1
|
Yan K, Chen D, Guo X, Wan Y, Yang C, Wang W, Li X, Lu Z, Wang D. Electric-field assisted cascade reactions to create alginate/carboxymethyl chitosan composite hydrogels with gradient architecture and reconfigurable mechanical properties. Carbohydr Polym 2024; 346:122609. [PMID: 39245522 DOI: 10.1016/j.carbpol.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Rational designs of polysaccharide-based hydrogels with organ-like three-dimensional architecture provide a great possibility for addressing the shortages of allograft tissues and organs. However, spatial-temporal control over structure in bulk hydrogel and acquire satisfied mechanical properties remain an intrinsic challenge to achieve. Here, we show how electric-field assisted molecular self-assembly can be coupled to a directional reaction-diffusion (RD) process to produce macroscopic hydrogel in a controllable manner. The electrical energy input was not only to generate complex molecule gradients and initiate the molecular self-assembly, but also to guide/facilitate the RD processes for the gel rapid growth via a cascade construction interaction. The hydrogel mechanical properties can be tuned and enhanced by using an interpenetrating biopolymer network and multiple ionic crosslinkers, leading to a wide-range of mechanical modulus to match with biological organs or tissues. We demonstrate diverse 3D macroscopic hydrogels can be easily prepared via field-assisted directional reaction-diffusion and specific joint interactions. The humility-triggered dissipation of functional gradients and antibacterial performance confirm that the hydrogels can serve as an optically variable soft device for wound management. Therefore, this work provides a general approach toward the rational fabrication of soft hydrogels with controlled architectures and functionality for advanced biomedical systems.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Ding Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Yekai Wan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials &Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| |
Collapse
|
2
|
Chernokal B, Ferrick BJ, Gleghorn JP. Zonal patterning of extracellular matrix and stromal cell populations along a perfusable cellular microchannel. LAB ON A CHIP 2024. [PMID: 39479925 PMCID: PMC11525951 DOI: 10.1039/d4lc00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024]
Abstract
The spatial organization of biophysical and biochemical cues in the extracellular matrix (ECM) in concert with reciprocal cell-cell signaling is vital to tissue patterning during development. However, elucidating the role an individual microenvironmental factor plays using existing in vivo models is difficult due to their inherent complexity. In this work, we have developed a microphysiological system to spatially pattern the biochemical, biophysical, and stromal cell composition of the ECM along an epithelialized 3D microchannel. This technique is adaptable to multiple hydrogel compositions and scalable to the number of zones patterned. We confirmed that the methodology to create distinct zones resulted in a continuous, annealed hydrogel with regional interfaces that did not hinder the transport of soluble molecules. Further, the interface between hydrogel regions did not disrupt microchannel structure, epithelial lumen formation, or media perfusion through an acellular or cellularized microchannel. Finally, we demonstrated spatially patterned tubulogenic sprouting of a continuous epithelial tube into the surrounding hydrogel confined to local regions with stromal cell populations, illustrating spatial control of cell-cell interactions and signaling gradients. This easy-to-use system has wide utility for modeling three-dimensional epithelial and endothelial tissue interactions with heterogeneous hydrogel compositions and/or stromal cell populations to investigate their mechanistic roles during development, homeostasis, or disease.
Collapse
Affiliation(s)
- Brea Chernokal
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| | - Bryan J Ferrick
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19713, USA.
| |
Collapse
|
3
|
Rovers MM, Rogkoti T, Bakker BK, Bakal KJ, van Genderen MHP, Salmeron-Sanchez M, Dankers PYW. Using a Supramolecular Monomer Formulation Approach to Engineer Modular, Dynamic Microgels, and Composite Macrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405868. [PMID: 39463044 DOI: 10.1002/adma.202405868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Microgels show advantages over bulk hydrogels due to convenient control over microgel size and composition, and the ability to use microgels to modularly construct larger hierarchical scaffold hydrogel materials. Here, supramolecular chemistry is used to formulate supramolecular polymer, dynamic microgels solely held together by non-covalent interactions. Four-fold hydrogen bonding ureido-pyrimidinone (UPy) monomers with different functionalities are applied to precisely tune microgel properties in a modular way, via variations in monomer concentration, bifunctional crosslinker ratio, and the incorporation of supramolecular dyes and peptides. Functionalization with a bioactive supramolecular cell-adhesive peptide induced selectivity of cells toward the bioactive microgels over non-active, non-functionalized versions. Importantly, the supramolecular microgels can also be applied as microscale building blocks into supramolecular bulk macrogels with tunable dynamic behavior: a robust and weak macrogel, where the micro- and macrogels are composed of similar molecular building blocks. In a robust macrogel, microgels act as modular micro-building blocks, introducing multi-compartmentalization, while in a weak macrogel, microgels reinforce and enhance mechanical properties. This work demonstrates the potential to modularly engineer higher-length-scale structures using small molecule supramolecular monomers, wherein microgels serve as versatile and modular micro-building units.
Collapse
Affiliation(s)
- Maritza M Rovers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Theodora Rogkoti
- Centre for the Cellular Microenvironment, University of Glasgow, Advanced Research Centre, 11 Chapel Lane, Glasgow, G11 6EW, UK
| | - Bram K Bakker
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Kalpit J Bakal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Marcel H P van Genderen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| | - Manuel Salmeron-Sanchez
- Centre for the Cellular Microenvironment, University of Glasgow, Advanced Research Centre, 11 Chapel Lane, Glasgow, G11 6EW, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
4
|
Shaygani H, Mofrad YM, Demneh SMR, Hafezi S, Almasi-Jaf A, Shamloo A. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J Biol Macromol 2024; 282:136689. [PMID: 39447779 DOI: 10.1016/j.ijbiomac.2024.136689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cartilage and bone are crucial tissues causing disability in the elderly population, often requiring prolonged treatment and surgical intervention due to limited regenerative capacity. Injectable hydrogels that closely mimic the extracellular matrix (ECM) of native hard tissue have attracted attention due to their minimally invasive application and ability to conform to irregular defect sites. These hydrogels facilitate key biological processes such as cell migration, chondrogenesis in cartilage repair, osteoinduction, angiogenesis, osteoconduction, and mineralization in bone repair. This review analyzes in-vitro and in-vivo biomedical databases over the past decade to identify advancements in hydrogel formulations, crosslinking mechanisms, and biomaterial selection for cartilage and bone tissue engineering. The review emphasizes the effectiveness of injectable hydrogels as carriers for cells, growth factors, and drugs, offering additional therapeutic benefits. The relevance of these findings is discussed in the context of their potential to serve as a robust alternative to current surgical and non-surgical treatments. This review also examines the advantages of injectable hydrogels, such as ease of administration, reduced patient recovery time, and enhanced bioactivity, thereby emphasizing their potential in clinical applications for cartilage and bone regeneration with emphasis on addressing the shortcomings of current treatments.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Yasaman Mozhdehbakhsh Mofrad
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran; School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Mohammadhossein Rezaei Demneh
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Shayesteh Hafezi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
5
|
Kang M, Liang H, Hu Y, Wei Y, Huang D. Gelatin-based hydrogels with tunable network structure and mechanical property for promoting osteogenic differentiation. Int J Biol Macromol 2024; 281:136312. [PMID: 39370072 DOI: 10.1016/j.ijbiomac.2024.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Osteoarthritis (OA) is a joint disease involving all joint components, including cartilage, calcified cartilage, and subchondral bone. The repair of osteochondral defects remains a significant challenge in orthopedics. Development of new strategies is essential for effective osteochondral injury repair. In this study, gelatin (Gel), polyethylene glycol diglycidyl ether (PEGDGE), hydroxyethyl cellulose (HEC) and chitosan (CS) were used to prepare semi-IPNs and IPNs hydrogels. Mechanical properties of Gel based hydrogels significantly improved with the semi-IPN and IPN structures. Tensile strength ranges from 238.7 KPa to 479.5 KPa, and its compressive strength ranges from 35.6 KPa to 112.7 KPa. Additionally, the stress relaxation rate increased with higher CS concentrations, ranging from 25 % to 35 %. The network structure of Gel-based hydrogels was a key factor in regulating stress relaxation. Viscoelasticity was adjusted by its network structures. Swelling and degradation behaviors of Gel based hydrogels were systematically investigated. Gel based hydrogels had good cytocompatibility. Both semi-IPN and IPN structures Gel based hydrogels could promote cell spreading and osteogenic differentiation. G10HEC1 and G10CS1 hydrogels show promise as candidates for osteochondral tissue regeneration, offering a new strategy for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Min Kang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Haijiao Liang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yinchun Hu
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yan Wei
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
6
|
Li X, Wei A, Zhao H, Wang Z, Lyu Y, Nie J, Chen Y. A carboxymethyl-resistant starch/polyacrylic acid semi-IPN hydrogel with excellent adhesive and antibacterial properties for peri-implantitis prevention. Colloids Surf B Biointerfaces 2024; 242:114082. [PMID: 39038412 DOI: 10.1016/j.colsurfb.2024.114082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
Hydrogels possess inherent characteristics that render them promising for the prevention of peri-implantitis. Nonetheless, hydrogels with singular network structures are incapable of concurrently achieving the desired adhesion and mechanical properties. In this work, a carboxymethyl resistant starch/polyacrylic acid semi-interpenetrating (CMRS/PAA semi-IPN) hydrogel was successfully prepared in one step. Its morphology, structure, mechanical properties, and adhesion properties were systematically assessed, which revealed a homogeneously porous structure with a commendable mechanical strength of 67.317 kPa and an adhesion strength of 63 kPa. Ciprofloxacin (Cip) was loaded in the CMRS/PAA hydrogel via in situ compounding. The in vitro kinetic study of drug release shows that the slow drug release efficiency exceeds 90 % in the weakly acidic microenvironment at the infection site after 72 h, indicating enhanced antimicrobial properties. The Cip-loaded hydrogel also exhibits a remarkable bacterial inhibition rate exceeding 99 % against the pathogenic bacterium P. gingivalis and good cytocompatibility and hemocompatibility in vitro. In summary, the current work explored a novel solution and direction for the development of anti-infective medical materials applicable to dental implants.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ailin Wei
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haosen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenfei Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Lyu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jie Nie
- Department of Cariology and Endodontology, Peking University School of Stomatology, Beijing, 100081, China.
