1
|
Kalia VC, Patel SKS, Krishnamurthi P, Singh RV, Lee JK. Exploiting latent microbial potentials for producing polyhydroxyalkanoates: A holistic approach. ENVIRONMENTAL RESEARCH 2025; 269:120895. [PMID: 39832546 DOI: 10.1016/j.envres.2025.120895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Plastics are versatile, however, nonbiodegradable polymers that are primarily derived from fossil fuels and pose notable environmental challenges. However, biopolymers, such as polyhydroxyalkanoates (PHAs), poly(lactic acid), starch, and cellulose have emerged as sustainable alternatives to conventional plastics. Among these, PHAs stand out as strong contenders as they are completely bio-based and biodegradable and are synthesized by microbes as an energy reserve under stress conditions. Despite their limitations, including low mechanical strength, susceptibility to degradation, a restricted scope of application, and high production costs, biopolymers have promising potential. This review explores strategies for enhancing PHA production to address these challenges, emphasizing the need for sustainable PHA production. These strategies include selecting robust microbial strains and feedstock combinations, optimizing cell biomass and biopolymer yields, genetically engineering biosynthetic pathways, and improving downstream processing techniques. Additives such as plasticizers, thermal stabilizers, and antioxidants are crucial for modifying PHA characteristics, and its processing for achieving the desired balance between processability and end-use performance. By overcoming these complications, biopolymers have become more viable, versatile, and eco-friendly alternatives to conventional plastics, offering hope for a more sustainable future.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar, 246174, Uttarakhand, India
| | | | - Rahul Vikram Singh
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Gwangjin-Gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
2
|
Inabe K, Hidese R, Kato Y, Matsuda M, Yoshida T, Matsumoto K, Kondo A, Sato S, Hasunuma T. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Metab Eng 2025; 88:228-239. [PMID: 39848486 DOI: 10.1016/j.ymben.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/29/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
Polyhydroxyalkanoate (PHA) is an attractive bio-degradable plastic alternative to petrochemical plastics. Photosynthetic cyanobacteria accumulate biomass by fixing atmospheric CO2, making them promising hosts for sustainable PHA production. Conventional PHA production in cyanobacteria requires prolonged cultivation under nutrient limitation to accumulate cellular PHA. In this study, we developed a system for growth-coupled production of the PHA poly-hydroxybutyrate (PHB), using the marine cyanobacterium Synechococcus sp. PCC 7002. A recombinant strain termed KB1 expressing a set of heterologous PHB biosynthesis genes (phaA/phaB from Cupriavidus necator H16 and phaE/phaC from Synechocystis sp. PCC 6803) accumulated substantial PHB during growth (11.4% of dry cell weight). To improve PHB accumulation, we introduced the Pseudomonas aeruginosa phosphoketolase gene (pk) into strain KB1, rewiring intermediates of the Calvin-Benson-Bassham (CBB) cycle (xyluose-5-phosphate, sedoheptulose 7-phosphate, and fructose-6-phosphate) to acetyl-CoA. The pk-expressing strain, KB15, accumulated 2.1-fold enhanced levels of PHB (23.8% of dried cell weight), relative to the parent strain, KB1. The highest PHB titer of KB15 strain supplemented with acetate was about 1.1 g L-1 and the yield was further enhanced by 2.6-fold following growth at 38 °C (0.21 g L-1 d-1), relative to growth at 30 °C. Metabolome analysis revealed that pool sizes of CBB intermediates decreased, while levels of acetyl-CoA increased in strain KB15 compared with strain KB1, and this increase was further enhanced following growth at 38 °C. Our data demonstrate that acetyl-phosphate generated by Pk was converted into acetyl-CoA via acetate by hitherto unidentified enzymes. In conclusion, expression of heterologous PHB biosynthesis genes enabled growth-coupled PHB production in strain PCC 7002, which was increased through acetyl-CoA supplementation by bypassing acetyl-phosphate and elevating culture temperature.
Collapse
Affiliation(s)
- Kosuke Inabe
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuichi Kato
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Mami Matsuda
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takanobu Yoshida
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Keiji Matsumoto
- Green Planet Research Group, Agri-Bio & Supplement Research Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago-city, Hyogo, 676-8688, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Shunsuke Sato
- Green Planet Research Group, Agri-Bio & Supplement Research Laboratories, KANEKA CORPORATION, 1-8 Miyamae-Cho, Takasago-Cho, Takasago-city, Hyogo, 676-8688, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan; Research Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
3
|
Huang S, Dong Q, Che S, Li R, Tang KHD. Bioplastics and biodegradable plastics: A review of recent advances, feasibility and cleaner production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178911. [PMID: 40022973 DOI: 10.1016/j.scitotenv.2025.178911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
As awareness of plastic pollution increases, there is a growing emphasis on sustainable alternatives. Bioplastics and biodegradable plastics have surfaced as potential substitutes. Yet, their limited properties and high production costs hinder their practicality. This paper systematically reviews more than 280 articles to comprehensively outline the advantages and drawbacks of emerging bioplastics and biodegradable plastics, alongside advancements in cleaner production methods. Bioplastics, sourced from renewable materials, decrease dependency on fossil fuels and help lower carbon footprints during production and disposal. Some bioplastics, such as polylactic acid (PLA) and polyhydroxyalkanoates, are compostable, but their manufacturing costs usually surpass that of conventional plastics. Additionally, certain bioplastics exhibit lower mechanical strength, heat resistance, or durability. PLA and bio-polybutylene succinate (bio-PBS) are viable for single-use items and biodegradable products, with scalable production using established technologies, although bio-PBS is somewhat pricier than PLA. Biodegradable plastics lessen environmental impact by naturally degrading and can be composted in industrial settings, providing an eco-friendly disposal option. However, they require specific industrial composting conditions for complete degradation, which can lead to microplastic formation in the environment. PBS, polybutylene adipate terephthalate, and polybutylene succinate-co-adipate seem to be the most promising options, with PBS being a strong contender for replacing traditional plastics due to its biodegradable and compostable nature. It has the potential to be partially or entirely bio-based (bio-PBS). Innovative technologies, especially next-generation industrial biotechnology and microbial cell factories, offer cleaner methods for synthesizing these plastics. This review aids in identifying feasible and sustainable alternatives to conventional plastics.
Collapse
Affiliation(s)
- Shirui Huang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Qianhe Dong
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Sichen Che
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China
| | - Kuok Ho Daniel Tang
- The Department of Environmental Science, The University of Arizona (UA), Tucson, AZ 85721, USA; School of Natural Resources and Environment, NWAFU-UA Microcampus, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Zhang Y, Zhao J, Guo H, Lu X, Tan D. Production and Bioseparation Applications of Polyhydroxyalkanoate Nano-Granules Functionalized with Streptavidin. Microorganisms 2025; 13:312. [PMID: 40005680 PMCID: PMC11858450 DOI: 10.3390/microorganisms13020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Rapidly growing industrial biotechnology and bio-manufacturing require simple and cost-effective bioseparation tools. A novel strategy of bioseparation based on the streptavidin-decorated polyhydroxyalkanoate (PHA) nano-granules was developed in this study. By fusing to the N-terminus of PHA-associated phasin protein, the streptavidin was one-step immobilized on the surface of PHA nano-granules simultaneously with the accumulation of PHA in recombinant Escherichia coli. About 1.95 g/L of PHA nano-granules (54.51 wt% of cell dry weight) were produced after 48 h bacterial cultivation. The following qualitative and quantitative characterizations demonstrated that the streptavidin accounted for approximately 6.78% of the total weight of the purified PHA nano-granules and confirmed a considerable biotin affinity of 0.1 ng biotin/μg surface protein. As a proof of concept, the nano-granules were further functionalized with biotinylated oligo(dT) for mRNA isolation and about 1.26 μg of mRNA (occupied 2.59%) was purified from 48.45 μg of total RNA, achieving good integrity and high purity with few DNA and rRNA contaminations. Moreover, the nano-granules retained more than 80% of their initial mRNA recovery efficiency after ten cycles of repeated use. The PHA-SAP nano-granules were also functionalized with biotinylated magnetic beads, allowing magnetic recovery of the PHA nano-granules from cell lysates that still needs optimization. Our study provides a novel and expandable platform of PHA nano-granules that can be further functionalized with various biological groups for bioseparation applications. The functional PHA nano-granules have a great potential to serve as bioseparation resin for large-scale purification processes after suitable optimizations for "bench-to-factory" translation, contributing to scalable and sustainable bioprocessing.
