1
|
Yanai Y, Hoshino T, Kimura Y, Kawai-Noma S, Umeno D. Directed evolution of highly sensitive and stringent choline-induced gene expression controllers. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38880610 DOI: 10.2323/jgam.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Gene expression controllers are useful tools for microbial production of recombinant proteins and valued bio-based chemicals. Despite its usefulness, they have rarely been applied to the practical industrial bioprocess, due to the lack of systems that meets the three requirements: low cost, safety, and tight control, to the inducer molecules. Previously, we have developed the high-spec gene induction system controlled by safe and cheap inducer choline. However, the system requires relatively high concentration (~100 mM) of choline to fully induce the gene under control. In this work, we attempted to drastically improve the sensitivity of this induction system to further reduce the induction costs. To this end, we devised a simple circuit which couples gene induction system with positive-feedback loop (P-loop) of choline importer protein BetT. After the tuning of translation level of BetT (strength of the P-loop) and deletion of endogenous betI (noise sources), highly active yet stringent control of gene expression was achieved using about 100 times less amount of inducer molecules. The choline induction system developed in this study has the lowest basal expression, the lowest choline needed to be activated, and the highest amplitude of induction as the highest available promoter such as those known as PT5 system. With this system, one can tightly control the expression level of genes of interest with negligible cost for inducer molecule, which has been the bottleneck for the application to the large-scale industrial processes.
Collapse
Affiliation(s)
- Yuki Yanai
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| | - Takayuki Hoshino
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University
| | - Yuki Kimura
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| | - Shigeko Kawai-Noma
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Chiba University
| | - Daisuke Umeno
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University
| |
Collapse
|
2
|
Islam F, Lewis MR, Craig JD, Leyendecker PM, Deans TL. Advancing in vivo reprogramming with synthetic biology. Curr Opin Biotechnol 2024; 87:103109. [PMID: 38520824 PMCID: PMC11162311 DOI: 10.1016/j.copbio.2024.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Reprogramming cells will play a fundamental role in shaping the future of cell therapies by developing new strategies to engineer cells for improved performance and higher-order physiological functions. Approaches in synthetic biology harness cells' natural ability to sense diverse signals, integrate environmental inputs to make decisions, and execute complex behaviors based on the health of the organism or tissue. In this review, we highlight strategies in synthetic biology to reprogram cells, and discuss how recent approaches in the delivery of modified mRNA have created new opportunities to alter cell function in vivo. Finally, we discuss how combining concepts from synthetic biology and the delivery of mRNA in vivo could provide a platform for innovation to advance in vivo cellular reprogramming.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Mitchell R Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James D Craig
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Peyton M Leyendecker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Mansouri M, Fussenegger M. Small-Molecule Regulators for Gene Switches to Program Mammalian Cell Behaviour. Chembiochem 2024; 25:e202300717. [PMID: 38081780 DOI: 10.1002/cbic.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Synthetic or natural small molecules have been extensively employed as trigger signals or inducers to regulate engineered gene circuits introduced into living cells in order to obtain desired outputs in a controlled and predictable manner. Here, we provide an overview of small molecules used to drive synthetic-biology-based gene circuits in mammalian cells, together with examples of applications at different levels of control, including regulation of DNA manipulation, RNA synthesis and editing, and protein synthesis, maturation, and trafficking. We also discuss the therapeutic potential of these small-molecule-responsive gene circuits, focusing on the advantages and disadvantages of using small molecules as triggers, the mechanisms involved, and the requirements for selecting suitable molecules, including efficiency, specificity, orthogonality, and safety. Finally, we explore potential future directions for translation of these devices to clinical medicine.
Collapse
Affiliation(s)
- Maysam Mansouri
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| | - Martin Fussenegger
- ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
- University of Basel, Faculty of Science, Klingelbergstrasse 48, CH-4056, Basel, Switzerland
| |
Collapse
|
4
|
Tan K, Hu Y, Liang Z, Li CY, Yau WL, Kuang Y. Dual Input-Controlled Synthetic mRNA Circuit for Bidirectional Protein Expression Regulation. ACS Synth Biol 2023; 12:2516-2523. [PMID: 37652441 PMCID: PMC10510700 DOI: 10.1021/acssynbio.3c00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/02/2023]
Abstract
Synthetic mRNA circuits manipulate cell fate by controlling output protein expression via cell-specific input molecule detection. Most current circuits either repress or enhance output production upon input binding. Such binary input-output mechanisms restrict the fine-tuning of protein expression to control complex cellular events. Here we designed mRNA circuits using enhancer/repressor modules that were independently controlled by different input molecules, resulting in bidirectional output regulation; the maximal enhancement over maximal repression was 57 fold. The circuit either enhances or represses protein production in different cells based on the difference in the expression of two microRNAs. This study examined novel bidirectional circuit designs capable of fine-tuning protein production by sensing multiple input molecules. It also broadened the scope of cell manipulation by synthetic mRNA circuits, facilitating the development of mRNA circuits for precise cell manipulation and providing cell-based solutions to biomedical problems.
Collapse
Affiliation(s)
- Kaixin Tan
- Department
of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Building, Clear
Water Bay, Kowloon, Hong Kong
| | - Yaxin Hu
- Department
of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Building, Clear
Water Bay, Kowloon, Hong Kong
| | - Zhenghua Liang
- Department
of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Building, Clear
Water Bay, Kowloon, Hong Kong
| | - Cheuk Yin Li
- Department
of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Building, Clear
Water Bay, Kowloon, Hong Kong
| | - Wai Laam Yau
- Department
of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Building, Clear
Water Bay, Kowloon, Hong Kong
| | - Yi Kuang
- Department
of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Room 5578, Academic Building, Clear
Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
6
|
Wang X, Zhou X, Kang L, Lai Y, Ye H. Engineering natural molecule-triggered genetic control systems for tunable gene- and cell-based therapies. Synth Syst Biotechnol 2023; 8:416-426. [PMID: 37384125 PMCID: PMC10293594 DOI: 10.1016/j.synbio.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
The ability to precisely control activities of engineered designer cells provides a novel strategy for modern precision medicine. Dynamically adjustable gene- and cell-based precision therapies are recognized as next generation medicines. However, the translation of these controllable therapeutics into clinical practice is severely hampered by the lack of safe and highly specific genetic switches controlled by triggers that are nontoxic and side-effect free. Recently, natural products derived from plants have been extensively explored as trigger molecules to control genetic switches and synthetic gene networks for multiple applications. These controlled genetic switches could be further introduced into mammalian cells to obtain synthetic designer cells for adjustable and fine tunable cell-based precision therapy. In this review, we introduce various available natural molecules that were engineered to control genetic switches for controllable transgene expression, complex logic computation, and therapeutic drug delivery to achieve precision therapy. We also discuss current challenges and prospects in translating these natural molecule-controlled genetic switches developed for biomedical applications from the laboratory to the clinic.