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing 100191, China.
| |
Collapse
|
7
|
Mercer IG, Yu K, Devanny AJ, Gordon MB, Kaufman LJ. Plasticity variable collagen-PEG interpenetrating networks modulate cell spreading. Acta Biomater 2024; 187:242-252. [PMID: 39218279 DOI: 10.1016/j.actbio.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix protein collagen I has been used extensively in the field of biomaterials due to its inherent biocompatibility and unique viscoelastic and mechanical properties. Collagen I self-assembly into fibers and networks is environmentally sensitive to gelation conditions such as temperature, resulting in gels with distinct network architectures and mechanical properties. Despite this, collagen gels are not suitable for many applications given their relatively low storage modulus. We have prepared collagen-poly(ethylene glycol) [PEG] interpenetrating network (IPN) hydrogels to reinforce the collagen network, which also induces changes to network plasticity, a recent focus of study in cell-matrix interactions. Here, we prepare collagen/PEG IPNs, varying collagen concentration and collagen gelation temperature to assess changes in microarchitecture and mechanical properties of these networks. By tuning these parameters, IPNs with a range of stiffness, plasticity and pore size are obtained. Cell studies suggest that matrix plasticity is a key determinant of cell behavior, including cell elongation, on these gels. This work presents a natural/synthetic biocompatible matrix that retains the unique structural properties of collagen networks with increased storage modulus and tunable plasticity. The described IPN materials will be of use for applications in which control of cell spreading is desirable, as only minimal changes in sample preparation lead to changes in cell spreading and circularity. Additionally, this study contributes to our understanding of the connection between collagen self-assembly conditions and matrix structural and mechanical properties and presents them as useful tools for the design of other collagen based biomaterials. STATEMENT OF SIGNIFICANCE: We developed a collagen-poly(ethylene glycol) interpenetrating network (IPN) platform that retains native collagen architecture and biocompatibility but provides higher stiffness and tunable plasticity. With minor changes in collagen gelation temperature or concentration, IPN gels with a range of plasticity, storage modulus, and pore size can be obtained. The tunable plasticity of the gels is shown to modulate cell spreading, with a greater proportion of elongated cells on the most plastic of IPNs, supporting the assertion that matrix plasticity is a key determinant of cell spreading. The material can be of use for situations where control of cell spreading is desired with minimal intervention, and the findings herein may be used to develop similar collagen based IPN platforms.
Collapse
Affiliation(s)
- Iris G Mercer
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Karen Yu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Alexander J Devanny
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Melissa B Gordon
- Department of Chemical and Biomolecular Engineering, Lafayette College, Easton, PA 18042, United States
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
8
|
Poyraz Y, Baltacı N, Hassan G, Alayoubi O, Uysal BÖ, Pekcan Ö. Composite Hydrogel of Polyacrylamide/Starch/Gelatin as a Novel Amoxicillin Delivery System. Gels 2024; 10:625. [PMID: 39451278 PMCID: PMC11507288 DOI: 10.3390/gels10100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigates the development and characterization of a novel composite hydrogel composed of polyacrylamide (PAAm), starch, and gelatin for use as an amoxicillin delivery system. The optical properties, swelling behavior, and drug release profile of the composite hydrogel's were studied to evaluate its efficacy and potential applications. UV-visible spectroscopy was employed to determine the optical properties, revealing significant transparency in the visible range, which is essential for biomedical applications. The incorporation of starch and gelatin into the polyacrylamide matrix significantly enhanced the hydrogel's swelling capacity and biocompatibility. Studies on drug delivery demonstrated a sustained release profile of amoxicillin in simulated gastrointestinal fluids, which is essential for maintaining therapeutic levels for a prolonged amount of time. The results indicate that the composite hydrogel of PAAm/starch/gelatin has good swelling behavior, appealing optical characteristics, and a promising controlled drug release mechanism. These results point to this hydrogel's considerable potential as a drug delivery method, providing a viable path toward enhancing the medicinal effectiveness of amoxicillin and maybe other medications.
Collapse
Affiliation(s)
- Yağmur Poyraz
- Computational Sciences and Engineering, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Nisa Baltacı
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Gana Hassan
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Oubadah Alayoubi
- Materials Science and Nanotechnology, School of Graduate Studies, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey
| | - Bengü Özuğur Uysal
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey;
| | - Önder Pekcan
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Fatih, Istanbul 34083, Turkey;
| |
Collapse
|
9
|
Moghaddam AS, Dunne K, Breyer W, Wu Y, Pashuck ET. Hydrogels with Independently Controlled Adhesion Ligand Mobility and Viscoelasticity Increase Cell Adhesion and Spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614501. [PMID: 39386463 PMCID: PMC11463488 DOI: 10.1101/2024.09.23.614501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
A primary objective in designing hydrogels for cell culture is recreating the cell-matrix interactions found within human tissues. Identifying the most important biomaterial features for these interactions is challenging because it is difficult to independently adjust variables such as matrix stiffness, stress relaxation, the mobility of adhesion ligands and the ability of these ligands to support cellular forces. In this work we designed a hydrogel platform consisting of interpenetrating polymer networks of covalently crosslinked poly(ethylene glycol) (PEG) and self-assembled peptide amphiphiles (PA). We can tailor the storage modulus of the hydrogel by altering the concentration and composition of each network, and we can tune the stress relaxation half-life through the non-covalent bonding in the PA network. Ligand mobility can be adjusted independently of the matrix mechanical properties by attaching the RGD cell adhesion ligand to either the covalent PEG network, the dynamic PA network, or both networks at once. Interestingly, our findings show that endothelial cell adhesion formation and spreading is maximized in soft, viscoelastic gels in which RGD adhesion ligands are present on both the covalent PEG and non-covalent PA networks. The dynamic nature of cell adhesion domains, coupled with their ability to exert substantial forces on the matrix, suggests that having different presentations of RGD ligands which are either mobile or are capable of withstanding significant forces are needed mimic different aspects of complex cell-matrix adhesions. By demonstrating how different presentations of RGD ligands affect cell behavior independently of viscoelastic properties, these results contribute to the rational design of hydrogels that facilitate desired cell-matrix interactions, with the potential of improving in vitro models and regenerative therapies.
Collapse
Affiliation(s)
| | - Katelyn Dunne
- Department of Bioengineering, Lehigh University, Bethlehem PA, USA, 18015
| | - Wendy Breyer
- Department of Chemistry, Lehigh University, Bethlehem PA, USA, 18015
| | - Yingjie Wu
- Department of Bioengineering, Lehigh University, Bethlehem PA, USA, 18015
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem PA, USA, 18015
| |
Collapse
|
10
|
Kusen I, Lee A, Cuttaz EA, Bailey ZK, Killilea J, Aslie SMN, Goding JA, Green RA. Injectable conductive hydrogel electrodes for minimally invasive neural interfaces. J Mater Chem B 2024; 12:8929-8940. [PMID: 39145569 PMCID: PMC11325676 DOI: 10.1039/d4tb00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
Soft bioelectronic neural interfaces have great potential as mechanically favourable alternatives to implantable metal electrodes. In this pursuit, conductive hydrogels (CHs) are particularly viable, combining tissue compliance with the required electrochemical characteristics. Physically-aggregated CHs offer an additional advantage by their facile synthesis into injectable systems, enabling minimally invasive implantation, though they can be impeded by a lack of control over their particle size and packing. Guided by these principles, an injectable PEDOT:PSS/acetic acid-based hydrogel is presented herein whose mechanical and electrochemical properties are independently tuneable by modifying the relative acetic acid composition. The fabrication process further benefits from employing batch emulsion to decrease particle sizes and facilitate tighter packing. The resulting material is stable and anatomically compact upon injection both in tissue phantom and ex vivo, while retaining favourable electrochemical properties in both contexts. Biphasic current stimulation yielding voltage transients well below the charge injection limit as well as the gel's non-cytotoxicity further underscore its potential for safe and effective neural interfacing applications.
Collapse
Affiliation(s)
- Ines Kusen
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
| | - Aaron Lee
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
| | - Estelle A Cuttaz
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
| | - Zachary K Bailey
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
| | - Joshua Killilea
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
- Faculty of Medicine, Imperial College London, London, SW7 2BX, UK
| | | | - Josef A Goding
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
| | - Rylie A Green
- Department of Bioengineering, Imperial College London, London, SW7 2BX, UK.
| |
Collapse
|
11
|
Zigan C, Benito Alston C, Chatterjee A, Solorio L, Chan DD. Characterization of Composite Agarose-Collagen Hydrogels for Chondrocyte Culture. Ann Biomed Eng 2024:10.1007/s10439-024-03613-x. [PMID: 39277549 DOI: 10.1007/s10439-024-03613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and mechanotransduction studies but lack features that make them ideal for functional engineered cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical properties. Acellular and cell-laden studies were completed to assess rheologic and compressive properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose-2 mg/mL collagen I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and continual glycosaminoglycan production, indicating promise toward the development of an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies.