Collapse
Affiliation(s)
- Yuyan Zhang
- School of Life Science & Technology, Xinjiang University, Urumchi 830049, China;
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Jiping Zhao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Hui Guo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biological Science and Bioengineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.Z.); (H.G.)
| |
Collapse
|
5
|
Ben Abdallah M, Saadaoui I, Al-Ghouti MA, Zouari N, Hahladakis JN, Chamkha M, Sayadi S. Advances in polyhydroxyalkanoate (PHA) production from renewable waste materials using halophilic microorganisms: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178452. [PMID: 39824097 DOI: 10.1016/j.scitotenv.2025.178452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that can replace conventional plastics in different sectors. However, PHA commercialization is hampered due to their high production cost resulting from the use of high purity substrates, their low conversion into PHAs by using conventional microbial chassis and the high downstream processing cost. Taking these challenges into account, researchers are focusing on the use of waste by-products as alternative low-cost feedstocks for fast-growing and contamination-resistant halophilic microorganisms (Bacteria, Archaea…). This is of great importance since these extremophiles can use low-cost substrates, produce high PHA content of copolymers or different PHA monomer compositions. They can present high potential for reducing the costs of PHA fermentation and recovery processes, making their use in commercial applications easier. However, little is known about the potential of halophiles in advancing the PHA production from renewable waste materials at lab-scale and their successful implementation at industrial-scale. This review presents actual advances in PHA production by halophilic pure/engineered species (e.g. Haloferax mediterranei, Halomonas spp.) and mixed microbial consortia (MMC) using organic waste streams. The development of optimal PHA production process involves robust genetic engineering strategies, advanced fermentation processes using mixed microbial consortia versus pure/engineered strains as well as algal biomass as feedstocks.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar; Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia.
| | - Imen Saadaoui
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohammad A Al-Ghouti
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - Nabil Zouari
- Environmental Sciences Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, P.O. Box 2713, Qatar
| | - John N Hahladakis
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
6
|
Yang J, Wang J, Yu X, Chen T, Yin J, Tang X. Enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from volatile fatty acids by Halomonas sp. YJ01 with 2-methylcitrate cycle. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123902. [PMID: 39729712 DOI: 10.1016/j.jenvman.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 12/29/2024]
Abstract
Volatile fatty acids (VFAs) are suitable substrates for synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), wherein propionate is a precursor of PHBV biosynthesis; however, high concentrations are toxic to bacteria. Therefore, VFAs with suitable ratio are needed. Here, with the ratio of acetate: propionate: butyrate being 1:4:2, the maximum PHBV content and the 3HV content were 46.77 wt% and 19.24 mol%, respectively, by Halomonas sp. YJ01. The optimal C/P and C/N ratios for PHBV synthesis were controlled at 800-1000 and 70-90. The carbon source uptake by the strain at higher C/N ratios was mainly used to synthesize PHBV. The metabolic pathway for PHBV biosynthesis with mixed VFAs showed that the 2-methylcitrate cycle (2-MCC) pathway converted propionyl-CoA to pyruvate, which reduced the toxicity of propionate to the strain. Moreover, the strain utilized acetate and butyrate without producing pyruvate, which did not affect the detoxification of the 2-MCC pathway. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) results showed that when the 2-MCC pathway was inhibited, phaC expression decreased 2.74-fold, and the expression of prpB and prpC was down-regulated 2-fold and 6.88-fold, respectively; therefore, propionate toxicity exposure resulted in a significant decrease in PHBV content.
Collapse
Affiliation(s)
- Jincan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Jing Wang
- Zhejiang Institute of Hydraulics & Estuary, Hangzhou, 310017, PR China
| | - Xiaoqin Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| | - Xiujuan Tang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China.
| |
Collapse
|
7
|
Frone AN, Panaitescu DM, Gabor AR, Nicolae CA, Ghiurea M, Bradu C. Poly(3-hydroxybutyrate) Modified with Thermoplastic Polyurethane and Microfibrillated Cellulose: Hydrolytic Degradation and Thermal and Mechanical Properties. Polymers (Basel) 2024; 16:3606. [PMID: 39771457 PMCID: PMC11678418 DOI: 10.3390/polym16243606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025] Open
Abstract
Blending poly(3-hydroxybutyrate) (PHB) with other polymers could be a rapid and accessible solution to overcome some of its drawbacks. In this work, PHB was modified with microfibrillated cellulose (MC) and a thermoplastic polyurethane containing biodegradable segments (PU) by two routes, using a masterbatch and by direct mixing. The PU and MC modifiers improved the thermal stability of PHB by up to 13 °C and slightly decreased its melt viscosity and crystallinity, thus improving the melt processability. The addition of PU in PHB composites led to a decrease in the storage modulus, which did not exceed 20% at room temperature. The hydrolytic degradation in an alkaline environment at 50 °C for 28 days decreased the thermal stability of the composites by 58-65 °C, while the lower mass loss and morphological features showed that the PU modifier delayed the degradation of the PHB composites. The improved thermal stability, melt processability, and lower cost, along with higher flexibility and the possibility of controlling the hydrolytic degradation by the PU content, make the PHB/PU/MC composites obtained by the masterbatch method promising materials for medical and engineering applications.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Denis Mihaela Panaitescu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Augusta Raluca Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Cristian-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Marius Ghiurea
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania; (A.N.F.); (A.R.G.); (C.-A.N.); (M.G.)
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania;
| |
Collapse
|
8
|
Zarzyka I, Krzykowska B, Hęclik K, Frącz W, Janowski G, Bąk Ł, Klepka T, Bieniaś J, Ostapiuk M, Tor-Świątek A, Droździel-Jurkiewicz M, Tomczyk A, Falkowska A, Kuciej M. Modification of Poly(3-Hydroxybutyrate) with a Linear Polyurethane Modifier and Organic Nanofiller-Preparation and Structure-Property Relationship. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5542. [PMID: 39597366 PMCID: PMC11595855 DOI: 10.3390/ma17225542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The growing demand for products made of polymeric materials, including the commonly used polypropylene (PP), is accompanied by the problem of storing and disposing of non-biodegradable waste, increasing greenhouse gas emissions, climate change and the creation of toxic products that constitute a health hazard of all living organisms. Moreover, most of the synthetic polymers used are made from petrochemical feedstocks from non-renewable resources. The use of petrochemical raw materials also causes degradation of the natural environment. A potential solution to these problems is the use of biopolymers. Biopolymers include biodegradable or biosynthesizable polymers, i.e., obtained from renewable sources or produced synthetically but from raw materials of natural origin. One of them is the poly(3-hydroxybutyrate) (P3HB) biopolymer, whose properties are comparable to PP. Unfortunately, it is necessary to modify its properties to improve its processing and operational properties. In the work, hybrid polymer nanobiocomposites based on P3HB, with the addition of chain, uncross-linked polyurethane (PU) and layered aluminosilicate modified with organic salts (Cloisite®30B) were produced by extrusion process. The introduction of PU and Cloisite®30B to the polymer matrix (P3HB) influenced the processing parameters beneficially and resulted in a decrease in the extrusion temperature of more than 10 °C. The influence of the simultaneous addition of a constant amount of PU (10 m/m%) and the different amounts of nanoadditives (1, 2 and 3 m/m%) on the compatibility, morphology and static mechanical properties of the resulted nanobiocomposites were examined. The component interactions by Fourier transformation infrared spectroscopy (FTIR) analysis, nano- and microscale structure studies using small-angle X-ray scattering (SAXS) and morphology by scanning electron microscopy (SEM) were carried out, and the hardness and tensile strength of the obtained polymer nanobiocomposites were determined. FTIR analysis identified the compatibility of the polyester matrix, PU, and organomodified montmorillonite, the greatest being 3 m/m% Cloisite30B content. The addition of PU to the polyester elasticizes the material and decreases the material's strength and ductility. The presence of nanoclay enhanced the mechanical properties of nanobiocomposites. The resulting nanobiocomposites can be used in the production of short-life materials applied in gardening or agriculture.