Collapse
|
7
|
Li CY, Wu T, Zhao XJ, Yu CP, Wang ZX, Zhou XF, Li SN, Li JD. A glucose-blue light AND gate-controlled chemi-optogenetic cell-implanted therapy for treating type-1 diabetes in mice. Front Bioeng Biotechnol 2023; 11:1052607. [PMID: 36845170 PMCID: PMC9954140 DOI: 10.3389/fbioe.2023.1052607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Exogenous insulin therapy is the mainstay treatment for Type-1 diabetes (T1D) caused by insulin deficiency. A fine-tuned insulin supply system is important to maintain the glucose homeostasis. In this study, we present a designed cell system that produces insulin under an AND gate control, which is triggered only in the presence of both high glucose and blue light illumination. The glucose-sensitive GIP promoter induces the expression of GI-Gal4 protein, which forms a complex with LOV-VP16 in the presence of blue light. The GI-Gal4:LOV-VP16 complex then promotes the expression of UAS-promoter-driven insulin. We transfected these components into HEK293T cells, and demonstrated the insulin was secreted under the AND gate control. Furthermore, we showed the capacity of the engineered cells to improve the blood glucose homeostasis through implantation subcutaneously into Type-1 diabetes mice.
Collapse
Affiliation(s)
- Chi-Yu Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Ting Wu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Xing-Jun Zhao
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Cheng-Ping Yu
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Zi-Xue Wang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Xiao-Fang Zhou
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Shan-Ni Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China,Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Disease, Changsha, China,*Correspondence: Jia-Da Li,
| |
Collapse
|
8
|
Gödecke N, Herrmann S, Weichelt V, Wirth D. A Ubiquitous Chromatin Opening Element and DNA Demethylation Facilitate Doxycycline-Controlled Expression during Differentiation and in Transgenic Mice. ACS Synth Biol 2023; 12:482-491. [PMID: 36755406 PMCID: PMC9942253 DOI: 10.1021/acssynbio.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic expression cassettes provide the ability to control transgene expression in experimental animal models through external triggers, enabling the study of gene function and the modulation of endogenous regulatory networks in vivo. The performance of synthetic expression cassettes in transgenic animals critically depends on the regulatory properties of the respective chromosomal integration sites, which are affected by the remodeling of the chromatin structure during development. The epigenetic status may affect the transcriptional activity of the synthetic cassettes and even lead to transcriptional silencing, depending on the chromosomal sites and the tissue. In this study, we investigated the influence of the ubiquitous chromosome opening element (UCOE) HNRPA2B1-CBX3 and its subfragments A2UCOE and CBX3 on doxycycline-controlled expression modules within the chromosomal Rosa26 locus. While HNRPA2B1-CBX3 and A2UCOE reduced the expression of the synthetic cassettes in mouse embryonic stem cells, CBX3 stabilized the expression and facilitated doxycycline-controlled expression after in vitro differentiation. In transgenic mice, the CBX3 element protected the cassettes from overt silencing although the expression was moderate and only partially controlled by doxycycline. We demonstrate that CBX3-flanked synthetic cassettes can be activated by decitabine-mediated blockade of DNA methylation or by specific recruitment of the catalytic demethylation domain of the ten-eleven translocation protein TET1 to the synthetic promoter. This suggests that CBX3 renders the synthetic cassettes permissive for subsequent epigenetic activation, thereby supporting doxycycline-controlled expression. Together, this study reveals a strategy for overcoming epigenetic constraints of synthetic expression cassettes, facilitating externally controlled transgene expression in mice.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Herrmann
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Viola Weichelt
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany,Institute
of Experimental Hematology, Medical University
Hannover (MHH), 30625 Hannover, Germany,
| |
Collapse
|
9
|
Pferdehirt L, Guo P, Lu A, Huard M, Guilak F, Huard J. In vitro analysis of genome-engineered muscle-derived stem cells for autoregulated anti-inflammatory and antifibrotic activity. J Orthop Res 2022; 40:2937-2946. [PMID: 35293626 PMCID: PMC9477979 DOI: 10.1002/jor.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Traumatic muscle injury leads to chronic and pathologic fibrosis in skeletal muscles, primarily driven through upregulation of transforming growth factor-β1 (TGF-β1). Cell-based therapies, such as injection of muscle-derived stem cells (MDSCs), have shown promise in muscle repair. However, injected MDSCs in injured skeletal muscle can differentiate into myofibroblasts under the influence of TGF-β1, and contribute to the development of fibrosis, limiting their regenerative potential. In this study, we created a "smart" cell-based drug delivery system using CRISPR-Cas9 to genetically engineer MDSCs capable of sensing TGF-β1 and producing an antifibrotic biologic, decorin. These gene-edited smart cells, capable of inhibiting fibrosis in a dose-dependent and autoregulating manner, show anti-inflammatory and antifibrotic properties in vitro, without changing the expression of myogenic and stem cell markers as well as their cell proliferation and myogenic differentiation. Additionally, differentiation down a fibrotic lineage is reduced or eliminated in response to TGF-β1. Our results show that gene editing can be used to successfully create smart stem cells capable of producing biologic drugs with antifibrotic capabilities in a controlled and localized manner. This system provides a tool for cell-based drug delivery as the basis for a novel therapeutic approach for a variety of diseases.
Collapse
Affiliation(s)
- Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University,
St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St.
Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St.
Louis, MO 63110, USA
| | - Ping Guo
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| | - Aiping Lu
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| | - Mathew Huard
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University,
St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St.
Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St.
Louis, MO 63110, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| |
Collapse
|
10
|
HepG2-Based Designer Cells with Heat-Inducible Enhanced Liver Functions. Cells 2022; 11:cells11071194. [PMID: 35406758 PMCID: PMC8997820 DOI: 10.3390/cells11071194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/07/2023] Open
Abstract
Functional human hepatocytes have been a pivotal tool in pharmacological studies such as those investigating drug metabolism and hepatotoxicity. However, primary human hepatocytes are difficult to obtain in large quantities and may cause ethical problems, necessitating the development of a new cell source to replace human primary hepatocytes. We previously developed genetically modified murine hepatoma cell lines with inducible enhanced liver functions, in which eight liver-enriched transcription factor (LETF) genes were introduced into hepatoma cells as inducible transgene expression cassettes. Here, we establish a human hepatoma cell line with heat-inducible liver functions using HepG2 cells. The genetically modified hepatoma cells, designated HepG2/8F_HS, actively proliferated under normal culture conditions and, therefore, can be easily prepared in large quantities. When the expression of LETFs was induced by heat treatment at 43 °C for 30 min, cells ceased proliferation and demonstrated enhanced liver functions. Furthermore, three-dimensional spheroid cultures of HepG2/8F_HS cells showed a further increase in liver functions upon heat treatment. Comprehensive transcriptome analysis using DNA microarrays revealed that HepG2/8F_HS cells had enhanced overall expression of many liver function-related genes following heat treatment. HepG2/8F_HS cells could be useful as a new cell source for pharmacological studies and for constructing bioartificial liver systems.
Collapse
|
11
|
Nims RJ, Pferdehirt L, Guilak F. Mechanogenetics: harnessing mechanobiology for cellular engineering. Curr Opin Biotechnol 2022; 73:374-379. [PMID: 34735987 PMCID: PMC10061441 DOI: 10.1016/j.copbio.2021.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/28/2023]
Abstract
'Mechanogenetics,' a new field at the convergence of mechanobiology and synthetic biology, presents an innovative strategy to treat, repair, or restore diseased cells and tissues by harnessing mechanical signal transduction pathways to control gene expression. While the role of mechanical forces in regulating development, homeostasis, and disease is well established, only recently have we identified the specific mechanosensors and downstream signaling pathways involved in these processes. Simultaneously, synthetic biological systems are developing increasingly sophisticated approaches of controlling mammalian cellular responses. Continued mechanistic refinement and identification of how cellular mechanosensors respond to homeostatic and pathological mechanical forces, combined with synthetic tools to integrate and respond to these inputs, promises to extend the development of new therapeutic approaches for treating disease.
