1
|
Furtado ASA, Cunha MHS, Sousa LMR, Brito GC, Verde TFCL, Filgueiras LA, Sobral-Silva LA, Santana MV, Sousa GF, Santos FEP, Mendes AN, Figueredo-Silva J, Maia Filho ALM, Marciano FR, Vasconcellos LMR, Lobo AO. 3D-Printed PCL-Based Scaffolds with High Nanosized Synthetic Smectic Clay Content: Fabrication, Mechanical Properties, and Biological Evaluation for Bone Tissue Engineering. Int J Nanomedicine 2025; 20:53-69. [PMID: 39781289 PMCID: PMC11708205 DOI: 10.2147/ijn.s497539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Background The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration. Methods This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity. Scaffolds were created with varying proportions of PCL and LAP. Comprehensive characterization included scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), mechanical testing, swelling analysis, and degradation studies. Biological performance was assessed through MTT assays (cell viability), alkaline phosphatase activity, histological analysis, and Raman spectroscopy, highlighting the scaffolds' biocompatibility and potential applications in regenerative medicine. Results The developed inks demonstrated excellent injectability, and the 3D-printed PCL/LAP scaffolds exhibited a microporous and rough structure, good structural fidelity, low degradability, thermal stability, and sufficient mechanical strength across all formulations. Intrinsic properties of the scaffolds revealed no cytotoxicity while enhancing bioactivity and promoting in vitro mineralization when cultured with mesenchymal stem cells in all analyzed groups. Notably, the high concentration of LAP within the PCL matrices did not induce in vitro cytotoxicity but rather stimulated in vitro mineralization and differentiation. Conclusion This study demonstrated the feasibility of 3D printing PCL/LAP scaffolds with high concentrations of nanoceramics. Both in vitro and in vivo assays validated the regenerative potential of these scaffolds, emphasizing their efficacy as a promising approach for developing advanced biomimetic grafts.
Collapse
Affiliation(s)
- André S A Furtado
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Manuel H S Cunha
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Luciana M R Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Guilherme C Brito
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Thiago F C L Verde
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Livia Alves Filgueiras
- Laboratory of Innovation in Science and Technology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| | - Leonardo A Sobral-Silva
- Institute of Science and Technology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Moisés V Santana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson N Mendes
- Laboratory of Innovation in Science and Technology, Department of Biophysics and Physiology, Federal University of Piauí, Teresina, PI, Brazil
| | | | | | - Fernanda R Marciano
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
- Department of Physics, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Luana M R Vasconcellos
- Institute of Science and Technology, São Paulo State University (UNESP), São Paulo, SP, Brazil
| | - Anderson O Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
2
|
Jovanović M, Petrović M, Stojanović D, Radulović N, Pantelić D, Stajčić I, Uskoković P. 3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect. Biopolymers 2025; 116:e23639. [PMID: 39526467 DOI: 10.1002/bip.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
In this study, scaffolds based on natural polymer gelatin A, blended with polyvinylpyrrolidone were crosslinked by genipin (0.5 and 1 wt%), in order to investigate their mechanical performance and potential for biomedical application. Semi-solid extrusion (SSE) 3D printing technique was used, enabling in situ crosslinking of the blend during processing. Swelling test showed that the swelling ratio reduces with higher concentration of genipin due to an increased crosslinking. The FTIR analysis confirmed the crosslinking of scaffolds by genipin. DSC analysis and mechanical testing have shown improved thermal and mechanical properties. Morphological analysis of scaffolds by FESEM showed increased toughening of the material with the crosslinking. Tensile strength and microhardness showed a significant rise in scaffolds with the increase in genipin content, which was up to 93.8% and 125.3%, respectively. These findings were in accordance with morphological features present in samples. The biological effect of the scaffold matrix system was evaluated by qualitative and quantitative cytotoxicity assessment in vitro, demonstrating the absence of cytotoxicity in tested preparations in a direct test. The cytotoxicity index based on the metabolic activity of cells in an indirect test showed up to 20% reduction of viability compared with the control, confirming the absence of cytotoxicity, which was additionally verified by propidium iodine staining of the cells exposed to scaffolds. The presented gelatin-based crosslinked scaffolds obtained by 3D printing represent good candidates for biomedical application and future research that includes further in vitro and in vivo analysis.
Collapse
Affiliation(s)
- Marija Jovanović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Miloš Petrović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Dušica Stojanović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Nataša Radulović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijel Pantelić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stajčić
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Petar Uskoković
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| |
Collapse
|
3
|
Park JH, Bae HS, Kim I, Jung J, Roh Y, Lee D, Hwang TS, Lee HC, Byun JH. Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis. Tissue Eng Regen Med 2025; 22:145-157. [PMID: 39612134 PMCID: PMC11712062 DOI: 10.1007/s13770-024-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture. METHODS This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DW-MSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts. RESULTS Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring. CONCLUSION Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Han-Sol Bae
- Cell Therapy Center, Daewoong Pharmaceutical, Co., Ltd., Yongin, 17028, Republic of Korea
| | - Ingeun Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jiwoon Jung
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Yoonho Roh
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dongbin Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae Sung Hwang
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hee-Chun Lee
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
4
|
Zaszczyńska A, Gradys A, Kołbuk D, Zabielski K, Szewczyk PK, Stachewicz U, Sajkiewicz P. Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering. Micron 2025; 188:103743. [PMID: 39532021 DOI: 10.1016/j.micron.2024.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations. The addition of nHA increased the surface free energy of PLLA/nHA (42.9 mN/m) compared to PLLA (33.1 mN/m) in the case of aligned fibers. WAXS results indicated that at room temperature, all the fibers are in an amorphous state indicated by a lack of diffraction peaks and amorphous halo. DSC analysis showed that all samples located in the amorphous/disordered alpha' phase crystallize intensively at temperatures just above the Tg and recrystallize on further heating, achieving significantly higher crystallinity for pure PLLA than for doped nHA, 70 % vs 40 %, respectively. Additionally, PLLA/nHA fibers show a lower heat capacity for PLLA in the amorphous state, indicating that nHA reduces the molecular mobility of PLLA. Moreover, piezoelectric constant d33 was found to increase with the addition of nHA and for the aligned orientation of the fibers. In vitro tests confirmed that the addition of nHA and the aligned orientation of nanofibers increased osteoblast proliferation.
Collapse
Affiliation(s)
- Angelika Zaszczyńska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Konrad Zabielski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland.
| |
Collapse
|
5
|
Venkata Prathyusha E, Gomte SS, Ahmed H, Prabakaran A, Agrawal M, Chella N, Alexander A. Nanostructured polymer composites for bone and tissue regeneration. Int J Biol Macromol 2025; 284:137834. [PMID: 39577519 DOI: 10.1016/j.ijbiomac.2024.137834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Nanostructured polymer composites have gained significant attention in recent years for their remarkable potential in bone and tissue regeneration. Moreover, with the integration of 3D printing technology, these composites hold promise for use in personalized medicine, where patient-specific scaffolds can be tailored to enhance therapeutic outcomes. Therefore, this review article aims to provide a comprehensive overview of the latest advancements in the development and application of nanostructured polymeric composites within the field of tissue engineering and bone regeneration. Here, the potential of biopolymers, natural polymers, and 3D-printed polymers to craft biocompatible, non-toxic, and mechanically robust composites is discussed in brief. Further, the fabrication techniques for 3D scaffolds and various forms of nanocomposites, including nanoparticles, nanocapsules, nanofibers, nanogels, and micelles for bone and tissue regeneration, are listed. Also, particular emphasis is placed on the role of nano-scaffolds and in situ hydrogels in bone and tissue regeneration. Overall, this review provides a concise and authoritative summary of the current state-of-the-art in nanostructured polymer composites for regenerative medicine, highlighting future directions and potential clinical applications.
Collapse
Affiliation(s)
- E Venkata Prathyusha
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Shyam Sudhakar Gomte
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Hafiz Ahmed
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - A Prabakaran
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Hyderabad 509301, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- NanoTech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
6
|
Akkulah CY, Erginer M, Cumbul A, Kirtel O, Bayram F, Toksoy Öner E. Enhanced effects of levan hydrogels and bovine grafts on guided bone regeneration: In-vitro and in-vivo analysis. Int J Biol Macromol 2024; 292:139129. [PMID: 39733901 DOI: 10.1016/j.ijbiomac.2024.139129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/18/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
This study was performed to evaluate the regenerative capabilities of levan hydrogels when combined with conventional bone graft materials (Bio-Oss®) in guided bone regeneration (GBR). With the growing interest in the application of levan polysaccharide for regenerative purposes over the last decade, a noticeable gap in in-vivo validations remains. This research therefore fills this gap by utilizing the cytocompatibility and cell proliferation potential of levan hydrogels and marks a preliminary effort in its use in combination with Bio-Oss® for bone regeneration, which was examined both in-vitro and in-vivo for the first time. Considerable increases in cell viability (nearly 180 %) attributed to the addition of levan hydrogels alone and with Bio-Oss® (2:2) was detected. In parallel, a histological examination revealed a significant increase in new bone formation compared with the administration of Bio-Oss® alone. The results conclusively demonstrate for the first time that the combination of levan hydrogel with Bio-Oss® results in histopathologically superior new bone formation compared to Bio-Oss® used alone. Additionally, this combination promoted greater osteoblast density and neovascularization. These outcomes not only emphasize the potential of levan hydrogels in enhancing GBR but also suggest their broader applicability in bone regeneration strategies.
Collapse
Affiliation(s)
| | - Merve Erginer
- Institute of Nanotechnology and Biotechnology, Istanbul University-Cerrahpaşa, Istanbul, Turkey; Biotechnology in Health Excellence Joint Application and Research Center (SABİOTEK), Istanbul, Turkey
| | - Alev Cumbul
- Histology and Embryology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Onur Kirtel
- Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ferit Bayram
- Oral and Maxillofacial Surgery, School of Dentistry, Marmara University, Istanbul, Turkey.
| | - Ebru Toksoy Öner
- Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
7
|
Tsiklin IL, Bezdenezhnych DS, Mantsagov AS, Kolsanov AV, Volova LT. Microstructural Analysis of the Human Scapula: Mandibular Bone Tissue Engineering Perspectives. J Funct Biomater 2024; 15:386. [PMID: 39728186 DOI: 10.3390/jfb15120386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Mandibular bone defect reconstruction remains a significant challenge for surgeons worldwide. Among multiple biodegradable biopolymers, allogeneic bone scaffolds derived from human sources have been used as an alternative to autologous bone grafts, providing optimal conditions for cell recruitment, adhesion, and proliferation and demonstrating significant osteogenic properties. This study aims to investigate the bone microstructure of the human scapula as a source for allogeneic bone scaffold fabrication for mandibular tissue engineering purposes. We created color-coded anatomical maps of the scapula and the mandible, reflecting the best anatomical and geometrical match. In this pilot study, we hypothesized a microstructural similarity of these bone structures and evaluated the human scapula's bone tissue engineering potential for mandibular bone tissue engineering by focusing on the microstructural characteristics. Lyophilized human scapular and mandibular bioimplants were manufactured and sterilized. Experimental bone samples from the scapula's acromion, coracoid, and lateral border from the mandibular condyle, mandibular angle, and mental protuberance were harvested and analyzed using micro-CT and quantitative morphometric analysis. This pilot study demonstrates significant microstructural qualitative and quantitative intra-group differences in the scapular and mandibular experimental bone samples harvested from the various anatomical regions. The revealed microstructural similarity of the human scapular and mandibular bone samples, to a certain extent, supports the stated hypothesis and, thus, allows us to suggest the human scapula as an alternative off-the-shelf allogeneic scaffold for mandibular reconstruction and bone tissue engineering applications.