Collapse
Affiliation(s)
- Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland;
| | - Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland;
| | - Karol Hęclik
- Department of Biotechnology and Bioinformatic, Rzeszów University of Technology, Powstancow Warszawy 6, 35959 Rzeszow, Poland;
| | - Wiesław Frącz
- Department of Materials Forming and Processing, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35959 Rzeszow, Poland; (W.F.); (G.J.); (Ł.B.)
| | - Grzegorz Janowski
- Department of Materials Forming and Processing, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35959 Rzeszow, Poland; (W.F.); (G.J.); (Ł.B.)
| | - Łukasz Bąk
- Department of Materials Forming and Processing, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstancow Warszawy 12, 35959 Rzeszow, Poland; (W.F.); (G.J.); (Ł.B.)
| | - Tomasz Klepka
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (T.K.); (A.T.-Ś.)
| | - Jarosław Bieniaś
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (J.B.); (M.O.); (M.D.-J.)
| | - Monika Ostapiuk
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (J.B.); (M.O.); (M.D.-J.)
| | - Aneta Tor-Świątek
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (T.K.); (A.T.-Ś.)
| | - Magda Droździel-Jurkiewicz
- Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20618 Lublin, Poland; (J.B.); (M.O.); (M.D.-J.)
| | - Adam Tomczyk
- Faculty of Mechanical Engineering, Bialystok University of Technology BUT, 45C Wiejska, 15351 Bialystok, Poland; (A.T.); (A.F.); (M.K.)
| | - Anna Falkowska
- Faculty of Mechanical Engineering, Bialystok University of Technology BUT, 45C Wiejska, 15351 Bialystok, Poland; (A.T.); (A.F.); (M.K.)
| | - Michał Kuciej
- Faculty of Mechanical Engineering, Bialystok University of Technology BUT, 45C Wiejska, 15351 Bialystok, Poland; (A.T.); (A.F.); (M.K.)
| |
Collapse
|
9
|
Dong Y, Zhai K, Li Y, Lv Z, Zhao M, Gan T, Ma Y. Modification of Glucose Metabolic Pathway to Enhance Polyhydroxyalkanoate Synthesis in Pseudomonas putida. Curr Issues Mol Biol 2024; 46:12784-12799. [PMID: 39590355 PMCID: PMC11592762 DOI: 10.3390/cimb46110761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are semi-crystalline elastomers with a low melting point and high elongation at break, allowing for a wide range of applications in domestic, agricultural, industrial, and mainly medical fields. Utilizing low-cost cellulose hydrolyzed sugar as a carbon source and metabolic engineering to enhance synthesis in Pseudomonas putida is a promising strategy for commercializing mcl-PHAs, but little has been attempted to improve the utilization of glucose for synthesizing mcl-PHAs. In this study, a multi-pathway modification was performed to improve the utilization of substrate glucose and the synthesis capacity of PHAs. To enhance glucose metabolism to flow to acetyl-CoA, which is an important precursor of mcl-PHA, multiple genes in glucose metabolism were inactive (branch pathway and negative regulatory) and overexpressed (positive regulatory) in this study. The two genes, gcd (encoding glucose dehydrogenase) and gltA (encoding citrate synthase), involved in glucose peripheral pathways and TCA cycles were separately and jointly knocked out in Pseudomonas putida QSRZ6 (ΔphaZΔhsdR), and the mcl-PHA synthesis was improved in the mutants; particularly, the mcl-PHA titer of QSRZ603 (ΔgcdΔgltA) was increased by 33.7%. Based on the glucose branch pathway truncation, mcl-PHA synthesis was further improved with hexR-inactivation (encoding a negative regulator in glucose metabolism). Compared with QSRZ603 and QSRZ6, the mcl-PHA titer of QSRZ607 (ΔgcdΔgltAΔhexR) was increased by 62.8% and 117.5%, respectively. The mutant QSRZ609 was constructed by replacing the endogenous promoter of gltB encoding a transcriptional activator of the two-component regulatory system GltR/GltS with the ribosome subunit promoter P33. The final mcl-PHA content and titers of QSRZ609 reached 57.3 wt% and 2.5 g/L, an increase of and 20.9% and 27.3% over that of the parent strain QSRZ605 and an increase of 110.4% and 159.9% higher as compared to QSRZ6, respectively. The fermentation was optimized with a feeding medium in shaker flacks; then, the mcl-PHA contents and titer of QSRZ609 were 59.1 wt% and 6.8 g/L, respectively. The results suggest that the regulation from glucose to acetyl-CoA by polygenic modification is an effective strategy for enhancing mcl-PHA synthesis, and the mutants obtained in this study can be used as chassis to further increase mcl-PHA production.
Collapse
Affiliation(s)
- Yue Dong
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Keyao Zhai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yatao Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhen Lv
- College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Mengyao Zhao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tian Gan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchao Ma
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
10
|
Yuan Q, Chen S, Chen Y, Zhang X, Lou Y, Li X, Liang Q, Zhang Y, Sun Y. Evaluating AGS efficiency in PHA synthesis and extraction integrated with nutrient removal: The impact of COD concentrations. CHEMOSPHERE 2024; 368:143708. [PMID: 39515542 DOI: 10.1016/j.chemosphere.2024.143708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
As natural and biodegradable biopolymers, Polyhydroxyalkanoates (PHA) were synthetized by aerobic granules sludge (AGS) in a sequential batch reactor in this study. The effect of different COD concentrations on PHA accumulation and nutrients removal were investigated. At the same time, different pretreatment methods for PHA extraction, including NaClO pretreatment for extracellular polymeric substances (EPS) removal, Na2CO3 pretreatment for EPS recovery, and grinding pretreatment to reduce particle size and augment the surface area available for interaction with the extraction solvent, were compared. The results showed that the PHA yield increased more than 2 times (from 91.1 to 233.3 mgPHA/gCDW (cell dry weight)) when COD concentration increased from 800 to 1600 mg/L. Polyhydroxybutyrate (PHB) and polyhydroxyvalerate (PHV) both accounted for half of the total, while PHB fraction rose to 71% when COD concentration went up to 1600 mg/L. The PHB can be consumed 3 times faster than PHV. High COD concentration (1600 mg/L) adversely impacted the structure stability of AGS and the phosphorus removal efficiency, while the system consistently exhibited robust nitrogen removal capabilities, with ammonium and TN removal efficiencies exceeding >90%. The dominant bacteria shifted from Flavobacterium to Halomona and Hydrogenophaga as the COD concentration increased. In terms of PHA extraction, Na2CO3 pretreatment, which was used for EPS recovery, had the best PHA recovery with nearly 100% purity and EPS removal efficiency compared with NaClO and grinding pretreatments.
Collapse
Affiliation(s)
- Quan Yuan
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Song Chen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yun Chen
- Thunip Co., Ltd., Beijing, 100084, China
| | - Xinyu Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuqing Lou
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Xueting Li
- Thunip Co., Ltd., Beijing, 100084, China
| | - Qian Liang
- Thunip Co., Ltd., Beijing, 100084, China
| | - Yanping Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yingxue Sun
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
11
|
Zhou L, Zhang Z, Sangroniz A, Shi C, Gowda RR, Scoti M, Barange DK, Lincoln C, Beckham GT, Chen EYX. Chain-End Controlled Depolymerization Selectivity in α,α-Disubstituted Propionate PHAs with Dual Closed-Loop Recycling and Record-High Melting Temperature. J Am Chem Soc 2024; 146:29895-29904. [PMID: 39413833 DOI: 10.1021/jacs.4c11920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Within the large poly(3-hydroxyalkanoate) (PHA) family, C3 propionates are much less studied than C4 butyrates, with the exception of α,α-disubstituted propionate PHAs, particularly poly(3-hydroxy-2,2-dimethylpropionate), P3H(Me)2P, due to its high melting temperature (Tm ∼ 230 °C) and crystallinity (∼76%). However, inefficient synthetic routes to its monomer 2,2-dimethylpropiolactone [(Me)2PL] and extreme brittleness of P3H(Me)2P largely hinder its broad applications. Here, we introduce simple, efficient step-growth polycondensation (SGP) of a hydroxyacid or methyl ester to afford P3H(Me)2P with low to medium molar mass, which is then utilized to produce lactones through base-catalyzed depolymerization. The ring-opening polymerization (ROP) of the 4-membered lactone leads to high-molar-mass P3H(Me)2P, which can be depolymerized by hydrolysis to the hydroxyacid in 99% yield or methanolysis to the hydroxyester in 91% yield, achieving closed-loop recycling via both SGP and ROP routes. Intriguingly, the chain end of the SGP-P3H(Me)2P determines the depolymerization selectivity toward 4- or 12-membered lactone formation, while both can be repolymerized back to P3H(Me)2P. Through the formation of copolymers P3H(Me/R)2P (R = Et, nPr), PHAs with high tensile strength and ductility, coupled with high barriers to water vapor and oxygen, have been created. Notably, the PHA structure-property study led to P3H(nPr)2P with a record-high Tm of 266 °C within the PHA family.
