1
|
Asmaz ED, Teker HT, Sertkaya ZT, Ceylani T, Genç Aİ. Effect of middle-age plasma therapy on ileum morphology, immune defense (IgA) and cell proliferation (Ki-67) of female aged rats. Histochem Cell Biol 2024; 163:17. [PMID: 39688692 DOI: 10.1007/s00418-024-02344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
ABSTARCT Blood plasma therapy, a new treatment method to eliminate the damage and deterioration caused by aging in many organ systems, has attracted increasing attention. The digestive tract, which cooperates with many different systems, has strong effects on our health. In the present study, the effects of plasma therapy on the ileum of elderly rats were investigated. Wistar rats (n = 7; 12-15 months old) were given pooled plasma collected from middle-age rats (6 months, n =28) (for 30 days, 0.3 ml daily, intravenously into the tail vein). At the end of the experiment, villus height, crypt depth, total mucosal thickness and surface absorption area were evaluated. In addition, the effects of IgA, which plays a role in the digestive system's defense against microorganisms, were examined. Both the cell proliferation intensity and proliferation index were evaluated in crypt cells. An increase was determined in all morphological parameters in the experimental group. Similarly, plasma application decreased IgA expression and numbers in the experimental groups. Contrarily, cell proliferation parameters showed a significant increase in the experimental groups' crypt cells. Therefore, we found that the treatment supports the digestive system in terms of both nutrient utilization and absorption-related parameters and has a protective effect on intestinal immune system parameters.
Collapse
Affiliation(s)
- Ender Deniz Asmaz
- Department of Histology and Embryology, Ankara Medipol University, Ankara, Turkey.
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey
| | | | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Aysun İnan Genç
- Department of Biology, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
2
|
Marín Penella G. The Epistemic Policies of Anti-Ageing Medicines in the European Union. HEALTH CARE ANALYSIS 2024:10.1007/s10728-024-00497-9. [PMID: 39560904 DOI: 10.1007/s10728-024-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Anti-ageing medicines are products intended to extend lifespan and healthspan in humans that have a good potential use in public health policies. In the European Union, their development, production and consumption are dependent on regulatory science performed by the European Medicines Agency and its associated epistemic policies. They impose, among other things, an unfavourable burden of proof, a strict standard of proof and meta-methodological constrictions related to some theoretical issues. This results in a distribution of errors that tends to reduce false positives while increasing false negatives, leading to a set of social consequences that are generally accepted when the focus is placed on conventional medicines. However, when the same epistemic policies are applied to anti-ageing medicines, the distribution of errors is imbalanced, and undesirable outcomes like research discouragement and waiting time extensions appear. Three possible strategies that policymakers could implement to unblock the situation are presented for future reflection: the consideration of ageing as a disease, the application of methodological asymmetry and the use of biomarkers during clinical research.
Collapse
Affiliation(s)
- Guillermo Marín Penella
- Department of Philosophy and Social Work, Faculty of Philosophy and Letters, University of the Balearic Islands, Carretera de Valldemossa Km. 7, 5, Palma de Mallorca, 07071, Spain.
| |
Collapse
|
3
|
Krawczyk-Suszek M, Gaweł A, Kleinrok A. Correlation of ageing with Health related-quality of life of patients in 13 groups of disease in Poland. Sci Rep 2024; 14:26404. [PMID: 39488635 PMCID: PMC11531535 DOI: 10.1038/s41598-024-78253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024] Open
Abstract
Background Age is a non-modifiable risk factor important in the etiology of many diseases. The ageing process of the body absolutely contributes to the degeneration of body tissues and the loss of function and the associated health-related quality of life (HR-QoL). Purpose Effect of age on HR-QoL among patients of 13 disease units. Matherial and methods The study was conducted among 7620 patients. The following age groups were included in the analysis: <30 years old, 30-39 years old, 40-49 years old, 50-59 years, 60-69 years, 70-79 years, and ≥ 80 years. The criterion for inclusion in the group was: age ≥ 18 years, written consent to participate in the study, treatment for chronic disease (at least 2 years), absence of other diseases and/or coexisting chronic symptoms. The SF-36 (Physical Component Summary (PCS); Mental Component Summary (MCS); Index of Life Quality (ILQ)) questionnaire was used to assess HR-QoL. Results The chance of having a better HR-QoL at 60-69 years of age decreases 3-fold (OR = 0.33) in MCS compared to the youngest group of patients. As far as PCS is concerned, there is a 5-fold lower chance of better HR-QoL (OR = 0.20). However, in the oldest group of patients, the chance of better HR-QoL in the MCS dimension is more than 12 times lower, and in PCS the chance of better HR-QoL is 33 times lower. A significant correlation between quality of life and age was confirmed. The level of PCS (R=-0.60), MCS (R=-0.50) and ILQ (R=-0.58) decreases with age. Cancer diseases (CD), regardless of the patient's age, showed the strongest association with HRQoL among the 13 analyzed disease entities. The average level of HRQoL was the lowest. A decreased level of HRQoL was noted in patients with cardiovascular disease (CVD) aged 30-39 years. The highest HR-QoL was noted in the group of patients aged 40-49 years for both CD and CVD, in later years HR-QoL decreased in patients with CD and CVD. The chance of better HR-QoL decreases with age. After the age of 60, the highest decrease in HR-QoL is observed in both MCS and PCS. In all age groups, there is more often a chance of better HR-QoL in the MCS dimension than in PCS.
Collapse
Affiliation(s)
- Marlena Krawczyk-Suszek
- Department of Physiotherapy, Medical College, University of Information Technology and Management in Rzeszow, Rzeszow, Poland.
| | - Arkadiusz Gaweł
- College of Applied Informatics, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Andrzej Kleinrok
- Faculty of Health Sciences, Vincent Pol University, Lublin, Poland
| |
Collapse
|
4
|
Dos Santos E, Cochemé HM. Pharmacology of Aging: Drosophila as a Tool to Validate Drug Targets for Healthy Lifespan. AGING BIOLOGY 2024; 2:20240034. [PMID: 39346601 PMCID: PMC7616647 DOI: 10.59368/agingbio.20240034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Finding effective therapies to manage age-related conditions is an emerging public health challenge. Although disease-targeted treatments are important, a preventive approach focused on aging can be more efficient. Pharmacological targeting of aging-related processes can extend lifespan and improve health in animal models. However, drug development and translation are particularly challenging in geroscience. Preclinical studies have survival as a major endpoint for drug screening, which requires years of research in mammalian models. Shorter-lived invertebrates can be exploited to accelerate this process. In particular, the fruit fly Drosophila melanogaster allows the validation of new drug targets using precise genetic tools and proof-of-concept experiments on drugs impacting conserved aging processes. Screening for clinically approved drugs that act on aging-related targets may further accelerate translation and create new tools for aging research. To date, 31 drugs used in clinical practice have been shown to extend the lifespan of flies. Here, we describe recent advances in the pharmacology of aging, focusing on Drosophila as a tool to repurpose these drugs and study age-related processes.
Collapse
Affiliation(s)
- Eliano Dos Santos
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Helena M Cochemé
- MRC Laboratory of Medical Sciences (LMS), London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
5
|
Okholm S. Geroscience: just another name or is there more to it? Biogerontology 2024; 25:739-743. [PMID: 38748334 DOI: 10.1007/s10522-024-10105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 07/02/2024]
Abstract
The widespread use of the name 'geroscience' in the science of aging is sometimes met with a wary attitude by biogerontologists other than its inventors. Here, we provide an overview of its origin and evolution to assess what exactly it is and to discuss its theoretical and biological relationship to earlier movements of anti-aging medicine and biogerontology more generally. Geroscience posits that targeting aging may offer a cost-effective approach to improve late-life health in humans, and because aging is malleable in model organisms and what regulates this is sufficiently understood, the time is ripe for moving forward to translational and clinical research. The geroscience agenda has rebranded imagery of past traditions, yet the claim that therapies for human aging are ready or within the imminent future is contestable and on brand with tradition, even if biogerontology has made great progress in the past decades.