Collapse
Affiliation(s)
- Ilya L Tsiklin
- Biotechnology Research Institute, Samara State Medical University, 443079 Samara, Russia
| | | | | | - Alexandr V Kolsanov
- Biotechnology Research Institute, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T Volova
- Biotechnology Research Institute, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
8
|
Liu Y, Gao X, Li Y, Gao A, Zheng Z, Wei J, Yang H, Ping H, Xie H, Wang H, Wang W, Fu Z. Intrafibrillar calcium carbonate mineralization of electrospinning polyvinyl alcohol/collagen films with improved mechanical and bioactive properties. J Mater Chem B 2024; 13:312-325. [PMID: 39540843 DOI: 10.1039/d4tb01472c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Collagen films play an essential role in guided bone-regeneration (GBR) techniques, which create space, promote cell adhesion, and induce osteogenic differentiation. It is therefore crucial to design appropriate GBR films to facilitate bone regeneration. However, current electrospun collagen scaffolds used as bioactive materials have limited clinical applications due to their poor mechanical properties. In this study, polyvinyl alcohol (PVA)/collagen (Col) films were electrospun by mixing PVA and type I collagen solution. For the first time, the intrafibrillar mineralization of aragonite nanocrystals within the PVA/Col fibrils was achieved, resulting in the formation of a hierarchical, bioactive film. The PVA/Col-CaCO3 film exhibited good mechanical properties, with hardness and Young's modulus values of 211.6 ± 0.1 MPa and 5.6 ± 1.7 GPa, respectively. Furthermore, bone marrow mesenchymal stem cells (BMSCs) inoculated onto the PVA/Col-CaCO3 film demonstrated robust adhesion and proliferation. The mineralized fibrils effectively stimulated the growth of BMSCs while suppressing cell apoptosis. Besides, the PVA/Col-CaCO3 film significantly induced the osteogenic differentiation of BMSCs, revealing its potential biomedical applications in hard tissue engineering.
Collapse
Affiliation(s)
- Yin Liu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Xin Gao
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430070, China
| | - Yuqi Li
- Central Laboratory, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Anqi Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhuozhi Zheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jingjiang Wei
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Hongye Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430070, China
| | - Hang Ping
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering, and Life Science Wuhan University of Technology, Wuhan, 430070, China
| | - Hao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Weimin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhengyi Fu
- Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang, 441000, China.
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
9
|
Li J, Hietel B, Brunk MGK, Reimers A, Willems C, Groth T, Cynis H, Adelung R, Schütt F, Sacher WD, Poon JKS. 3D-printed microstructured alginate scaffolds for neural tissue engineering. Trends Biotechnol 2024:S0167-7799(24)00304-4. [PMID: 39658448 DOI: 10.1016/j.tibtech.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Alginate (Alg) is a versatile biopolymer for scaffold engineering and a bioink component widely used for direct cell printing. However, due to a lack of intrinsic cell-binding sites, Alg must be functionalized for cellular adhesion when used as a scaffold. Moreover, direct cell-laden ink 3D printing requires tedious disinfection procedures and cell viability is compromised by shear stress. Here, we demonstrate proof-of-concept, bioactive additive-free, microstructured Alg (M-Alg) scaffolds for neuron culture. The M-Alg scaffold was formed by introducing tetrapod-shaped ZnO (t-ZnO) microparticles into the ink as structural templates for interconnected channels and textured surfaces in the 3D-printed Alg scaffold, which were subsequently removed. Neurons exhibited significantly improved adhesion and growth on these M-Alg scaffolds compared with pristine Alg (P-Alg) scaffolds, with extensive neurite outgrowth and spontaneous neural activity, indicating the maturation of neuronal networks. These transparent, porous, additive-free Alg-based scaffolds with neuron affinity are promising for neuroregenerative and organoid-related research.
Collapse
Affiliation(s)
- Jianfeng Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Canada.
| | - Benjamin Hietel
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Canada
| | - Armin Reimers
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
| | - Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Holger Cynis
- Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120, Halle, Germany; Junior Research Group, Immunomodulation in Pathophysiological Processes, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Canada
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Chan SSL, Black JR, Franks GV, Heath DE. Hierarchically porous 3D-printed ceramic scaffolds for bone tissue engineering. BIOMATERIALS ADVANCES 2024; 169:214149. [PMID: 39693871 DOI: 10.1016/j.bioadv.2024.214149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores. The in vitro results demonstrated that scaffolds with macroporosity promoted human osteoblast growth more than scaffolds with only microporosity. The elongated pores from the capillary suspension filament microstructure induced greater cell spreading than the sphere-like pores from the emulsion. Overall, the hierarchically porous scaffold with capillary suspension TCP filaments provided a superior microenvironment for significantly higher cell viability and proliferation than the other scaffolds, including a poly(ε-caprolactone) (PCL) control, a material currently used clinically as porous BTE scaffolds. The cellular response was further enhanced when macropore size was in the range of 570-590 μm. Therefore, the hierarchically porous scaffolds in this study are promising as BTE scaffolds, and the reported process of DIW of oil-templated colloidal pastes is a feasible strategy with potential for further customization.
Collapse
Affiliation(s)
- Shareen S L Chan
- Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Jay R Black
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, VIC 3010, Australia; Trace Analysis for Chemical, Earth and Environmental Sciences (TrACEES) Platform, The University of Melbourne, VIC 3010, Australia
| | - George V Franks
- Chemical Engineering, The University of Melbourne, VIC 3010, Australia
| | - Daniel E Heath
- Biomedical Engineering, The University of Melbourne, VIC 3010, Australia; The Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2024; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
12
|
Bose S, Chaudhari VS, Kushram P. 3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation. J Biomed Mater Res A 2024; 112:2110-2123. [PMID: 38894584 PMCID: PMC11464199 DOI: 10.1002/jbm.a.37756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Senaysoy S, Ilhan R, Lekesiz H. Mechanical deviation in 3D-Printed PLA bone scaffolds during biodegradation. Comput Biol Med 2024; 183:109227. [PMID: 39369546 DOI: 10.1016/j.compbiomed.2024.109227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Large or carcinogenic bone defects may require a challenging bone tissue scaffold design ensuring a proper mechanobiological setting. Porosity and biodegradation rate are the key parameters controlling the bone-remodeling process. PLA presents a great potential for geometrically flexible 3-D scaffold design. This study aims to investigate the mechanical variation throughout the biodegradation process for lattice-type PLA scaffolds using both experimental observations and simulations. Three different unit-cell geometries are used for creating the scaffolds: basic cube (BC), body-centered structure (BCS), and body-centered cube (BCC). Three different porosity ratios, 50 %, 62.5 %, and 75 %, are assigned to all three structures by altering their strut dimensions. 3-D printed scaffolds are soaked in PBS solution at 37 °C for 15, 30, 60, 90, and 120 days both unloaded and under dead load. Water absorption, weight loss, and compression stiffness are measured to characterize the first-stage degradation and investigate the possible influences of these parameters on the whole biodegradation process. The strength reduction stage of biodegradation is simulated by solving pseudo-first-order kinetics-based molecular weight change equation using FEA with equisized cubic (voxel-like) elements. For the first stage, mechanical load does not have a statistically significant effect on biodegradation. BCC with 62.5 % porosity shows a maximum water absorption rate of around 25 % by the 60th day which brings an advantage in creating an aquatic environment for cell growth. Results indicate a significant water deposition inside almost all scaffolds and water content is determined to be the main reason for the retained or increased compression stiffness. A distinguishable stiffness increase in the initial degradation process occurs for 75 % porous BC and 50 % porous BCC scaffolds. Following the quasi-stable stage of biodegradation, almost all scaffolds lost their rigidity by around 44-48 % within 120 days based on numerical results. Therefore, initial stiffness increase in the quasi-stable stage of biodegradation can be advantageous and BCC geometry with a porosity between 50% and 62 % is the optimum solution for the whole biodegradation process.
Collapse
Affiliation(s)
- Safa Senaysoy
- Bursa Technical University, Department of Mechanical Engineering, Bursa, Türkiye.
| | - Recep Ilhan
- Bursa Technical University, Department of Mechanical Engineering, Bursa, Türkiye; Bursa Technical University, Department of Polymer Materials Engineering, Bursa, Türkiye.
| | - Huseyin Lekesiz
- Bursa Technical University, Department of Mechanical Engineering, Bursa, Türkiye.
| |
Collapse
|
14
|
Bao T, Ren J, Wu Y, Cao Y, Pan H, Deng C. Study on porous coral scaffolds containing a hydroxyapatite layer doped with selenium and their properties. J Mater Chem B 2024; 12:11533-11546. [PMID: 39415608 DOI: 10.1039/d4tb01112k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The repair of bone defects caused by osteosarcoma is still a significant clinical issue, and new scaffolds need to be developed to solve this problem. The ocean is a treasure trove for developing new biomedical materials, and coral is widely thought to be suitable as a scaffold for bone implant materials due to its porous structure and mechanical properties. Selenium is known for its antioxidant and antitumor effects, inducing tumor cell cycle arrest. In this study, we hydrothermally transformed corals to grow a hydroxyapatite layer on the scaffold surface (CHAp) and combined it with selenium to obtain selenium-doped scaffolds (Se-CHAp) without affecting the porous structure of the coral. The research successfully validates their biocompatibility and the antitumor efficacy against 143B osteosarcoma cells. The results indicate that the Se-CHAp scaffolds yielded an obvious inhibitory effect on the proliferation of osteosarcoma cells, highlighting that they have huge prospects for application in biomedical technology.