Collapse
Affiliation(s)
- Robert J Nims
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children - Saint Louis, St. Louis, MO, 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63105, USA.
| |
Collapse
|
12
|
Wang Z, Yan Y, Zhang H. Design and Characterization of an Optogenetic System in Pichia pastoris. ACS Synth Biol 2022; 11:297-307. [PMID: 34994189 DOI: 10.1021/acssynbio.1c00422] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Yunjun Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| |
Collapse
|
13
|
Kavaliauskaitė J, Kazlauskaitė A, Lazutka JR, Mozolevskis G, Stirkė A. Pulsed Electric Fields Alter Expression of NF-κB Promoter-Controlled Gene. Int J Mol Sci 2021; 23:ijms23010451. [PMID: 35008875 PMCID: PMC8745616 DOI: 10.3390/ijms23010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The possibility to artificially adjust and fine-tune gene expression is one of the key milestones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any applications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a NF-κB pathway-controlled transcription system, to a range of microsecond-duration pulsed electric field parameters. To prevent toxicity, we used protocols that would generate relatively mild physical stimulation. The present study, for the first time, proves the principle that microsecond-duration pulsed electric fields can alter single-gene expression in plasmid context in mammalian cells without significant damage to cell integrity or viability. Gene expression might be upregulated or downregulated depending on the cell line and parameters applied. This noninvasive, ligand-, cofactor-, nanoparticle-free approach enables easily controlled direct electrostimulation of the construct carrying the gene of interest; the discovery may contribute towards the path of simplification of the complexity of physical systems in gene regulation and create further synergies between electronics, synthetic biology, and medicine.
Collapse
Affiliation(s)
- Justina Kavaliauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Auksė Kazlauskaitė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Juozas Rimantas Lazutka
- Department of Botany and Genetics, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10222 Vilnius, Lithuania;
| | - Gatis Mozolevskis
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
| | - Arūnas Stirkė
- Laboratory of Bioelectrics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (J.K.); (A.K.)
- Laboratory of Prototyping of Electronic and Photonic Devices, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia;
- Correspondence:
| |
Collapse
|
14
|
Cazier AP, Blazeck J. Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J 2021; 16:e2100239. [PMID: 34351706 DOI: 10.1002/biot.202100239] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Synthetic biology continues to progress by relying on more robust tools for transcriptional control, of which promoters are the most fundamental component. Numerous studies have sought to characterize promoter function, determine principles to guide their engineering, and create promoters with stronger expression or tailored inducible control. In this review, we will summarize promoter architecture and highlight recent advances in the field, focusing on the novel applications of inducible promoter design and engineering towards metabolic engineering and cellular therapeutic development. Additionally, we will highlight how the expansion of new, machine learning techniques for modeling and engineering promoter sequences are enabling more accurate prediction of promoter characteristics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew P Cazier
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| |
Collapse
|
15
|
Love AC, Tran SH, Prescher JA. Caged Cumate Enables Proximity-Dependent Control Over Gene Expression. Chembiochem 2021; 22:2440-2448. [PMID: 34031982 PMCID: PMC9870035 DOI: 10.1002/cbic.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Indexed: 01/26/2023]
Abstract
Cell-cell interactions underlie diverse physiological processes yet remain challenging to examine with conventional imaging tools. Here we report a novel strategy to illuminate cell proximity using transcriptional activators. We repurposed cumate, a small molecule inducer of gene expression, by caging its key carboxylate group with a nitrile. Nitrilase-expressing activator cells released the cage, liberating cumate for consumption by reporter cells. Reporter cells comprising a cumate-responsive switch expressed a target gene when in close proximity to the activator cells. Overall, this strategy provides a versatile platform to image and potentially manipulate cellular interactions over time.
Collapse
Affiliation(s)
- Anna C Love
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
| | - Sabrina H Tran
- Department of Biological Sciences, University of California, Irvine, 5120 Natural Sciences II, Irvine, CA, 92627, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, 1120 Natural Sciences II, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, 101 Theory, Ste. 101, Irvine, CA 92697, USA
| |
Collapse
|
16
|
Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat Commun 2021; 12:3388. [PMID: 34099676 PMCID: PMC8184832 DOI: 10.1038/s41467-021-23572-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/23/2021] [Indexed: 02/05/2023] Open
Abstract
Wearable smart electronic devices, such as smart watches, are generally equipped with green-light-emitting diodes, which are used for photoplethysmography to monitor a panoply of physical health parameters. Here, we present a traceless, green-light-operated, smart-watch-controlled mammalian gene switch (Glow Control), composed of an engineered membrane-tethered green-light-sensitive cobalamin-binding domain of Thermus thermophilus (TtCBD) CarH protein in combination with a synthetic cytosolic TtCBD-transactivator fusion protein, which manage translocation of TtCBD-transactivator into the nucleus to trigger expression of transgenes upon illumination. We show that Apple-Watch-programmed percutaneous remote control of implanted Glow-controlled engineered human cells can effectively treat experimental type-2 diabetes by producing and releasing human glucagon-like peptide-1 on demand. Directly interfacing wearable smart electronic devices with therapeutic gene expression will advance next-generation personalized therapies by linking biopharmaceutical interventions to the internet of things.
Collapse
|
17
|
Patel YD, Brown AJ, Zhu J, Rosignoli G, Gibson SJ, Hatton D, James DC. Control of Multigene Expression Stoichiometry in Mammalian Cells Using Synthetic Promoters. ACS Synth Biol 2021; 10:1155-1165. [PMID: 33939428 PMCID: PMC8296667 DOI: 10.1021/acssynbio.0c00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/22/2023]
Abstract
To successfully engineer mammalian cells for a desired purpose, multiple recombinant genes are required to be coexpressed at a specific and optimal ratio. In this study, we hypothesized that synthetic promoters varying in transcriptional activity could be used to create single multigene expression vectors coexpressing recombinant genes at a predictable relative stoichiometry. A library of 27 multigene constructs was created comprising three discrete fluorescent reporter gene transcriptional units in fixed series, each under the control of either a relatively low, medium, or high transcriptional strength synthetic promoter in every possible combination. Expression of each reporter gene was determined by absolute quantitation qRT-PCR in CHO cells. The synthetic promoters did generally function as designed within a multigene vector context; however, significant divergences from predicted promoter-mediated transcriptional activity were observed. First, expression of all three genes within a multigene vector was repressed at varying levels relative to coexpression of identical reporter genes on separate single gene vectors at equivalent gene copies. Second, gene positional effects were evident across all constructs where expression of the reporter genes in positions 2 and 3 was generally reduced relative to position 1. Finally, after accounting for general repression, synthetic promoter transcriptional activity within a local multigene vector format deviated from that expected. Taken together, our data reveal that mammalian synthetic promoters can be employed in vectors to mediate expression of multiple genes at predictable relative stoichiometries. However, empirical validation of functional performance is a necessary prerequisite, as vector and promoter design features can significantly impact performance.