Collapse
Affiliation(s)
- Li Zhou
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Zhen Zhang
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ainara Sangroniz
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Ravikumar R Gowda
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Miriam Scoti
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Monte S. Angelo, Via Cintia, 80126 Napoli, Italy
| | - Deepak K Barange
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Clarissa Lincoln
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE Consortium, Golden, Colorado 80401, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
12
|
Zhao Y, Xue L, Huang Z, Lei Z, Xie S, Cai Z, Rao X, Zheng Z, Xiao N, Zhang X, Ma F, Yu H, Xie S. Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system. Nat Commun 2024; 15:9288. [PMID: 39468081 PMCID: PMC11519575 DOI: 10.1038/s41467-024-53609-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Exploring microorganisms with downstream synthetic advantages in lignin valorization is an effective strategy to increase target product diversity and yield. This study ingeniously engineers the non-lignin-degrading bacterium Ralstonia eutropha H16 (also known as Cupriavidus necator H16) to convert lignin, a typically underutilized by-product of biorefinery, into valuable bioplastic polyhydroxybutyrate (PHB). The aromatic metabolism capacities of R. eutropha H16 for different lignin-derived aromatics (LDAs) are systematically characterized and complemented by integrating robust functional modules including O-demethylation, aromatic aldehyde metabolism and the mitigation of by-product inhibition. A pivotal discovery is the regulatory element PcaQ, which is highly responsive to the aromatic hub metabolite protocatechuic acid during lignin degradation. Based on the computer-aided design of PcaQ, we develop a hub metabolite-based autoregulation (HMA) system. This system can control the functional genes expression in response to heterologous LDAs and enhance metabolism efficiency. Multi-module genome integration and directed evolution further fortify the strain's stability and lignin conversion capacities, leading to PHB production titer of 2.38 g/L using heterologous LDAs as sole carbon source. This work not only marks a leap in bioplastic production from lignin components but also provides a strategy to redesign the non-LDAs-degrading microbes for efficient lignin valorization.
Collapse
Affiliation(s)
- Yiquan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Xue
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiyi Huang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zixian Lei
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiyu Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenzhen Cai
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Rao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze Zheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ning Xiao
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiaoyu Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuying Ma
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Yu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- National key Laboratory of Non-food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
13
|
Balestrini VP, Pinto OHB, Simmons BA, Gladden JM, Krüger RH, Quirino BF. Analysis of novel bacterial metagenome-assembled genomes from lignin-degrading microbial consortia. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100302. [PMID: 39558935 PMCID: PMC11570740 DOI: 10.1016/j.crmicr.2024.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Despite recent progress, bacterial degradation of lignin is not completely understood. To address the mechanisms that bacteria from unknown taxonomic groups use to perform lignin-monomer degradation, functional analysis of bacterial metagenome-assembled genomes from soil-derived consortia enriched for microorganisms capable of degrading lignin was performed. A total of 232 metagenome-assembled genomes were recovered. After applying quality criteria of at least 70 % genome completeness and contamination less than or equal to 10 %, 39 genomes were obtained. From these, a total of 14 genomes from bacteria of unknown classification at lower taxonomic levels (i.e., only classified to the order level or higher) were chosen for further functional analysis. A global analysis of the potential ecological functions of these bacteria was performed, followed by a detailed analysis of monolignol degradation pathways. The phylum with the highest number of genomes was Proteobacteria. The genomes presented functions consistent with soil-derived bacteria, like denitrification, with different metabolic capacities related to the sulfur, chlorine, arsenic and carbon cycles, in addition to the degradation of plant cell wall components like cellulose, hemicellulose, and lignin. The Sphingomonadales_OP 08 genome showed the greatest potential to degrade cellulose and hemicellulose, although it does not appear to be able to degrade lignin. The Actinobacteria_BY 70 genome presented the highest number of enzymes and pathways related to the degradation of monolignols; furthermore, it showed the greatest potential for aromatic ring breakage by different fission pathways. The genomes of the two Actinobacteria showed the caffeic acid pathway, an important phenolic compound presenting several biological properties, such as antimicrobial and antioxidant. To our knowledge, this is the first time this pathway has been reported in this class of bacteria.
Collapse
Affiliation(s)
- Vitória Pinheiro Balestrini
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF, 70770-901, Brazil
- Microbial Biology Graduate Program, University of Brasília, Brasília, DF, 70790-900, Brazil
| | | | - Blake A. Simmons
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John M. Gladden
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Ricardo Henrique Krüger
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70790-900, Brazil
| | - Betania Ferraz Quirino
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília, DF, 70770-901, Brazil
- Microbial Biology Graduate Program, University of Brasília, Brasília, DF, 70790-900, Brazil
| |
Collapse
|
14
|
Zhang Z, Shao M, Zhang G, Sun S, Yi X, Zhang Z, He H, Wang K, Hu Q, Wu Q, Chen GQ. Engineering Halomonas bluephagenesis for Synthesis of Polyhydroxybutyrate (PHB) in the Presence of High Nitrogen Containing Media. Metab Eng 2024; 86:S1096-7176(24)00140-X. [PMID: 39490668 DOI: 10.1016/j.ymben.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
The trade-offs exist between microbial growth and bioproduct synthesis including intracellular polyester polyhydroxybutyrate (PHB). Under nitrogen limitation, more carbon flux is directed to PHB synthesis while growth is inhibited with diminishing overall carbon utilization, similar to the suboptimal carbon utilization during glycolysis-derived pyruvate decarboxylation. This study reconfigured the central carbon network of Halomonas bluphagenesis to improve PHB yield theoretically and practically. It was found that the downregulation of glutamine synthetase (GS) activity led to a synchronous improvement on PHB accumulation and cell growth under nitrogen non-limitation condition, increasing the PHB yield from glucose (g/g) to 85% of theoretical yield, PHB titer from 7.6 g/L to 12.9 g/L, and from 51 g/L to 65 g/L when grown in shake flasks containing a rich N-source, and grown in a fed-batch cultivation conducted in a 7-L bioreactor also containing a rich N-source, respectively. Results offer better metabolic balance between glucose conversion efficiency and microbial growth for economic PHB production.
Collapse
Affiliation(s)
- Zhongnan Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mingwei Shao
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Simian Sun
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xueqing Yi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zonghao Zhang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongtao He
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qitiao Hu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Industrial Biocatalysis Key Lab of the Ministry of Education, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Wongsirichot P. Pilot scale polyhydroxyalkanoates biopolymer production using pure cultures: current status and future opportunities. Crit Rev Biotechnol 2024:1-17. [PMID: 39428339 DOI: 10.1080/07388551.2024.2409112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
The development and commercialization of bio-based and biodegradable polyhydroxyalkanoates (PHAs) biopolymers could be crucial for the transition toward a sustainable circular economy. However, despite potential traditional and novel applications in the packaging, textiles, agriculture, automotive, electronics, and biomedical industries, the commercialization of PHAs is limited by their current market competitiveness. This review provides the first critical assessment of the current pure culture pilot-scale PHA literature, which could be crucial in translating promising laboratory-scale developments into industrial-scale commercial PHA production. It will also complement reviews of mixed microbial cultures currently dominating pilot-scale PHA literature. Pure culture fermentations could provide advantages, such as ease of characterizing microbial producers' behavior, higher PHA productivities, and better alignment with existing PHA commercialization and industrial biotechnology approaches. Key aspects, including producer organisms, fermentation volumes and schemes, control schemes, optimization, and properties of the polymers produced, are discussed in-depth, to elucidate important trends, achievements, and knowledge gaps. Furthermore, specific ways for future pilot-scale studies to help address current PHA commercialization challenges are also identified. The insights, and recommendations provided will be extremely beneficial for the future development of PHA production, at both pilot and commercial scales, whilst also being beneficial to the production of other microbial polymers and industrial biotechnology as a whole.
Collapse
Affiliation(s)
- Phavit Wongsirichot
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Yeo JCC, Muiruri JK, Fei X, Wang T, Zhang X, Xiao Y, Thitsartarn W, Tanoto H, He C, Li Z. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. BIOMATERIALS ADVANCES 2024; 163:213929. [PMID: 39024863 DOI: 10.1016/j.bioadv.2024.213929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) biopolyesters show a good balance between sustainability and performance, making them a competitive alternative to conventional plastics for ecofriendly food packaging. With an emphasis on developments over the last decade (2014-2024), this review examines the revolutionary potential of PHAs as a sustainable food packaging material option. It also delves into the current state of commercial development, competitiveness, and the carbon footprint associated with PHA-based products. First, a critical examination of the challenges experienced by PHAs in terms of food packaging requirements is undertaken, followed by an assessment of contemporary strategies addressing permeability, mechanical properties, and processing considerations. The various PHA packaging end-of-life options, including a comprehensive overview of the environmental impact and potential solutions will also be discussed. Finally, conclusions and future perspectives are elucidated with a view of prospecting PHAs as future green materials, with a blend of performance and sustainability of food packaging solutions.