Collapse
Affiliation(s)
- Tianjing Bao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Jian Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Yiyuan Wu
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yang Cao
- Qiongtai Normal University, Haikou, Hainan 571127, P. R. China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, P. R. China.
| | - Chunlin Deng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Zhou T, Wang F, Liu K, Zhou H, Shang J. An injectable carboxymethyl chitosan-based hydrogel with controlled release of BMP-2 for efficient treatment of bone defects. Int J Biol Macromol 2024; 282:137120. [PMID: 39505185 DOI: 10.1016/j.ijbiomac.2024.137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Although biological scaffolds containing bone morphogenetic protein-2 (BMP-2) have been widely used for osteogenic therapy, achieving stable and controlled release of BMP-2 remains a challenge. Herein, a novel BMP-2 sustained-release system composed of carboxymethyl chitosan (CMCS)/polyethylene glycol (PEG)/heparin sulfate (HS) (CMCS/PEG/HS) was constructed with a Schiff base reaction, yielding an injectable hydrogel for the release of BMP-2 in a controlled manner. For the CMCS/PEG/HS/BMP-2 hydrogel, the HS component had a negatively charged structure, which can bind to positively charged growth factors and prevent early hydrolytic metabolism of growth factors, thus achieving sustainable release of BMP-2. Notably, the release of BMP-2 in hydrogels was dependent mainly on degradation of the hydrogel matrix rather than simple diffusion. Generally, the CMCS/PEG/HS/BMP-2 hydrogel scaffold demonstrated excellent recoverability, good injectability, excellent biocompatibility and high adaptability, as well as efficient self-healing features to occupy irregularly shaped bone marrow cavities. The in vitro results revealed that the CMCS/PEG/HS/BMP-2 hydrogel promoted the osteogenic differentiation of MC3T3-E1 cells. Furthermore, the in vivo results suggest that the hydrogel has promising osteogenic effects that promote bone regeneration in a skull bone defect model. The injectable hydrogel scaffold shows great promise for bone treatment in the future.
Collapse
Affiliation(s)
- Tianyi Zhou
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Fei Wang
- Shenzhen University General Hospital, Shenzhen 518055, China
| | - Kunyu Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Haiyan Zhou
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Jian Shang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Shenzhen University General Hospital, Shenzhen 518055, China.
| |
Collapse
|
16
|
Subramanian A, Mohanbabu J, Srinivasan T, T T, Subramaniyan V, V M, Sekar M, Wong LS. Reviewing the literature of 3D printing of bones and cartilage: Evidence and practice. ANNALS OF 3D PRINTED MEDICINE 2024; 16:100180. [DOI: 10.1016/j.stlm.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
|
17
|
Weng PW, Rethi L, Jheng PR, Trung Nguyen H, Chuang AEY. Unveiling the promise of injectable carbohydrate polymeric-based gels: A comprehensive review for enhanced bone and cartilage tissue regeneration. Eur Polym J 2024; 220:113480. [DOI: 10.1016/j.eurpolymj.2024.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Salehi S, Ghomi H, Hassanzadeh-Tabrizi SA, Koupaei N, Khodaei M. 3D printed polylactic acid/polyethylene glycol/bredigite nanocomposite scaffold enhances bone tissue regeneration via promoting osteogenesis and angiogenesis. Int J Biol Macromol 2024; 281:136160. [PMID: 39357695 DOI: 10.1016/j.ijbiomac.2024.136160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Recently, the fabrication of personalized scaffolds with high accuracy has been developed through 3D printing technology. In the current study, polylactic acid/polyethylene glycol (PLA/PEG) composite scaffolds with varied weight percentages (0, 5, 10, 20 and 30 %) of bredigite nanoparticles (B) were fabricated using the 3D printing and then characterized through scanning electron microscopy and Fourier transform infra-red spectroscopy. The addition of B nanoparticles up to 20 wt% to PLA/PEG scaffold increased the compressive strength (from 7.59 to 13.84 MPa) and elastic modulus (from 142.42 to 268.33 MPa). The apatite formation ability as well as inorganic ion release in simulated body fluid were investigated for 28 days. The MG-63 cells viability and adhesion were enhanced by increasing the amount of B in the PLA/PEG scaffold and the osteogenic differentiation of the rat bone marrow mesenchymal stem cells was confirmed by alkaline phosphatase activity test and alizarin red staining. According to chorioallantoic membrane assay, the highest angiogenesis occurred around the PLA/PEG/B30 scaffold. In vivo experiments on a rat calvarial defect model demonstrated an almost complete recovery in the PLA/PEG/B30 group within 8 weeks. Based on the results, the PLA/PEG/B30 composite scaffold is proposed as an optimal scaffold to repair bone defects.
Collapse
Affiliation(s)
- Saiedeh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamed Ghomi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Narjes Koupaei
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| |
Collapse
|
19
|
Lee S, Kim JH, Kim YH, Hong J, Kim WK, Jin S, Kang BJ. Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-Printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects. J Orthop Translat 2024; 49:11-22. [PMID: 39420946 PMCID: PMC11483278 DOI: 10.1016/j.jot.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background/Objective Repair of long bone defects remains a major challenge in clinical practice, necessitating the use of bone grafts, growth factors, and mechanical stability. Hence, a combination therapy involving a 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffold coated with polydopamine (PDA) and alginate microbeads (AM) for sustained delivery of bone morphogenetic protein-2 (BMP-2) was investigated to treat long bone segmental defects. Methods Several in vitro analyses were performed to evaluate the scaffold osteogenic effects in vitro such as PDA surface modification, namely, hydrophilicity and cell adhesion; cytotoxicity and BMP-2 release kinetics using CCK-8 assay and ELISA, respectively; osteogenic differentiation in canine adipose-derived mesenchymal stem cells (Ad-MSCs); formation of mineralized nodules using ALP staining and ARS staining; and mRNA expression of osteogenic differentiation markers using RT-qPCR. Bone regeneration in femoral bone defects was evaluated in vivo using a rabbit femoral segmental bone defect model by performing radiography, micro-computed tomography, and histological observation (hematoxylin and eosin and Masson's trichrome staining). Results The PDA-coated 3D-printed scaffold demonstrated increased hydrophilicity, cell adhesion, and cell proliferation compared with that of the control. BMP-2 release kinetics assessment showed that BMP-2 AM showed a reduced initial burst and continuous release for 28 days. In vitro co-culture with canine Ad-MSCs showed an increase in mineralization and mRNA expression of osteogenic markers in the BMP-2 AM group compared with that of the BMP-2-adsorbed scaffold group. In vivo bone regeneration evaluation 12 weeks after surgery showed that the BMP-2 AM/PDA group exhibited the highest bone volume in the scaffold, followed by the BMP-2/PDA group. High cortical bone connectivity was observed in the PDA-coated scaffold groups. Conclusion These findings suggest that the combined use of PDA-coated 3D-printed bone scaffolds and BMP-2 AM can successfully induce bone regeneration even in load-bearing bone segmental defects. The translational potential of this article A 3D-printed PCL/β-TCP scaffold was fabricated to mimic the cortical bone of the femur. Along with the application of PDA surface modification and sustained BMP-2 release via AM, the developed scaffold could provide suitable osteoconduction, osteoinduction, and osteogenesis in both in vitro settings and in vivo rabbit femoral segmental bone defect models. Therefore, our findings suggest a promising therapeutic option for treating challenging long bone segmental defects, with potential for future clinical application.
Collapse
Affiliation(s)
- Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Hun Kim
- Department of Mechanical System Engineering, Graduate School of Knowledge-based Technology and Energy, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Yong-Hun Kim
- T&R Biofab Co. Ltd., Gyeonggi, 15073, South Korea
| | - Jihyeock Hong
- Department of Mechanical Engineering, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Songwan Jin
- T&R Biofab Co. Ltd., Gyeonggi, 15073, South Korea
- Department of Mechanical Engineering, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
20
|
Wagner J, Bayer L, Loger K, Acil Y, Kurz S, Spille J, Ahlhelm M, Ingwersen LC, Jonitz-Heincke A, Sedaghat S, Wiltfang J, Naujokat H. In vivo endocultivation of CAD/CAM hybrid scaffolds in the omentum majus in miniature pigs. J Craniomaxillofac Surg 2024; 52:1259-1266. [PMID: 39198129 DOI: 10.1016/j.jcms.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE Correction of bony mandibular defects is a challenge in oral and maxillofacial surgery due to aesthetic and functional requirements. This study investigated the potential of a novel hybrid scaffold for bone regeneration and degradation assessment of the ceramic within the omentum majus over 6 months and the extent to which rhBMP-2 as a growth factor, alone or combined with a hydrogel, affects regeneration. MATERIALS AND METHODS In this animal study, 10 Göttingen minipigs each had one scaffold implanted in the greater omentum. Five animals had scaffolds loaded with a collagen hydrogel and rhBMP-2, and the other five animals (control group) had scaffolds loaded with rhBMP-2 only. Fluorochrome injections and computed tomography (CT) were performed regularly. After 6 months, the animals were euthanized, and samples were collected for microCT and histological evaluations. RESULTS Fluorescent and light microscopic and a CT morphological density evaluation showed continuous bone growth until week 16 in both groups. Regarding the ratio of bone attachment to the Zr02 support struts, the rhBMP-2 loaded collagen hydrogel group showed with 63% a significantly higher attachment (p > 0.001) than the rhBMP-2 control group (49%). CONCLUSION In this study, bone growth was induced in all omentum majus specimens until post-operative week 16. Furthermore, hydrogel and rhBMP-2 together resulted in better bone-scaffold integration than rhBMP-2 alone. Further studies should investigate whether implantation of the scaffolds in the jaw after an appropriate period of bone regeneration leads to a stable situation and the desired results.
Collapse
Affiliation(s)
- Juliane Wagner
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Cluster of Excellence, Precision Medicine in Inflammation, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Lennart Bayer
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Klaas Loger
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Yahya Acil
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sascha Kurz
- ZESBO - Center for Research on Musculoskeletal Systems, Leipzig University, Leipzig, Germany
| | - Johannes Spille
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Dresden, Germany
| | - Lena-Christin Ingwersen
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Sam Sedaghat
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Wiltfang
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hendrik Naujokat
- Department of Oral and Maxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
21
|
Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol 2024; 42:1396-1409. [PMID: 38955569 DOI: 10.1016/j.tibtech.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.