Collapse
Affiliation(s)
- Simon Okholm
- CNRS, ImmunoConcEpT, UMR 5164, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
6
|
Fotopoulou T, Papadopoulou A, Tzani A, Mamais M, Mavrogonatou E, Pratsinis H, Koufaki M, Kletsas D, Calogeropoulou T. Design and Synthesis of Novel Antioxidant 2-Substituted-5,7,8-Trimethyl-1,4-Benzoxazine Hybrids: Effects on Young and Senescent Fibroblasts. Antioxidants (Basel) 2024; 13:798. [PMID: 39061867 PMCID: PMC11274006 DOI: 10.3390/antiox13070798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The exponential growth of the aged population worldwide is followed by an increase in the prevalence of age-related disorders. Oxidative stress plays central role in damage accumulation during ageing and cell senescence. Thus, a major target of today's anti-ageing research has been focused on antioxidants counteracting senescence. In the current work, six novel 5,7,8-trimethyl-1,4-benzoxazine/catechol or resorcinol hybrids were synthesized connected through a methoxymethyl-1,2,3-triazolyl or a 1,2,3-triazoly linker. The compounds were evaluated for their antioxidant capacity in a cell-free system and for their ability to reduce intracellular ROS levels in human skin fibroblasts, both young (early-passage) and senescent. The most efficient compounds were further tested in these cells for their ability to induce the expression of the gene heme oxygenase-1 (ho-1), known to regulate redox homeostasis, and cellular glutathione (GSH) levels. Overall, the two catechol derivatives were found to be more potent than the resorcinol analogues. Furthermore, these two derivatives were shown to act coordinately as radical scavengers, ROS inhibitors, ho-1 gene expression inducers, and GSH enhancers. Interestingly, one of the two catechol derivatives was also found to enhance human skin fibroblast viability. The properties of the synthesized compounds support their potential use in cosmetic applications, especially in products targeting skin ageing.
Collapse
Affiliation(s)
- Theano Fotopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Adamantia Papadopoulou
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Andromachi Tzani
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Michail Mamais
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Eleni Mavrogonatou
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Harris Pratsinis
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Maria Koufaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| | - Dimitris Kletsas
- Institute of Biosciences & Applications, NCSR “Demokritos”, T. Patriarchou Grigoriou & Neapoleos, 15310 Athens, Greece; (A.P.); (E.M.); (H.P.)
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (T.F.); (A.T.); (M.M.); (M.K.)
| |
Collapse
|
7
|
Norouzkhani N, Afshari S, Sadatmadani SF, Mollaqasem MM, Mosadeghi S, Ghadri H, Fazlizade S, Alizadeh K, Akbari Javar P, Amiri H, Foroughi E, Ansari A, Mousazadeh K, Davany BA, Akhtari kohnehshahri A, Alizadeh A, Dadkhah PA, Poudineh M. Therapeutic potential of berries in age-related neurological disorders. Front Pharmacol 2024; 15:1348127. [PMID: 38783949 PMCID: PMC11112503 DOI: 10.3389/fphar.2024.1348127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
Aging significantly impacts several age-related neurological problems, such as stroke, brain tumors, oxidative stress, neurodegenerative diseases (Alzheimer's, Parkinson's, and dementia), neuroinflammation, and neurotoxicity. Current treatments for these conditions often come with side effects like hallucinations, dyskinesia, nausea, diarrhea, and gastrointestinal distress. Given the widespread availability and cultural acceptance of natural remedies, research is exploring the potential effectiveness of plants in common medicines. The ancient medical system used many botanical drugs and medicinal plants to treat a wide range of diseases, including age-related neurological problems. According to current clinical investigations, berries improve motor and cognitive functions and protect against age-related neurodegenerative diseases. Additionally, berries may influence signaling pathways critical to neurotransmission, cell survival, inflammation regulation, and neuroplasticity. The abundance of phytochemicals in berries is believed to contribute to these potentially neuroprotective effects. This review aimed to explore the potential benefits of berries as a source of natural neuroprotective agents for age-related neurological disorders.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shaghayegh Afshari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | | | - Shakila Mosadeghi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Hani Ghadri
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Safa Fazlizade
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Alizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Pouyan Akbari Javar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamidreza Amiri
- Student Research Committee, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Elaheh Foroughi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arina Ansari
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Kourosh Mousazadeh
- School of Medicine, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Ata Akhtari kohnehshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alaleh Alizadeh
- Student Research Committee, Faculty of Medicine, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Alsadat Dadkhah
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
8
|
Landsberger T, Amit I, Alon U. Geroprotective interventions converge on gene expression programs of reduced inflammation and restored fatty acid metabolism. GeroScience 2024; 46:1627-1639. [PMID: 37698783 PMCID: PMC10828297 DOI: 10.1007/s11357-023-00915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/15/2023] [Indexed: 09/13/2023] Open
Abstract
Understanding the mechanisms of geroprotective interventions is central to aging research. We compare four prominent interventions: senolysis, caloric restriction, in vivo partial reprogramming, and heterochronic parabiosis. Using published mice transcriptomic data, we juxtapose these interventions against normal aging. We find a gene expression program common to all four interventions, in which inflammation is reduced and several metabolic processes, especially fatty acid metabolism, are increased. Normal aging exhibits the inverse of this signature across multiple organs and tissues. A similar inverse signature arises in three chronic inflammation disease models in a non-aging context, suggesting that the shift in metabolism occurs downstream of inflammation. Chronic inflammation is also shown to accelerate transcriptomic age. We conclude that a core mechanism of geroprotective interventions acts through the reduction of inflammation with downstream effects that restore fatty acid metabolism. This supports the notion of directly targeting genes associated with these pathways to mitigate age-related deterioration.
Collapse
Affiliation(s)
- Tomer Landsberger
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Ferreiro E, Monteiro M, Pereira F, Barroso C, Egas C, Macedo P, Valero J, Sardão VA, Oliveira PJ. Age-dependent energy metabolism and transcriptome changes in urine-derived stem cells. Mech Ageing Dev 2024; 218:111912. [PMID: 38266781 DOI: 10.1016/j.mad.2024.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/06/2023] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
The global population over 60 years old is projected to reach 1.5 billion by 2050. Understanding age-related disorders and gender-specificities is crucial for a healthy aging. Reliable age-related biomarkers are needed, preferentially obtained through non-invasive methods. Urine-derived stem cells (UDSCs) can be easily obtained, although a detailed bioenergetic characterization, according to the donor aging, remain unexplored. UDSCs were isolated from young and elderly adult women (22-35 and 70-94 years old, respectively). Surprisingly, UDSCs from elderly subjects exhibited significantly higher maximal oxygen consumption and bioenergetic health index than those from younger individuals, evaluated through oxygen consumption rate. Exploratory data analysis methods were applied to engineer a minimal subset of features for the classification and stratification of UDSCs. Additionally, RNAseq of UDSCs was performed to identify age-related transcriptional changes. Transcriptional analysis revealed downregulation of genes related to glucuronidation and estrogen metabolism, and upregulation of inflammation-related genes in UDSCs from elderly individuals. This study demonstrates unexpected differences in the UDSCs' OCR between young and elderly individuals, revealing improved bioenergetics in concurrent with an aged-like transcriptome signature. UDSCs offer a non-invasive model for studying age-related changes, holding promise for aging research and therapeutic studies.