Collapse
Affiliation(s)
- Yash D. Patel
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Adam J. Brown
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| | - Jie Zhu
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Guglielmo Rosignoli
- Dynamic
Omics, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Suzanne J. Gibson
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - Diane Hatton
- Cell
Culture and Fermentation Sciences, BioPharmaceuticals Development,
R&D, AstraZeneca, Cambridge, CB21 6GH, U.K.
| | - David C. James
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, U.K.
| |
Collapse
|
18
|
Wagner HJ, Weber W, Fussenegger M. Synthetic Biology: Emerging Concepts to Design and Advance Adeno-Associated Viral Vectors for Gene Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004018. [PMID: 33977059 PMCID: PMC8097373 DOI: 10.1002/advs.202004018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Indexed: 05/28/2023]
Abstract
Three recent approvals and over 100 ongoing clinical trials make adeno-associated virus (AAV)-based vectors the leading gene delivery vehicles in gene therapy. Pharmaceutical companies are investing in this small and nonpathogenic gene shuttle to increase the therapeutic portfolios within the coming years. This prospect of marking a new era in gene therapy has fostered both investigations of the fundamental AAV biology as well as engineering studies to enhance delivery vehicles. Driven by the high clinical potential, a new generation of synthetic-biologically engineered AAV vectors is on the rise. Concepts from synthetic biology enable the control and fine-tuning of vector function at different stages of cellular transduction and gene expression. It is anticipated that the emerging field of synthetic-biologically engineered AAV vectors can shape future gene therapeutic approaches and thus the design of tomorrow's gene delivery vectors. This review describes and discusses the recent trends in capsid and vector genome engineering, with particular emphasis on synthetic-biological approaches.
Collapse
Affiliation(s)
- Hanna J. Wagner
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Wilfried Weber
- Faculty of BiologyUniversity of FreiburgSchänzlestraße 1Freiburg79104Germany
- Signalling Research Centres BIOSS and CIBSSUniversity of FreiburgSchänzlestraße 18Freiburg79104Germany
| | - Martin Fussenegger
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26Basel4058Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 50Basel4056Switzerland
| |
Collapse
|
19
|
Chow KHK, Budde MW, Granados AA, Cabrera M, Yoon S, Cho S, Huang TH, Koulena N, Frieda KL, Cai L, Lois C, Elowitz MB. Imaging cell lineage with a synthetic digital recording system. Science 2021; 372:eabb3099. [PMID: 33833095 DOI: 10.1126/science.abb3099] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
During multicellular development, spatial position and lineage history play powerful roles in controlling cell fate decisions. Using a serine integrase-based recording system, we engineered cells to record lineage information in a format that can be read out in situ. The system, termed integrase-editable memory by engineered mutagenesis with optical in situ readout (intMEMOIR), allowed in situ reconstruction of lineage relationships in cultured mouse cells and flies. intMEMOIR uses an array of independent three-state genetic memory elements that can recombine stochastically and irreversibly, allowing up to 59,049 distinct digital states. It reconstructed lineage trees in stem cells and enabled simultaneous analysis of single-cell clonal history, spatial position, and gene expression in Drosophila brain sections. These results establish a foundation for microscopy-readable lineage recording and analysis in diverse systems.
Collapse
Affiliation(s)
- Ke-Huan K Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mark W Budde
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alejandro A Granados
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Maria Cabrera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shinae Yoon
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Soomin Cho
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ting-Hao Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noushin Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
20
|
Rondon R, Wilson CJ. Engineering Alternate Ligand Recognition in the PurR Topology: A System of Novel Caffeine Biosensing Transcriptional Antirepressors. ACS Synth Biol 2021; 10:552-565. [PMID: 33689294 DOI: 10.1021/acssynbio.0c00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances in synthetic biology and protein engineering have increased the number of allosteric transcription factors used to regulate independent promoters. These developments represent an important increase in our biological computing capacity, which will enable us to construct more sophisticated genetic programs for a broad range of biological technologies. However, the majority of these transcription factors are represented by the repressor phenotype (BUFFER), and require layered inversion to confer the antithetical logical function (NOT), requiring additional biological resources. Moreover, these engineered transcription factors typically utilize native ligand binding functions paired with alternate DNA binding functions. In this study, we have advanced the state-of-the-art by engineering and redesigning the PurR topology (a native antirepressor) to be responsive to caffeine, while mitigating responsiveness to the native ligand hypoxanthine-i.e., a deamination product of the input molecule adenine. Importantly, the resulting caffeine responsive transcription factors are not antagonized by the native ligand hypoxanthine. In addition, we conferred alternate DNA binding to the caffeine antirepressors, and to the PurR scaffold, creating 38 new transcription factors that are congruent with our current transcriptional programming structure. Finally, we leveraged this system of transcription factors to create integrated NOR logic and related feedback operations. This study represents the first example of a system of transcription factors (antirepressors) in which both the ligand binding site and the DNA binding functions were successfully engineered in tandem.
Collapse
Affiliation(s)
- Ronald Rondon
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Corey J. Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
21
|
Mc Cafferty S, De Temmerman J, Kitada T, Becraft JR, Weiss R, Irvine DJ, Devreese M, De Baere S, Combes F, Sanders NN. In Vivo Validation of a Reversible Small Molecule-Based Switch for Synthetic Self-Amplifying mRNA Regulation. Mol Ther 2020; 29:1164-1173. [PMID: 33186690 DOI: 10.1016/j.ymthe.2020.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/03/2020] [Accepted: 11/05/2020] [Indexed: 12/01/2022] Open
Abstract
Synthetic mRNA therapeutics have the potential to revolutionize healthcare, as they enable patients to produce therapeutic proteins inside their own bodies. However, convenient methods that allow external control over the timing and magnitude of protein production after in vivo delivery of synthetic mRNA are lacking. In this study, we validate the in vivo utility of a synthetic self-amplifying mRNA (RNA replicon) whose expression can be turned off using a genetic switch that responds to oral administration of trimethoprim (TMP), a US Food and Drug Administration (FDA)-approved small-molecule drug. After intramuscular electroporation, the engineered RNA replicon exhibited dose-dependent and reversible expression of its encoded protein upon TMP administration. The TMP serum level needed for maximal downregulation of protein translation was approximately 45-fold below that used in humans for therapeutic purposes. To demonstrate the therapeutic potential of the technology, we injected mice with a TMP-responsive RNA replicon encoding erythropoietin (EPO) and successfully controlled the timing and magnitude of EPO production as well as changes in hematocrit. This work demonstrates the feasibility of controlling mRNA kinetics in vivo, thereby broadly expanding the clinical versatility of mRNA therapeutics.
Collapse
Affiliation(s)
- Sean Mc Cafferty
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Joyca De Temmerman
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium; Department of Pathology, Bacteriology and Poultry diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | | | | - Ron Weiss
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Mathias Devreese
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Francis Combes
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
22
|
Strobel B, Düchs MJ, Blazevic D, Rechtsteiner P, Braun C, Baum-Kroker KS, Schmid B, Ciossek T, Gottschling D, Hartig JS, Kreuz S. A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synth Biol 2020; 9:1292-1305. [PMID: 32427483 DOI: 10.1021/acssynbio.9b00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy holds great potential for future medical applications. However, to facilitate safer and broader applicability and to enable patient-centric care, therapeutic protein expression should be controllable, ideally by an orally administered drug. The use of protein-based systems is considered rather undesirable, due to potential immunogenicity and the limited coding space of AAV. Ligand-dependent riboswitches, in contrast, are small and characterized by an attractive mode-of-action based on mRNA-self-cleavage, independent of coexpressed foreign protein. While a promising approach, switches available to date have only shown moderate potency in animals. In particular, ON-switches that induce transgene expression upon ligand administration so far have achieved rather disappointing results. Here we present the utilization of the previously described tetracycline-dependent ribozyme K19 for controlling AAV-mediated transgene expression in mice. Using this tool switch, we provide first proof for the feasibility of clinically desired key features, including multiorgan functionality, potent regulation (up to 15-fold induction), reversibility, and the possibility to fine-tune and repeatedly induce expression. The systematic assessment of ligand and reporter protein plasma levels further enabled the characterization of pharmacokinetic-pharmacodynamic relationships. Thus, our results strongly support future efforts to develop engineered riboswitches for applications in clinical gene therapy.