Collapse
Affiliation(s)
- Vishal S Chaudhari
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Priya Kushram
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
22
|
Kanniyappan H, Sundaram MK, Ravikumar A, Chakraborty S, Gnanamani A, Mani U, Kumar N, Muthuvijayan V. Enhancing bone repair through improved angiogenesis and osteogenesis using mesoporous silica nanoparticle-loaded Konjac glucomannan-based interpenetrating network scaffolds. Int J Biol Macromol 2024; 279:135182. [PMID: 39216566 DOI: 10.1016/j.ijbiomac.2024.135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We have fabricated and characterized novel bioactive nanocomposite interpenetrating polymer network (IPN) scaffolds to treat bone defects by loading mesoporous silica nanoparticles (MSNs) into blends of Konjac glucomannan, polyvinyl alcohol, and polycaprolactone. By loading MSNs, we developed a porous nanocomposite scaffold with mechanical strengths comparable to cancellous bone. In vitro cell culture studies proved the cytocompatibility of the nanocomposite scaffolds. RT-PCR studies confirmed that these scaffolds significantly upregulated major osteogenic markers. The in vivo chick chorioallantoic membrane (CAM) assay confirmed the proangiogenic activity of the nanocomposite IPN scaffolds. In vivo studies were performed using Wistar rats to evaluate the scaffolds' compatibility, osteogenic activity, and proangiogenic properties. Liver and renal function tests confirmed that these scaffolds were nontoxic. X-ray and μ-CT results show that the bone defects treated with the nanocomposite scaffolds healed at a much faster rate compared to the untreated control and those treated with IPN scaffolds. H&E and Masson's trichrome staining showed angiogenesis near the newly formed bone and the presence of early-stage connective tissues, fibroblasts, and osteoblasts in the defect region at 8 weeks after surgery. Hence, these advantageous physicochemical and biological properties confirm that the nanocomposite IPN scaffolds are ideal for treating bone defects.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Manoj Kumar Sundaram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Akhil Ravikumar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sudip Chakraborty
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - A Gnanamani
- Microbiology Lab, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - U Mani
- Animal House, CSIR-Central Leather Research Institute, Chennai 600020, India
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
23
|
da Silva VC, Gomes DDS, de Medeiros ELG, Santos AMDC, de Lima IL, Rosa TP, Rocha FS, Filice LDSC, Neves GDA, Menezes RR. Highly Porous 3D Nanofibrous Scaffold of Polylactic Acid/Polyethylene Glycol/Calcium Phosphate for Bone Regeneration by a Two-Step Solution Blow Spinning (SBS) Facile Route. Polymers (Basel) 2024; 16:3041. [PMID: 39518250 PMCID: PMC11548267 DOI: 10.3390/polym16213041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
This work presents the successful production of highly porous 3D nanofibrous hybrid scaffolds of polylactic acid (PLA)/polyethylene glycol (PEG) blends with the incorporation of calcium phosphate (CaP) bioceramics by a facile two-step process using the solution blow spinning (SBS) technique. CaP nanofibers were obtained at two calcium/phosphorus (Ca/P) ratios, 1.67 and 1.1, by SBS and calcination at 1000 °C. They were incorporated in PLA/PEG blends by SBS at 10 and 20 wt% to form 3D hybrid cotton-wool-like scaffolds. Morphological analysis showed that the fibrous scaffolds obtained had a randomly interconnected and highly porous structure. Also, the mean fiber diameter ranged from 408 ± 141 nm to 893 ± 496 nm. Apatite deposited considerably within 14 days in a simulated body fluid (SBF) test for hybrid scaffolds containing a mix of hydroxyapatite (HAp) and tri-calcium phosphate-β (β-TCP) phases. The scaffolds with 20 wt% CaP and a Ca/P ration of 1.1 showed better in vitro bioactivity to induce calcium mineralization for bone regeneration. Cellular tests evidenced that the developed scaffolds can support the osteogenic differentiation and proliferation of pre-osteoblastic MC3T3-E1 cells into mature osteoblasts. The results showed that the developed 3D scaffolds have potential applications for bone tissue engineering.
Collapse
Affiliation(s)
- Vanderlane Cavalcanti da Silva
- Graduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil;
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Brazil; (E.L.G.d.M.); (G.d.A.N.)
| | - Déborah dos Santos Gomes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Brazil; (E.L.G.d.M.); (G.d.A.N.)
| | - Eudes Leonan Gomes de Medeiros
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Brazil; (E.L.G.d.M.); (G.d.A.N.)
| | - Adillys Marcelo da Cunha Santos
- Center for Science and Technology in Energy and Sustainability (CETENS), Federal University of Recôncavo of Bahia, Feira de Santana 44042-280, Brazil;
| | - Isabela Lemos de Lima
- Nanobiotechnology Laboratory, Federal University of Uberlandia, Uberlandia 38408-100, Brazil; (I.L.d.L.); (T.P.R.); (L.d.S.C.F.)
| | - Taciane Pedrosa Rosa
- Nanobiotechnology Laboratory, Federal University of Uberlandia, Uberlandia 38408-100, Brazil; (I.L.d.L.); (T.P.R.); (L.d.S.C.F.)
| | - Flaviana Soares Rocha
- Department of Oral and Maxillofacial Surgery and Implantology, Federal University of Uberlandia, Uberlandia 38408-100, Brazil;
| | - Leticia de Souza Castro Filice
- Nanobiotechnology Laboratory, Federal University of Uberlandia, Uberlandia 38408-100, Brazil; (I.L.d.L.); (T.P.R.); (L.d.S.C.F.)
| | - Gelmires de Araújo Neves
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Brazil; (E.L.G.d.M.); (G.d.A.N.)
| | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso 882, Campina Grande 58429-900, Brazil; (E.L.G.d.M.); (G.d.A.N.)
| |
Collapse
|
24
|
Qasim SSB, Tufail Shah A, Daood U, Matalqah M, Habib S, Saoud KM. Enhancing craniofacial bone tissue engineering strategy: integrating rapid wet chemically synthesised bioactive glass with photopolymerized resins. BMC Oral Health 2024; 24:1195. [PMID: 39379857 PMCID: PMC11462732 DOI: 10.1186/s12903-024-04978-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Craniofacial bone regeneration represents a dynamic area within tissue engineering and regenerative medicine. Central to this field, is the continual exploration of new methodologies for template fabrication, leveraging established bio ceramic materials, with the objective of restoring bone integrity and facilitating successful implant placements. METHODS Photopolymerized templates were prepared using three distinct bio ceramic materials, specifically a wet chemically synthesized bioactive glass and two commercially sourced hydroxyapatite variants. These templates underwent comprehensive characterization to assess their physicochemical and mechanical attributes, employing techniques including Fourier transform infrared spectroscopy, scanning electron microscopy, and nano-computed tomography. Evaluation of their biocompatibility was conducted through interaction with primary human osteoblasts (hOB) and subsequent examination using scanning electron microscopy. RESULTS The results demonstrated that composite showed intramolecular hydrogen bonding interactions with the photopolymer, while computerized tomography unveiled the porous morphology and distribution within the templates. A relatively higher porosity percentage (31.55 ± 8.70%) and compressive strength (1.53 ± 0.11 MPa) was noted for bioactive glass templates. Human osteoblast cultured on bioactive glass showed higher viability compared to other specimens. Scanning micrographs of human osteoblast on templated showed cellular adhesion and the presence of filopodia and lamellipodia. CONCLUSION In summary these templates have the potential to be used for alveolar bone regeneration in critical size defect. Photopolymerization of bioceramics may be an interesting technique for scaffolds fabrication for bone tissue engineering application but needs more optimization to overcome existing issues like the ideal ratio of the photopolymer to bioceramics.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Defence Road, Off-Raiwand Road, Lahore, 54000, Pakistan
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Wilayah Persekutuan, Kuala Lumpur, 57000, Malaysia
- Dental Materials Science, Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, PR China
| | - Maha Matalqah
- Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar
| | - Salma Habib
- Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar
| | - Khaled M Saoud
- Liberal Arts and Science Program, Virginia Commonwealth University in Qatar, Al Luqta St. Doha, P.O. Box 8095, Doha, Qatar
| |
Collapse
|
25
|
Tyowua AT, Harbottle D, Binks BP. 3D printing of Pickering emulsions, Pickering foams and capillary suspensions - A review of stabilization, rheology and applications. Adv Colloid Interface Sci 2024; 332:103274. [PMID: 39159542 DOI: 10.1016/j.cis.2024.103274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Pickering emulsions and foams as well as capillary suspensions are becoming increasingly more popular as inks for 3D printing. However, a lack of understanding of the bulk rheological properties needed for their application in 3D printing is potentially stifling growth in the area, hence the timeliness of this review. Herein, we review the stability and bulk rheology of these materials as well as the applications of their 3D-printed products. By highlighting how the bulk rheology is tuned, and specifically the inks storage modulus, yield stress and critical balance between the two, we present a rheological performance map showing regions where good prints and slumps are observed thus providing clear guidance for future ink formulations. To further advance this field, we also suggest standard experimental protocols for characterizing the bulk rheology of the three types of ink: capillary suspension, Pickering emulsion and Pickering foam for 3D printing by direct ink writing.
Collapse
Affiliation(s)
- Andrew T Tyowua
- Applied Colloid Science and Cosmeceutical Group, Department of Chemistry, Benue State University, PMB, 102119, Makurdi, Nigeria; School of Chemical Engineering, University of Birmingham, Edgbaston. B15 2TT. UK.
| | - David Harbottle
- School of Chemical and Process Engineering, University of Leeds, Leeds. LS2 9JT. UK
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull. HU6 7RX. UK
| |
Collapse
|
26
|
Uliana JH, Braz GA, Oliveira ÉL, Araújo-Ferreira AG, Morais MM, Trevizan WA, Fortulan CA, Bonagamba TJ, Pavan TZ, Carneiro AAO. Investigation of rock porosity using vibroacoustography. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING 2024; 46:585. [DOI: 10.1007/s40430-024-05141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/12/2024] [Indexed: 01/06/2025]
|
27
|
Zoghi S. Advancements in Tissue Engineering: A Review of Bioprinting Techniques, Scaffolds, and Bioinks. Biomed Eng Comput Biol 2024; 15:11795972241288099. [PMID: 39364141 PMCID: PMC11447703 DOI: 10.1177/11795972241288099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Tissue engineering is a multidisciplinary field that uses biomaterials to restore tissue function and assist with drug development. Over the last decade, the fabrication of three-dimensional (3D) multifunctional scaffolds has become commonplace in tissue engineering and regenerative medicine. Thanks to the development of 3D bioprinting technologies, these scaffolds more accurately recapitulate in vivo conditions and provide the support structure necessary for microenvironments conducive to cell growth and function. The purpose of this review is to provide a background on the leading 3D bioprinting methods and bioink selections for tissue engineering applications, with a specific focus on the growing field of developing multifunctional bioinks and possible future applications.