Collapse
Affiliation(s)
- Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Cantanhede, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal.
| | - Mariana Monteiro
- CISUC - Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal
| | - Francisco Pereira
- CISUC - Centre for Informatics and Systems, University of Coimbra, Coimbra, Portugal; Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Coimbra, Portugal
| | - Cristina Barroso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Cantanhede, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal; Biocant - Transfer Technology Association, BiocantPark, Cantanhede, Portugal
| | - Conceição Egas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Cantanhede, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal
| | - Paula Macedo
- CEDOC-Chronic Diseases Research Center, NOVA Medical School, NOVA University of Lisbon, Lisboa, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Cell Biology and Pathology, University of Salamanca, Spain
| | - Vilma A Sardão
- Multidisciplinary Institute of Aging (MIA-Portugal), University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech, Cantanhede, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra 3000-548, Portugal.
| |
Collapse
|
10
|
Pereira B, Correia FP, Alves IA, Costa M, Gameiro M, Martins AP, Saraiva JA. Epigenetic reprogramming as a key to reverse ageing and increase longevity. Ageing Res Rev 2024; 95:102204. [PMID: 38272265 DOI: 10.1016/j.arr.2024.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The pursuit for the fountain of youth has long been a fascination amongst scientists and humanity. Ageing is broadly characterized by a cellular decline with increased susceptibility to age-related diseases, being intimately associated with epigenetic modifications. Recently, reprogramming-induced rejuvenation strategies have begun to greatly alter longevity research not only to tackle age-related defects but also to possibly reverse the cellular ageing process. Hence, in this review, we highlight the major epigenetic changes during ageing and the state-of-art of the current emerging epigenetic reprogramming strategies leveraging on transcription factors. Notably, partial reprogramming enables the resetting of the ageing clock without erasing cellular identity. Promising chemical-based rejuvenation strategies harnessing small molecules, including DNA methyltransferase and histone deacetylase inhibitors are also discussed. Moreover, in parallel to longevity interventions, the foundations of epigenetic clocks for accurate ageing assessment and evaluation of reprogramming approaches are briefly presented. Going further, with such scientific breakthroughs, we are witnessing a rise in the longevity biotech industry aiming to extend the health span and ideally achieve human rejuvenation one day. In this context, we overview the main scenarios proposed for the future of the socio-economic and ethical challenges associated with such an emerging field. Ultimately, this review aims to inspire future research on interventions that promote healthy ageing for all.
Collapse
Affiliation(s)
- Beatriz Pereira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | - Inês A Alves
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Costa
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mariana Gameiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana P Martins
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Rao S, He Z, Wang Z, Yin H, Hu X, Tan Y, Wan T, Zhu H, Luo Y, Wang X, Li H, Wang Z, Hu X, Hong C, Wang Y, Luo M, Du W, Qian Y, Tang S, Xie H, Chen C. Extracellular vesicles from human urine-derived stem cells delay aging through the transfer of PLAU and TIMP1. Acta Pharm Sin B 2024; 14:1166-1186. [PMID: 38487008 PMCID: PMC10935484 DOI: 10.1016/j.apsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/17/2024] Open
Abstract
Aging increases the risks of various diseases and the vulnerability to death. Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases. This study demonstrates that extracellular vesicles from human urine-derived stem cells (USC-EVs) efficiently inhibit cellular senescence in vitro and in vivo. The intravenous injection of USC-EVs improves cognitive function, increases physical fitness and bone quality, and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice. The anti-aging effects of USC-EVs are not obviously affected by the USC donors' ages, genders, or health status. Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase (PLAU) and tissue inhibitor of metalloproteinases 1 (TIMP1). These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases, cyclin-dependent kinase inhibitor 2A (P16INK4a), and cyclin-dependent kinase inhibitor 1A (P21cip1). These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xiongke Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Department of Pediatric Orthopedics, Hunan Children's Hospital, University of South China, Changsha 410007, China
| | - Yijuan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Tengfei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hongming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yiyi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Mingjie Luo
- Xiangya School of Nursing, Central South University, Changsha 410013, China
- School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuxuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Siyuan Tang
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| |
Collapse
|
12
|
Mahyuni EL, Harahap U. The efficacy of antiaging cream with Oxalis dehradunensis R. ethanolic extract as skin aging care among woman agriculture workers. J Adv Pharm Technol Res 2024; 15:56-61. [PMID: 38389975 PMCID: PMC10880911 DOI: 10.4103/japtr.japtr_388_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/25/2023] [Accepted: 12/22/2023] [Indexed: 02/24/2024] Open
Abstract
Skin damage and aging are potential health problems for woman agriculture workers. This study aimed to test the efficacy of Oxalis dehradunensis ethanol extract formulated in antiaging cream preparations as an aging treatment in women agriculture workers. The method carried out was an experimental study on woman agriculture workers who were willing to volunteer. The experimental scenario conducted related to the physical quality of antiaging cream products and the efficacy of creams on the skin as an antiaging treatment. Physical quality parameters of antiaging cream include organoleptic assessment, cream emulsion, homogeneity, viscosity, pH, distribution, and skin irritation test to evaluate potential side effects. Skin aging efficacy assessments were conducted on 12 subjects divided into four formula concentration groups. The physical skin identification parameters measured are moisture, pore size, pigmentation or spots, and wrinkles using a skin analyzer. The results found that O. dehradunensis leaf extract formulated as an antiaging cream can neutralize free radicals and is an effective countermeasure against premature skin aging. There were significant differences in the skin characteristics of woman agriculture workers who participated as samples. The formula with 5% concentrate and 7% extract of O. dehradunensis has provided a reaction and is more effective in continuous treatment. It provides skin moisture changes of more than 300%, disguises pore size and good pigmentation, and reduces wrinkles of farmers who are constantly exposed to chemicals and free radicals in their agricultural activities. The leaf extracts antiaging cream showed more significant changes in moisture and skin pigmentation. It was concluded that the use of O. dehradunensis leaf extract as the core ingredient of antiaging cream can be an innovation that is beneficial to the health of the farming community, especially among women agriculture workers.
Collapse
Affiliation(s)
- Eka Lestari Mahyuni
- Department of Occupational Safety and Health, Faculty of Public Health, Universitas Sumatera Utara, Medan, Indonesia
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
13
|
Hosseini L, Shahabi P, Fakhari A, Zangbar HS, Seyedaghamiri F, Sadeghzadeh J, Abolhasanpour N. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1-13. [PMID: 37552316 DOI: 10.1007/s00210-023-02657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Aging is accompanied by alterations in the body with time-related to decline of physiological integrity and functionality process, responsible for increasing diseases and vulnerability to death. Several ages associated with biomarkers were observed in red blood cells, and consequently plasma proteins have a critical rejuvenating role in the aging process and age-related disorders. Advanced age is a risk factor for a broad spectrum of diseases and disorders such as cardiovascular diseases, musculoskeletal disorders and liver, chronic kidney disease, neurodegenerative diseases, and cancer because of loss of regenerative capacity, correlated to reduced systemic factors and raise of pro-inflammatory cytokines. Most studies have shown that systemic factors in young blood/plasma can strongly protect against age-related diseases in various tissues by restoring autophagy, increasing neurogenesis, and reducing oxidative stress, inflammation, and apoptosis. Here, we focus on the current advances in using young plasma or blood to combat aging and age-related diseases and summarize the experimental and clinical evidence supporting this approach. Based on reports, young plasma or blood is new a therapeutic approach to aging and age-associated diseases.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Sadeghzadeh
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Janssens GE, Grevendonk L, Schomakers BV, Perez RZ, van Weeghel M, Schrauwen P, Hoeks J, Houtkooper RH. A metabolomic signature of decelerated physiological aging in human plasma. GeroScience 2023; 45:3147-3164. [PMID: 37259015 PMCID: PMC10643795 DOI: 10.1007/s11357-023-00827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/13/2023] [Indexed: 06/02/2023] Open
Abstract
The degenerative processes that occur during aging increase the risk of disease and impaired health. Meanwhile, interventions that target aging to promote healthy longevity are gaining interest, both academically and in the public. While nutritional and physical interventions exist, efficacy is often difficult to determine. It is therefore imperative that an aging score measuring the biological aging process is available to the wider public. However, simple, interpret, and accessible biological aging scores are lacking. Here, we developed PhysiAge, a physiological aging score based on five accessible parameters that have influence on or reflect the aging process: (1) average daily step count, (2) blood glucose, (3) systolic blood pressure, (4) sex, and (5) age. Here, we found that compared to calendar age alone, PhysiAge better predicts mortality, as well as established muscle aging markers such as decrease in NAD+ levels, increase in oxidative stress, and decline in physical functioning. In order to demonstrate the usefulness of PhysiAge in identifying relevant factors associated with decelerated aging, we calculated PhysiAges for a cohort of aged individuals and obtained mass spectrometry-based blood plasma metabolomic profiles for each individual. Here, we identified a metabolic signature of decelerated aging, which included components of the TCA cycle, including malate, citrate, and isocitrate. Higher abundance of these metabolites was associated with decelerated aging, in line with supplementation studies in model organisms. PhysiAge represents an accessible way for people to track and intervene in their aging trajectories, and identifies a metabolic signature of decelerated aging in human blood plasma, which can be further studied for its causal involvement in human aging.