Collapse
Affiliation(s)
- Clarisse Zigan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Aritra Chatterjee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
13
|
Nguyen TKL, Pham-Truong TN. Recent Advancements in Gel Polymer Electrolytes for Flexible Energy Storage Applications. Polymers (Basel) 2024; 16:2506. [PMID: 39274140 PMCID: PMC11398039 DOI: 10.3390/polym16172506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Since the last decade, the need for deformable electronics exponentially increased, requiring adaptive energy storage systems, especially batteries and supercapacitors. Thus, the conception and elaboration of new deformable electrolytes becomes more crucial than ever. Among diverse materials, gel polymer electrolytes (hydrogels, organogels, and ionogels) remain the most studied thanks to the ability to tune the physicochemical and mechanical properties by changing the nature of the precursors, the type of interactions, and the formulation. Nevertheless, the exploitation of this category of electrolyte as a possible commercial product is still restrained, due to different issues related to the nature of the gels (ionic conductivity, evaporation of filling solvent, toxicity, etc.). Therefore, this review aims to resume different strategies to tailor the properties of the gel polymer electrolytes as well as to provide recent advancements in the field toward the elaboration of deformable batteries and supercapacitors.
Collapse
Affiliation(s)
- Thi Khanh Ly Nguyen
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| | - Thuan-Nguyen Pham-Truong
- Laboratory of Physical Chemistry of Polymers and Interfaces (LPPI), CY Cergy Paris Université, F-95000 Cergy, France
| |
Collapse
|
14
|
Zhou H, Zhu C, Zhao Q, Ni J, Zhang H, Yang G, Ge J, Fang C, Wei H, Zhou X, Zhang K. Wrecking neutrophil extracellular traps and antagonizing cancer-associated neurotransmitters by interpenetrating network hydrogels prevent postsurgical cancer relapse and metastases. Bioact Mater 2024; 39:14-24. [PMID: 38783926 PMCID: PMC11112132 DOI: 10.1016/j.bioactmat.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Tumor-promoting niche after incomplete surgery resection (SR) can lead to more aggressive local progression and distant metastasis with augmented angiogenesis-immunosuppressive tumor microenvironment (TME). Herein, elevated neutrophil extracellular traps (NETs) and cancer-associated neurotransmitters (CANTs, e.g., catecholamines) are firstly identified as two of the dominant inducements. Further, an injectable fibrin-alginate hydrogel with high tissue adhesion has been constructed to specifically co-deliver NETs inhibitor (DNase I)-encapsulated PLGA nanoparticles and an unselective β-adrenergic receptor blocker (propranolol). The two components (i.e., fibrin and alginate) can respond to two triggers (thrombin and Ca2+, respectively) in postoperative bleeding to gelate, shaping into an interpenetrating network (IPN) featuring high strength. The continuous release of DNase I and PR can wreck NETs and antagonize catecholamines to decrease microvessel density, blockade myeloid-derived suppressor cells, secrete various proinflammatory cytokines, potentiate natural killer cell function and hamper cytotoxic T cell exhaustion. The reprogrammed TME significantly suppress locally residual and distant tumors, induce strong immune memory effects and thus inhibit lung metastasis. Thus, targetedly degrading NETs and blocking CANTs enabled by this in-situ IPN-based hydrogel drug depot provides a simple and efficient approach against SR-induced cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Hang Zhou
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin City, Heilongjiang Prov, PR China
| | - Chunyan Zhu
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
- Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Qing Zhao
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin City, Heilongjiang Prov, PR China
| | - Jinliang Ni
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
- Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Haipeng Zhang
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
- Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Guangcan Yang
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
- Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| | - Jianchao Ge
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Chao Fang
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
| | - Hong Wei
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin City, Heilongjiang Prov, PR China
| | - Xianli Zhou
- In-Patient Ultrasound Department, Second Affiliated Hospital of Harbin Medical University, Surgeons' Hall, No.246. XuefuRoad, Nangang District, Harbin City, Heilongjiang Prov, PR China
| | - Kun Zhang
- Department of Laboratory Medicine and Central Laboratory, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, PR China
- Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China
| |
Collapse
|
15
|
Xiao C, Xie N, Shu Q, Liang X, Wang Z, Wu J, Shi N, Huang X, Wei ZC, Gao X, Liu H, Wu K, Xu J, Wang JH, Liu N, Xu F. Synergistic Effects of Matrix Biophysical Properties on Gastric Cancer Cell Behavior via Integrin-Mediated Cell-ECM Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309907. [PMID: 38712486 DOI: 10.1002/smll.202309907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/26/2024] [Indexed: 05/08/2024]
Abstract
The biophysical properties of the extracellular matrix (ECM) play a pivotal role in modulating cancer progression via cell-ECM interactions. However, the biophysical properties specific to gastric cancer (GC) remain largely unexplored. Pertinently, GC ECM shows significantly heterogeneous metamorphoses, such as matrix stiffening and intricate restructuring. By combining collagen I and alginate, this study designs an in vitro biomimetic hydrogel platform to independently modulate matrix stiffness and structure across a physiological stiffness spectrum while preserving consistent collagen concentration and fiber topography. With this platform, this study assesses the impacts of matrix biophysical properties on cell proliferation, migration, invasion, and other pivotal dynamics of AGS. The findings spotlight a compelling interplay between matrix stiffness and structure, influencing both cellular responses and ECM remodeling. Furthermore, this investigation into the integrin/actin-collagen interplay reinforces the central role of integrins in mediating cell-ECM interactions, reciprocally sculpting cell conduct, and ECM adaptation. Collectively, this study reveals a previously unidentified role of ECM biophysical properties in GC malignant potential and provides insight into the bidirectional mechanical cell-ECM interactions, which may facilitate the development of novel therapeutic horizons.
Collapse
Affiliation(s)
- Cailan Xiao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Qiuai Shu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiru Liang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Ziwei Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Jian Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xindi Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Zhong-Cao Wei
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoliang Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Jingyuan Xu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, P. R. China
| | - Jin-Hai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Na Liu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
16
|
Xiang Y, Pan Z, Qi X, Ge X, Xiang J, Xu H, Cai E, Lan Y, Chen X, Li Y, Shi Y, Shen J, Liu J. A cuttlefish ink nanoparticle-reinforced biopolymer hydrogel with robust adhesive and immunomodulatory features for treating oral ulcers in diabetes. Bioact Mater 2024; 39:562-581. [PMID: 38883310 PMCID: PMC11179175 DOI: 10.1016/j.bioactmat.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines. However, many patients experience minimal benefits from certain medical treatments because of poor compliance, short retention times in the oral cavity, and inadequate drug efficacy. Herein, we present a novel hydrogel patch (SCE2) composed of a biopolymer matrix (featuring ultraviolet-triggered adhesion properties) loaded with cuttlefish ink nanoparticles (possessing pro-healing functions). Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light. SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species. These properties contribute to the elimination of bacteria and the management of the oxidation process, thus accelerating the healing phase's progression from inflammation to proliferation. In studies involving diabetic rats with oral ulcers, the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area, facilitating rapid re-epithelialization, and fostering angiogenesis. In conclusion, this light-sensitive hydrogel patch offers a promising path to expedited wound healing, potentially transforming treatment strategies for clinical oral ulcers.
Collapse
Affiliation(s)
- Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zhuge Pan
- Department of Otolaryngology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - XinXin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Junbo Xiang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Erya Cai
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yulong Lan
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaojing Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Jinsong Liu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
17
|
Han X, Li M, He Z, Cao J, Xie G. Topological Rearrangement-Induced Mesoscale Phase Redistribution to Enhance the Fatigue Resistance of Polymer Blends. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45487-45496. [PMID: 39140627 DOI: 10.1021/acsami.4c08682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Maintaining a high modulus to simultaneously withstand deformation and increase fatigue resistance to restrict crack propagation in a material presents a significant challenge. In this work, a straightforward strategy was developed to address this issue in polymers. A dynamic network was incorporated into a permanent one prior to the formation of the latter, and two incompatible polymer networks were created to prevent common phase separation. The mechanical and fatigue resistance properties were substantially enhanced by the exact modulation of the soft and hard phase distribution by precise control over the densities of dynamic and permanent networks as well as the number of reprocessing steps. The experimental results demonstrated a nearly 9-fold increase in the fatigue life of polyurethane compared with traditional design methods and a 2.5 times increase in modulus. This strategy shows potential for the design of fatigue-resistant thermosetting and thermoplastic materials. The results offer new insight into the development of durable, high-performance materials that are reprocessable and compatible.
Collapse
Affiliation(s)
- Xin Han
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Mengyu Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Zihuan He
- Superlubricity Engineering Research Center, Jihua Laboratory, Foshan 528000, China
| | - Jingchao Cao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Liu M, Jin J, Zhong X, Liu L, Tang C, Cai L. Polysaccharide hydrogels for skin wound healing. Heliyon 2024; 10:e35014. [PMID: 39144923 PMCID: PMC11320479 DOI: 10.1016/j.heliyon.2024.e35014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in the development and utilization of polysaccharide materials are highly promising, offering prominent applications in the field of tissue engineering for addressing diverse clinical needs, including wound healing, bone regeneration, cartilage repair, and treatment of conditions such as arthritis. Novel polysaccharide materials are popular owing to their inherent stability, biocompatibility, and repeatability. This review presents an overview of the biomedical applications of natural polysaccharide hydrogels and their derivatives. Herein, we discuss the latest advancements in the fabrication, physicochemical properties, and biomedical applications of polysaccharide-based hydrogels, including chitosan, hyaluronic acid, alginate, and cellulose. Various processing techniques applicable to polysaccharide materials are explored, such as the transformation of polysaccharide hydrogels into electrospun nanofibers, microneedles, microspheres, and nanogels. Furthermore, the use of polysaccharide hydrogels in the context of wound-healing applications, including hemostatic effects, antimicrobial activities, anti-inflammatory properties, and promotion of angiogenesis, is presented. Finally, we address the challenges encountered in the development of polysaccharide hydrogels and outline the potential prospects in this evolving field.