Collapse
Affiliation(s)
- Shervin Zoghi
- School of Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
28
|
Pourhajrezaei S, Abbas Z, Khalili MA, Madineh H, Jooya H, Babaeizad A, Gross JD, Samadi A. Bioactive polymers: A comprehensive review on bone grafting biomaterials. Int J Biol Macromol 2024; 278:134615. [PMID: 39128743 DOI: 10.1016/j.ijbiomac.2024.134615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
The application of bone grafting materials in bone tissue engineering is paramount for treating severe bone defects. In this comprehensive review, we explore the significance and novelty of utilizing bioactive polymers as grafts for successful bone repair. Unlike metals and ceramics, polymers offer inherent biodegradability and biocompatibility, mimicking the native extracellular matrix of bone. While these polymeric micro-nano materials may face challenges such as mechanical strength, various fabrication techniques are available to overcome these shortcomings. Our study not only investigates diverse biopolymeric materials but also illuminates innovative fabrication methods, highlighting their importance in advancing bone tissue engineering.
Collapse
Affiliation(s)
- Sana Pourhajrezaei
- Department of biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahid Abbas
- Department of Chemistry, University of Bologna, Bologna, Italy
| | | | - Hossein Madineh
- Department of Polymer Engineering, University of Tarbiat Modares, Tehran, Iran
| | - Hossein Jooya
- Biochemistry group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jeffrey D Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, NV, USA
| | - Ali Samadi
- Department of Basic Science, School of Medicine, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
29
|
Wu T, Han L, Zhu Y, Zeng X, Kang Y, Zheng S, Wang Z, Wang J, Gao Y. Application of decalcified bone matrix in Salmon bone for tibial defect repair in rat model. Int J Artif Organs 2024; 47:783-792. [PMID: 39171422 DOI: 10.1177/03913988241269498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
AIM The optimal preparation conditions of Salmon decalcified bone matrix (S-DBM) were explored, and the properties of S-DBM bone particles and bone powder were studied respectively. The therapeutic effect of S-DBM on tibial defect in female Sprague Dawley (SD) rats was preliminarily verified. METHODS This study assessed the structural and functional similarities of Salmon bone DBM (S-DBM). The biocompatibility assessment was conducted using both in vivo and in vitro experiments, establishing an animal model featuring tibial defects in rats and on the L929 cell line, respectively. The control group, bovine DBM (bDBM), was compared to the S-DBM-treated tibial defect rats. Imaging and histology were used to study implant material changes, defect healing, osteoinductive repair, and degradation. RESULTS The findings of our study indicate that S-DBM exhibits favorable repairing effects on bone defects, along with desirable physicochemical characteristics, safety, and osteogenic activity. CONCLUSIONS The S-DBM holds significant potential as a medical biomaterial for treating bone defects, effectively fulfilling the clinical demands for materials used in bone tissue repair engineering.
Collapse
Affiliation(s)
- Tong Wu
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Lei Han
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Ye Zhu
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Xiaojun Zeng
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Yating Kang
- School of Life Sciences, Yantai University, Yantai, PR China
| | - Shuwen Zheng
- School of Life Sciences, Yantai University, Yantai, PR China
| | | | | | - Yonglin Gao
- School of Life Sciences, Yantai University, Yantai, PR China
| |
Collapse
|
30
|
Rosado A, Borrás A, Sánchez-Soto M, Labíková M, Hettegger H, Ramírez-Jiménez RA, Rojo L, García-Fernández L, Aguilar MR, Liebner F, López-Periago AM, Ayllón JA, Domingo C. BioMOF@cellulose Glycerogel Scaffold with Multifold Bioactivity: Perspective in Bone Tissue Repair. Gels 2024; 10:631. [PMID: 39451284 PMCID: PMC11507435 DOI: 10.3390/gels10100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
The development of new biomaterials for musculoskeletal tissue repair is currently an important branch in biomedicine research. The approach presented here is centered around the development of a prototypic synthetic glycerogel scaffold for bone regeneration, which simultaneously features therapeutic activity. The main novelty of this work lies in the combination of an open meso and macroporous nanocrystalline cellulose (NCC)-based glycerogel with a fully biocompatible microporous bioMOF system (CaSyr-1) composed of calcium ions and syringic acid. The bioMOF framework is further impregnated with a third bioactive component, i.e., ibuprofen (ibu), to generate a multifold bioactive system. The integrated CaSyr-1(ibu) serves as a reservoir for bioactive compounds delivery, while the NCC scaffold is the proposed matrix for cell ingrowth, proliferation and differentiation. The measured drug delivery profiles, studied in a phosphate-buffered saline solution at 310 K, indicate that the bioactive components are released concurrently with bioMOF dissolution after ca. 30 min following a pseudo-first-order kinetic model. Furthermore, according to the semi-empirical Korsmeyer-Peppas kinetic model, this release is governed by a case-II mechanism, suggesting that the molecular transport is influenced by the relaxation of the NCC matrix. Preliminary in vitro results denote that the initial high concentration of glycerol in the NCC scaffold can be toxic in direct contact with human osteoblasts (HObs). However, when the excess of glycerol is diluted in the system (after the second day of the experiment), the direct and indirect assays confirm full biocompatibility and suitability for HOb proliferation.
Collapse
Affiliation(s)
- Albert Rosado
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| | - Alejandro Borrás
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| | - Miguel Sánchez-Soto
- Departament de Ciència i Enginyeria de Materials, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-Barcelona Tech (UPC), 08019 Barcelona, Spain;
| | - Magdaléna Labíková
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria; (M.L.); (H.H.); (F.L.)
- Department of Organic Chemistry, University of Chemistry and Technology, Prague (UCT), Technická 5, 160 00 Praha 6-Dejvice, Czech Republic
| | - Hubert Hettegger
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria; (M.L.); (H.H.); (F.L.)
- Christian Doppler Laboratory for Cellulose High-Tech Materials, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Luís Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Luís García-Fernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain; (R.A.R.-J.); (L.R.); (L.G.-F.); (M.R.A.)
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Falk Liebner
- Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 24, A-3430 Tulln an der Donau, Austria; (M.L.); (H.H.); (F.L.)
| | - Ana M. López-Periago
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| | - José A. Ayllón
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB s/n, 08193 Bellaterra, Spain;
| | - Concepción Domingo
- Institut de Ciència de Materials de Barcelona (ICMAB), Consejo Superior de Investigaciones Científicas (CSIC), Campus UAB s/n, 08193 Bellaterra, Spain; (A.B.); (A.M.L.-P.)
| |
Collapse
|
31
|
Yang S, Wu H, Peng C, He J, Pu Z, Lin Z, Wang J, Hu Y, Su Q, Zhou B, Yong X, Lan H, Hu N, Hu X. From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications. BIOMATERIALS TRANSLATIONAL 2024; 5:274-299. [PMID: 39734699 PMCID: PMC11681185 DOI: 10.12336/biomatertransl.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 12/31/2024]
Abstract
The treatment and repair of bone tissue damage and loss due to infection, tumours, and trauma are major challenges in clinical practice. Artificial bone scaffolds offer a safer, simpler, and more feasible alternative to bone transplantation, serving to fill bone defects and promote bone tissue regeneration. Ideally, these scaffolds should possess osteoconductive, osteoinductive, and osseointegrative properties. However, the current first-generation implants, represented by titanium alloys, have shown poor bone-implant integration performance and cannot meet the requirements for bone tissue repair. This has led to increased research on second and third generation artificial bone scaffolds, which focus on loading bioactive molecules and cells. Polymer microspheres, known for their high specific surface areas at the micro- and nanoscale, exhibit excellent cell and drug delivery behaviours. Additionally, with their unique rigid structure, microsphere scaffolds can be constructed using methods such as thermal sintering, injection, and microsphere encapsulation. These scaffolds not only ensure the excellent cell drug loading performance of microspheres but also exhibit spatial modulation behaviour, aiding in bone repair within a three-dimensional network structure. This article provides a summary and discussion of the use of polymer microsphere scaffolds for bone repair, focusing on the mechanisms of bone tissue repair and the current status of clinical bone grafts, aimed at advancing research in bone repair.
Collapse
Affiliation(s)
- Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Haoming Wu
- School of Preclinical Medicine of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Chao Peng
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Jian He
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Zhengguang Pu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Yingkun Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Qiao Su
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Bingnan Zhou
- School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan Province, China
| | - Hai Lan
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan Province, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
32
|
Zhu Y, Wang T, He Z, Liu M, Zhang C, Sun G, Wang Q. Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-17. [PMID: 39225005 DOI: 10.1080/09205063.2024.2397211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Graphene oxide (GO) is widely used in bone tissue engineering due to its good biocompatibility and proliferation, and is often used in combination with other hydrogels, which not only reduces the cytotoxicity of GO but also improves the mechanical properties of the hydrogels. We developed injectable carboxymethyl chitosan (CMC)/hydroxyethyl cellulose (HEC)/β-tricalcium phosphate (β-TCP)/GO hydrogel via hydrogen bonding cross-linked between (CMC) and (HEC), also, calcium cross-linked by β-TCP was also involved to further improvement of mechanical properties of the hydrogel, and incorporate different concentration of GO in these hydrogel systems. The characterization of the novel hydrogel was tested by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The swelling ratio and mechanical properties were investigated, the results showed that the addition of GO was able to reduce the swelling rate of hydrogels and improve their mechanical properties, with the best effect in the case of 1 mg/mL content. In vivo experimental studies showed that the hydrogel significantly promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), with the best effect at a concentration of 2 mg/mL. The results of the cellular experiments were similar. Therefore, the novel environment-friendly and non-toxic injectable CMC/HEC/β-TCP/GO hydrogel system may have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Yaru Zhu
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen He
- School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunfang Zhang
- Shanghai Pudong New Area Medical Emergency Center, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Wang
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Toulou C, Chaudhari VS, Bose S. Extrusion 3D-printed tricalcium phosphate-polycaprolactone biocomposites for quercetin-KCl delivery in bone tissue engineering. J Biomed Mater Res A 2024; 112:1472-1483. [PMID: 38477071 PMCID: PMC11239310 DOI: 10.1002/jbm.a.37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Critical-sized bone defects pose a significant challenge in advanced healthcare due to limited bone tissue regenerative capacity. The complex interplay of numerous overlapping variables hinders the development of multifunctional biocomposites. Phytochemicals show promise in promoting bone growth, but their dose-dependent nature and physicochemical properties halt clinical use. To develop a comprehensive solution, a 3D-printed (3DP) extrusion-based tricalcium phosphate-polycaprolactone (TCP-PCL) scaffold is augmented with quercetin and potassium chloride (KCl). This composite material demonstrates a compressive strength of 30 MPa showing promising stability for low load-bearing applications. Quercetin release from the scaffold follows a biphasic pattern that persists for up to 28 days, driven via diffusion-mediated kinetics. The incorporation of KCl allows for tunable degradation rates of scaffolds and prevents the initial rapid release. Functionalization of scaffolds facilitates the attachment and proliferation of human fetal osteoblasts (hfOB), resulting in a 2.1-fold increase in cell viability. Treated scaffolds exhibit a 3-fold reduction in osteosarcoma (MG-63) cell viability as compared to untreated substrates. Ruptured cell morphology and decreased mitochondrial membrane potential indicate the antitumorigenic potential. Scaffolds loaded with quercetin and quercetin-KCl (Q-KCl) demonstrate 76% and 89% reduction in bacterial colonies of Staphylococcus aureus, respectively. This study provides valuable insights as a promising strategy for bone tissue engineering (BTE) in orthopedic repair.