Collapse
Affiliation(s)
- Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Tong Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xikui Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yihang Xiao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Hendrix Tanoto
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chaobin He
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE(2)), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Republic of Singapore.
| |
Collapse
|
17
|
Zdanowicz M, Mizielińska M, Kowalczyk A. Cast Extruded Films Based on Polyhydroxyalkanoate/Poly(lactic acid) Blend with Herbal Extracts Hybridized with Zinc Oxide. Polymers (Basel) 2024; 16:1954. [PMID: 39065276 PMCID: PMC11281330 DOI: 10.3390/polym16141954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
The aim of the presented work was to functionalize a blend based on polyhydroxyalkanoate (PHA): poly(hydroxybutyrate (PHB) with poly(lactic acid) (PLA) and a mixture of three selected herb extracts, namely, Hypericum L., Urtica L. and Chelidonium L., (E), zinc oxide (ZnO) and a combined system (EZnO), produced via extrusion. Before processing with bioresin, the natural modifiers were characterized using thermal analysis, FTIR and antimicrobial tests. The results revealed interactions between the extracts and the filler, leading to higher thermal stability in EZnO than when using E alone. Moreover, the mixture of extracts exhibited antimicrobial properties toward both Gram-negative (S. aureus) as well as Gram-positive bacteria (E. coli). Modified regranulates were transformed into films by cast extrusion. The influence of the additives on thermal (DSC, TGA and OIT), mechanical, barrier (WVTR and OTR), morphological (FTIR) and optical properties was investigated. The EZnO additive had the highest impact on the mechanical, barrier (OTR and WVTR) and optical properties of the bioresin. The microbial test results revealed that PHA-EZnO exhibited higher activity than PHA-ZnO and PHA-E and also reduced the number of S. aureus, E. coli and C. albicans cells. The findings confirmed the synergistic effect between the additive components. Modified polyester films did not eliminate the phi6 bacteriophage particles completely, but they did decrease their number, confirming moderate antiviral effectiveness.
Collapse
Affiliation(s)
- Magdalena Zdanowicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Janickiego 35, 71-270 Szczecin, Poland;
| | - Małgorzata Mizielińska
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology, Szczecin, Janickiego 35, 71-270 Szczecin, Poland;
| | - Agnieszka Kowalczyk
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland;
| |
Collapse
|
18
|
Liu T, Gao X, Chen R, Tang K, Liu Z, Wang P, Wang X. A nuclease domain fused to the Snf2 helicase confers antiphage defence in coral-associated Halomonas meridiana. Microb Biotechnol 2024; 17:e14524. [PMID: 38980956 PMCID: PMC11232893 DOI: 10.1111/1751-7915.14524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
The coral reef microbiome plays a vital role in the health and resilience of reefs. Previous studies have examined phage therapy for coral pathogens and for modifying the coral reef microbiome, but defence systems against coral-associated bacteria have received limited attention. Phage defence systems play a crucial role in helping bacteria fight phage infections. In this study, we characterized a new defence system, Hma (HmaA-HmaB-HmaC), in the coral-associated Halomonas meridiana derived from the scleractinian coral Galaxea fascicularis. The Swi2/Snf2 helicase HmaA with a C-terminal nuclease domain exhibits antiviral activity against Escherichia phage T4. Mutation analysis revealed the nickase activity of the nuclease domain (belonging to PDD/EXK superfamily) of HmaA is essential in phage defence. Additionally, HmaA homologues are present in ~1000 bacterial and archaeal genomes. The high frequency of HmaA helicase in Halomonas strains indicates the widespread presence of these phage defence systems, while the insertion of defence genes in the hma region confirms the existence of a defence gene insertion hotspot. These findings offer insights into the diversity of phage defence systems in coral-associated bacteria and these diverse defence systems can be further applied into designing probiotics with high-phage resistance.
Collapse
Affiliation(s)
- Tianlang Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pengxia Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio‐resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental EngineeringSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
- University of Chinese Academy of SciencesBeijingChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| |
Collapse
|
19
|
Palmieri F, Tagoe JNA, Di Maio L. Development of PBS/Nano Composite PHB-Based Multilayer Blown Films with Enhanced Properties for Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2894. [PMID: 38930263 PMCID: PMC11204785 DOI: 10.3390/ma17122894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Biobased and biodegradable plastics have emerged as promising alternatives to conventional plastics offering the potential to reduce environmental impacts while promoting sustainability. This study focuses on the production of multilayer blown films with enhanced functional properties suitable for food packaging applications. Films were developed through co-extrusion in a three-layer film configuration, with Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) as the external and internal layers, respectively. The functional layer consisted of Polyhydroxybutyrate (PHB) enhanced with nanoclays Cloisite® 30B at varying weight ratios. Films were also processed by manipulating the extruder screw speed of the functional layer to investigate its impact on the functional properties. Rheology, mechanical strength, and barrier performance were characterised to establish correlations between processing conditions and functional layer blends (Cloisite® 30B/PHB) on the properties of the resultant films. Rheological test results indicated that the system with 5% Cloisite® had the best polymer/nanofiller matrix dispersion. Mechanical and permeability tests showed that by varying the process conditions (the alteration of the thickness of the functionalized layer) resulted in an improvement in mechanical and barrier properties. Furthermore, the addition of the nanofiller resulted in a stiffening of the film with a subsequent decrease in permeability to oxygen and water vapour.
Collapse
Affiliation(s)
- Francesco Palmieri
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Joseph Nii Ayi Tagoe
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Luciano Di Maio
- Department of Industrial Engineering (DIIN), University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| |
Collapse
|
20
|
Krzykowska B, Czerniecka-Kubicka A, Białkowska A, Bakar M, Kovářová M, Sedlařík V, Hanusova D, Zarzyka I. Biopolymer Compositions Based on Poly(3-hydroxybutyrate) and Linear Polyurethanes with Aromatic Rings-Preparation and Properties Evaluation. Polymers (Basel) 2024; 16:1618. [PMID: 38931968 PMCID: PMC11207839 DOI: 10.3390/polym16121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Polymer biocompositions of poly(3-hydroxybutyrate) (P3HB) and linear polyurethanes (PU) with aromatic rings were produced by melt-blending at different P3HB/PU weight ratios (100/0, 95/5, 90/10, and 85/15). Polyurethanes have been prepared with 4,4'-diphenylmethane diisocyanate and polyethylene glycols with molar masses of 400 g/mol (PU400), 1000g/mol (PU1000), and 1500 g/mol (PU1500). The compatibility and morphology of the obtained polymer blends were determined by infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). The effect of the polyurethane content in the biocompositions on their thermal stability and mechanical properties was investigated and compared with those of the native P3HB. It was shown that increasing the PU content in P3HB-PU compositions to 10 wt.% leads to an improvement in the mentioned properties. The obtained results demonstrated that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength. The best thermal and mechanical properties were shown by the P3HB-PU polymer compositions containing 10 wt.% of polyurethane modifiers, especially PU1000, which was also confirmed by the morphology analysis of these biocompositions. The presence of polyurethanes in the resulting polymer biocomposites decreases their glass transition temperatures, i.e., makes the materials more flexible. The resulting polymer biocompositions have suitable mechanical properties and thermal properties within the processing conditions for the predicted application as biodegradable, short-lived products for agriculture.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Anna Czerniecka-Kubicka
- Department of Experimental and Clinical Pharmacology, Medical College of Rzeszow University, The University of Rzeszow, 35-310 Rzeszów, Poland;
| | - Anita Białkowska
- Faculty of Applied Chemistry, Radom University, Chrobrego 27, 26-600 Radom, Poland; (A.B.); (M.B.)
| | - Mohamed Bakar
- Faculty of Applied Chemistry, Radom University, Chrobrego 27, 26-600 Radom, Poland; (A.B.); (M.B.)