Collapse
Affiliation(s)
- Benjamin Strobel
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Matthias J. Düchs
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Philipp Rechtsteiner
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Bernhard Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Thomas Ciossek
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dirk Gottschling
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| |
Collapse
|
23
|
Kawasaki S, Ono H, Hirosawa M, Saito H. RNA and protein-based nanodevices for mammalian post-transcriptional circuits. Curr Opin Biotechnol 2020; 63:99-110. [DOI: 10.1016/j.copbio.2019.11.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022]
|
24
|
Ono H, Kawasaki S, Saito H. Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology. ACS Synth Biol 2020; 9:169-174. [PMID: 31765565 DOI: 10.1021/acssynbio.9b00343] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The lack of available genetic modules is a fundamental issue in mammalian synthetic biology. Especially, the variety of genetic parts for translational control are limited. Here we report a new set of synthetic mRNA-based translational switches by engineering RNA-binding proteins (RBPs) and RBP-binding RNA motifs (aptamers) that perform strong translational repression. We redesigned the RNA motifs with RNA scaffolds and improved the efficiency of the repression to target RBPs. Using new and previously reported mRNA switches, we demonstrated that the orthogonality of translational regulation was ensured among five different RBP-responsive switches. Moreover, the new switches functioned not only with plasmid introduction, but also with RNA-only delivery, which provides a transient and safer regulation of expression. The translational regulators using RNA-protein interactions provide an alternative strategy to construct complex genetic circuits for future cell engineering and therapeutics.
Collapse
Affiliation(s)
- Hiroki Ono
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shunsuke Kawasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
25
|
Pferdehirt L, Ross AK, Brunger JM, Guilak F. A Synthetic Gene Circuit for Self-Regulating Delivery of Biologic Drugs in Engineered Tissues. Tissue Eng Part A 2019; 25:809-820. [PMID: 30968743 DOI: 10.1089/ten.tea.2019.0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
IMPACT STATEMENT We engineered a synthetic transcription system based on nuclear factor kappa-light-chain-enhancer of activated B cells signaling that can attenuate the effects of the inflammatory cytokine interleukin (IL)-1α in a self-regulating manner. This system responds in a time- and dose-dependent manner to rapidly produce therapeutic levels of IL-1 receptor antagonist (IL-1Ra). The use of lentiviral gene therapy allows this system to be utilized through different transduction methods and in different cell types for a variety of applications. Broadly, this approach may be applicable in developing autoregulated biologic systems for tissue engineering and drug delivery in a range of disease applications.
Collapse
Affiliation(s)
- Lara Pferdehirt
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Alison K Ross
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| | - Jonathan M Brunger
- 5 Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Farshid Guilak
- 1 Department of Orthopedic Surgery, Washington University in Saint Louis, Saint Louis, Missouri.,2 Shriners Hospitals for Children-St. Louis, St. Louis, Missouri.,3 Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri.,4 Center of Regenerative Medicine, Washington University in Saint Louis, Saint Louis, Missouri
| |
Collapse
|
26
|
Xie M, Fussenegger M. Designing cell function: assembly of synthetic gene circuits for cell biology applications. Nat Rev Mol Cell Biol 2019; 19:507-525. [PMID: 29858606 DOI: 10.1038/s41580-018-0024-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic biology is the discipline of engineering application-driven biological functionalities that were not evolved by nature. Early breakthroughs of cell engineering, which were based on ectopic (over)expression of single sets of transgenes, have already had a revolutionary impact on the biotechnology industry, regenerative medicine and blood transfusion therapies. Now, we require larger-scale, rationally assembled genetic circuits engineered to programme and control various human cell functions with high spatiotemporal precision in order to solve more complex problems in applied life sciences, biomedicine and environmental sciences. This will open new possibilities for employing synthetic biology to advance personalized medicine by converting cells into living therapeutics to combat hitherto intractable diseases.
Collapse
Affiliation(s)
- Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,University of Basel, Faculty of Science, Basel, Switzerland.
| |
Collapse
|
27
|
Lillacci G, Benenson Y, Khammash M. Synthetic control systems for high performance gene expression in mammalian cells. Nucleic Acids Res 2019; 46:9855-9863. [PMID: 30203050 PMCID: PMC6182142 DOI: 10.1093/nar/gky795] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/02/2018] [Indexed: 11/14/2022] Open
Abstract
Tunable induction of gene expression is an essential tool in biology and biotechnology. In spite of that, current induction systems often exhibit unpredictable behavior and performance shortcomings, including high sensitivity to transactivator dosage and plasmid take-up variation, and excessive consumption of cellular resources. To mitigate these limitations, we introduce here a novel family of gene expression control systems of varying complexity with significantly enhanced performance. These include: (i) an incoherent feedforward circuit that exhibits output tunability and robustness to plasmid take-up variation; (ii) a negative feedback circuit that reduces burden and provides robustness to transactivator dosage variability; and (iii) a new hybrid circuit integrating negative feedback and incoherent feedforward that combines the benefits of both. As with endogenous circuits, the complexity of our genetic controllers is not gratuitous, but is the necessary outcome of more stringent performance requirements. We demonstrate the benefits of these controllers in two applications. In a culture of CHO cells for protein manufacturing, the circuits result in up to a 2.6-fold yield improvement over a standard system. In human-induced pluripotent stem cells they enable precisely regulated expression of an otherwise poorly tolerated gene of interest, resulting in a significant increase in the viability of the transfected cells.
Collapse
Affiliation(s)
- Gabriele Lillacci
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Yaakov Benenson
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
28
|
Menn D, Sochor P, Goetz H, Tian XJ, Wang X. Intracellular Noise Level Determines Ratio Control Strategy Confined by Speed-Accuracy Trade-off. ACS Synth Biol 2019; 8:1352-1360. [PMID: 31083890 DOI: 10.1021/acssynbio.9b00030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Robust and precise ratio control of heterogeneous phenotypes within an isogenic population is an essential task, especially in the development and differentiation of a large number of cells such as bacteria, sensory receptors, and blood cells. However, the mechanisms of such ratio control are poorly understood. Here, we employ experimental and mathematical techniques to understand the combined effects of signal induction and gene expression stochasticity on phenotypic multimodality. We identify two strategies to control phenotypic ratios from an initially homogeneous population, suitable roughly to high-noise and low-noise intracellular environments, and we show that both can be used to generate precise fractional differentiation. In noisy gene expression contexts, such as those found in bacteria, induction within the circuit's bistable region is enough to cause noise-induced bimodality within a feasible time frame. However, in less noisy contexts, such as tightly controlled eukaryotic systems, spontaneous state transitions are rare and hence bimodality needs to be induced with a controlled pulse of induction that falls outside the bistable region. Finally, we show that noise levels, system response time, and ratio tuning accuracy impose trade-offs and limitations on both ratio control strategies, which guide the selection of strategy alternatives.