Collapse
Affiliation(s)
| | | | - Xiqiang Zhong
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Limei Cai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
19
|
Wang X, He W, Huang H, Han J, Wang R, Li H, Long Y, Wang G, Han X. Recent Advances in Hydrogel Technology in Delivering Mesenchymal Stem Cell for Osteoarthritis Therapy. Biomolecules 2024; 14:858. [PMID: 39062572 PMCID: PMC11274544 DOI: 10.3390/biom14070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoarthritis (OA), a chronic joint disease affecting over 500 million individuals globally, is characterized by the destruction of articular cartilage and joint inflammation. Conventional treatments are insufficient for repairing damaged joint tissue, necessitating novel therapeutic approaches. Mesenchymal stem cells (MSCs), with their potential for differentiation and self-renewal, hold great promise as a treatment for OA. However, challenges such as MSC viability and apoptosis in the ischemic joint environment hinder their therapeutic effectiveness. Hydrogels with biocompatibility and degradability offer a three-dimensional scaffold that support cell viability and differentiation, making them ideal for MSC delivery in OA treatment. This review discusses the pathological features of OA, the properties of MSCs, the challenges associated with MSC therapy, and methods for hydrogel preparation and functionalization. Furthermore, it highlights the advantages of hydrogel-based MSC delivery systems while providing insights into future research directions and the clinical potential of this approach.
Collapse
Affiliation(s)
- Xiangjiang Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Wentao He
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Jiali Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ruren Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Hongyi Li
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Ying Long
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Guiqing Wang
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| | - Xianjing Han
- The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan 511518, China; (X.W.); (W.H.); (J.H.); (R.W.); (H.L.); (Y.L.)
| |
Collapse
|
20
|
Zhang B, Wang W, Gao P, Li X, Chen L, Lin Z, Chen H, Liang W, Kong Z, Lin D, Wu X, Zhang T. Injectable, Electroconductive, Free Radical Scavenging Silk Fibroin/Black Phosphorus/Glycyrrhizic Acid Nanocomposite Hydrogel for Enhancing Spinal Cord Repair. Adv Healthc Mater 2024; 13:e2304300. [PMID: 38589053 DOI: 10.1002/adhm.202304300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Spinal cord injury (SCI) often leads to a severe permanent disability. A poor inflammatory microenvironment and nerve electric signal conduction block are the main reasons for difficulty in spinal cord nerve regeneration. In this study, black phosphorus (BP) and glycyrrhizic acid (GA) are integrated into methacrylate-modified silk fibroin (SF) to construct a bifunctional injectable hydrogel (SF/BP/GA) with appropriate conductivity and the ability to inhibit inflammation to promote neuronal regeneration after SCI. This work discovers that the SF/BP/GA hydrogel can reduce the oxidative damage mediated by oxygen free radicals, promote the polarization of macrophages toward the anti-inflammatory M2 phenotype, reduce the expression of inflammatory factors, and improve the inflammatory microenvironment. Moreover, it induces neural stem cell (NSC) differentiation and neurosphere formation, restores signal conduction at the SCI site in vivo, and ameliorates motor function in mice with spinal cord hemisection, revealing a significant neural repair effect. An injectable, electroconductive, free-radical-scavenging hydrogel is a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Beichen Zhang
- Department of Graduate School and Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Wanshun Wang
- Department of Graduate School and Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Peng Gao
- Department of Graduate School and Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Xiang Li
- Department of Graduate School and Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lingling Chen
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zefeng Lin
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Hu Chen
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Wenhao Liang
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhiyuan Kong
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Dingkun Lin
- Department of Graduate School and Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Orthopedic Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaona Wu
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tao Zhang
- Department of Graduate School and Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Orthopedic Surgery, Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
21
|
Rodriguez-Rivera GJ, Xu F, Laude M, Shah V, Nkansah A, Bashe D, Lan Z, Chwatko M, Cosgriff-Hernandez E. Design of PEG-based hydrogels as soft ionic conductors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599239. [PMID: 38948818 PMCID: PMC11212888 DOI: 10.1101/2024.06.17.599239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Conductive hydrogels have gained interest in biomedical applications and soft electronics. To tackle the challenge of ionic hydrogels falling short of desired mechanical properties in previous studies, our investigation aimed to understand the pivotal structural factors that impact the conductivity and mechanical behavior of polyethylene glycol (PEG)-based hydrogels with ionic conductivity. Polyether urethane diacrylamide (PEUDAm), a functionalized long-chain macromer based on PEG, was used to synthesize hydrogels with ionic conductivity conferred by incorporating ions into the liquid phase of hydrogel. The impact of salt concentration, water content, temperature, and gel formation on both mechanical properties and conductivity was characterized to establish parameters for tuning hydrogel properties. To further expand the range of conductivity available in these ionic hydrogels, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was incorporated as a single copolymer network or double network configuration. As expected, conductivity in these ionic gels was primarily driven by ion diffusivity and charge density, which was dependent on hydrogel network formation and swelling. Copolymer network structure had minimal effect on the conductivity which was primarily driven by counter-ion equilibrium; however, the mechanical properties and equilibrium swelling was strongly dependent on network structure. The structure-property relationships elucidated here enables the rationale design of this new double network hydrogel to achieve target properties for a broad range of applications.
Collapse
|
22
|
Shaygani H, Shamloo A, Akbarnataj K, Maleki S. In vitro and in vivo investigation of chitosan/silk fibroin injectable interpenetrating network hydrogel with microspheres for cartilage regeneration. Int J Biol Macromol 2024; 270:132126. [PMID: 38723805 DOI: 10.1016/j.ijbiomac.2024.132126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 06/05/2024]
Abstract
Articular cartilage is an avascular and almost acellular tissue with limited self-regenerating capabilities. Although injectable hydrogels have garnered a lot of attention as a promising treatment, a biocompatible hydrogel with adequate mechanical properties is yet to be created. In this study, an interpenetrating network hydrogel comprised of chitosan and silk fibroin was created through electrostatic and hydrophobic bonds, respectively. The polymeric network of the scaffold combined an effective microenvironment for cell activity with enhanced mechanical properties to address the current issues in cartilage scaffolds. Furthermore, microspheres (MS) were utilized for a controlled release of methylprednisolone acetate (MPA), around ~75 % after 35 days. The proposed scaffolds demonstrated great mechanical stability with ~0.047 MPa compressive moduli and ~145 kPa compressive strength. Moreover, the degradation rate of the samples (~45 % after 35 days) was optimized to match neo-cartilage formation. Furthermore, the use of natural biomaterials yielded good biocompatibility with ~76 % chondrocyte viability after 7 days. According to gross observation after 12 weeks the defect site of the treated groups was filled with minimally discernible boundary. These results were confirmed by histopathology assays were the treated groups showed higher chondrocyte count and collagen type II expression.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Kazem Akbarnataj
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sasan Maleki
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Mori H, Taketsuna Y, Shimogama K, Nishi K, Hara M. Interpenetrating gelatin/alginate mixed hydrogel: The simplest method to prepare an autoclavable scaffold. J Biosci Bioeng 2024; 137:463-470. [PMID: 38570220 DOI: 10.1016/j.jbiosc.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 04/05/2024]
Abstract
The choice of sterilization method for hydrogels used for cell culture influences the ease of preparing the gel. We prepared interpenetrating gelatin/calcium alginate hydrogels containing 1% (w/v) alginate and 1-16% (w/v) gelatin by molding with the mixture of gelatin/sodium alginate solution, followed by the addition of calcium ions by incubation in calcium chloride solution. It is the simplest method to prepare autoclavable gelatin/sodium hydrogel. We measured various properties of the hydrogels including volume, Young's modulus in the compression test, storage modulus, and loss modulus in the dynamic viscoelasticity measurement. The gelatin/alginate hydrogel can be easily fabricated into any shape by this method. After autoclave treatment, the hydrogel was shrunk to smaller than the original shape in similar figures. The shape of the gelatin/alginate hydrogel can be designed into any shape with the reduction ratio of the volume. Human osteosarcoma (HOS) cells adhered to the gelatin/alginate hydrogel and then proliferated. Gelatin/calcium alginate hydrogels with a high concentration are considered to be autoclavable culture substrates because of their low deformation and gelatin elution rate after autoclaving and the high amount of cells attached to the hydrogels.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Yaya Taketsuna
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Kae Shimogama
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Koki Nishi
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masayuki Hara
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| |
Collapse
|
24
|
Wang Z, Ni Y, Li J, Fan L. Development of interpenetrating network hydrogels: Enhancing the release and bioaccessibility of green tea polyphenols. Int J Biol Macromol 2024; 271:132511. [PMID: 38772471 DOI: 10.1016/j.ijbiomac.2024.132511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Green Tea polyphenols (GTP) are important bioactive compounds with excellent physiological regulation functions. However, they are easily destroyed by the gastric environment during digestion. In this work, a sodium alginate (SA)-gellan gum (GG) interpenetrating network (IPN) hydrogel was synthesized to protect and delivery GTP. The ratio of SA/GG significantly affects the network structure of IPN hydrogels and the performance of delivering GTP. The hydrogel formed by interpenetrating 20 % GG with 80 % SA as the main network had the highest water uptake (55 g/g), holding capacity (950 mg/g), and freeze-thaw stability, with springiness reaching 0.933 and hardness reaching 1300 g, which due to the filling effect and non-covalent interaction. Rheological tests showed that the crosslink density of IPN hydrogel in SA-dominated network was improved by the addition of GG to make it better bound to GTP, and the higher water uptake meant that the system could absorb more GTP-containing solution. This IPN hydrogel maintained 917.3 mg/g encapsulation efficiency at the highest loading capacity (1080 mg/g) in tests as delivery system. In in vitro digestion simulations, owing to the pH responsiveness, the IPN hydrogel reduced the loss of GTP in gastric fluid, achieving a bioaccessibility of 71.6 % in the intestinal tract.