| | - Miroslava Kovářová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
21
|
Eam H, Ko D, Lee C, Myung J. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge. Microb Cell Fact 2024; 23:160. [PMID: 38822346 PMCID: PMC11140957 DOI: 10.1186/s12934-024-02442-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Wastewater treatment plants contribute approximately 6% of anthropogenic methane emissions. Methanotrophs, capable of converting methane into polyhydroxybutyrate (PHB), offer a promising solution for utilizing methane as a carbon source, using activated sludge as a seed culture for PHB production. However, maintaining and enriching PHB-accumulating methanotrophic communities poses challenges. RESULTS This study investigated the potential of Methylosinus trichosporium OB3b to bioaugment PHB-accumulating methanotrophic consortium within activated sludge to enhance PHB production. Waste-activated sludges with varying ratios of M. trichosporium OB3b (1:0, 1:1, 1:4, and 0:1) were cultivated. The results revealed substantial growth and methane consumption in waste-activated sludge with M. trichosporium OB3b-amended cultures, particularly in a 1:1 ratio. Enhanced PHB accumulation, reaching 37.1% in the same ratio culture, indicates the dominance of Type II methanotrophs. Quantification of methanotrophs by digital polymerase chain reaction showed gradual increases in Type II methanotrophs, correlating with increased PHB production. However, while initial bioaugmentation of M. trichosporium OB3b was observed, its presence decreased in subsequent cycles, indicating the dominance of other Type II methanotrophs. Microbial community analysis highlighted the successful enrichment of Type II methanotrophs-dominated cultures due to the addition of M. trichosporium OB3b, outcompeting Type I methanotrophs. Methylocystis and Methylophilus spp. were the most abundant in M. trichosporium OB3b-amended cultures. CONCLUSIONS Bioaugmentation strategies, leveraging M. trichosporium OB3b could significantly enhance PHB production and foster the enrichment of PHB-accumulating methanotrophs in activated sludge. These findings contribute to integrating PHB production in wastewater treatment plants, providing a sustainable solution for resource recovery.
Collapse
Affiliation(s)
- Hyerim Eam
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Dayoung Ko
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, UNIST, Ulsan, 44919, Republic of Korea
| | - Jaewook Myung
- Department of Civil and Environmental Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
22
|
Zhang YM, Qiao B, Shang W, Ding MZ, Xu QM, Duan TX, Cheng JS. Improving salt-tolerant artificial consortium of Bacillus amyloliquefaciens for bioconverting food waste to lipopeptides. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:89-100. [PMID: 38598883 DOI: 10.1016/j.wasman.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.
Collapse
Affiliation(s)
- Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin 300387, People's Republic of China
| | - Tian-Xu Duan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, People's Republic of China.
| |
Collapse
|
23
|
Longo A, Fanelli F, Villano M, Montemurro M, Rizzello CG. Bioplastic Production from Agri-Food Waste through the Use of Haloferax mediterranei: A Comprehensive Initial Overview. Microorganisms 2024; 12:1038. [PMID: 38930420 PMCID: PMC11205408 DOI: 10.3390/microorganisms12061038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The research on bioplastics (both biobased and biodegradable) is steadily growing and discovering environmentally friendly substitutes for conventional plastic. This review highlights the significance of bioplastics, analyzing, for the first time, the state of the art concerning the use of agri-food waste as an alternative substrate for biopolymer generation using Haloferax mediterranei. H. mediterranei is a highly researched strain able to produce polyhydroxybutyrate (PHB) since it can grow and produce bioplastic in high-salinity environments without requiring sterilization. Extensive research has been conducted on the genes and pathways responsible for PHB production using H. mediterranei to find out how fermentation parameters can be regulated to enhance cell growth and increase PHB accumulation. This review focuses on the current advancements in utilizing food waste as a substitute for costly substrates to reduce feedstock expenses. Specifically, it examines the production of biomass and the recovery of PHB from agri-food waste. Furthermore, it emphasizes the characterization of PHB and the significance of hydroxyvalerate (HV) abundance in the formation of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymer. The downstream processing options are described, and the crucial factors associated with industrial scale-up are assessed, including substrates, bioreactors, process parameters, and bioplastic extraction and purification. Additionally, the economic implications of various options are discussed.
Collapse
Affiliation(s)
- Angela Longo
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| | - Francesca Fanelli
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Montemurro
- Institute of Sciences of Food Production (CNR-ISPA), National Research Council of Italy, 70126 Bari, Italy;
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.G.R.)
| |
Collapse
|
24
|
Armijo-Galdames B, Sadler JC. One-Pot Biosynthesis of Acetone from Waste Poly(hydroxybutyrate). ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7748-7756. [PMID: 38783840 PMCID: PMC11110063 DOI: 10.1021/acssuschemeng.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
The plastic waste crisis is catalyzing change across the plastics life cycle. Central to this is increased production and application of bioplastics and biodegradable plastics. In particular, poly(hydroxybutyrate) (PHB) is a biodegradable bioplastic that can be produced from various renewable and waste feedstocks and is a promising alternative to some petrochemical-derived and non-biodegradable plastics. Despite its advantages, PHB biodegradation depends on environmental conditions, and the effects of degradation into microplastics, oligomers, and the 3-hydroxybutyrate (3-HB) monomer on soil microbiomes are unknown. We hypothesized that the ease of PHB biodegradation renders this next-generation plastic an ideal feedstock for microbial recycling into platform chemicals currently produced from fossil fuels. To demonstrate this, we report the one-pot degradation and recycling of PHB into acetone using a single strain of engineered Escherichia coli. Following strain development and initial bioprocess optimization, we report maximum titers of 123 mM acetone (7 g/L) from commercial PHB granules after 24 h fermentation at 30 °C. We further report biorecycling of an authentic sample of post-consumer PHB waste at a preparative scale. This is the first demonstration of biological recycling of PHB into a second-generation chemical, and it demonstrates next-generation plastic waste as a novel feedstock for the circular bioeconomy.
Collapse
Affiliation(s)
- Benjamín
O. Armijo-Galdames
- Institute of Quantitative
Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, King’s Buildings, Edinburgh EH9 3FF, U.K.
| | - Joanna C. Sadler
- Institute of Quantitative
Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, King’s Buildings, Edinburgh EH9 3FF, U.K.
| |
Collapse
|
25
|
Zhila NO, Sapozhnikova KY, Kiselev EG, Shishatskaya EI, Volova TG. Biosynthesis of Polyhydroxyalkanoates in Cupriavidus necator B-10646 on Saturated Fatty Acids. Polymers (Basel) 2024; 16:1294. [PMID: 38732762 PMCID: PMC11085183 DOI: 10.3390/polym16091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/20/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
It has been established that the wild-type Cupriavidus necator B-10646 strain uses saturated fatty acids (SFAs) for growth and polyhydroxyalkanoate (PHA) synthesis. It uses lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids as carbon sources; moreover, the elongation of the C-chain negatively affects the biomass and PHA yields. When bacteria grow on C12 and C14 fatty acids, the total biomass and PHA yields are comparable up to 7.5 g/L and 75%, respectively, which twice exceed the values that occur on longer C16 and C18 acids. Regardless of the type of SFAs, bacteria synthesize poly(3-hydroxybutyrate), which have a reduced crystallinity (Cx from 40 to 57%) and a molecular weight typical for poly(3-hydroxybutyrate) (P(3HB)) (Mw from 289 to 465 kDa), and obtained polymer samples demonstrate melting and degradation temperatures with a gap of about 100 °C. The ability of bacteria to assimilate SFAs opens up the possibility of attracting the synthesis of PHAs on complex fat-containing substrates, including waste.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Kristina Yu. Sapozhnikova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (K.Y.S.); (E.G.K.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| |
Collapse
|
26
|
Lhamo P, Mahanty B. Dynamic Model Selection and Optimal Batch Design for Polyhydroxyalkanoate (PHA) Production by Cupriavidus necator. Appl Biochem Biotechnol 2024; 196:2630-2651. [PMID: 37610515 DOI: 10.1007/s12010-023-04683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Mathematical modelling of microbial polyhydroxyalkanoates (PHAs) production is essential to develop optimal bioprocess design. Though the use of mathematical models in PHA production has increased over the years, the selection of kinetics and model identification strategies from experimental data remains largely heuristic. In this study, PHA production from Cupriavidus necator utilizing sucrose and urea was modelled using a parametric discretization approach. Product formation kinetics and relevant parameters were established from urea-free experimental sets, followed by the selection of growth models from a batch containing both sucrose and urea. Logistic growth and Luedeking-Piret model for PHA production was selected based on regression coefficient (R2: 0.941), adjusted R2 (0.930) and AICc values (-42.764). Model fitness was further assessed through cross-validation, confidence interval and sensitivity analysis of the parameters. Model-based optimal batch startup policy, incorporating multi-objective desirability, suggests an accumulation of 2.030 g l-1 of PHA at the end of 120 h. The modelling framework applied in this study can be used not only to avoid over-parameterization and identifiability issues but can also be adopted to design optimal batch startup policies.