Collapse
Affiliation(s)
- Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.
| | - Lotte Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
- TI Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands
| | - Bauke V Schomakers
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ruben Zapata Perez
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Faculty of Health Sciences, UCAM - Universidad Católica de Murcia, 30107, Murcia, Spain
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
- TI Food and Nutrition, PO Box 557, 6700 AN, Wageningen, The Netherlands
| | - Joris Hoeks
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Sim HW, Lee WY, Lee R, Yang SY, Ham YK, Lim SD, Park HJ. The Anti-Inflammatory Effects of Broccoli ( Brassica oleracea L. var. italica) Sprout Extract in RAW 264.7 Macrophages and a Lipopolysaccharide-Induced Liver Injury Model. Curr Issues Mol Biol 2023; 45:9117-9131. [PMID: 37998749 PMCID: PMC10670196 DOI: 10.3390/cimb45110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
Brassica oleracea var. italica (broccoli), a member of the cabbage family, is abundant with many nutrients, including vitamins, potassium, fiber, minerals, and phytochemicals. Consequently, it has been used as a functional food additive to reduce oxidative stress and inflammatory responses. In the current study, the effects of sulforaphane-rich broccoli sprout extract (BSE) on the inflammatory response were investigated in vitro and in vivo. Comparative high-performance liquid chromatography analysis of sulforaphane content from different extracts revealed that 70% ethanolic BSE contained more sulforaphane than the other extracts. qPCR and enzyme immunoassay analyses revealed that BSE markedly reduced the expression of proinflammatory cytokines and mediators, including cyclooxygenase 2, interleukin (IL)-1β, IL-6, IL-1, inducible nitric oxide synthase (iNOS), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Pretreatment with BSE improved the survival rate and suppressed alanine aminotransferase and aspartate aminotransferase expression in LPS-induced endotoxemic mice, while proinflammatory cytokines such as IL-1β, TNF-α, IL-6, cyclooxygenase-2, and iNOS decreased dramatically in the LPS-induced liver injury model via BSE treatment. Additionally, F4/80 immunostaining showed that BSE suppressed hepatic macrophage infiltration in the liver after lipopolysaccharide injection. In conclusion, BSE may be a potential nutraceutical for preventing and regulating excessive immune responses in inflammatory disease.
Collapse
Affiliation(s)
- Hyeon Woo Sim
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea; (H.W.S.)
| | - Won-Yong Lee
- Department of Livestock, Korea National College of Agriculture and Fisheries, Jeonju-si 54874, Republic of Korea;
| | - Ran Lee
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea; (H.W.S.)
| | - Seo Young Yang
- Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Youn-Kyung Ham
- Department of Animal Science, Sangji University, Wonju-si 26339, Republic of Korea;
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Wonju-si 26339, Republic of Korea
| | - Hyun-Jung Park
- Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea; (H.W.S.)
| |
Collapse
|
17
|
Hofmann B. Addressing the paradox: Health expansion threatening sustainable healthcare. Eur J Intern Med 2023; 117:3-7. [PMID: 37735001 DOI: 10.1016/j.ejim.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
We need to address the paradox that health expansion threatens sustainable healthcare as anti-aging drugs are on the trail from trial to the market and come together with health enhancement measures changing demography and the health of populations. This poses global, social, and professional problems, and challenges clinical medicine as well as health policy. To handle the emerging challenges, we need to address four crucial issues: (1) injustice (access), (2) sustainability, (3) basic human rights, and (4) eugenics. To do so we need to differentiate between health improvements and health enhancements and reinforce medicine's strongest moral appeal: to reduce suffering.
Collapse
Affiliation(s)
- Bjørn Hofmann
- Centre of Medical Ethics, Faculty of Medicine, University of Oslo, PO Box 1130, Blindern, Oslo N-0318, Norway; Institute for the Health Sciences at the Norwegian, University of Science and Technology in Gjøvik, Norway.
| |
Collapse
|
18
|
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
19
|
Liuzzi GM, Petraglia T, Latronico T, Crescenzi A, Rossano R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023; 15:nu15081913. [PMID: 37111131 PMCID: PMC10145943 DOI: 10.3390/nu15081913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.
Collapse
Affiliation(s)
- Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
20
|
Badimon L, Padro T, Vilahur G. Moving from reactive to preventive medicine. Aging (Albany NY) 2023:663-681. [DOI: 10.1016/b978-0-12-823761-8.00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
21
|
Davoudpour S, Davis JK. Life Extension and Overpopulation: Demography, Morals, and the Malthusian Objection. HEC Forum 2022:10.1007/s10730-022-09504-9. [PMID: 36571631 DOI: 10.1007/s10730-022-09504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
One of the main objections to life extension is that life extension will cause severe overpopulation. This objection presents both moral and demographic issues. To explore the demographic issue, we present an updated and improved version of the formula in chapter six of New Methuselahs for projecting the demographic impact of life extension. The new version includes additional demographical factors such as non-aging related causes of death. According to projections generated with this revised formula, moderate life extension (a life expectancy of 120 years) will not significantly increase population at the fertility rates current in the developed world, but radical life expectancy (halting aging completely, leading to an average life expectancy of 1000 years) can lead to severe overpopulation even at very low fertility rates. This formula also enables us to ascertain what fertility rate and birth spacing will prevent life extension from causing severe overpopulation. The moral issues arise if radical life extension causes overpopulation severe enough to outweigh the benefits it brings. New Methuselahs proposed a reproductive policy for avoiding severe overpopulation by limiting reproduction for those who use life extension. We then consider a moral objection to this policy that was not discussed in New Methuselahs: it is not likely that society will succeed in imposing limits to reproduction, therefore, it is likely that radical life extension is morally wrong. We respond to this objection and defend our response against two further objections.
Collapse
Affiliation(s)
- Shahin Davoudpour
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - John K Davis
- Department of Philosophy, California State University, Fullerton, Fullerton, CA, 92831, USA
| |
Collapse
|
22
|
Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: Future trends and technologies from the European Medicines Agency's horizon scanning collaborations. Front Med (Lausanne) 2022; 9:1064003. [PMID: 36569125 PMCID: PMC9772004 DOI: 10.3389/fmed.2022.1064003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
In medicines development, the progress in science and technology is accelerating. Awareness of these developments and their associated challenges and opportunities is essential for medicines regulators and others to translate them into benefits for society. In this context, the European Medicines Agency uses horizon scanning to shine a light on early signals of relevant innovation and technological trends with impact on medicinal products. This article provides the results of systematic horizon scanning exercises conducted by the Agency, in collaboration with the World Health Organization (WHO) and the European Commission's Joint Research Centre's (DG JRC). These collaborative exercises aim to inform policy-makers of new trends and increase preparedness in responding to them. A subset of 25 technological trends, divided into three clusters were selected and reviewed from the perspective of medicines regulators. For each of these trends, the expected impact and challenges for their adoption are discussed, along with recommendations for developers, regulators and policy makers.
Collapse
Affiliation(s)
- Valentina Vignali
- European Medicines Agency, Amsterdam, Netherlands
- Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Philip A. Hines
- European Medicines Agency, Amsterdam, Netherlands
- Faculty of Health Medicines and Life Sciences, Maastricht University, Maastricht, Netherlands
| | | | | | - Ralf Herold
- European Medicines Agency, Amsterdam, Netherlands
| |
Collapse
|
23
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
24
|
Ding E, Wang Y, Liu J, Tang S, Shi X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum Genomics 2022; 16:54. [DOI: 10.1186/s40246-022-00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractAge-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substantially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and the human body’s response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive review of the epidemiological literature to determine the key elements of the exposome that affect the development of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in previous aging studies have used a reductionist approach, whereby the effect of only a single environmental factor or a specific class of environmental factors on the development of age-related diseases has been examined. As such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the development of age-related diseases. To address this, we propose several research strategies based on an exposomic framework that could advance our understanding—in particular, from a mechanistic perspective—of how environmental factors affect the development of age-related diseases. We discuss the statistical methods and other methods that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We also address future challenges and opportunities in the realm of multidisciplinary approaches and genome–exposome epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable populations, public communications, the integration of risk exposure information, and the bench-to-bedside translation of research on age-related diseases.
