in cytosolic proteins and not depleted as once thought. In addition, we provide the first direct evidence of intracellular lactate within Purkinje neurons. This highlights the significant potential for future applications of SR-FTIR-FPA imaging to investigate cellular lactate under conditions of altered metabolic demand such as increased brain activity and hypoxia or ischemia.
Collapse
Affiliation(s)
- Mark J. Hackett
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon,
Saskatchewan S7N5E2, Canada
| | | | - Devin Brown
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon,
Saskatchewan S7N5E5, Canada
| | - Carol Hirschmugl
- Department of Physics, University of Wisconsin—Milwaukee, Milwaukee,
Wisconsin 53211, United States
| | - Shari E. Smith
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewn S7N5C9, Canada
| | - Phyllis G. Paterson
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewn S7N5C9, Canada
| | - Helen Nichol
- Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Rd, Saskatoon,
Saskatchewan S7N5E5, Canada
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon,
Saskatchewan S7N5E2, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon,
Saskatchewan S7N5E2, Canada
| |
Collapse
|
39
|
Yao S, Seydou Y, Chen HH, Harte E, Ventura GD, Petibois C. The role of asbestos morphology on their cellular toxicity: an in vitro 3D Raman/Rayleigh imaging study. Anal Bioanal Chem 2013; 405:8701-7. [PMID: 23846589 DOI: 10.1007/s00216-013-7143-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/05/2013] [Accepted: 06/13/2013] [Indexed: 01/24/2023]
Abstract
Amphiboles caused cohorts of deaths in exposed workers, leading to some of the largest class actions in the industry. Once inhaled, these inorganic fibers are thought to be both chemically and morphologically toxic, and their biopersistence in the lungs over decades lead to progressive pathologies, mesothelioma, and asbestosis. However, this exceptionally long chronicity for human pathologies suggests that chemical toxicity is certainly low, suggesting that morphological parameters could be more relevant in the pathology. Here, we developed a 3D Raman/optical imaging methodology in vitro to characterize both morphological and chemical parameters of cell/fiber interactions. We determined that lung cells could vesiculate amphiboles with length below 5 μm or could embed those not exceeding 15 μm in their fibrous extracellular matrix. Lung cells can thus develop defense strategies for handling the biopersistence of inorganic species, which may thus have major impact for biosafety issues related to nanomaterials.
Collapse
Affiliation(s)
- Seydou Yao
- Université de Bordeaux, Inserm U1029, Avenue des Facultés, Bat. B2, 33405, Talence-Cedex, France
| | - Yao Seydou
- Université de Bordeaux, Inserm U1029, Avenue des Facultés, Bat. B2, 33405, Talence-Cedex, France
| | | | | | | | | |
Collapse
|
40
|
Mariangela CG, Seydou Y, Diego S, Sabine C, Augusto M, Petibois C. Experimental ATR device for real-time FTIR imaging of living cells using brilliant synchrotron radiation sources. Biotechnol Adv 2013; 31:402-7. [DOI: 10.1016/j.biotechadv.2011.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
41
|
Kobrina Y, Rieppo L, Saarakkala S, Pulkkinen HJ, Tiitu V, Valonen P, Kiviranta I, Jurvelin JS, Isaksson H. Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage. Osteoarthritis Cartilage 2013; 21:462-9. [PMID: 23267848 DOI: 10.1016/j.joca.2012.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 11/27/2012] [Accepted: 12/14/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Successful repair of articular cartilage (AC) defects would be a major advantage due to the low ability of AC to heal spontaneously. Sensitive methods to determine changes in AC composition and structure are required to monitor the success of repair. This study evaluates the ability of unsupervised cluster analysis applied to Fourier transform infrared (FTIR) microspectroscopy to discriminate between healthy and repaired AC. METHODS Osteochondral lesions (3 mm in depth) were surgically created in patellar grooves of rabbit femurs and were either left to heal spontaneously (n = 6) or surgically repaired with autologous chondrocytes in type II collagen gel (n = 6). After 6 months, tissues were harvested, FTIR microspectroscopy was conducted and Fuzzy c-means (FCM) cluster analysis applied to spectra of pairs of intact and repaired AC samples from each rabbit. Two spectral regions [amide I and carbohydrate (CHO)] were analyzed and the results from the two types of repair were compared. RESULTS Two separate regions of repair were detected with FCM. The estimated proteoglycan content (from CHO region) in the repaired AC was significantly lower than that in intact AC. The spontaneously repaired AC was better distinguished from the intact AC than the collagen II gel repaired AC. The most distinct clustering was observed for spontaneously repaired samples using CHO region. CONCLUSIONS This study revealed that unsupervised cluster analysis applied to FTIR microspectroscopy can detect subtle differences in infrared spectra between normal and repaired AC. The method may help in evaluation and optimization of future AC repair strategies.