Collapse
Affiliation(s)
- Zihua Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yang Ni
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Jinwei Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science & Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Hu X, Yang J, Tu Y, Su Z, Guan Q, Ma Z. Hydrogel-Based Interfacial Solar-Driven Evaporation: Essentials and Trails. Gels 2024; 10:371. [PMID: 38920918 PMCID: PMC11202445 DOI: 10.3390/gels10060371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Hydrogel-based interfacial solar-driven evaporation (ISDE) gives full play to the highly adjustable physical and chemical properties of hydrogel, which endows ISDE systems with excellent evaporation performance, anti-pollution properties, and mechanical behavior, making it more promising for applications in seawater desalination and wastewater treatment. This review systematically introduces the latest advances in hydrogel-based ISDE systems from three aspects: the required properties, the preparation methods, and the role played in application scenarios of hydrogels used in ISDE. Additionally, we also discuss the remaining challenges and potential opportunities in hydrogel-based ISDE systems. By summarizing the latest research progress, we hope that researchers in related fields have some insight into the unique advantages of hydrogels in the ISDE field and contribute our efforts so that ISDE technology reaches the finishing line of practical application on the hydrogel track.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Jianfang Yang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Yufei Tu
- School of Telecommunications and Intelligent Manufacturing, Sias University, Xinzheng 451150, China
| | - Zhen Su
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Qingqing Guan
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China; (X.H.); (J.Y.); (Z.S.); (Q.G.)
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
26
|
Han Y, Cao J, Li M, Ding P, Yang Y, Okoro OV, Sun Y, Jiang G, Shavandi A, Nie L. Fabrication and characteristics of multifunctional hydrogel dressings using dopamine modified hyaluronic acid and phenylboronic acid modified chitosan. Front Chem 2024; 12:1402870. [PMID: 38841337 PMCID: PMC11150582 DOI: 10.3389/fchem.2024.1402870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The healing of damaged skin is a complex and dynamic process, and the multi-functional hydrogel dressings could promote skin tissue healing. This study, therefore, explored the development of a composite multifunctional hydrogel (HDCP) by incorporating the dopamine modified hyaluronic acid (HA-DA) and phenylboronic acid modified chitosan (CS-PBA) crosslinked using boric acid ester bonds. The integration of HA-DA and CS-PBA could be confirmed using the Fourier transform infrared spectrometer and 1H nuclear magnetic resonance analyses. The fabricated HDCP hydrogels exhibited porous structure, elastic solid behavior, shear-thinning, and adhesion properties. Furthermore, the HDCP hydrogels exhibited antibacterial efficacy against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Subsequently, the cytocompatibility of the HDCP hydrogels was verified through CCK-8 assay and fluorescent image analysis following co-cultivation with NIH-3T3 cells. This research presents an innovative multifunctional hydrogel that holds promise as a wound dressing for various applications within the realm of wound healing.
Collapse
Affiliation(s)
- Yanting Han
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jing Cao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Man Li
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles—3BIO-BioMatter, Brussels, Belgium
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Yujie Yang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles—3BIO-BioMatter, Brussels, Belgium
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles—3BIO-BioMatter, Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
27
|
Rajawasam CWH, Tran C, Sparks JL, Krueger WH, Hartley CS, Konkolewicz D. Carbodiimide-Driven Toughening of Interpenetrated Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202400843. [PMID: 38517330 DOI: 10.1002/anie.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Recent work has demonstrated that temporary crosslinks in polymer networks generated by chemical "fuels" afford materials with large, transient changes in their mechanical properties. This can be accomplished in carboxylic-acid-functionalized polymer hydrogels using carbodiimides, which generate anhydride crosslinks with lifetimes on the order of minutes to hours. Here, the impact of the polymer network architecture on the mechanical properties of transiently crosslinked materials was explored. Single networks (SNs) were compared to interpenetrated networks (IPNs). Notably, semi-IPN precursors that give IPNs on treatment with carbodiimide give much higher fracture energies (i.e., resistance to fracture) and superior resistance to compressive strain compared to other network architectures. A precursor semi-IPN material featuring acrylic acid in only the free polymer chains yields, on treatment with carbodiimide, an IPN with a fracture energy of 2400 J/m2, a fourfold increase compared to an analogous semi-IPN precursor that yields a SN. This resistance to fracture enables the formation of macroscopic complex cut patterns, even at high strain, underscoring the pivotal role of polymer architecture in mechanical performance.
Collapse
Affiliation(s)
| | - Corvo Tran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Jessica L Sparks
- Department of Chemical Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA
| | - William H Krueger
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - C Scott Hartley
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
28
|
Chen G, Ma F, Li J, Yang P, Wang Y, Li Z, Meng Y. Preparation of CMC-poly(N-isopropylacrylamide) semi-interpenetrating hydrogel with temperature-sensitivity for water retention. Int J Biol Macromol 2024; 268:131735. [PMID: 38653424 DOI: 10.1016/j.ijbiomac.2024.131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The CMC-PNIPAM hydrogel with semi-interpenetrating structure and temperature-sensitivity was prepared by in-situ polymerization of N-isopropylacrylamide (NIPAM) in sodium carboxymethylcellulose (CMC) solution at room temperature. The mass ratio of CMC to NIPAM was a key factor influencing the network structure and property of CMC-PNIPAM hydrogel. The low critical phase transition temperature (LCST) of CMC-PNIPAM hydrogels increased from 34.4 °C to 35.8 °C with the mass ratio of CMC to NIPAM rising from 0 to 1.2. The maximum compressive stress of CMC-PNIPAM hydrogel reached to 26.7 kPa and the relaxation elasticity was 52 % at strain of 60 %. The viscoelasticity of CMC-PNIPAM hydrogel was consistent with the generalized Maxwell model. The maximum swelling ratio in deionized water was 170.25 g·g-1 (dried hydrogel) with swelling rate of 2.57 g·g-1·min-1 at 25 °C. CMC-PNIPAM hydrogel hardly absorbed water above LCST, but the swollen hydrogel could release water at the rate of 0.36 g·g-1·min-1 once exceeding LCST. The test of water retention showed that soil mixed with 2 wt% dried CMC-PNIPAM hydrogel could retain 13.08 wt% water after 30 days at 25 °C that was 4.4 times than that of controlled soil without CMC-PNIPAM hydrogel. The semi-interpenetrating CMC-PNIPAM hydrogel showed a potential to conserve water responding to temperature.
Collapse
Affiliation(s)
- Guangxu Chen
- School of Environmental Science and Engineering, China
| | - Feng Ma
- School of Environmental Science and Engineering, China; School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Junying Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Pengfei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yi Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Zihao Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Yi Meng
- School of Chemistry and Chemical Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
29
|
Singh K, Wychowaniec JK, Edwards-Gayle CJC, Reynaud EG, Rodriguez BJ, Brougham DF. Structure-dynamics correlations in composite PF127-PEG-based hydrogels; cohesive/hydrophobic interactions determine phase and rheology and identify the role of micelle concentration in controlling 3D extrusion printability. J Colloid Interface Sci 2024; 660:302-313. [PMID: 38244497 DOI: 10.1016/j.jcis.2023.12.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
A library of composite polymer networks (CPNs) were formed by combining Pluronic F127, as the primary gelator, with a range of di-acrylate functionalised PEG polymers, which tune the rheological properties and provide UV crosslinkability. A coarse-grained sol-gel room temperature phase diagram was constructed for the CPN library, which identifies PEG-dependent disruption of micelles as leading to liquefication. Small angle X-ray scattering and rheological measurements provide detailed insight into; (i) micelle-micelle ordering; (ii) micelle-micelle disruption, and; (iii) acrylate-micelle disruption; with contributions that depend on composition, including weak PEG chain length and end group effects. The influence of composition on 3D extrusion printability through modulation of the cohesive/hydrophobic interactions was assessed. It was found that only micelle content provides consistent changes in printing fidelity, controlled largely by printing conditions (pressure and feed rate). Finally, the hydrogels were shown to be UV photo-crosslinkable, which further improves fidelity and structural integrity, and usefully reduces the mesh size. Our results provide a guide for design of 3D-printable CPN inks for future biomedical applications.