Collapse
Affiliation(s)
- Connor Toulou
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
34
|
Takabatake K, Tsujigiwa H, Nakano K, Chang A, Piao T, Inada Y, Arashima T, Morimatsu A, Tanaka A, Kawai H, Nagatsuka H. Effect of Scaffold Geometrical Structure on Macrophage Polarization during Bone Regeneration Using Honeycomb Tricalcium Phosphate. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4108. [PMID: 39203286 PMCID: PMC11356497 DOI: 10.3390/ma17164108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024]
Abstract
The polarization balance of M1/M2 macrophages with different functions is important in osteogenesis and bone repair processes. In a previous study, we succeeded in developing honeycomb tricalcium phosphate (TCP), which is a cylindrical scaffold with a honeycomb arrangement of straight pores, and we demonstrated that TCP with 300 and 500 μm pore diameters (300TCP and 500TCP) induced bone formation within the pores. However, the details of the influence of macrophage polarization on bone formation using engineered biomaterials, especially with respect to the geometric structure of the artificial biomaterials, are unknown. In this study, we examined whether differences in bone tissue formation due to differences in TCP geometry were due to the polarity of the assembling macrophages. Immunohistochemistry for IBA-1, iNOS, and CD163 single staining was performed. The 300TCP showed a marked infiltration of iNOS-positive cells, which are thought to be M1 macrophages, during the osteogenesis process, while no involvement of CD163-positive cells, which are thought to be M2 macrophages, was observed in the TCP pores. In addition, 500TCP showed a clustering of iNOS-positive cells and CD163-positive cells at 2 weeks, suggesting the involvement of M2 macrophages in the formation of bone tissue in the TCP pores. In conclusion, we demonstrated for the first time that the geometrical structure of the artificial biomaterial, i.e., the pore size of honeycomb TCP, affects the polarization of M1/2 macrophages and bone tissue formation in TCP pores.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama 700-0005, Japan;
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Anqi Chang
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Tianyan Piao
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Yasunori Inada
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Takuma Arashima
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Morimatsu
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Ayumi Tanaka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.N.); (A.C.); (T.P.); (Y.I.); (T.A.); (A.M.); (A.T.); (H.K.); (H.N.)
| |
Collapse
|
35
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
36
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Ansari MAA, Makwana P, Dhimmar B, Vasita R, Jain PK, Nanda HS. Design and development of 3D printed shape memory triphasic polymer-ceramic bioactive scaffolds for bone tissue engineering. J Mater Chem B 2024; 12:6886-6904. [PMID: 38912967 DOI: 10.1039/d4tb00785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Scaffolds for bone tissue engineering require considerable mechanical strength to repair damaged bone defects. In this study, we designed and developed mechanically competent composite shape memory triphasic bone scaffolds using fused filament fabrication (FFF) three dimensional (3D) printing. Wollastonite particles (WP) were incorporated into the poly lactic acid (PLA)/polycaprolactone (PCL) matrix as a reinforcing agent (up to 40 wt%) to harness osteoconductive and load-bearing properties from the 3D printed scaffolds. PCL as a minor phase (20 wt%) was added to enhance the toughening effect and induce the shape memory effect in the triphasic composite scaffolds. The 3D-printed composite scaffolds were studied for morphological, thermal, and mechanical properties, in vitro degradation, biocompatibility, and shape memory behaviour. The composite scaffold had interconnected pores of 550 μm, porosity of more than 50%, and appreciable compressive strength (∼50 MPa), which was over 90% greater than that of the pristine PLA scaffolds. The flexural strength was improved by 140% for 40 wt% of WP loading. The inclusion of WP did not affect the thermal property of the scaffolds; however, the inclusion of PCL reduced the thermal stability. An accelerated in vitro degradation was observed for WP incorporated composite scaffolds compared to pristine PLA scaffolds. The inclusion of WP improved the hydrophilic property of the scaffolds, and the result was significant for 40 wt% WP incorporated composite scaffolds having a water contact angle of 49.61°. The triphasic scaffold exhibited excellent shape recovery properties with a shape recovery ratio of ∼84%. These scaffolds were studied for their protein adsorption, cell proliferation, and bone mineralization potential. The incorporation of WP reduced the protein adsorption capacity of the composite scaffolds. The scaffold did not leach any toxic substance and demonstrated good cell viability, indicating its biocompatibility and growth-promoting behavior. The osteogenic potential of the WP incorporated scaffolds was observed in MC3T3-E1 cells, revealing early mineralization in pre-osteoblast cells cultured in different WP incorporated composite scaffolds. These results suggest that 3D-printed WP reinforced PLA/PCL composite bioactive scaffolds are promising for load bearing bone defect repair.
Collapse
Affiliation(s)
- Mohammad Aftab Alam Ansari
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
| | - Pooja Makwana
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Bindiya Dhimmar
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Rajesh Vasita
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| | - Prashant Kumar Jain
- Fused Filament Fabrication Laboratory, Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory (Formerly Biomedical Engineering and Technology Lab), Mechanical engineering discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, Jabalpur, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing (IIITDM) Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India
- Terasaki Institute for Biomedical Innovation (TIBI), 21100 Erwin St., Los Angeles, CA 91367, USA
| |
Collapse
|
38
|
Ma C, de Barros NR, Zheng T, Gomez A, Doyle M, Zhu J, Nanda HS, Li X, Khademhosseini A, Li B. 3D Printing and Surface Engineering of Ti6Al4V Scaffolds for Enhanced Osseointegration in an In Vitro Study. Biomimetics (Basel) 2024; 9:423. [PMID: 39056864 PMCID: PMC11274417 DOI: 10.3390/biomimetics9070423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Ti6Al4V superalloy is recognized as a good candidate for bone implants owing to its biocompatibility, corrosion resistance, and high strength-to-weight ratio. While dense metal implants are associated with stress shielding issues due to the difference in densities, stiffness, and modulus of elasticity compared to bone tissues, the surface of the implant/scaffold should mimic the properties of the bone of interest to assure a good integration with a strong interface. In this study, we investigated the additive manufacturing of porous Ti6Al4V scaffolds and coating modification for enhanced osteoconduction using osteoblast cells. The results showed the successful fabrication of porous Ti6Al4V scaffolds with adequate strength. Additionally, the surface treatment with NaOH and Dopamine Hydrochloride (DOPA) promoted the formation of Dopamine Hydrochloride (DOPA) coating with an optimized coating process, providing an environment that supports higher cell viability and growth compared to the uncoated Ti6Al4V scaffolds, as demonstrated by the higher proliferation ratios observed from day 1 to day 29. These findings bring valuable insights into the surface modification of 3D-printed scaffolds for improved osteoconduction through the coating process in solutions.
Collapse
Affiliation(s)
- Changyu Ma
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | | | - Tianqi Zheng
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Gomez
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Marshall Doyle
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
| | - Jianhao Zhu
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Himansu Sekhar Nanda
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
- Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Bingbing Li
- Autonomy Research Center for STEAHM, California State University Northridge, Northridge, CA 91324, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| |
Collapse
|
39
|
Kanniyappan H, Gnanasekar V, Parise V, Debnath K, Sun Y, Thakur S, Thakur G, Perumal G, Kumar R, Wang R, Merchant A, Sriram R, Mathew MT. Harnessing extracellular vesicles-mediated signaling for enhanced bone regeneration: novel insights into scaffold design. Biomed Mater 2024; 19:10.1088/1748-605X/ad5ba9. [PMID: 38917828 PMCID: PMC11305091 DOI: 10.1088/1748-605x/ad5ba9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
The increasing prevalence of bone replacements and complications associated with bone replacement procedures underscores the need for innovative tissue restoration approaches. Existing synthetic grafts cannot fully replicate bone vascularization and mechanical characteristics. This study introduces a novel strategy utilizing pectin, chitosan, and polyvinyl alcohol to create interpenetrating polymeric network (IPN) scaffolds incorporated with extracellular vesicles (EVs) isolated from human mesenchymal stem cells (hMSCs). We assess the osteointegration and osteoconduction abilities of these modelsin vitrousing hMSCs and MG-63 osteosarcoma cells. Additionally, we confirm exosome properties through Transmission Electron Microscopy (TEM), immunoblotting, and Dynamic Light Scattering (DLS).In vivo, chick allantoic membrane assay investigates vascularization characteristics. The study did not includein vivoanimal experiments. Our results demonstrate that the IPN scaffold is highly porous and interconnected, potentially suitable for bone implants. EVs, approximately 100 nm in size, enhance cell survival, proliferation, alkaline phosphatase activity, and the expression of osteogenic genes. EVs-mediated IPN scaffolds demonstrate promise as precise drug carriers, enabling customized treatments for bone-related conditions and regeneration efforts. Therefore, the EVs-mediated IPN scaffolds demonstrate promise as precise carriers for the transport of drugs, allowing for customized treatments for conditions connected to bone and efforts in regeneration.