Collapse
Affiliation(s)
- David Menn
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Patrick Sochor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Hanah Goetz
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Xiao-Jun Tian
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| | - Xiao Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
29
|
Healy CP, Deans TL. Genetic circuits to engineer tissues with alternative functions. J Biol Eng 2019; 13:39. [PMID: 31073328 PMCID: PMC6500048 DOI: 10.1186/s13036-019-0170-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent and complex problems arising with respect to human physiology and pathology have led to intense investigation into therapies and tools that permit more targeted outcomes and biomimetic responses to pathological conditions. A primary goal in mammalian synthetic biology is to build genetic circuits that exert fine control over cell behavior for next-generation biomedical applications. In pursuit of this, synthetic biologists have engineered cells endowed with genetic circuits with sensor that are capable of reacting to a variety of stimuli and responding with targeted behavior. Here, we highlight how synthetic biology approaches are being used to program cells with novel functions for therapeutic applications, and how they can be used in stem cells to improve differentiation outcomes. These approaches open the possibilities for engineering synthetic tissues for employing personalized medicine and to develop next-generation biomedical therapies.
Collapse
Affiliation(s)
- C P Healy
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| | - T L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA
| |
Collapse
|
30
|
Ito A, Teranishi R, Kamei K, Yamaguchi M, Ono A, Masumoto S, Sonoda Y, Horie M, Kawabe Y, Kamihira M. Magnetically triggered transgene expression in mammalian cells by localized cellular heating of magnetic nanoparticles. J Biosci Bioeng 2019; 128:355-364. [PMID: 30962099 DOI: 10.1016/j.jbiosc.2019.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
To develop a remote control system of transgene expression through localized cellular heating of magnetic nanoparticles, a heat-inducible transgene expression system was introduced into mammalian cells. Cells were labeled with magnetic nanoparticles and exposed to an alternating magnetic field. The magnetically labeled cells expressed the transgene in a monolayer and multilayered cell sheets in which cells were heated around the magnetic nanoparticles without an apparent temperature increase in the culture medium. Magnetic cells were also generated by genetically engineering with a ferritin gene, and transgene expression could be induced by exposure to an alternating magnetic field. This approach may be applicable to the development of novel gene therapies in cell-based medicine.
Collapse
Affiliation(s)
- Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoji Teranishi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kazuki Kamei
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Yamaguchi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiko Ono
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinya Masumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuto Sonoda
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masanobu Horie
- Division of Biochemical Engineering, Radioisotope Research Center, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
31
|
Abstract
Engineered immune-cell-based cancer therapies have demonstrated robust efficacy in B cell malignancies, but challenges such as the lack of ideal targetable tumour antigens, tumour-mediated immunosuppression and severe toxicity still hinder their therapeutic efficacy and broad applicability. Synthetic biology can be used to overcome these challenges and create more robust, effective adaptive therapies that enable the specific targeting of cancer cells while sparing healthy cells. In this Progress article, we review recently developed gene circuit therapies for cancer using immune cells, nucleic acids and bacteria as chassis. We conclude by discussing outstanding challenges and future directions for realizing these gene circuit therapies in the clinic.
Collapse
Affiliation(s)
- Ming-Ru Wu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barbara Jusiak
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Biophysics Program, Harvard University, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
32
|
Kontoravdi C, Jimenez del Val I. Computational tools for predicting and controlling the glycosylation of biopharmaceuticals. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Sci Rep 2018; 8:15024. [PMID: 30301909 PMCID: PMC6177421 DOI: 10.1038/s41598-018-32929-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
Optogenetic switches are emerging molecular tools for studying cellular processes as they offer higher spatiotemporal and quantitative precision than classical, chemical-based switches. Light-controllable gene expression systems designed to upregulate protein expression levels meanwhile show performances superior to their chemical-based counterparts. However, systems to reduce protein levels with similar efficiency are lagging behind. Here, we present a novel two-component, blue light-responsive optogenetic OFF switch ('Blue-OFF'), which enables a rapid and quantitative down-regulation of a protein upon illumination. Blue-OFF combines the first light responsive repressor KRAB-EL222 with the protein degradation module B-LID (blue light-inducible degradation domain) to simultaneously control gene expression and protein stability with a single wavelength. Blue-OFF thus outperforms current optogenetic systems for controlling protein levels. The system is described by a mathematical model which aids in the choice of experimental conditions such as light intensity and illumination regime to obtain the desired outcome. This approach represents an advancement of dual-controlled optogenetic systems in which multiple photosensory modules operate synergistically. As exemplified here for the control of apoptosis in mammalian cell culture, the approach opens up novel perspectives in fundamental research and applications such as tissue engineering.
Collapse
|
34
|
Bojar D, Fussenegger M. Programming mammalian gene expression with the antibiotic simocyclinone D8 and the flavonoid luteolin. AIChE J 2018. [DOI: 10.1002/aic.16365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniel Bojar
- Dept. of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
| | - Martin Fussenegger
- Dept. of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
- Faculty of Science; University of Basel; Basel Switzerland
| |
Collapse
|
35
|
Lin MW, Tseng YW, Shen CC, Hsu MN, Hwu JR, Chang CW, Yeh CJ, Chou MY, Wu JC, Hu YC. Synthetic switch-based baculovirus for transgene expression control and selective killing of hepatocellular carcinoma cells. Nucleic Acids Res 2018; 46:e93. [PMID: 29905834 PMCID: PMC6125686 DOI: 10.1093/nar/gky447] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Baculovirus (BV) holds promise as a vector for anticancer gene delivery to combat the most common liver cancer-hepatocellular carcinoma (HCC). However, in vivo BV administration inevitably results in BV entry into non-HCC normal cells, leaky anticancer gene expression and possible toxicity. To improve the safety, we employed synthetic biology to engineer BV for transgene expression regulation. We first uncovered that miR-196a and miR-126 are exclusively expressed in HCC and normal cells, respectively, which allowed us to engineer a sensor based on distinct miRNA expression signature. We next assembled a synthetic switch by coupling the miRNA sensor and RNA binding protein L7Ae for translational repression, and incorporated the entire device into a single BV. The recombinant BV efficiently entered HCC and normal cells and enabled cis-acting transgene expression control, by turning OFF transgene expression in normal cells while switching ON transgene expression in HCC cells. Using pro-apoptotic hBax as the transgene, the switch-based BV selectively killed HCC cells in separate culture and mixed culture of HCC and normal cells. These data demonstrate the potential of synthetic switch-based BV to distinguish HCC and non-HCC normal cells for selective transgene expression control and killing of HCC cells.