Collapse
Affiliation(s)
- Krutika Singh
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| | | | - Emmanuel G Reynaud
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian J Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
30
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
31
|
Luo J, Song T, Han T, Qi H, Liu Q, Wang Q, Song Z, Rojas O. Multifunctioning of carboxylic-cellulose nanocrystals on the reinforcement of compressive strength and conductivity for acrylic-based hydrogel. Carbohydr Polym 2024; 327:121685. [PMID: 38171694 DOI: 10.1016/j.carbpol.2023.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Simultaneously having competitive compressive properties, fatigue-resistant stability, excellent conductivity and sensitivity has still remained a challenge for acrylic-based conductive hydrogels, which is critical in their use in the sensor areas where pressure is performed. In this work, an integrated strategy was proposed for preparing a conductive hydrogel based on acrylic acid (AA) and sodium alginate (SA) by addition of carboxylic-cellulose nanocrystals (CNC-COOH) followed by metal ion interaction to reinforce its compressive strength and conductivity simultaneously. The CNC-COOH played a multifunctional role in the hydrogel by well-dispersing SA and AA in the hydrogel precursor solution for forming a uniform semi-interpenetrating network, providing more hydrogen bonds with SA and AA, more -COOH for metal ion interactions to form uniform multi-network, and also offering high modulus to the final hydrogel. Accordingly, the as-prepared hydrogels showed simultaneous excellent compressive strength (up to 3.02 MPa at a strain of 70 %) and electrical conductivity (6.25 S m-1), good compressive fatigue-resistant (93.2 % strength retention after 1000 compressive cycles under 50 % strain) and high sensitivity (gauge factor up to 14.75). The hydrogel strain sensor designed in this work is capable of detecting human body movement of pressing, stretching and bending with highly sensitive conductive signals, which endows it great potential for multi-scenario strain sensing applications.
Collapse
Affiliation(s)
- Jintang Luo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China.
| | - Tingting Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Qunhua Liu
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, PR China
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Zhongqian Song
- Guangzhou Key Laboratory of Sensing Materials & Devices, Centre for Advanced Analytical Science, School of Chemistry and Chemical Engineering, c/o School of Civil Engineering, Guangzhou University, Guangzhou 510006, PR China; College of Artificial Intelligence and Big Data for Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Orlando Rojas
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, PR China; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
32
|
Hou X, Lin L, Li K, Jiang F, Qiao D, Zhang B, Xie F. Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies. Adv Colloid Interface Sci 2024; 325:103113. [PMID: 38387158 DOI: 10.1016/j.cis.2024.103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Gels derived from single networks of natural polymers (biopolymers) typically exhibit limited physical properties and thus have seen constrained applications in areas like food and medicine. In contrast, gels founded on a synergy of multiple biopolymers, specifically polysaccharides and proteins, with intricate interpenetrating polymer network (IPN) structures, represent a promising avenue for the creation of novel gel materials with significantly enhanced properties and combined advantages. This review begins with the scrutiny of newly devised IPN gels formed through a medley of polysaccharides and/or proteins, alongside an introduction of their practical applications in the realm of food, medicine, and environmentally friendly solutions. Finally, based on the fact that the IPN gelation process and mechanism are driven by different inducing factors entwined with a diverse amalgamation of polysaccharides and proteins, our survey underscores the potency of physical, chemical, and enzymatic triggers in orchestrating the construction of crosslinked networks within these biomacromolecules. In these mixed systems, each specific inducer aligns with distinct polysaccharides and proteins, culminating in the generation of semi-IPN or fully-IPN gels through the intricate interpenetration between single networks and polymer chains or between two networks, respectively. The resultant IPN gels stand as paragons of excellence, characterized by their homogeneity, dense network structures, superior textural properties (e.g., hardness, elasticity, adhesion, cohesion, and chewability), outstanding water-holding capacity, and heightened thermal stability, along with guaranteed biosafety (e.g., nontoxicity and biocompatibility) and biodegradability. Therefore, a judicious selection of polymer combinations allows for the development of IPN gels with customized functional properties, adept at meeting precise application requirements.
Collapse
Affiliation(s)
- Xinran Hou
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Lisong Lin
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Kexin Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Dongling Qiao
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Binjia Zhang
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, College of Food Science, Southwest University, Chongqing 400715, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
33
|
Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
34
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
35
|
Kumar M, Kumar D, Garg Y, Mahmood S, Chopra S, Bhatia A. Marine-derived polysaccharides and their therapeutic potential in wound healing application - A review. Int J Biol Macromol 2023; 253:127331. [PMID: 37820901 DOI: 10.1016/j.ijbiomac.2023.127331] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Polysaccharides originating from marine sources have been studied as potential material for use in wound dressings because of their desirable characteristics of biocompatibility, biodegradability, and low toxicity. Marine-derived polysaccharides used as wound dressing, provide several benefits such as promoting wound healing by providing a moist environment that facilitates cell migration and proliferation. They can also act as a barrier against external contaminants and provide a protective layer to prevent further damage to the wound. Research studies have shown that marine-derived polysaccharides can be used to develop different types of wound dressings such as hydrogels, films, and fibres. These dressings can be personalised to meet specific requirements based on the type and severity of the wound. For instance, hydrogels can be used for deep wounds to provide a moist environment, while films can be used for superficial wounds to provide a protective barrier. Additionally, these polysaccharides can be modified to improve their properties, such as enhancing their mechanical strength or increasing their ability to release bioactive molecules that can promote wound healing. Overall, marine-derived polysaccharides show great promise for developing effective and safe wound dressings for various wound types.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201313, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
36
|
Wu J, Ma Q, Pang Q, Hu S, Wan Z, Peng X, Cheng X, Geng L. Constructing triple-network cellulose nanofiber hydrogels with excellent strength, toughness and conductivity for real-time monitoring of human movements. Carbohydr Polym 2023; 321:121282. [PMID: 37739523 DOI: 10.1016/j.carbpol.2023.121282] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 09/24/2023]
Abstract
In recent years, there has been a lot of interest in developing composite hydrogels with superior mechanical and conductive properties. In this study, triple-network (TN) cellulose nanofiber hydrogels were prepared by using cellulose nanofiber as the first network, isotropic poly(acrylamide-co-acrylic acid) as the second network, and polyvinyl alcohol as the third network via a cyclic freezing-thawing process. The strong (9.43 ± 0.14 MPa tensile strength, (445.5 ± 7.0)% elongation-at-break), tough (15.12 ± 0.14 MJ/m3 toughness), and conductive (0.0297 ± 0.00021 S/cm ionic conductivity) TN cellulose nanofiber hydrogels were effectively created after being pre-stretched in an external force field, cross-linked by Fe3+ and added Li+. The produced composite TN cellulose nanofiber hydrogels were successfully used as a flexible sensor for real-time monitoring and detecting human movements, highlighting their potential for wearable electronics, medical technology, and human-machine interaction. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Acrylamide (PubChem CID: 6579); Acrylic acid (PubChem CID: 6581); Ammonium persulfate (PubChem CID: 6579); N, N'-methylene bisacrylamide (PubChem CID: 17956053); Sodium bromide (PubChem CID: 253881); Sodium hydroxide (PubChem CID: 14798); Sodium hypochlorite (PubChem CID: 23665760); Sodium chlorite (PubChem CID: 23668197); 2,2,6,6-tetramethylpiperidinyl-1-oxide (PubChem CID: 2724126); Polyvinyl alcohol (PubChem CID: 11199); Lithium chloride (PubChem CID: 433294); Iron nitrate nonahydrate (PubChem CID: 129774236).
Collapse
Affiliation(s)
- Jianming Wu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Qian Ma
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Qingkai Pang
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Shuaishuai Hu
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Zhihao Wan
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xiangfang Peng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Xi Cheng
- National Mold Product Quality Supervision and Inspection Center, Guangdong Dongguan Quality Supervision Testing Center, Dongguan, Guangdong 523808, China.
| | - Lihong Geng
- Key Laboratory of Polymer Materials and Products of Universities in Fujian, Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
37
|
De Leon-Oliva D, Boaru DL, Perez-Exposito RE, Fraile-Martinez O, García-Montero C, Diaz R, Bujan J, García-Honduvilla N, Lopez-Gonzalez L, Álvarez-Mon M, Saz JV, de la Torre B, Ortega MA. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023; 9:885. [PMID: 37998975 PMCID: PMC10670584 DOI: 10.3390/gels9110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Roque Emilio Perez-Exposito
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Laura Lopez-Gonzalez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Immune System Diseases-Rheumatology Service, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Basilio de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| |
Collapse
|
38
|
Morrison TX, Gramlich WM. Tunable, thiol-ene, interpenetrating network hydrogels of norbornene-modified carboxymethyl cellulose and cellulose nanofibrils. Carbohydr Polym 2023; 319:121173. [PMID: 37567714 DOI: 10.1016/j.carbpol.2023.121173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/13/2023]
Abstract
Carboxymethyl cellulose modified with norbornene groups (NorCMC) and cellulose nanofibrils (CNFs) produced through mechanical refining without chemical pretreatment formed interpenetrating network hydrogels through a UV-light initiated thiol-ene reaction. The molar ratio of thiols in crosslinkers to norbornene groups off the NorCMC (T:N), total polymer weight percent in the hydrogel, and weight percent of CNFs of the total polymer content of the hydrogels were varied to control hydrogel properties. This method enabled orders of magnitude changes to behavior. Swelling in aqueous environments could be significant (>150 %) without CNFs to minimal (<15 %) with the use of 50 % CNFs. NorCMC and CNF networks interacted synergistically to create hydrogels with compression modulus values spanning 1 to 150 kPa - the values of most biological tissues. T:N and total polymer weight percent could be varied to create hydrogels with different CNF content, but the same compression modulus, targeting 10 and 100 kPa hydrogels and providing a system that can independently vary fibrillar content and bulk modulus. Analysis of the effective crosslinks, thiol-ene network mesh size, and burst release of the polymer indicated synergistic interactions of the NorCMC thiol-ene and CNFs networks. These interactions enhanced modulus and degradation control of the network under physiological conditions.