Collapse
Affiliation(s)
- Hemalatha Kanniyappan
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
- Department of Chemistry, Illinois Institute of Technology (IIT), Chicago, IL, United States of America
| | - Varun Gnanasekar
- University of Wisconsin-Madison, Madison, WI, United States of America
| | - Vincent Parise
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Koushik Debnath
- College of Dentistry, University of Illinois, Chicago, IL, United States of America
| | - Yani Sun
- Department of Material Sciences, University of Illinois, Chicago, IL, United States of America
| | - Shriya Thakur
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Gitika Thakur
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Govindaraj Perumal
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Rong Wang
- Department of Chemistry, Illinois Institute of Technology (IIT), Chicago, IL, United States of America
| | - Aftab Merchant
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| | - Ravindran Sriram
- College of Dentistry, University of Illinois, Chicago, IL, United States of America
| | - Mathew T Mathew
- Regeneratve Medicine and Disability Research Laboratory (RMDR), Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, United States of America
| |
Collapse
|
40
|
Ji Y, Mao Y, Lin H, Wang Y, Zhao P, Guo Y, Gu L, Fu C, Chen X, Lv Z, Wang N, Li Q, Bei C. Acceleration of bone repairation by BMSCs overexpressing NGF combined with NSA and allograft bone scaffolds. Stem Cell Res Ther 2024; 15:194. [PMID: 38956719 PMCID: PMC11218317 DOI: 10.1186/s13287-024-03807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Repairation of bone defects remains a major clinical problem. Constructing bone tissue engineering containing growth factors, stem cells, and material scaffolds to repair bone defects has recently become a hot research topic. Nerve growth factor (NGF) can promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs), but the low survival rate of the BMSCs during transplantation remains an unresolved issue. In this study, we investigated the therapeutic effect of BMSCs overexpression of NGF on bone defect by inhibiting pyroptosis. METHODS The relationship between the low survival rate and pyroptosis of BMSCs overexpressing NGF in localized inflammation of fractures was explored by detecting pyroptosis protein levels. Then, the NGF+/BMSCs-NSA-Sca bone tissue engineering was constructed by seeding BMSCs overexpressing NGF on the allograft bone scaffold and adding the pyroptosis inhibitor necrosulfonamide(NSA). The femoral condylar defect model in the Sprague-Dawley (SD) rat was studied by micro-CT, histological, WB and PCR analyses in vitro and in vivo to evaluate the regenerative effect of bone repair. RESULTS The pyroptosis that occurs in BMSCs overexpressing NGF is associated with the nerve growth factor receptor (P75NTR) during osteogenic differentiation. Furthermore, NSA can block pyroptosis in BMSCs overexpression NGF. Notably, the analyses using the critical-size femoral condylar defect model indicated that the NGF+/BMSCs-NSA-Sca group inhibited pyroptosis significantly and had higher osteogenesis in defects. CONCLUSION NGF+/BMSCs-NSA had strong osteogenic properties in repairing bone defects. Moreover, NGF+/BMSCs-NSA-Sca mixture developed in this study opens new horizons for developing novel tissue engineering constructs.
Collapse
Affiliation(s)
- Ying Ji
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Yongkang Mao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Honghu Lin
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Ye Wang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Peishuai Zhao
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Yong Guo
- Department of Biomedical Engineering, School of Intelligent Medicine and Biotechnology, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Lantao Gu
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Can Fu
- Key Laboratory of Medical Biotechnology and Translational Medicine, Guilin Medical University, 1 Zhiyuan Road, Guilin, 541199, China
| | - Ximiao Chen
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Zheng Lv
- Department of Radiology, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Ning Wang
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China
| | - Qiang Li
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China.
| | - Chaoyong Bei
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guilin, 541001, China.
| |
Collapse
|
41
|
Huang S, Wang Z, Sun X, Li K. Bone Morphogenetic Protein 7-Loaded Gelatin Methacrylate/Oxidized Sodium Alginate/Nano-Hydroxyapatite Composite Hydrogel for Bone Tissue Engineering. Int J Nanomedicine 2024; 19:6359-6376. [PMID: 38946885 PMCID: PMC11214552 DOI: 10.2147/ijn.s461996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Background Bone tissue engineering (BTE) is a promising alternative to autologous bone grafting for the clinical treatment of bone defects, and inorganic/organic composite hydrogels as BTE scaffolds are a hot spot in current research. The construction of nano-hydroxyapatite/gelatin methacrylate/oxidized sodium alginate (nHAP/GelMA/OSA), abbreviated as HGO, composite hydrogels loaded with bone morphogenetic protein 7 (BMP7) will provide a suitable 3D microenvironment to promote cell aggregation, proliferation, and differentiation, thus facilitating bone repair and regeneration. Methods Dually-crosslinked hydrogels were fabricated by combining GelMA and OSA, while HGO hydrogels were formulated by incorporating varying amounts of nHAP. The hydrogels were physically and chemically characterized followed by the assessment of their biocompatibility. BMP7-HGO (BHGO) hydrogels were fabricated by incorporating suitable concentrations of BMP7 into HGO hydrogels. The osteogenic potential of BHGO hydrogels was then validated through in vitro experiments and using rat femoral defect models. Results The addition of nHAP significantly improved the physical properties of the hydrogel, and the composite hydrogel with 10% nHAP demonstrated the best overall performance among all groups. The selected concentration of HGO hydrogel served as a carrier for BMP7 loading and was evaluated for its osteogenic potential both in vivo and in vitro. The BHGO hydrogel demonstrated superior in vitro osteogenic induction and in vivo potential for repairing bone tissue compared to the outcomes observed in the blank control, BMP7, and HGO groups. Conclusion Using hydrogel containing 10% HGO appears promising for bone tissue engineering scaffolds, especially when loaded with BMP7 to boost its osteogenic potential. However, further investigation is needed to optimize the GelMA, OSA, and nHAP ratios, along with the BMP7 concentration, to maximize the osteogenic potential.
Collapse
Affiliation(s)
- Shiyuan Huang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Zesen Wang
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Xudong Sun
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| | - Kuanxin Li
- The First Affiliated Hospital of Bengbu Medical University, Bengbu Medical University, Bengbu, Anhui Province, 233044, People’s Republic of China
| |
Collapse
|
42
|
Rosellini E, Giordano C, Guidi L, Cascone MG. Biomimetic Approaches in Scaffold-Based Blood Vessel Tissue Engineering. Biomimetics (Basel) 2024; 9:377. [PMID: 39056818 PMCID: PMC11274842 DOI: 10.3390/biomimetics9070377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular diseases remain a leading cause of mortality globally, with atherosclerosis representing a significant pathological means, often leading to myocardial infarction. Coronary artery bypass surgery, a common procedure used to treat coronary artery disease, presents challenges due to the limited autologous tissue availability or the shortcomings of synthetic grafts. Consequently, there is a growing interest in tissue engineering approaches to develop vascular substitutes. This review offers an updated picture of the state of the art in vascular tissue engineering, emphasising the design of scaffolds and dynamic culture conditions following a biomimetic approach. By emulating native vessel properties and, in particular, by mimicking the three-layer structure of the vascular wall, tissue-engineered grafts can improve long-term patency and clinical outcomes. Furthermore, ongoing research focuses on enhancing biomimicry through innovative scaffold materials, surface functionalisation strategies, and the use of bioreactors mimicking the physiological microenvironment. Through a multidisciplinary lens, this review provides insight into the latest advancements and future directions of vascular tissue engineering, with particular reference to employing biomimicry to create systems capable of reproducing the structure-function relationships present in the arterial wall. Despite the existence of a gap between benchtop innovation and clinical translation, it appears that the biomimetic technologies developed to date demonstrate promising results in preventing vascular occlusion due to blood clotting under laboratory conditions and in preclinical studies. Therefore, a multifaceted biomimetic approach could represent a winning strategy to ensure the translation of vascular tissue engineering into clinical practice.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| | | | | | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy; (C.G.); (L.G.)
| |
Collapse
|
43
|
Rath P, Mandal S, Das P, Sahoo SN, Mandal S, Ghosh D, Nandi SK, Roy M. Effects of the multiscale porosity of decellularized platelet-rich fibrin-loaded zinc-doped magnesium phosphate scaffolds in bone regeneration. J Mater Chem B 2024; 12:5869-5883. [PMID: 38775079 DOI: 10.1039/d3tb02981f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
In recent years, metallic ion-doped magnesium phosphate (MgP)-based degradable bioceramics have emerged as alternative bone substitute materials owing to their excellent biocompatibility, bone-forming ability, bioactivity, and controlled degradability. Conversely, incorporating a biomolecule such as decellularized platelet-rich fibrin (d-PRF) on scaffolds has certain advantages for bone tissue regeneration, particularly in enhanced osteogenesis and angiogenesis. The present study focuses on the impact of d-PRF-loaded multiscale porous zinc-doped magnesium phosphate (Zn-MgP) scaffolds on biodegradability, biocompatibility, and bone regeneration. Scaffolds were fabricated through the powder-metallurgy route utilizing naphthalene as a porogen (porosity = 5-43%). With the inclusion of a higher porogen, a higher fraction of macro-porosity (>20 μm) and pore interconnectivity were observed. X-ray diffraction (XRD) studies confirmed the formation of the farringtonite phase. The developed scaffolds exhibited a minimum ultimate compressive strength (UCS) of 8.5 MPa (for 40 Naph), which lies within the range of UCS of the cancellous bone of humans (2-12 MPa). The in vitro assessment via immersion in physiological fluid yielded a higher deposition of the calcium phosphate (CaP) compound in response to increased macro-porosity and interconnectivity (40 Naph). Cytocompatibility assessed using MC3T3-E1 cells showed that the incorporation of d-PRF coupled with increased porosity resulted the highest cell attachment, proliferation, and viability. For further evaluation, the developed scaffolds were implanted in in vivo rabbit femur condylar defects. Radiography, SEM, OTC labelling, and histology analysis after 2 months of implantation revealed the better invasion of mature osteoblastic cells into the scaffolds with enhanced angiogenesis and superior and accelerated healing of bone defects in d-PRF-incorporated higher porosity scaffolds (40 Naph). Finally, it is hypothesized that the combination of d-PRF incorporation with multiscale porosity and increased interconnectivity facilitated better bone-forming ability, good biocompatibility, and controlled degradability within and around the Zn-doped MgP scaffolds.