Collapse
Affiliation(s)
- Y Kobrina
- Department of Applied Physics, University of Eastern Finland, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oral cancer diagnostics based on infrared spectral markers and wax physisorption kinetics. Anal Bioanal Chem 2013; 405:1995-2007. [PMID: 23318761 DOI: 10.1007/s00216-012-6625-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Infrared microspectroscopy is an emerging approach for disease analysis owing to its capability for in situ chemical characterization of pathological processes. Synchrotron-based infrared microspectroscopy (SR-IMS) provides ultra-high spatial resolution for profiling biochemical events associated with disease progression. Spectral alterations were observed in cultured oral cells derived from healthy, precancerous, primary, and metastatic cancers. An innovative wax-physisorption-based kinetic FTIR imaging method for the detection of oral precancer and cancer was demonstrated successfully. The approach is based on determining the residual amount of paraffin wax (C(25)H(52)) or beeswax (C(46)H(92)O(2)) on a sample surface after xylene washing. This amount is used as a signpost of the degree of physisorption that altered during malignant transformation. The results of linear discriminant analysis (LDA) of oral cell lines indicated that the methylene (CH(2)) and methyl group (CH(3)) stretching vibrations in the range of 3,000-2,800 cm(-1) have the highest accuracy rate (89.6 %) to discriminate the healthy keratinocytes (NHOK) from cancer cells. The results of wax-physisorption-based FTIR imaging showed a stronger physisorption with beeswax in oral precancerous and cancer cells as compared with that of NHOK, which showed a strong capability with paraffin wax. The infrared kinetic study of oral cavity tissue showed a consistency in the wax physisorption of the cell lines. On the basis of our findings, these results show the potential use of wax-physisorption-based kinetic FTIR imaging for the early screening of oral cancer lesions and the chemical changes during oral carcinogenesis.
Collapse
|
43
|
Pijanka JK, Stone N, Rutter AV, Forsyth N, Sockalingum GD, Yang Y, Sulé-Suso J. Identification of different subsets of lung cells using Raman microspectroscopy and whole cell nucleus isolation. Analyst 2013; 138:5052-8. [DOI: 10.1039/c3an00968h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
Kazarian SG, Chan KLA. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 2013; 138:1940-51. [DOI: 10.1039/c3an36865c] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Noreen R, Moenner M, Hwu Y, Petibois C. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol Adv 2012; 30:1432-46. [DOI: 10.1016/j.biotechadv.2012.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/23/2012] [Accepted: 03/06/2012] [Indexed: 01/07/2023]
|
46
|
Abstract
Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas--data recording, interpretation of recorded data, and information extraction--and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist.
Collapse
Affiliation(s)
- Rohit Bhargava
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
47
|
Yao S, Moenner M, Engdahl A, Petibois C. Use of synchrotron-radiation-based FTIR imaging for characterizing changes in cell contents. Anal Bioanal Chem 2012; 404:1311-6. [DOI: 10.1007/s00216-012-6223-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/14/2012] [Accepted: 06/20/2012] [Indexed: 12/27/2022]
|
48
|
Belbachir K, Lecomte S, Ta HP, Petibois C, Desbat B. Orientation of molecular groups of fibers in nonoriented samples determined by polarized ATR-FTIR spectroscopy. Anal Bioanal Chem 2011; 401:3263-8. [DOI: 10.1007/s00216-011-5418-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/05/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022]
|
49
|
Functional histology of glioma vasculature by FTIR imaging. Anal Bioanal Chem 2011; 401:795-801. [PMID: 21556748 DOI: 10.1007/s00216-011-5069-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/08/2011] [Accepted: 04/27/2011] [Indexed: 12/31/2022]
Abstract
Fourier-transform infrared (FTIR) imaging has been used to investigate brain tumor angiogenesis using a mice solid tumor model and bare-gold (∅ 25 nm) or BaSO(4) (∅ 500 nm) nanoparticles (NP) injected into blood vasculature. FTIR images of 20-μm-thick tissue sections were used for chemical histology of healthy and tumor areas. Distribution of BaSO(4)-NP (using the 1,218-1,159 cm(-1) spectral interval) revealed clearly all details of blood vasculature with morphological abnormalities of tumor capillaries, while Au-NP (using the 1,046-1,002 cm(-1) spectral interval) revealed also diffusion properties of leaky blood vessels. Diffusion of Au-NP out of vascular space reached 64 ± 29 μm, showing the fenestration of "leaky" tumor blood vessels, which should allow small NP (<100 nm, as for Au-NP) to diffuse almost freely, while large NP should not (as for BaSO(4)-NP in this study). Therefore, we propose to develop FTIR imaging as a convenient tool for functional molecular histology imaging of brain tumor vasculature, both for identifying blood capillaries and for determining the extravascular diffusion space offered by vessel fenestration.
Collapse
|
50
|
Stelling A, Salzer R, Kirsch M, Sobottka SB, Geiger K, Koch E, Schackert G, Steiner G. Intra-operative optical diagnostics with vibrational spectroscopy. Anal Bioanal Chem 2011; 400:2745-53. [DOI: 10.1007/s00216-011-5022-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 11/25/2022]
|