Collapse
Affiliation(s)
- Pema Lhamo
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India
| | - Biswanath Mahanty
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, 641114, India.
| |
Collapse
|
27
|
Wei X, Yang X, Hu C, Li Q, Liu Q, Wu Y, Xie L, Ning X, Li F, Cai T, Zhu Z, Zhang YHPJ, Zhang Y, Chen X, You C. ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA. Nat Commun 2024; 15:3267. [PMID: 38627361 PMCID: PMC11021460 DOI: 10.1038/s41467-024-46871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
In vitro biotransformation (ivBT) facilitated by in vitro synthetic enzymatic biosystems (ivSEBs) has emerged as a highly promising biosynthetic platform. Several ivSEBs have been constructed to produce poly-3-hydroxybutyrate (PHB) via acetyl-coenzyme A (acetyl-CoA). However, some systems are hindered by their reliance on costly ATP, limiting their practicality. This study presents the design of an ATP-free ivSEB for one-pot PHB biosynthesis via acetyl-CoA utilizing starch-derived maltodextrin as the sole substrate. Stoichiometric analysis indicates this ivSEB can self-maintain NADP+/NADPH balance and achieve a theoretical molar yield of 133.3%. Leveraging simple one-pot reactions, our ivSEBs achieved a near-theoretical molar yield of 125.5%, the highest PHB titer (208.3 mM, approximately 17.9 g/L) and the fastest PHB production rate (9.4 mM/h, approximately 0.8 g/L/h) among all the reported ivSEBs to date, and demonstrated easy scalability. This study unveils the promising potential of ivBT for the industrial-scale production of PHB and other acetyl-CoA-derived chemicals from starch.
Collapse
Affiliation(s)
- Xinlei Wei
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Congcong Hu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiangzi Li
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Qianqian Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yue Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Leipeng Xie
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Xiao Ning
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| | - Fei Li
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Tao Cai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Zhiguang Zhu
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Yi-Heng P Job Zhang
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Xuejun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Chun You
- In vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
28
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
29
|
Gu S, Zhu F, Zhang L, Wen J. Mid-Long Chain Dicarboxylic Acid Production via Systems Metabolic Engineering: Progress and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5555-5573. [PMID: 38442481 DOI: 10.1021/acs.jafc.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.
Collapse
Affiliation(s)
- Shanna Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Fuzhou Zhu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| | - Lin Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China
| |
Collapse
|
30
|
Lhamo P, Mahanty B. Impact of Acetic Acid Supplementation in Polyhydroxyalkanoates Production by Cupriavidus necator Using Mixture-Process Design and Artificial Neural Network. Appl Biochem Biotechnol 2024; 196:1155-1174. [PMID: 37166651 DOI: 10.1007/s12010-023-04567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
The trend in bioplastic application has increased over the years where polyhydroxyalkanoates (PHAs) have emerged as a potential candidate with the advantage of being bio-origin, biodegradable, and biocompatible. The present study aims to understand the effect of acetic acid concentration (in combination with sucrose) as a mixture variable and its time of addition (process variable) on PHA production by Cupriavidus necator. The addition of acetic acid at a concentration of 1 g l-1 showed a positive influence on biomass and PHA yield; however, the further increase had a reversal effect. The addition of acetic acid at the time of incubation showed a higher PHA yield, whereas maximum biomass was achieved when acetic acid was added after 48 h. Genetic algorithm (GA) optimized artificial neural network (ANN) was used to model PHA concentration from mixture-process design data. Fitness of the GA-ANN model (R2: 0.935) was superior when compared to the polynomial model (R2: 0.301) from mixture design. Optimization of the ANN model projected 2.691 g l-1 PHA from 7.245 g l-1 acetic acid, 12.756 g l-1 sucrose, and the addition of acetic acid at the time of incubation. Sensitivity analysis indicates the inhibitory effect of all the predictors at higher levels. ANN model can be further used to optimize the variables while extending the bioprocess to fed-batch operation.
Collapse
Affiliation(s)
- Pema Lhamo
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | |
Collapse
|
31
|
Li X, Chen J, Liu Y, Fu S, Zhang P, Zhang N, Li W, Zhang H. Traditional Chinese medicine residue enzymatic hydrolysates for production of polyhydroxyalkanoate by newly isolated Bacillus altitudinis. BIORESOURCE TECHNOLOGY 2024; 394:130277. [PMID: 38176596 DOI: 10.1016/j.biortech.2023.130277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Traditional Chinese medicine residue (TCMR) was utilized as an inexpensive carbon source for the production of poly(3-hydroxybutyrate) (PHB) using the newly isolated Bacillus altitudinis HBU-SI7. The results showed that Yu Ping Feng TCMR could be directly hydrolysed by cellulase to obtain a high proportion of glucose (99 % of total sugar) without pretreatment, achieving an enzymatic hydrolysis rate of up to 89.2 %. B. altitudinis could grow and produce PHB when using enzymatically hydrolysed TCMR in a 5-L fermenter. After 20 h of fermentation, the maximum concentration of PHB was 11.2 g/L, and the highest cell dry weight (CDW) was 15.4 g/L, with 72.7 % of the PHB fraction in CDW. Moreover, this strain could utilize enzymatic hydrolysates from various herbal formulas to produce high levels of PHB. This novel approach aims to accumulate PHB from TCMR hydrolysates, offering an effective and environmentally friendly method to reduce production costs and achieve mass production.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jing Chen
- Baoding Jizhong Pharmaceutical Co. Ltd. Hebei Baoding 071000, China
| | - Yahui Liu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuangqing Fu
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Peixun Zhang
- Baoding Jizhong Pharmaceutical Co. Ltd. Hebei Baoding 071000, China
| | - Na Zhang
- Baoding Jizhong Pharmaceutical Co. Ltd. Hebei Baoding 071000, China
| | - Wei Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Honglei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
32
|
Zhang J, Yan X, Park H, Scrutton NS, Chen T, Chen GQ. Nonsterile microbial production of chemicals based on Halomonas spp. Curr Opin Biotechnol 2024; 85:103064. [PMID: 38262074 DOI: 10.1016/j.copbio.2023.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
The use of extremophile organisms such as Halomomas spp. can eliminate the need for fermentation sterilization, significantly reducing process costs. Microbial fermentation is considered a pivotal strategy to reduce reliance on fossil fuel resources; however, sustainable processes continue to incur higher costs than their chemical industry counterparts. Most organisms require equipment sterilization to prevent contamination, a practice that introduces complexity and financial strain. Fermentations involving extremophile organisms can eliminate the sterilization process, relying instead on conditions that are conductive solely to the growth of the desired organism. This review discusses current challenges in pilot- and industrial-scale bioproduction when using the extremophile bacteria Halomomas spp. under nonsterile conditions.
Collapse
Affiliation(s)
- Jing Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China
| | - Xu Yan
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing 100084, China; EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC Synthetic Biology Research Centre, SYNBIOCHEM, Manchester Institute of Biotechnology and Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin 300072, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
33
|
Yoo Y, Young Kwon D, Jeon M, Lee J, Kwon H, Lee D, Seong Khim J, Choi YE, Kim JJ. Enhancing poly(3-hydroxybutyrate) production in halophilic bacteria through improved salt tolerance. BIORESOURCE TECHNOLOGY 2024; 394:130175. [PMID: 38086463 DOI: 10.1016/j.biortech.2023.130175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Polyhydroxyalkanoates (PHA) have emerged as a promising bio-compound in the industrial application due to their potential to replace conventional petroleum-based plastics with sustainable bioplastics. This study focuses on Halomonas sp. YJPS3-3, a halophilic bacterium, and presents a novel approach to enhance PHA production by exploiting its salt tolerance toward PHA biosynthesis. Through gamma irradiation-induced mutants with enhanced salt tolerance from 15% NaCl to 20% NaCl, mutant halo6 showing a significant 11% increase in PHA yield, was achieved. Moreover, the mutants displayed not only higher PHA content but also remarkable cell morphology with elongation. In addition, this research unravels the genetic determinants behind the elevated PHA content and identifies a corresponding shift in fatty acid composition favoring PHA accumulation. This novel mutant obtained from gamma irradiation with enhanced salt tolerance in halophilic bacteria opens up new avenues not only for the bioplastic industry but also for applications in the production of high-value metabolites.