Collapse
Affiliation(s)
| | - William M Gramlich
- Department of Chemistry, University of Maine, Orono, ME 04469, USA; Advanced Structures and Composites Center, University of Maine, Orono, ME 04469, USA; Institute of Medicine, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
39
|
Hu W, Chen Z, Chen X, Feng K, Hu T, Huang B, Tang J, Wang G, Liu S, Yang G, Wang Z. Double-network cellulose-based hybrid hydrogels with favourable biocompatibility and antibacterial activity for wound healing. Carbohydr Polym 2023; 319:121193. [PMID: 37567698 DOI: 10.1016/j.carbpol.2023.121193] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
Bacterial infections are among the leading causes of delayed wound healing. At present, a series of antibacterial materials, such as antibiotics, antimicrobial peptides (AMPs), metals and metal oxides (MMOs), have been used to fabricate antibacterial wound dressings. However, their translational potential is limited owing to their poor biocompatibility. ε-Polylysine (ε-PL) is a natural macromolecule with excellent biocompatibility and broad-spectrum antibacterial activity. Herein, ε-PL was incorporated into a cellulose/γ-polyglutamic acid (γ-PGA) composite hydrogel to form a novel double-network hydrogel termed as CGLH. The elastic modulus of CGLH increased from 0.097 ± 0.015 MPa to 0.441 ± 0.096 MPa, and the equilibrium swelling ratio increased from 382.7 ± 24.3 % to 611.2 ± 8.6 %. Several preclinical models were used to investigate the translational potential of this hydrogel. CGLH exhibited good biocompatibility and antibacterial activity, which promoted the healing of infected and critical-size wounds within 12 days. CGLH had positive effects on collagen synthesis, vascularization and cell proliferation. As a result, this study not only provided an effective alternative for wound healing but also proposed a double-network strategy for creating biocompatible and antibacterial biomaterials.
Collapse
Affiliation(s)
- Weikang Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China; Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zesheng Chen
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xi Chen
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China; Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Feng
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Tao Hu
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Bohan Huang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jinlan Tang
- Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Guanyi Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shiyu Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan 430071, China.
| | - Zijian Wang
- Department of Urology, Hubei Province Key Laboratory of Urinary System Diseases, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Ministry of Education Key Laboratory of the Green Preparation and Application for Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
40
|
Wang H, Yin R, Chen X, Wu T, Bu Y, Yan H, Lin Q. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Molecules 2023; 28:6692. [PMID: 37764467 PMCID: PMC10534451 DOI: 10.3390/molecules28186692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
To enhance the mechanical strength and cell adhesion of alginate hydrogel, making it satisfy the requirements of an ideal tissue engineering scaffold, the grafting of Arg-Gly-Asp (RGD) polypeptide sequence onto the alginate molecular chain was conducted by oxidation of sodium periodate and subsequent reduction amination of 2-methylpyridine borane complex (2-PBC) to synthesize alginate dialdehyde grafted RGD derivatives (ADA-RGD) with good cellular affinity. The interpenetrating network (IPN) composite hydrogels of alginate/polyvinyl alcohol/cellulose nanocrystals (ALG/PVA/CNCs) were fabricated through a physical mixture of ion cross-linking of sodium alginate (SA) with hydroxyapatite/D-glucono-δ-lactone (HAP/GDL), and physical cross-linking of polyvinyl alcohol (PVA) by a freezing/thawing method, using cellulose nanocrystals (CNCs) as the reinforcement agent. The effects of the addition of CNCs and different contents of PVA on the morphology, thermal stability, mechanical properties, swelling, biodegradability, and cell compatibility of the IPN composite hydrogels were investigated, and the effect of RGD grafting on the biological properties of the IPN composite hydrogels was also studied. The resultant IPN ALG/PVA/CNCs composite hydrogels exhibited good pore structure and regular 3D morphology, whose pore size and porosity could be regulated by adjusting PVA content and the addition of CNCs. By increasing the PVA content, the number of physical cross-linking points in PVA increased, resulting in greater stress support for the IPN composite hydrogels of ALG/PVA/CNCs and consequently improving their mechanical characteristics. The creation of the IPN ALG/PVA/CNCs composite hydrogels' physical cross-linking network through intramolecular or intermolecular hydrogen bonding led to improved thermal resistance and reduced swelling and biodegradation rate. Conversely, the ADA-RGD/PVA/CNCs IPN composite hydrogels exhibited a quicker degradation rate, attributed to the elimination of ADA-RGD by alkali. The results of the in vitro cytocompatibility showed that ALG/0.5PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels showed better proliferative activity in comparison with other composite hydrogels, while ALG/PVA/0.3%CNCs and ADA-RGD/PVA/0.3%CNCs composite hydrogels displayed obvious proliferation effects, indicating that PVA, CNCs, and ADA-RGD with good biocompatibility were conducive to cell proliferation and differentiation for the IPN composite hydrogels.
Collapse
Affiliation(s)
- Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ruhong Yin
- Hainan Hongta Cigarette Co., Ltd., Haikou 571100, China;
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (H.W.); (X.C.); (T.W.); (Y.B.); (Q.L.)
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
41
|
Sun J, Sun M, Zang J, Zhang T, Lv C, Zhao G. Highly Stretchable, Transparent, and Adhesive Double-Network Hydrogel Dressings Tailored with Fish Gelatin and Glycyrrhizic Acid for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42304-42316. [PMID: 37647580 DOI: 10.1021/acsami.3c09615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
It remains challenging to fabricate highly stretchable and adhesive hydrogel dressings for wound healing using simple, safe, and green methods. Herein, inspired by the main components of snail mucus, a fully physical double-network (DN) hydrogel dressing composed of fish gelatin (FGel) and glycyrrhizic acid (GL) was fabricated, in which FGel provided a protein scaffold to mimic snail mucus proteins, while GL mimicked the adhesion and bioactivity of snail mucus because of its abundant carboxyl and hydroxyl groups and intrinsic immunomodulatory activity. As expected, the obtained FGel/GL hydrogel dressings exhibited outstanding mechanical and adhesive performances (flexibility, stretchability, adhesive ability, and removability), high transparency, and good antifreezing properties. More importantly, they also possessed excellent biocompatibility, cell migration, and angiogenesis ability in vitro experiments. Finally, animal experiments in vivo indicated that the FGel/GL hydrogel dressings significantly promoted full-thickness wound healing, including promoting granulation tissue formation, collagen deposition, and skin angiogenesis and inhibiting the inflammatory response. All these findings indicated that the FGel/GL hydrogel dressings have great potential for applications in the clinical treatment of wound healing.
Collapse
Affiliation(s)
- Jishuai Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Mingyang Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| |
Collapse
|
42
|
Matonis S, Zhuang B, Bishop AF, Naik DA, Temel Z, Bettinger CJ. Edible Origami Actuators Using Gelatin-Based Bioplastics. ACS APPLIED POLYMER MATERIALS 2023; 5:6288-6295. [PMID: 37588084 PMCID: PMC10425958 DOI: 10.1021/acsapm.3c00919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023]
Abstract
The potential of ingestible medical devices can be greatly enhanced through the use of smart structures made from stimuli-responsive materials. While hydration is a convenient stimulus for inducing shape changes in biomaterials, finding robust materials that can achieve rapid actuation, facile manufacturability, and biocompatibility suitable for ingestible medical devices poses practical challenges. Hydration is a convenient stimulus to induce shape changes in smart biomaterials; however, there are many practical challenges to identifying materials that can achieve rapid actuation and facile manufacturability while satisfying constraints associated with biocompatibility requirements and mechanical properties that are suitable for ingestible medical devices. Herein, we illustrate the formulation and processability of a moisture-responsive genipin-crosslinked gelatin bioplastic system, which can be processed into complex three-dimensional shapes. Mechanical characterization of bioplastic samples showed Young's Modulus values as high as 1845 MPa and toughness values up to 52 MJ/m3, using only food-safe ingredients. Custom molds and UV-laser processing enabled the fabrication of centimeter-scale structures with over 150 independent actuating joints. These self-actuating structures soften and unfold in response to surrounding moisture, eliminating the need for additional stimuli or actuating elements.
Collapse
Affiliation(s)
| | | | - Ailla F. Bishop
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Durva A. Naik
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | - Zeynep Temel
- Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, United States
| | | |
Collapse
|
43
|
Zhang W, Zha K, Hu W, Xiong Y, Knoedler S, Obed D, Panayi AC, Lin Z, Cao F, Mi B, Liu G. Multifunctional hydrogels: advanced therapeutic tools for osteochondral regeneration. Biomater Res 2023; 27:76. [PMID: 37542353 PMCID: PMC10403923 DOI: 10.1186/s40824-023-00411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023] Open
Abstract
Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment. Hydrogel scaffolds, a component of tissue engineering, play an indispensable role in osteochondral regeneration. In this review, tissue engineering strategies regarding osteochondral regeneration were highlighted and summarized. The application of hydrogels for osteochondral regeneration within the last five years was evaluated with an emphasis on functionalized physical and chemical properties of hydrogel scaffolds, functionalized delivery hydrogel scaffolds as well as functionalized intelligent response hydrogel scaffolds. Lastly, to serve as guidance for future efforts in the creation of bioinspired hydrogel scaffolds, a succinct summary and new views for specific mechanisms, applications, and existing limitations of the newly designed functionalized hydrogel scaffolds were offered.