Collapse
Affiliation(s)
- Pritish Rath
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Santanu Mandal
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, 752050, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Satyabrata Nigamananda Sahoo
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India.
| | - Samiran Mandal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
44
|
Zhou Z, Feng W, Moghadas BK, Baneshi N, Noshadi B, Baghaei S, Dehkordi DA. Review of recent advances in bone scaffold fabrication methods for tissue engineering for treating bone diseases and sport injuries. Tissue Cell 2024; 88:102390. [PMID: 38663113 DOI: 10.1016/j.tice.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 06/17/2024]
Abstract
Despite advancements in medical care, the management of bone injuries remains one of the most significant challenges in the fields of medicine and sports medicine globally. Bone tissue damage is often associated with aging, reduced quality of life, and various conditions such as trauma, cancer, and infection. While bone tissue possesses the natural capacity for self-repair and regeneration, severe damage may render conventional treatments ineffective, and bone grafting may be limited due to secondary surgical procedures and potential disease transmission. In such cases, bone tissue engineering has emerged as a viable approach, utilizing cells, scaffolds, and growth factors to repair damaged bone tissue. This research shows a comprehensive review of the current literature on the most important and effective methods and materials for improving the treatment of these injuries. Commonly employed cell types include osteogenic cells, embryonic stem cells, and mesenchymal cells, while scaffolds play a crucial role in bone tissue regeneration. To create an effective bone scaffold, a thorough understanding of bone structure, material selection, and examination of scaffold fabrication techniques from inception to the present day is necessary. By gaining insights into these three key components, the ability to design and construct appropriate bone scaffolds can be achieved. Bone tissue engineering scaffolds are evaluated based on factors such as strength, porosity, cell adhesion, biocompatibility, and biodegradability. This article examines the diverse categories of bone scaffolds, the materials and techniques used in their fabrication, as well as the associated merits and drawbacks of these approaches. Furthermore, the review explores the utilization of various scaffold types in bone tissue engineering applications.
Collapse
Affiliation(s)
- Zeng Zhou
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China
| | - Wei Feng
- Department of Physical Education, Central South University, Changsha, Hunan 4100083, China.
| | - B Kamyab Moghadas
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran; Department of Applied Researches, Chemical, Petroleum & Polymer Engineering Research Center, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - N Baneshi
- Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - B Noshadi
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eastern Mediterranean University, via Mersin 10, TR-99628 Famagusta, North Cyprus, Turkey
| | - Sh Baghaei
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| | - D Abasi Dehkordi
- Medical Doctor, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
45
|
Zhang Z, Qiu X, Deng C. Application of biomimetic three-dimensional scaffolds in bone tissue repairing. Macromol Res 2024; 32:493-504. [DOI: 10.1007/s13233-024-00253-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 01/06/2025]
|
46
|
Chen Z, Li J, Wang Z, Chen Y, Jin M, Chen S, Xie J, Ge S, He H, Xu J, Wu F. Polydopamine-mediated immobilization of BMP-2 onto electrospun nanofibers enhances bone regeneration. NANOTECHNOLOGY 2024; 35:325101. [PMID: 38688249 DOI: 10.1088/1361-6528/ad4554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Dealing with bone defects is a significant challenge to global health. Electrospinning in bone tissue engineering has emerged as a solution to this problem. In this study, we designed a PVDF-b-PTFE block copolymer by incorporating TFE, which induced a phase shift in PVDF fromαtoβ, thereby enhancing the piezoelectric effect. Utilizing the electrospinning process, we not only converted the material into a film with a significant surface area and high porosity but also intensified the piezoelectric effect. Then we used polydopamine to immobilize BMP-2 onto PVDF-b-PTFE electrospun nanofibrous membranes, achieving a controlled release of BMP-2. The scaffold's characters were examined using SEM and XRD. To assess its osteogenic effectsin vitro, we monitored the proliferation of MC3T3-E1 cells on the fibers, conducted ARS staining, and measured the expression of osteogenic genes.In vivo, bone regeneration effects were analyzed through micro-CT scanning and HE staining. ELISA assays confirmed that the sustained release of BMP-2 can be maintained for at least 28 d. SEM images and CCK-8 results demonstrated enhanced cell viability and improved adhesion in the experimental group. Furthermore, the experimental group exhibited more calcium nodules and higher expression levels of osteogenic genes, including COL-I, OCN, and RUNX2. HE staining and micro-CT scans revealed enhanced bone tissue regeneration in the defective area of the PDB group. Through extensive experimentation, we evaluated the scaffold's effectiveness in augmenting osteoblast proliferation and differentiation. This study emphasized the potential of piezoelectric PVDF-b-PTFE nanofibrous membranes with controlled BMP-2 release as a promising approach for bone tissue engineering, providing a viable solution for addressing bone defects.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Orthopaedics and Rehabilitation, Affiliated Huzhou Hospital, Zhejiang University School of Medicine; Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University; Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory; Huzhou Shushan Geriatric Hospital, Huzhou, People's Republic of China
| | - Jing Li
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, Huzhou, Zhejiang 313000, People's Republic of China
| | - Zichen Wang
- Department of Orthopaedics and Rehabilitation, Affiliated Huzhou Hospital, Zhejiang University School of Medicine; Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University; Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory; Huzhou Shushan Geriatric Hospital, Huzhou, People's Republic of China
| | - Yuehui Chen
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, People's Republic of China
| | - Mingchao Jin
- Department of Orthopaedics and Rehabilitation, Affiliated Huzhou Hospital, Zhejiang University School of Medicine; Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University; Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory; Huzhou Shushan Geriatric Hospital, Huzhou, People's Republic of China
| | - Shuo Chen
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jinlu Xie
- Huzhou Key Laboratory of Precise Prevention and Control of Major Chronic Diseases, School of Medicine, Huzhou University, Huzhou, Zhejiang 313000, People's Republic of China
| | - Shuhui Ge
- Key Laboratory of Textile Science & Technology, College of Textile, Donghua University, Shanghai, 201620, People's Republic of China
| | - Hongyi He
- School of Pharmacy, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Juntao Xu
- Department of Orthopaedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, Huzhou, People's Republic of China
| | - Fengfeng Wu
- Department of Orthopaedics and Rehabilitation, Affiliated Huzhou Hospital, Zhejiang University School of Medicine; Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University; Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory; Huzhou Shushan Geriatric Hospital, Huzhou, People's Republic of China
| |
Collapse
|
47
|
Choe Y, Li CJ, Yeo DH, Kim YJ, Lee JH, Lee HH. Hierarchically porous surface of HA-sandblasted Ti implant screw using the plasma electrolytic oxidation: Physical characterization and biological responses. J Biomater Appl 2024; 38:1100-1117. [PMID: 38580320 DOI: 10.1177/08853282241246210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The surface topological features of bioimplants are among the key indicators for bone tissue replacement because they directly affect cell morphology, adhesion, proliferation, and differentiation. In this study, we investigated the physical, electrochemical, and biological responses of sandblasted titanium (SB-Ti) surfaces with pore geometries fabricated using a plasma electrolytic oxidation (PEO) process. The PEO treatment was conducted at an applied voltage of 280 V in a solution bath consisting of 0.15 mol L-1 calcium acetate monohydrate and 0.02 mol L-1 calcium glycerophosphate for 3 min. The surface chemistry, wettability, mechanical properties and corrosion behavior of PEO-treated sandblasted Ti implants using hydroxyapatite particles (PEO-SB-Ti) were improved with the distribution of calcium phosphorous porous oxide layers, and showed a homogeneous and hierarchically porous surface with clusters of nanopores in a bath containing calcium acetate monohydrate and calcium glycerophosphate. To demonstrate the efficacy of PEO-SB-Ti, we investigated whether the implant affects biological responses. The proposed PEO-SB-Ti were evaluated with the aim of obtaining a multifunctional bone replacement model that could efficiently induce osteogenic differentiation as well as antibacterial activities. These physical and biological responses suggest that the PEO-SB-Ti may have a great potential for use an artificial bone replacement compared to that of the controls.
Collapse
Affiliation(s)
- YoungEun Choe
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Dong-Hyeon Yeo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yu-Jin Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
48
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
49
|
Meng C, Liu X, Li R, Malekmohammadi S, Feng Y, Song J, Gong RH, Li J. 3D Poly (L-lactic acid) fibrous sponge with interconnected porous structure for bone tissue scaffold. Int J Biol Macromol 2024; 268:131688. [PMID: 38642688 DOI: 10.1016/j.ijbiomac.2024.131688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Large bone defects, often resulting from trauma and disease, present significant clinical challenges. Electrospun fibrous scaffolds closely resembling the morphology and structure of natural ECM are highly interested in bone tissue engineering. However, the traditional electrospun fibrous scaffold has some limitations, including lacking interconnected macropores and behaving as a 2D scaffold. To address these challenges, a sponge-like electrospun poly(L-lactic acid) (PLLA)/polycaprolactone (PCL) fibrous scaffold has been developed by an innovative and convenient method (i.e., electrospinning, homogenization, progen leaching and shaping). The resulting scaffold exhibited a highly porous structure (overall porosity = 85.9 %) with interconnected, regular macropores, mimicking the natural extracellular matrix. Moreover, the incorporation of bioactive glass (BG) particles improved the hydrophilicity (water contact angle = 79.7°) and biocompatibility and promoted osteoblast cell growth. In-vitro 10-day experiment revealed that the scaffolds led to high cell viability. The increment of the proliferation rates was 195.4 % at day 7 and 281.6 % at day 10. More importantly, Saos-2 cells could grow, proliferate, and infiltrate into the scaffold. Therefore, this 3D PLLA/PCL with BG sponge holds great promise for bone defect repair in tissue engineering applications.
Collapse
Affiliation(s)
- Chen Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhao Liu
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK; Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Renzhi Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | | | - Yangyang Feng
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - R Hugh Gong
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
50
|
Liu X, Gao J, Liu J, Cheng J, Han Z, Li Z, Chang Z, Zhang L, Li M, Tang P. Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2581-2594. [PMID: 38489227 DOI: 10.1021/acsbiomaterials.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The treatment of bone tissue defects continues to be a complex medical issue. Recently, three-dimensional (3D)-printed scaffold technology for bone tissue engineering (BTE) has emerged as an important therapeutic approach for bone defect repair. Despite the potential of BTE scaffolds to contribute to long-term bone reconstruction, there are certain challenges associated with it including the impediment of bone growth within the scaffolds and vascular infiltration. These difficulties can be resolved by using scaffold structural modification strategies that can effectively guide bone regeneration. This study involved the preparation of biphasic calcium phosphate spherical hollow structural scaffolds (SHSS) with varying pore sizes using 3D printing (photopolymerized via digital light processing). The chemical compositions, microscopic morphologies, mechanical properties, biocompatibilities, osteogenic properties, and impact on repairing critical-sized bone defects of SHSS were assessed through characterization analyses, in vitro cytological assays, and in vivo biological experiments. The results revealed the biomimetic properties of SHSS and their favorable biocompatibility. The scaffolds stimulated cell adhesion, proliferation, differentiation, and migration and facilitated the expression of osteogenic genes and proteins, including Col-1, OCN, and OPN. Furthermore, they could effectively repair a critical-sized bone defect in a rabbit femoral condyle by establishing an osteogenic platform and guiding bone regeneration in the defect region. This innovative strategy presents a novel therapeutic approach for assessing critical-sized bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhenchuan Han
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zijian Li
- Medical School of Chinese PLA, Beijing 100853, China
| | | | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|