Collapse
|
25
|
Costa EF, Magalhães WV, Di Stasi LC. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules 2022; 27:7518. [PMID: 36364354 PMCID: PMC9658815 DOI: 10.3390/molecules27217518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 10/10/2023] Open
Abstract
Although aesthetic benefits are a desirable effect of the treatment of skin aging, it is also important in controlling several skin diseases, mainly in aged people. The development of new dermocosmetics has rapidly increased due to consumers' demand for non-invasive products with lower adverse effects than those currently available on the market. Natural compounds of plant origin and herbal-derived formulations have been popularized due to their various safe active products, which act through different mechanisms of action on several signaling pathways for skin aging. Based on this, the aim of the review was to identify the recent advances in herbal-derived product research, including herbal formulations and isolated compounds with skin anti-aging properties. The studies evaluated the biological effects of herbal-derived products in in vitro, ex vivo, and in vivo studies, highlighting the effects that were reported in clinical trials with available pharmacodynamics data that support their protective effects to treat, prevent, or control human skin aging. Thus, it was possible to identify that gallic and ferulic acids and herbal formulations containing Thymus vulgaris, Panax ginseng, Triticum aestivum, or Andrographis paniculata are the most promising natural products for the development of new dermocosmetics with skin anti-aging properties.
Collapse
Affiliation(s)
- Erika F. Costa
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wagner V. Magalhães
- Research and Development Department, Chemyunion Ltd., Sorocaba 18087-101, SP, Brazil
| | - Luiz C. Di Stasi
- Laboratory of Phytomedicines, Pharmacology, and Biotechnology (PhytoPharmaTech), Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| |
Collapse
|
26
|
Therapeutics That Can Potentially Replicate or Augment the Anti-Aging Effects of Physical Exercise. Int J Mol Sci 2022; 23:ijms23179957. [PMID: 36077358 PMCID: PMC9456478 DOI: 10.3390/ijms23179957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, better health care access and social conditions ensured a significant increase in the life expectancy of the population. There is, however, a clear increase in the incidence of age-related diseases which, besides affecting the social and economic sustainability of countries and regions around the globe, leads to a decrease in the individual’s quality of life. There is an urgent need for interventions that can reverse, or at least prevent and delay, the age-associated pathological deterioration. Within this line, this narrative review aims to assess updated evidence that explores the potential therapeutic targets that can mimic or complement the recognized anti-aging effects of physical exercise. We considered pertinent to review the anti-aging effects of the following drugs and supplements: Rapamycin and Rapamycin analogues (Rapalogs); Metformin; 2-deoxy-D-glucose; Somatostatin analogues; Pegvisomant; Trametinib; Spermidine; Fisetin; Quercetin; Navitoclax; TA-65; Resveratrol; Melatonin; Curcumin; Rhodiola rosea and Caffeine. The current scientific evidence on the anti-aging effect of these drugs and supplements is still scarce and no recommendation of their generalized use can be made at this stage. Further studies are warranted to determine which therapies display a geroprotective effect and are capable of emulating the benefits of physical exercise.
Collapse
|
27
|
do Prado FG, Pagnoncelli MGB, de Melo Pereira GV, Karp SG, Soccol CR. Fermented Soy Products and Their Potential Health Benefits: A Review. Microorganisms 2022; 10:1606. [PMID: 36014024 PMCID: PMC9416513 DOI: 10.3390/microorganisms10081606] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022] Open
Abstract
In the growing search for therapeutic strategies, there is an interest in foods containing natural antioxidants and other bioactive compounds capable of preventing or reversing pathogenic processes associated with metabolic disease. Fermentation has been used as a potent way of improving the properties of soybean and their components. Microbial metabolism is responsible for producing the β-glucosidase enzyme that converts glycosidic isoflavones into aglycones with higher biological activity in fermented soy products, in addition to several end-metabolites associated with human health development, including peptides, phenolic acids, fatty acids, vitamins, flavonoids, minerals, and organic acids. Thus, several products have emerged from soybean fermentation by fungi, bacteria, or a combination of both. This review covers the key biological characteristics of soy and fermented soy products, including natto, miso, tofu, douchi, sufu, cheonggukjang, doenjang, kanjang, meju, tempeh, thua-nao, kinema, hawaijar, and tungrymbai. The inclusion of these foods in the diet has been associated with the reduction of chronic diseases, with potential anticancer, anti-obesity, antidiabetic, anticholesterol, anti-inflammatory, and neuroprotective effects. These biological activities and the recently studied potential of fermented soybean molecules against SARS-CoV-2 are discussed. Finally, a patent landscape is presented to provide the state-of-the-art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
Affiliation(s)
- Fernanda Guilherme do Prado
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Maria Giovana Binder Pagnoncelli
- Bioprocess Engineering and Biotechnology Department, Federal University of Technology-Paraná (UTFPR), Curitiba 80230-900, PR, Brazil
| | | | - Susan Grace Karp
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81530-900, PR, Brazil
| |
Collapse
|
28
|
Couteur DGL, Barzilai N. New horizons in life extension, healthspan extension and exceptional longevity. Age Ageing 2022; 51:afac156. [PMID: 35932241 PMCID: PMC9356533 DOI: 10.1093/ageing/afac156] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 01/25/2023] Open
Abstract
Many common chronic diseases and syndromes are ageing-related. This raises the prospect that therapeutic agents that target the biological changes of ageing will prevent or delay multiple diseases with a single therapy. Gerotherapeutic drugs are those that target pathways involved in ageing, with the aims of reducing the burden of ageing-related diseases and increasing lifespan and healthspan. The approach to discovering gerotherapeutic drugs is similar to that used to discover drugs for diseases. This includes screening for novel compounds that act on receptors or pathways that influence ageing or repurposing of drugs currently available for other indications. A novel approach involves studying populations with exceptional longevity, in order to identify genes variants linked with longer lifespan and could be targeted by drugs. Metformin, rapamycin and precursors of nicotinamide adenine dinucleotide are amongst the frontrunners of gerotherapeutics that are moving into human clinical trials to evaluate their effects on ageing. There are also increasing numbers of potential gerotherapeutic drugs in the pipeline or being studied in animal models. A key hurdle is designing clinical trials that are both feasible and can provide sufficient clinical evidence to support licencing and marketing of gerotherapeutic drugs.
Collapse
Affiliation(s)
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
29
|
Yang L. Maintained and Delayed Benefits of Executive Function Training and Low-Intensity Aerobic Exercise Over a 3.5-Year Period in Older Adults. Front Aging Neurosci 2022; 14:905886. [PMID: 35847677 PMCID: PMC9283566 DOI: 10.3389/fnagi.2022.905886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
This is a follow-up study of our previous work, with a specific goal to examine whether older adults are able to maintain or show delayed cognitive and psychosocial benefits of executive function training and physical exercise over a period of 3.5 years on average. Thirty-four participants from the original training study (17 from the executive function training and 17 from the aerobic exercise group) returned and completed a single follow-up session on a set of cognitive and psychosocial outcome measures. The results of the returned follow-up sample showed some significant original training transfer effects in WCST-64 performance but failed to maintain these benefits at the follow-up session. Surprisingly, episodic memory performance showed some significant improvement at the follow-up relative to baseline, signaling delayed benefits. The findings add some novel implications for cognitive training schedule and highlight the possible importance of continuous engagement in long-term cognitive enhancement in healthy older adults.
Collapse
|
30
|
Huang Y, Li P, Li Z, Zhu D, Fan Y, Wang X, Zhao C, Jiao J, Du X, Wang S. Red yeast rice dietary intervention reduces oxidative stress-related inflammation and improves intestinal microbiota. Food Funct 2022; 13:6583-6595. [PMID: 35621018 DOI: 10.1039/d1fo03776e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammation and oxidative stress play key roles in the aging process, while red yeast rice (RYR), a traditional Chinese fermented food, has anti-oxidant and anti-inflammatory effects. To understand the anti-aging function of RYR in vivo, this study established a D-galactose-induced aging mouse model to verify the positive effects of RYR dietary intervention on aging and explore the related underlying mechanism. Eight weeks of RYR dietary intervention was shown to have a significant inhibitory effect on cognitive decline and hippocampal damage. The molecular mechanistic studies showed that the anti-aging effects of RYR were achieved by (i) improving the oxidative stress-related damage (increasing SOD, CAT, and GSH, and reducing MDA), (ii) regulating the NF-κB inflammation pathway induced by oxidative stress (decreasing the pro-inflammatory cytokines IL-6, TNF-α, IFN-γ, iNOs, and IL-1β, increasing the anti-inflammatory cytokine IL-10, and decreasing the expression of the NF-κB protein), (iii) slowing down apoptosis caused by oxidative stress (reducing the expression of P21 and P53), (iv) restoring the abundance of Lactobacillus, Lachnospiraceae and Rikenellaceae downregulated by D-galactose, and (v) reducing the abundance of Akkermansia and Helicobacter enriched by D-galactose. Mass spectrometry revealed orange pigments (rubropunctatin and monascorubrin) as the main antioxidant components in RYR, which might play key roles in aging inhibition. This study provides theoretical support for the wide application of orange pigments as an antioxidant dietary supplement.