Collapse
Affiliation(s)
- Mei-Wei Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Yen-Wen Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Che Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Mu-Nung Hsu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Jih-Ru Hwu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Ju Yeh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Yuan Chou
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jaw-Ching Wu
- Medical Research Department, Taipei Veterans General Hospital, Taipei Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018; 45:599-614. [PMID: 29552703 PMCID: PMC6041164 DOI: 10.1007/s10295-018-2027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
Collapse
Affiliation(s)
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
37
|
Atitey K, Loskot P, Rees P. Determining the Transcription Rates Yielding Steady-State Production of mRNA in the Lac Genetic Switch of Escherichia coli. J Comput Biol 2018; 25:1023-1039. [PMID: 29957031 DOI: 10.1089/cmb.2018.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To elucidate the regulatory dynamics of the gene expression activation and inactivation, an in silico biochemical model of the lac circuit in Escherichia coli was used to evaluate the transcription rates that yield the steady-state mRNA production in active and inactive states of the lac circuit. This result can be used in synthetic biology applications to understand the limits of the genetic synthesis. Since most genetic networks involve many interconnected components with positive and negative feedback control, intuitive understanding of their dynamics is often difficult to obtain. Although the kinetic model of the lac circuit considered involves only a single positive feedback, the developed computational framework can be used to evaluate supported ranges of other reaction rates in genetic circuits with more complex regulatory networks. More specifically, the inducible lac gene switch in E. coli is regulated by unbinding and binding of the inducer-repressor complexes to or from the DNA operator to switch the gene expression on and off. The dependency of mRNA production at steady state on different transcription rates and the repressor complexes has been studied by computer simulations in the Lattice Microbe software. Provided that the lac circuit is in active state, the transcription rate is independent of the inducer-repressor complexes present in the cell. In inactive state, the transcription rate is dependent on the specific inducer-repressor complex bound to the operator that inactivates the gene expression. We found that the repressor complex with the largest affinity to the operator yields the smallest range of the feasible transcription rates to yield the steady state while the lac circuit is in inactive state. In contrast, the steady state in active state can be obtained for any value of the transcription rate.
Collapse
Affiliation(s)
- Komlan Atitey
- College of Engineering, Swansea University , Swansea, United Kingdom
| | - Pavel Loskot
- College of Engineering, Swansea University , Swansea, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University , Swansea, United Kingdom
| |
Collapse
|
38
|
Bojar D, Scheller L, Hamri GCE, Xie M, Fussenegger M. Caffeine-inducible gene switches controlling experimental diabetes. Nat Commun 2018; 9:2318. [PMID: 29921872 PMCID: PMC6008335 DOI: 10.1038/s41467-018-04744-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
Programming cellular behavior using trigger-inducible gene switches is integral to synthetic biology. Although significant progress has been achieved in trigger-induced transgene expression, side-effect-free remote control of transgenes continues to challenge cell-based therapies. Here, utilizing a caffeine-binding single-domain antibody we establish a caffeine-inducible protein dimerization system, enabling synthetic transcription factors and cell-surface receptors that enable transgene expression in response to physiologically relevant concentrations of caffeine generated by routine intake of beverages such as tea and coffee. Coffee containing different caffeine concentrations dose-dependently and reversibly controlled transgene expression by designer cells with this caffeine-stimulated advanced regulators (C-STAR) system. Type-2 diabetic mice implanted with microencapsulated, C-STAR-equipped cells for caffeine-sensitive expression of glucagon-like peptide 1 showed substantially improved glucose homeostasis after coffee consumption compared to untreated mice. Biopharmaceutical production control by caffeine, which is non-toxic, inexpensive and only present in specific beverages, is expected to improve patient compliance by integrating therapy with lifestyle.
Collapse
Affiliation(s)
- Daniel Bojar
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Leo Scheller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- IUT, Département Génie Biologique, Institut Universitaire de Technologie, F-69622, Villeurbanne Cedex, France
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland. .,Faculty of Life Science, University of Basel, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
39
|
Sedlmayer F, Aubel D, Fussenegger M. Synthetic gene circuits for the detection, elimination and prevention of disease. Nat Biomed Eng 2018; 2:399-415. [PMID: 31011195 DOI: 10.1038/s41551-018-0215-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Abstract
In living organisms, naturally evolved sensors that constantly monitor and process environmental cues trigger corrective actions that enable the organisms to cope with changing conditions. Such natural processes have inspired biologists to construct synthetic living sensors and signalling pathways, by repurposing naturally occurring proteins and by designing molecular building blocks de novo, for customized diagnostics and therapeutics. In particular, designer cells that employ user-defined synthetic gene circuits to survey disease biomarkers and to autonomously re-adjust unbalanced pathological states can coordinate the production of therapeutics, with controlled timing and dosage. Furthermore, tailored genetic networks operating in bacterial or human cells have led to cancer remission in experimental animal models, owing to the network's unprecedented specificity. Other applications of designer cells in infectious, metabolic and autoimmune diseases are also being explored. In this Review, we describe the biomedical applications of synthetic gene circuits in major disease areas, and discuss how the first genetically engineered devices developed on the basis of synthetic-biology principles made the leap from the laboratory to the clinic.
Collapse
Affiliation(s)
- Ferdinand Sedlmayer
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Dominique Aubel
- IUTA Département Génie Biologique, Université Claude Bernard Lyon 1, Lyon, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
40
|
Chatelle C, Ochoa-Fernandez R, Engesser R, Schneider N, Beyer HM, Jones AR, Timmer J, Zurbriggen MD, Weber W. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells. ACS Synth Biol 2018; 7:1349-1358. [PMID: 29634242 DOI: 10.1021/acssynbio.7b00450] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex R. Jones
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | | | | | | |
Collapse
|
41
|
Miller IC, Castro MG, Maenza J, Weis JP, Kwong GA. Remote Control of Mammalian Cells with Heat-Triggered Gene Switches and Photothermal Pulse Trains. ACS Synth Biol 2018; 7:1167-1173. [PMID: 29579381 PMCID: PMC5929470 DOI: 10.1021/acssynbio.7b00455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered T cells are transforming broad fields in biomedicine, yet our ability to control cellular activity at specific anatomical sites remains limited. Here we engineer thermal gene switches to allow spatial and remote control of transcriptional activity using pulses of heat. These gene switches are constructed from the heat shock protein HSP70B' (HSPA6) promoter, show negligible basal transcriptional activity, and activate within an elevated temperature window of 40-45 °C. Using engineered Jurkat T cells implanted in vivo, we use plasmonic photothermal heating to trigger gene expression at specific sites to levels greater than 200-fold. We show that delivery of heat as thermal pulse trains significantly increase cellular thermal tolerance compared to continuous heating curves with identical area-under-the-curve (AUC), enabling long-term control of gene expression in Jurkat T cells. This approach expands the toolkit of remotely controlled genetic devices for basic and translational applications in synthetic immunology.
Collapse
Affiliation(s)
- Ian C. Miller
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Marielena Gamboa Castro
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Joe Maenza
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jason P. Weis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Georgia Immunoengineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
42
|
Teixeira AG, Agarwal R, Ko KR, Grant‐Burt J, Leung BM, Frampton JP. Emerging Biotechnology Applications of Aqueous Two-Phase Systems. Adv Healthc Mater 2018; 7:e1701036. [PMID: 29280350 DOI: 10.1002/adhm.201701036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Liquid-liquid phase separation between aqueous solutions containing two incompatible polymers, a polymer and a salt, or a polymer and a surfactant, has been exploited for a wide variety of biotechnology applications throughout the years. While many applications for aqueous two-phase systems fall within the realm of separation science, the ability to partition many different materials within these systems, coupled with recent advances in materials science and liquid handling, has allowed bioengineers to imagine new applications. This progress report provides an overview of the history and key properties of aqueous two-phase systems to lend context to how these materials have progressed to modern applications such as cellular micropatterning and bioprinting, high-throughput 3D tissue assembly, microscale biomolecular assay development, facilitation of cell separation and microcapsule production using microfluidic devices, and synthetic biology. Future directions and present limitations and design considerations of this adaptable and promising toolkit for biomolecule and cellular manipulation are further evaluated.