Collapse
Affiliation(s)
- Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Doha Obed
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hannover, Germany
| | - Adriana C Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071, Ludwigshafen/Rhine, Germany
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
44
|
Wang F, Zhang W, Qiao Y, Shi D, Hu L, Cheng J, Wu J, Zhao L, Li D, Shi W, Xie L, Zhou Q. ECM-Like Adhesive Hydrogel for the Regeneration of Large Corneal Stromal Defects. Adv Healthc Mater 2023; 12:e2300192. [PMID: 37097884 DOI: 10.1002/adhm.202300192] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Indexed: 04/26/2023]
Abstract
The repair of large-diameter corneal stroma defects is a major clinical problem. Although some studies have attempted to use hydrogels to repair corneal damage, most of these hydrogels can only be used for focal stromal defects that are ≤3.5 mm in diameter due to poor hydrogel adhesion. Here, a photocurable adhesive hydrogel that mimics the extracellular matrix (ECM) with regard to composition for repairing 6 mm-diameter corneal stromal defects in rabbits is investigated. This ECM-like adhesive can be rapidly cured after light exposure, with high light transmittance and good mechanical properties. More importantly, this hydrogel maintains the viability and adhesion of cornea-derived cells and promotes their migration in vitro in 2D and 3D culture environments. Proteomics analysis confirms that the hydrogel promotes cell proliferation and ECM synthesis. Furthermore, in rabbit corneal stromal defect repair experiments, it is proven by histological and proteomic analysis that this hydrogel can effectively promote corneal stroma repair, reduce scar formation, and increase corneal stromal-neural regeneration at the six months follow-up. This work demonstrates the great application of ECM-like adhesive hydrogels for the regeneration of large-diameter corneal defects.
Collapse
Affiliation(s)
- Fuyan Wang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yujie Qiao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Depeng Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lizhi Hu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Jingyi Wu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Long Zhao
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Donfang Li
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Weiyun Shi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Lixin Xie
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| | - Qingjun Zhou
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, School of Ophthalmology, Shandong First Medical University, Qingdao, 266071, China
| |
Collapse
|
45
|
Xu X, Li X, Qiu S, Zhou Y, Li L, Chen X, Zheng K, Xu Y. Concentration Selection of Biofriendly Enzyme-Modified Gelatin Hydrogels for Periodontal Bone Regeneration. ACS Biomater Sci Eng 2023; 9:4341-4355. [PMID: 37294274 DOI: 10.1021/acsbiomaterials.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Periodontitis is challenging to cure radically due to its complex periodontal structure and particular microenvironment of dysbiosis and inflammation. However, with the assistance of various materials, cell osteogenic differentiation could be improved, and the ability of hard tissue regeneration could be enhanced. This study aimed to explore the appropriate concentration ratio of biofriendly transglutaminase-modified gelatin hydrogels for promoting periodontal alveolar bone regeneration. Through a series of characterization and cell experiments, we found that all the hydrogels possessed multi-space network structures and demonstrated their biocompatibility. In vivo and in vitro osteogenic differentiation experiments also confirmed that the group 40-5 (transglutaminase-gelatin concentration ratio) possessed a favorable osteogenic potential. In summary, we conclude that such hydrogel with a 40-5 concentration is most conducive to promoting periodontal bone reconstruction, which might be a new route to deal with the dilemma of clinical periodontal treatment.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
46
|
Shah SWA, Xu Q, Ullah MW, Zahoor, Sethupathy S, Morales GM, Sun J, Zhu D. Lignin-based additive materials: A review of current status, challenges, and future perspectives. ADDITIVE MANUFACTURING 2023; 74:103711. [DOI: 10.1016/j.addma.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
47
|
Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E. Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance. J Mater Chem B 2023; 11:5416-5428. [PMID: 36825927 PMCID: PMC10682960 DOI: 10.1039/d2tb02825e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications. In this work, we developed a durable hydrogel coating using interpenetrating networks of polyether urethane diacrylamide (PEUDAm) and poly(N-acryloyl glycinamide) (pNAGA). First, diffusion-mediated redox initiation of PEUDAm was used to coat electrospun polyurethane fiber meshes with coating thickness controlled by the immersion time. The second network of pNAGA was then introduced to enhance damage resistance of the hydrogel coating. The durability, thromboresistance, and bioactivity of the resulting multilayer grafts were then assessed. The IPN hydrogel coatings displayed resistance to surgically-associated damage mechanisms and retained the anti-fouling nature of PEG-based hydrogels as indicated by reduced protein adsorption and platelet attachment. Moreover, incorporation of functionalized collagen into the IPN hydrogel coating conferred bioactivity that supported endothelial cell adhesion. Overall, this conformable and durable hydrogel coating provides an improved approach for cardiovascular device fabrication with targeted biological activity.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
48
|
Hu C, Wei H, Hua B, Zhang Y, Wang G, Guo T. Facile fabrication of a broad-spectrum starch/poly(α-l-lysine) hydrogel adsorbent with thermal/pH-sensitive IPN structure through simultaneous dual-click strategy. Carbohydr Polym 2023; 309:120672. [PMID: 36906358 DOI: 10.1016/j.carbpol.2023.120672] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
A thermal/pH-sensitive interpenetrating network (IPN) hydrogel was prepared facilely from starch and poly(α-l-lysine) through amino-anhydride and azide-alkyne double-click reactions in one pot. The synthesized polymers and hydrogels were systematically characterized using different analytical techniques such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and rheometer. The preparation conditions of the IPN hydrogel were optimized via one-factor experiments. Experimental results indicated the IPN hydrogel possessed pH and temperature sensitivity. Effect of different parameters (pH, contact time, adsorbent dosage, initial concentration, ionic strength, and temperature) on adsorption behavior were investigated in monocomponent system with cationic methylene blue (MB) and anionic Eosin Y (EY) as model pollutants. The results indicated that the adsorption process of the IPN hydrogel for MB and EY followed pseudo-second-order kinetics. The adsorption data for MB and EY fitted well with the Langmuir isotherm model, indicating monolayer chemisorption. The good adsorption performance was due to various active functional groups (-COOH, -OH, -NH2, etc.) in the IPN hydrogel. The strategy described here opens up a new way for preparing IPN hydrogel. The as-prepared hydrogel exhibits potential application and bright prospects as an adsorbent in wastewater treatment.
Collapse
Affiliation(s)
- Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Bingyan Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yaqi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Gang Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Guo
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
49
|
Rizzo R, Onesto V, Morello G, Iuele H, Scalera F, Forciniti S, Gigli G, Polini A, Gervaso F, del Mercato LL. pH-sensing hybrid hydrogels for non-invasive metabolism monitoring in tumor spheroids. Mater Today Bio 2023; 20:100655. [PMID: 37234366 PMCID: PMC10205545 DOI: 10.1016/j.mtbio.2023.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
The constant increase in cancer incidence and mortality pushes biomedical research towards the development of in vitro 3D systems able to faithfully reproduce and effectively probe the tumor microenvironment. Cancer cells interact with this complex and dynamic architecture, leading to peculiar tumor-associated phenomena, such as acidic pH conditions, rigid extracellular matrix, altered vasculature, hypoxic condition. Acidification of extracellular pH, in particular, is a well-known feature of solid tumors, correlated to cancer initiation, progression, and resistance to therapies. Monitoring local pH variations, non-invasively, during cancer growth and in response to drug treatment becomes extremely important for understanding cancer mechanisms. Here, we describe a simple and reliable pH-sensing hybrid system, based on a thermoresponsive hydrogel embedding optical pH sensors, that we specifically apply for non-invasive and accurate metabolism monitoring in colorectal cancer (CRC) spheroids. First, the physico-chemical properties of the hybrid sensing platform, in terms of stability, rheological and mechanical properties, morphology and pH sensitivity, were fully characterized. Then, the proton gradient distribution in the spheroids proximity, in the presence or absence of drug treatment, was quantified over time by time lapse confocal light scanning microscopy and automated segmentation pipeline, highlighting the effects of the drug treatment in the extracellular pH. In particular, in the treated CRC spheroids the acidification of the microenvironment resulted faster and more pronounced over time. Moreover, a pH gradient distribution was detected in the untreated spheroids, with more acidic values in proximity of the spheroids, resembling the cell metabolic features observed in vivo in the tumor microenvironment. These findings promise to shed light on mechanisms of regulation of proton exchanges by cellular metabolism being essential for the study of solid tumors in 3D in vitro models and the development of personalized medicine approaches.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Giulia Morello
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics ‘‘Ennio De Giorgi”, University of Salento, C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Francesca Scalera
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics ‘‘Ennio De Giorgi”, University of Salento, C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Francesca Gervaso
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), C/o Campus Ecotekne, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
50
|
Naeem A, Chengqun Y, Zhenzhong Z, Weifeng Z, Yongmei G. β-Cyclodextrin/chitosan-based (polyvinyl alcohol-co-acrylic acid) interpenetrating hydrogels for oral drug delivery. Int J Biol Macromol 2023; 242:125149. [PMID: 37270135 DOI: 10.1016/j.ijbiomac.2023.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Gallic acid is an important phenolic compound with extensive applications in the food and pharmaceutical industries due to its health-promoting properties. However, due to its poor solubility and bioavailability, it is rapidly excreted from the body. Therefore, β-cyclodextrin/chitosan-based (polyvinyl alcohol-co-acrylic acid) interpenetrating controlled release hydrogels were developed to improve its dissolution and bioavailability. pH, polymer ratios, dynamic and equilibrium swelling, porosity, sol-gel, FTIR, XRD, TGA, DSC, SEM and structural parameters like an average molecular weight between crosslinks, solvent interaction parameters, and diffusion coefficient affecting release behavior were investigated. The highest swelling and release were observed at pH 7.4. Furthermore, hydrogels showed good antioxidant and antibacterial properties. Hydrogels improved the bioavailability of gallic acid in a pharmacokinetics study in rabbits. In vitro biodegradation showed that hydrogels were more stable in blank PBS than lysozyme and collagenase. Hydrogels were safe for rabbits (3500 mg/kg) without causing hematological or histopathological changes. The hydrogels showed good biocompatibility, and no adverse reactions were observed. Moreover, the developed hydrogels can be used to improve the bioavailability of various other drugs.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yu Chengqun
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zang Zhenzhong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhu Weifeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guan Yongmei
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|