Collapse
Affiliation(s)
- Yaping Huang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhengang Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dongdong Zhu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yufei Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoyi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chumin Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. .,Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Promise of irisin to attenuate cognitive dysfunction in aging and Alzheimer's disease. Ageing Res Rev 2022; 78:101637. [PMID: 35504553 PMCID: PMC9844023 DOI: 10.1016/j.arr.2022.101637] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 01/19/2023]
Abstract
Strategies proficient for relieving cognitive impairments in aging and Alzheimer's disease (AD) have an enormous impact. Regular physical exercise (PE) can prevent age-related dementia and slow down AD progression. However, such a lifestyle change is likely not achievable for individuals displaying age-related frailty. Hence, drugs or biologics that could simulate the benefits of PE have received much attention. Previous studies suggested that the fibronectin-domain III containing 5 (FNDC5) underlies the PE-mediated improved cognitive function. A recent study reports that PE-related cognitive benefits in aging and AD are mediated by irisin, the cleaved form of FNDC5 released into the blood after PE. Such a conclusion was apparent from the deletion of irisin through a global knockout of FNDC5, leading to the loss of PE-induced cognitive benefits or inducing memory impairments in adult or aged models. Furthermore, in AD models, peripherally administered irisin mimicked the cognitive benefits of PE by modulating neuroinflammation. This short review discusses the promise of irisin to simulate the cognitive benefits of PE in age- and AD-related dementia. In addition, critical issues such as how blood-borne irisin acts on neural cells, the role of the brain-derived neurotrophic factor in irisin-mediated cognitive benefits, and irisin's ability to inhibit neuroinflammatory cascades in aging and AD are discussed.
Collapse
|
32
|
Solary E, Abou-Zeid N, Calvo F. Ageing and cancer: a research gap to fill. Mol Oncol 2022; 16:3220-3237. [PMID: 35503718 PMCID: PMC9490141 DOI: 10.1002/1878-0261.13222] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
The complex mechanisms of ageing biology are increasingly understood. Interventions to reduce or delay ageing‐associated diseases are emerging. Cancer is one of the diseases promoted by tissue ageing. A clockwise mutational signature is identified in many tumours. Ageing might be a modifiable cancer risk factor. To reduce the incidence of ageing‐related cancer and to detect the disease at earlier stages, we need to understand better the links between ageing and tumours. When a cancer is established, geriatric assessment and measures of biological age might help to generate evidence‐based therapeutic recommendations. In this approach, patients and caregivers would include the respective weight to give to the quality of life and survival in the therapeutic choices. The increasing burden of cancer in older patients requires new generations of researchers and geriatric oncologists to be trained, to properly address disease complexity in a multidisciplinary manner, and to reduce health inequities in this population of patients. In this review, we propose a series of research challenges to tackle in the next few years to better prevent, detect and treat cancer in older patients while preserving their quality of life.
Collapse
Affiliation(s)
- Eric Solary
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université Paris Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France.,Gustave Roussy Cancer Center, INSERM U1287, Villejuif, France
| | - Nancy Abou-Zeid
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France
| | - Fabien Calvo
- Fondation « Association pour la Recherche sur le Cancer », Villejuif, France.,Université de Paris, Paris, France
| |
Collapse
|
33
|
Le Goallec A, Diai S, Collin S, Prost JB, Vincent T, Patel CJ. Using deep learning to predict abdominal age from liver and pancreas magnetic resonance images. Nat Commun 2022; 13:1979. [PMID: 35418184 PMCID: PMC9007982 DOI: 10.1038/s41467-022-29525-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/18/2022] [Indexed: 11/24/2022] Open
Abstract
With age, the prevalence of diseases such as fatty liver disease, cirrhosis, and type two diabetes increases. Approaches to both predict abdominal age and identify risk factors for accelerated abdominal age may ultimately lead to advances that will delay the onset of these diseases. We build an abdominal age predictor by training convolutional neural networks to predict abdominal age (or "AbdAge") from 45,552 liver magnetic resonance images [MRIs] and 36,784 pancreas MRIs (R-Squared = 73.3 ± 0.6; mean absolute error = 2.94 ± 0.03 years). Attention maps show that the prediction is driven by both liver and pancreas anatomical features, and surrounding organs and tissue. Abdominal aging is a complex trait, partially heritable (h_g2 = 26.3 ± 1.9%), and associated with 16 genetic loci (e.g. in PLEKHA1 and EFEMP1), biomarkers (e.g body impedance), clinical phenotypes (e.g, chest pain), diseases (e.g. hypertension), environmental (e.g smoking), and socioeconomic (e.g education, income) factors.
Collapse
Affiliation(s)
- Alan Le Goallec
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.,Department of Systems, Synthetic and Quantitative Biology, Harvard University, Cambridge, MA, 02118, USA
| | - Samuel Diai
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sasha Collin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean-Baptiste Prost
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Théo Vincent
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Chirag J Patel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
34
|
Statzer C, Reichert P, Dual J, Ewald CY. Longevity interventions temporally scale healthspan in Caenorhabditis elegans. iScience 2022; 25:103983. [PMID: 35310333 PMCID: PMC8924689 DOI: 10.1016/j.isci.2022.103983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/30/2021] [Accepted: 02/21/2022] [Indexed: 01/14/2023] Open
Abstract
Human centenarians and longevity mutants of model organisms show lower incidence rates of late-life morbidities than the average population. However, whether longevity is caused by a compression of the portion of life spent in a state of morbidity, i.e., "sickspan," is highly debated even in isogenic Caenorhabditis elegans. Here, we developed a microfluidic device that employs acoustophoretic force fields to quantify the maximum muscle strength and dynamic power in aging C. elegans. Together with different biomarkers for healthspan, we found a stochastic onset of morbidity, starting with a decline in dynamic muscle power and structural integrity, culminating in frailty. Surprisingly, we did not observe a compression of sickspan in longevity mutants but instead observed a temporal scaling of healthspan. Given the conservation of these longevity interventions, this raises the question of whether the healthspan of mammalian longevity interventions is also temporally scaled.
Collapse
Affiliation(s)
- Cyril Statzer
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Peter Reichert
- Eidgenössische Technische Hochschule Zürich, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, Zürich CH-8092, Switzerland
| | - Jürg Dual
- Eidgenössische Technische Hochschule Zürich, Department of Mechanical and Process Engineering, Institute for Mechanical Systems, Zürich CH-8092, Switzerland
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| |
Collapse
|
35
|
Cellular reprogramming and the rise of rejuvenation biotech. Trends Biotechnol 2022; 40:639-642. [DOI: 10.1016/j.tibtech.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
|
36
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Madhu LN, Kodali M, Shetty AK. Promise of metformin for preventing age-related cognitive dysfunction. Neural Regen Res 2022; 17:503-507. [PMID: 34380878 PMCID: PMC8504370 DOI: 10.4103/1673-5374.320971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The expanded lifespan of people, while a positive advance, has also amplified the prevalence of age-related disorders, which include mild cognitive impairment, dementia, and Alzheimer's disease. Therefore, competent therapies that could improve the healthspan of people have great significance. Some of the dietary and pharmacological approaches that augment the lifespan could also preserve improved cognitive function in old age. Metformin, a drug widely used for treating diabetes, is one such candidate that could alleviate age-related cognitive dysfunction. However, the possible use of metformin to alleviate age-related cognitive dysfunction has met with conflicting results in human and animal studies. While most clinical studies have suggested the promise of metformin to maintain better cognitive function and reduce the risk for developing dementia and Alzheimer's disease in aged diabetic people, its efficacy in the nondiabetic population is still unclear. Moreover, a previous animal model study implied that metformin could adversely affect cognitive function in the aged. However, a recent animal study using multiple behavioral tests has reported that metformin treatment in late middle age improved cognitive function in old age. The study also revealed that cognition-enhancing effects of metformin in aged animals were associated with the activation of the energy regulator adenosine monophosphate-activated protein kinase, diminished neuroinflammation, inhibition of the mammalian target of rapamycin signaling, and augmented autophagy in the hippocampus. The proficiency of metformin to facilitate these favorable modifications in the aged hippocampus likely underlies its positive effect on cognitive function. Nonetheless, additional studies probing the outcomes of different doses and durations of metformin treatment at specific windows in the middle and old age across sex in nondiabetic and non-obese prototypes are required to substantiate the promise of metformin to maintain better cognitive function in old age.