Collapse
Affiliation(s)
- Alyne G. Teixeira
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Rishima Agarwal
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Kristin Robin Ko
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Jessica Grant‐Burt
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - Brendan M. Leung
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
- Department of Applied Oral Science Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| | - John P. Frampton
- School of Biomedical Engineering Dalhousie University 5981 University Avenue Halifax NS B3H 4R2 Canada
| |
Collapse
|
43
|
Abstract
The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.
Collapse
Affiliation(s)
- Joshua B Black
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708; , .,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; .,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708; , .,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708.,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
44
|
Sensing and responding to allergic response cytokines through a genetically encoded circuit. Nat Commun 2017; 8:1101. [PMID: 29062109 PMCID: PMC5653676 DOI: 10.1038/s41467-017-01211-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
While constantly rising, the prevalence of allergies is globally one of the highest among chronic diseases. Current treatments of allergic diseases include the application of anti-histamines, immunotherapy, steroids, and anti-immunoglobulin E (IgE) antibodies. Here we report mammalian cells engineered with a synthetic signaling cascade able to monitor extracellular pathophysiological levels of interleukin 4 and interleukin 13, two main cytokines orchestrating allergic inflammation. Upon activation of transgenic cells by these cytokines, designed ankyrin repeat protein (DARPin) E2_79, a non-immunogenic protein binding human IgE, is secreted in a precisely controlled and reversible manner. Using human whole blood cell culturing, we demonstrate that the mammalian dual T helper 2 cytokine sensor produces sufficient levels of DARPin E2_79 to dampen histamine release in allergic subjects exposed to allergens. Hence, therapeutic gene networks monitoring disease-associated cytokines coupled with in situ production, secretion and systemic delivery of immunomodulatory biologics may foster advances in the treatment of allergies. The standard treatment for an allergic response is anti-histamines, steroids and anti-IgE antibodies. Here the authors present a genetic circuit that senses IL-4 and IL-13 and responses with DARPin production to bind IgE.
Collapse
|
45
|
Annunziata F, Matyjaszkiewicz A, Fiore G, Grierson CS, Marucci L, di Bernardo M, Savery NJ. An Orthogonal Multi-input Integration System to Control Gene Expression in Escherichia coli. ACS Synth Biol 2017; 6:1816-1824. [PMID: 28723080 DOI: 10.1021/acssynbio.7b00109] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many biotechnological applications, it is useful for gene expression to be regulated by multiple signals, as this allows the programming of complex behavior. Here we implement, in Escherichia coli, a system that compares the concentration of two signal molecules, and tunes GFP expression proportionally to their relative abundance. The computation is performed via molecular titration between an orthogonal σ factor and its cognate anti-σ factor. We use mathematical modeling and experiments to show that the computation system is predictable and able to adapt GFP expression dynamically to a wide range of combinations of the two signals, and our model qualitatively captures most of these behaviors. We also demonstrate in silico the practical applicability of the system as a reference-comparator, which compares an intrinsic signal (reflecting the state of the system) with an extrinsic signal (reflecting the desired reference state) in a multicellular feedback control strategy.
Collapse
Affiliation(s)
- Fabio Annunziata
- School
of Biochemistry, University of Bristol, BS8 1TD, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Antoni Matyjaszkiewicz
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Gianfranco Fiore
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Claire S. Grierson
- School
of Biological Sciences, University of Bristol, BS8 1UH, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Lucia Marucci
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Mario di Bernardo
- Department
of Engineering Mathematics, University of Bristol, BS8 1UB, Bristol, U.K
- Department
of Electrical Engineering and Information Technology, University of Naples Federico II, 80125, Naples, Italy
- BrisSynBio, Bristol, BS8 1TQ, U.K
| | - Nigel J. Savery
- School
of Biochemistry, University of Bristol, BS8 1TD, Bristol, U.K
- BrisSynBio, Bristol, BS8 1TQ, U.K
| |
Collapse
|
46
|
Re A. Synthetic Gene Expression Circuits for Designing Precision Tools in Oncology. Front Cell Dev Biol 2017; 5:77. [PMID: 28894736 PMCID: PMC5581392 DOI: 10.3389/fcell.2017.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
Precision medicine in oncology needs to enhance its capabilities to match diagnostic and therapeutic technologies to individual patients. Synthetic biology streamlines the design and construction of functionalized devices through standardization and rational engineering of basic biological elements decoupled from their natural context. Remarkable improvements have opened the prospects for the availability of synthetic devices of enhanced mechanism clarity, robustness, sensitivity, as well as scalability and portability, which might bring new capabilities in precision cancer medicine implementations. In this review, we begin by presenting a brief overview of some of the major advances in the engineering of synthetic genetic circuits aimed to the control of gene expression and operating at the transcriptional, post-transcriptional/translational, and post-translational levels. We then focus on engineering synthetic circuits as an enabling methodology for the successful establishment of precision technologies in oncology. We describe significant advancements in our capabilities to tailor synthetic genetic circuits to specific applications in tumor diagnosis, tumor cell- and gene-based therapy, and drug delivery.
Collapse
Affiliation(s)
- Angela Re
- Centre for Sustainable Future Technologies, Istituto Italiano di TecnologiaTorino, Italy
| |
Collapse
|
47
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
48
|
Functional nucleic acids as in vivo metabolite and ion biosensors. Biosens Bioelectron 2017; 94:94-106. [DOI: 10.1016/j.bios.2017.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
|
49
|
Ausländer S, Ausländer D, Fussenegger M. Synthetische Biologie - die Synthese der Biologie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - David Ausländer
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Schweiz
- Faculty of Science; Universität Basel; Mattenstrasse 26 4058 Basel Schweiz
| |
Collapse
|
50
|
Ausländer S, Ausländer D, Fussenegger M. Synthetic Biology-The Synthesis of Biology. Angew Chem Int Ed Engl 2017; 56:6396-6419. [PMID: 27943572 DOI: 10.1002/anie.201609229] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Indexed: 01/01/2023]
Abstract
Synthetic biology concerns the engineering of man-made living biomachines from standardized components that can perform predefined functions in a (self-)controlled manner. Different research strategies and interdisciplinary efforts are pursued to implement engineering principles to biology. The "top-down" strategy exploits nature's incredible diversity of existing, natural parts to construct synthetic compositions of genetic, metabolic, or signaling networks with predictable and controllable properties. This mainly application-driven approach results in living factories that produce drugs, biofuels, biomaterials, and fine chemicals, and results in living pills that are based on engineered cells with the capacity to autonomously detect and treat disease states in vivo. In contrast, the "bottom-up" strategy seeks to be independent of existing living systems by designing biological systems from scratch and synthesizing artificial biological entities not found in nature. This more knowledge-driven approach investigates the reconstruction of minimal biological systems that are capable of performing basic biological phenomena, such as self-organization, self-replication, and self-sustainability. Moreover, the syntheses of artificial biological units, such as synthetic nucleotides or amino acids, and their implementation into polymers inside living cells currently set the boundaries between natural and artificial biological systems. In particular, the in vitro design, synthesis, and transfer of complete genomes into host cells point to the future of synthetic biology: the creation of designer cells with tailored desirable properties for biomedicine and biotechnology.
Collapse
Affiliation(s)
- Simon Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - David Ausländer
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|