Collapse
Affiliation(s)
- Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
38
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
39
|
Le Couteur DG, Anderson RM, de Cabo R. Can we make drug discovery targeting fundamental mechanisms of aging a reality? Expert Opin Drug Discov 2021; 17:97-100. [PMID: 34678116 DOI: 10.1080/17460441.2022.1993818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- David G Le Couteur
- Centre for Education and Research on Aging, Charles Perkins Centre and ANZAC Research Institute, University of Sydney and Concord Hospital, Sydney, Australia
| | - Rozalyn M Anderson
- Department of Medicine, SMPH University of Wisconsin-Madison, GRECC, William S Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
40
|
Wolf AM. The tumor suppression theory of aging. Mech Ageing Dev 2021; 200:111583. [PMID: 34637937 DOI: 10.1016/j.mad.2021.111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023]
Abstract
Despite continued increases in human life expectancy, the factors determining the rate of human biological aging remain unknown. Without understanding the molecular mechanisms underlying aging, efforts to prevent aging are unlikely to succeed. The tumor suppression theory of aging introduced here proposes somatic mutation as the proximal cause of aging, but postulates that oncogenic transformation and clonal expansion, not functional impairment, are the relevant consequences of somatic mutation. Obesity and caloric restriction accelerate and decelerate aging due to their effect on cell proliferation, during which most mutations arise. Most phenotypes of aging are merely tumor-suppressive mechanisms that evolved to limit malignant growth, the dominant age-related cause of death in early and middle life. Cancer limits life span for most long-lived mammals, a phenomenon known as Peto's paradox. Its conservation across species demonstrates that mutation is a fundamental but hard limit on mammalian longevity. Cell senescence and apoptosis and differentiation induced by oncogenes, telomere shortening or DNA damage evolved as a second line of defense to limit the tumorigenic potential of clonally expanding cells, but accumulating senescent cells, senescence-associated secretory phenotypes and stem cell exhaustion eventually cause tissue dysfunction and the majority, if not most, phenotypes of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
41
|
Gems D, de Magalhães JP. The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. Ageing Res Rev 2021; 70:101407. [PMID: 34271186 PMCID: PMC7611451 DOI: 10.1016/j.arr.2021.101407] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 01/10/2023]
Abstract
With the goal of representing common denominators of aging in different organisms López-Otín et al. in 2013 described nine hallmarks of aging. Since then, this representation has become a major reference point for the biogerontology field. The template for the hallmarks of aging account originated from landmark papers by Hanahan and Weinberg (2000, 2011) defining first six and later ten hallmarks of cancer. Here we assess the strengths and weaknesses of the hallmarks of aging account. As a checklist of diverse major foci of current aging research, it has provided a useful shared overview for biogerontology during a time of transition in the field. It also seems useful in applied biogerontology, to identify interventions (e.g. drugs) that impact multiple symptomatic features of aging. However, while the hallmarks of cancer provide a paradigmatic account of the causes of cancer with profound explanatory power, the hallmarks of aging do not. A worry is that as a non-paradigm the hallmarks of aging have obscured the urgent need to define a genuine paradigm, one that can provide a useful basis for understanding the mechanistic causes of the diverse aging pathologies. We argue that biogerontology must look and move beyond the hallmarks to understand the process of aging.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| |
Collapse
|
42
|
Bhoumik S, Rizvi SI. Anti‐aging effects of intermittent fasting: a potential alternative to calorie restriction? Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Kraushaar LE, Bauer P. Dismantling Anti-Ageing Medicine: Why Age-Relatedness of Cardiovascular Disease is Proof of Robustness Rather Than of Ageing-Associated Vulnerability. Heart Lung Circ 2021; 30:1702-1709. [PMID: 34244067 DOI: 10.1016/j.hlc.2021.05.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022]
Abstract
Ageing is perceived to be the common culprit behind the most prevalent noncommunicable chronic diseases (NCD) such as cardiovascular disease (CVD). Treating ageing as a means to prevent its downstream pathologies has become the logical extension of this idea, and the defining criterion of anti-ageing medicine (evidence-based early detection, prevention, and treatment of age-related diseases). Challenging the underlying rationale, we here argue that the disease's late-in-life occurrence is proof of a genetically conserved robustness that helps us resist disease long enough for it to masquerade as a consequence of living long rather than of living wrong. Robustness is an acknowledged hallmark phenomenon of all complex systems (while there exists no universally adopted definition, a hallmark of complex systems is that they consist of many networked components whose interactions may give rise to system behaviors which cannot be derived or predicted from a reductionist knowledge of the interacting parts, even if this knowledge is complete) and a key concept in the complexity sciences (a relatively new branch of science that attempts to find and understand the common mechanisms and patterns shared by all complex systems). To reconceptualise the age-relatedness of chronic diseases in this sense has important implications for medical research and practice. The goal of our essay is to open a discussion that may enhance the overall understanding of robustness and prevent a misguided redirection of funding away from established disease specific research and towards anti-ageing medicine. This essay is timely, as the forthcoming 11th version of the International Classification of Diseases (ICD) will be the first to recognise ageing as a condition, thereby legitimising anti-ageing medical research. On a more pragmatic note, and for the benefit of people alive today, we propose a practical strategy to remedy the mismatch between heritable robustness and the lifestyle challenges that gradually overwhelm it.
Collapse
Affiliation(s)
- Lutz E Kraushaar
- Adiphea Alliance for Disease Prevention & Healthy Aging GmbH, Werbach, Germany.
| | - Pascal Bauer
- Department of Cardiology and Angiology, Justus- Liebig University Giessen, Geissen, Germany
| |
Collapse
|
44
|
Li Y, Hu D, Huang J, Wang S. Glycated peptides obtained from cultured crocodile meat hydrolysates via Maillard reaction and the anti-aging effects on Drosophila in vivo. Food Chem Toxicol 2021; 155:112376. [PMID: 34197881 DOI: 10.1016/j.fct.2021.112376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/01/2023]
Abstract
With the aging problems increasing, the discovery of anti-aging compounds has become a popular research direction. Accumulation of free radicals and the consequent oxidative stress are the chief culprit of aging. Given this, cultured crocodile meat peptides-Maillard reaction product (CMP-MRP) with remarkable antioxidant activity was obtained via Maillard reaction of cultured crocodile meat hydrolysates and xylose. The antioxidant activity in vitro and anti-aging activity in vivo of CMP-MRP were investigated. Results indicated that the lifespan and the athletic ability of Drosophila were significantly improved after the administration of CMP-MRP in natural aging, H2O2- and paraquat-induced models. Furthermore, the antioxidant enzyme activities of Drosophila treated with CMP-MRP were enhanced while the levels of malondialdehyde (MDA) and protein carbonyl (PCO) were reduced in three Drosophila models. With the supplement of 5 mg/mL CMP-MRP in natural aging Drosophila model, the maximum lifespan increased from 61 days to 73 days, athletic ability raised by 95.45%, MDA and PCO reduced by 52.72% and 47.43%, respectively. Taken together, CMP-MRP exhibited outstanding antioxidant and anti-aging capacities in Drosophila models, suggesting that CMP-MRP possesses great potential in the health food and biomedicine fields as a food-derived anti-aging agent.
Collapse
Affiliation(s)
- Yin Li
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, 361026, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Dongyi Hu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen, 361026, China; Fujian Anjoyfood Share Co. Ltd, Xiamen, 361022, China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
45
|
Kovács Z, Brunner B, Ari C. Beneficial Effects of Exogenous Ketogenic Supplements on Aging Processes and Age-Related Neurodegenerative Diseases. Nutrients 2021; 13:nu13072197. [PMID: 34206738 PMCID: PMC8308443 DOI: 10.3390/nu13072197] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Life expectancy of humans has increased continuously up to the present days, but their health status (healthspan) was not enhanced by similar extent. To decrease enormous medical, economical and psychological burden that arise from this discrepancy, improvement of healthspan is needed that leads to delaying both aging processes and development of age-related diseases, thereby extending lifespan. Thus, development of new therapeutic tools to alleviate aging processes and related diseases and to increase life expectancy is a topic of increasing interest. It is widely accepted that ketosis (increased blood ketone body levels, e.g., β-hydroxybutyrate) can generate neuroprotective effects. Ketosis-evoked neuroprotective effects may lead to improvement in health status and delay both aging and the development of related diseases through improving mitochondrial function, antioxidant and anti-inflammatory effects, histone and non-histone acetylation, β-hydroxybutyrylation of histones, modulation of neurotransmitter systems and RNA functions. Administration of exogenous ketogenic supplements was proven to be an effective method to induce and maintain a healthy state of nutritional ketosis. Consequently, exogenous ketogenic supplements, such as ketone salts and ketone esters, may mitigate aging processes, delay the onset of age-associated diseases and extend lifespan through ketosis. The aim of this review is to summarize the main hallmarks of aging processes and certain signaling pathways in association with (putative) beneficial influences of exogenous ketogenic supplements-evoked ketosis on lifespan, aging processes, the most common age-related neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis), as well as impaired learning and memory functions.
Collapse
Affiliation(s)
- Zsolt Kovács
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
| | - Brigitta Brunner
- Department of Biology, Savaria University Centre, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary; (Z.K.); (B.B.)
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary
| | - Csilla Ari
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, 4202 E. Fowler Ave, PCD 3127, Tampa, FL 33620, USA
- Ketone Technologies LLC, 2780 E. Fowler Ave. #226, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| |
Collapse
|
46
|
Kiprov D. Therapeutic plasma exchange (TPE) and blood products - Implications for longevity and disease. Transfus Apher Sci 2021; 60:103163. [PMID: 34074614 DOI: 10.1016/j.transci.2021.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Rabanal-Ruiz Y, Llanos-González E, Alcain FJ. The Use of Coenzyme Q10 in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10050755. [PMID: 34068578 PMCID: PMC8151454 DOI: 10.3390/antiox10050755] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
CoQ10 is an endogenous antioxidant produced in all cells that plays an essential role in energy metabolism and antioxidant protection. CoQ10 distribution is not uniform among different organs, and the highest concentration is observed in the heart, though its levels decrease with age. Advanced age is the major risk factor for cardiovascular disease and endothelial dysfunction triggered by oxidative stress that impairs mitochondrial bioenergetic and reduces NO bioavailability, thus affecting vasodilatation. The rationale of the use of CoQ10 in cardiovascular diseases is that the loss of contractile function due to an energy depletion status in the mitochondria and reduced levels of NO for vasodilatation has been associated with low endogenous CoQ10 levels. Clinical evidence shows that CoQ10 supplementation for prolonged periods is safe, well-tolerated and significantly increases the concentration of CoQ10 in plasma up to 3–5 µg/mL. CoQ10 supplementation reduces oxidative stress and mortality from cardiovascular causes and improves clinical outcome in patients undergoing coronary artery bypass graft surgery, prevents the accumulation of oxLDL in arteries, decreases vascular stiffness and hypertension, improves endothelial dysfunction by reducing the source of ROS in the vascular system and increases the NO levels for vasodilation.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Emilio Llanos-González
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Francisco Javier Alcain
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (Y.R.-R.); (E.L.-G.)
- Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research CRIB, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| |
Collapse
|
48
|
Park Y, Cha JJ, Kim HW. Electrochemical sensor for determination of aging state at single cell level under different pressures of cell capturing. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01054-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
de Magalhães JP. Longevity pharmacology comes of age. Drug Discov Today 2021; 26:1559-1562. [PMID: 33617794 DOI: 10.1016/j.drudis.2021.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
With a globally aging population, longevity is becoming the most promising market for the biotech industry. In animals, aging can be retarded and longevity extended, which, if translated to humans, would result in huge health benefits with remarkable commercial value. The potential to slow down human aging has led to a race to discover the most promising longevity drugs in animals and ultimately translate them to humans. Indeed, in recent years, there has been exponential growth in longevity drugs discovered in animal models. Investment in longevity biotech is also booming, and several clinical trials will soon shed light on which drugs extend healthy lives. Thus, the longevity pharmacology field promises to revolutionize the healthcare of a growing aging population.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Centaura AG, Bleicherweg 10, Zurich 8002, Switzerland.
| |
Collapse
|
50
|
Orkin JD, Montague MJ, Tejada-Martinez D, de Manuel M, Del Campo J, Cheves Hernandez S, Di Fiore A, Fontsere C, Hodgson JA, Janiak MC, Kuderna LFK, Lizano E, Martin MP, Niimura Y, Perry GH, Valverde CS, Tang J, Warren WC, de Magalhães JP, Kawamura S, Marquès-Bonet T, Krawetz R, Melin AD. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc Natl Acad Sci U S A 2021; 118:e2010632118. [PMID: 33574059 PMCID: PMC7896301 DOI: 10.1073/pnas.2010632118] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ecological flexibility, extended lifespans, and large brains have long intrigued evolutionary biologists, and comparative genomics offers an efficient and effective tool for generating new insights into the evolution of such traits. Studies of capuchin monkeys are particularly well situated to shed light on the selective pressures and genetic underpinnings of local adaptation to diverse habitats, longevity, and brain development. Distributed widely across Central and South America, they are inventive and extractive foragers, known for their sensorimotor intelligence. Capuchins have among the largest relative brain size of any monkey and a lifespan that exceeds 50 y, despite their small (3 to 5 kg) body size. We assemble and annotate a de novo reference genome for Cebus imitator Through high-depth sequencing of DNA derived from blood, various tissues, and feces via fluorescence-activated cell sorting (fecalFACS) to isolate monkey epithelial cells, we compared genomes of capuchin populations from tropical dry forests and lowland rainforests and identified population divergence in genes involved in water balance, kidney function, and metabolism. Through a comparative genomics approach spanning a wide diversity of mammals, we identified genes under positive selection associated with longevity and brain development. Additionally, we provide a technological advancement in the use of noninvasive genomics for studies of free-ranging mammals. Our intra- and interspecific comparative study of capuchin genomics provides insights into processes underlying local adaptation to diverse and physiologically challenging environments, as well as the molecular basis of brain evolution and longevity.
Collapse
Affiliation(s)
- Joseph D Orkin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T38 6A8, Canada
| | - Michael J Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19146
| | - Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107
- Doctorado en Ciencias mención Ecología y Evolución, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Marc de Manuel
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | - Javier Del Campo
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | | | - Anthony Di Fiore
- Department of Anthropology and Primate Molecular Ecology and Evolution Laboratory, University of Texas at Austin, Austin, TX 78712
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, 170901 Cumbayá, Ecuador
| | - Claudia Fontsere
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | - Jason A Hodgson
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - Mareike C Janiak
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T38 6A8, Canada
- School of Science, Engineering and Environment, University of Salford, Salford M5 4WT, United Kingdom
| | - Lukas F K Kuderna
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
| | - Esther Lizano
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Pia Martin
- Kids Saving the Rainforest Wildlife Rescue Center, 60601 Quepos, Costa Rica
| | - Yoshihito Niimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | | | - Jia Tang
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Wesley C Warren
- Division of Animal Sciences, School of Medicine, University of Missouri, Columbia, MO 65211
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8562 Chiba, Japan
| | - Tomàs Marquès-Bonet
- Institut de Biologia Evolutiva, Universitat Pompeu Fabra, Consejo Superior de Investigaciones Cientificas, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies, 08010 Barcelona, Spain
- Centro Nacional de Análisis Genómico-Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T38 6A8, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T38 6A8, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T38 6A8, Canada
| |
Collapse
|