Collapse
Affiliation(s)
- Yeonjae Yoo
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dae Young Kwon
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Minseo Jeon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jaehoon Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Haeun Kwon
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
34
|
Gu J, Qiu Q, Yu Y, Sun X, Tian K, Chang M, Wang Y, Zhang F, Huo H. Bacterial transformation of lignin: key enzymes and high-value products. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:2. [PMID: 38172947 PMCID: PMC10765951 DOI: 10.1186/s13068-023-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
Lignin, a natural organic polymer that is recyclable and inexpensive, serves as one of the most abundant green resources in nature. With the increasing consumption of fossil fuels and the deterioration of the environment, the development and utilization of renewable resources have attracted considerable attention. Therefore, the effective and comprehensive utilization of lignin has become an important global research topic, with the goal of environmental protection and economic development. This review focused on the bacteria and enzymes that can bio-transform lignin, focusing on the main ways that lignin can be utilized to produce high-value chemical products. Bacillus has demonstrated the most prominent effect on lignin degradation, with 89% lignin degradation by Bacillus cereus. Furthermore, several bacterial enzymes were discussed that can act on lignin, with the main enzymes consisting of dye-decolorizing peroxidases and laccase. Finally, low-molecular-weight lignin compounds were converted into value-added products through specific reaction pathways. These bacteria and enzymes may become potential candidates for efficient lignin degradation in the future, providing a method for lignin high-value conversion. In addition, the bacterial metabolic pathways convert lignin-derived aromatics into intermediates through the "biological funnel", achieving the biosynthesis of value-added products. The utilization of this "biological funnel" of aromatic compounds may address the heterogeneous issue of the aromatic products obtained via lignin depolymerization. This may also simplify the separation of downstream target products and provide avenues for the commercial application of lignin conversion into high-value products.
Collapse
Affiliation(s)
- Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yue Yu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Yibing Wang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun, 130117, China.
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, Changchun, 130117, China.
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Changchun, 130117, China.
| |
Collapse
|
35
|
Ma R, Li J, Tyagi RD, Zhang X. Carbon dioxide and methane as carbon source for the production of polyhydroxyalkanoates and concomitant carbon fixation. BIORESOURCE TECHNOLOGY 2024; 391:129977. [PMID: 37925086 DOI: 10.1016/j.biortech.2023.129977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
The currently used plastics are non-biodegradable, and cause greenhouse gases (GHGs) emission as they are petroleum-based. Polyhydroxyalkanoates (PHAs) are biopolymers with excellent biodegradability and biocompatibility, which can be used to replace petroleum-based plastics. A variety of microorganisms have been found to synthesize PHAs by using typical GHGs: carbon dioxide and methane as carbon sources. Converting carbon dioxide (CO2) and methane (CH4) to PHAs is an attractive option for carbon capture and biodegradable plastic production. In this review, the microorganisms capable of using CO2 and CH4 to produce PHAs were summarized. The metabolic mechanism, PHAs production process, and the factors influencing the production process are illustrated. The currently used optimization techniques to improve the yield of PHAs are discussed. The challenges and future prospects for developing economically viable PHAs production using GHGs as carbon source are identified. This work provides an insight for achieving carbon sequestration and bioplastics based circular economy.
Collapse
Affiliation(s)
- Rui Ma
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China
| | - R D Tyagi
- Chief Scientific Officer, BOSK-Bioproducts, Quebec, Canada
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology, Shenzhen, Shenzhen Guangdong 518055, PR China.
| |
Collapse
|
36
|
Xu T, Mitra R, Tan D, Li Z, Zhou C, Chen T, Xie Z, Han J. Utilization of gene manipulation system for advancing the biotechnological potential of halophiles: A review. Biotechnol Adv 2024; 70:108302. [PMID: 38101552 DOI: 10.1016/j.biotechadv.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Halophiles are salt-loving microorganisms known to have their natural resistance against media contamination even when cultivated in nonsterile and continuous bioprocess system, thus acting as promising cell factories for Next Generation of Industrial Biotechnology (NGIB). NGIB - a successor to the traditional industrial biotechnology, is a more sustainable and efficient bioprocess technology while saving energy and water in a more convenient way as well as reducing the investment cost and skilled workforce requirement. Numerous studies have achieved intriguing outcomes during synthesis of different metabolite using halophiles such as polyhydroxyalkanoates (PHA), ectoine, biosurfactants, and carotenoids. Present-day development in genetic maneuverings have shown optimistic effects on the industrial applications of halophiles. However, viable and competent genetic manipulation system and gene editing tools are critical to accelerate the process of halophile engineering. With the aid of such powerful gene manipulation systems, exclusive microbial chassis are being crafted with desirable features to breed another innovative area of research such as synthetic biology. This review provides an aerial perspective on how the expansion of adaptable gene manipulation toolkits in halophiles are contributing towards biotechnological advancement, and also focusses on their subsequent application for production improvement. This current methodical and comprehensive review will definitely help the scientific fraternity to bridge the gap between challenges and opportunities in halophile engineering.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Ruchira Mitra
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; International College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhengjun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Biochemical Engineering, Beijing Union University, Beijing 100023, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing 100191, People's Republic of China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
37
|
Altamira-Algarra B, Rueda E, Lage A, San León D, Martínez-Blanch JF, Nogales J, García J, Gonzalez-Flo E. New strategy for bioplastic and exopolysaccharides production: Enrichment of field microbiomes with cyanobacteria. N Biotechnol 2023; 78:141-149. [PMID: 37852438 DOI: 10.1016/j.nbt.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Seven photosynthethic microbiomes were collected from field environmental samples to test their potential in polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) production, both alternatives to chemical-based polymers. Microscope observations together with microbial sequence analysis revealed the microbiome enrichment in cyanobacteria after culture growth under phosphorus limitation. PHB and EPS production were studied under three culture factors (phototrophy, mixotrophy and heterotrophy) by evaluating and optimizing the effect of three parameters (organic and inorganic carbon and days under light:dark cycles) by Box-Behnken design. Results showed that optimal conditions for both biopolymers synthesis were microbiome-dependent; however, the addition of organic carbon boosted PHB production in all the tested microbiomes, producing up to 14 %dcw PHB with the addition of 1.2 g acetate·L-1 and seven days under light:dark photoperiods. The highest EPS production was 59 mg·L-1 with the addition of 1.2 g acetate·L-1 and four days under light:dark photoperiods. The methodology used is suitable for enriching microbiomes in cyanobacteria, and for testing the best conditions for bioproduct synthesis for further scale up.
Collapse
Affiliation(s)
- Beatriz Altamira-Algarra
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Estel Rueda
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - Artai Lage
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain
| | - David San León
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Juan F Martínez-Blanch
- Department of preventive medicine, public health, food sciences, toxicology and forensic medicine, Universitat de Valencia, Valencia, Spain; Biopolis S.L., ADM, Parc Cientifc Universidad De Valencia, Edif. 2, C/ Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034 Barcelona, Spain
| | - Eva Gonzalez-Flo
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Escola d'Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya-BarcelonaTech, Av. Eduard Maristany 16, Building C5.1, E-08019 Barcelona, Spain.
| |
Collapse
|
38
|
Wang S, Jiang W, Jin X, Qi Q, Liang Q. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering. Crit Rev Biotechnol 2023; 43:1211-1225. [PMID: 36130803 DOI: 10.1080/07388551.2022.2103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
To date, many metabolic engineering tools and strategies have been developed, including tools for cofactor engineering, which is a common strategy for bioproduct synthesis. Cofactor engineering is used for the regulation of pyridine nucleotides, including NADH/NAD+ and NADPH/NADP+, and adenosine triphosphate/adenosine diphosphate (ATP/ADP), which is crucial for maintaining redox and energy balance. However, the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP cannot be monitored in real time using traditional methods. Recently, many biosensors for detecting, monitoring, and regulating the intracellular levels of NADH/NAD+, NADPH/NADP+, and ATP/ADP have been developed. Although cofactor biosensors have been mainly developed for use in mammalian cells, the potential application of cofactor biosensors in metabolic engineering in bacterial and yeast cells has received recent attention. Coupling cofactor biosensors with genetic circuits is a promising strategy in metabolic engineering for optimizing the production of biochemicals. In this review, we focus on the development of biosensors for NADH/NAD+, NADPH/NADP+, and ATP/ADP and the potential application of these biosensors in metabolic engineering. We also provide critical perspectives, identify current research challenges, and provide guidance for future research in this promising field.
Collapse
Affiliation(s)
- Sumeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Jin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
39
|
Li HH, Wu J, Liu JQ, Wu QZ, He RL, Cheng ZH, Lv JL, Lin WQ, Wu J, Liu DF, Li WW. Nonsterilized Fermentation of Crude Glycerol for Polyhydroxybutyrate Production by Metabolically Engineered Vibrio natriegens. ACS Synth Biol 2023; 12:3454-3462. [PMID: 37856147 DOI: 10.1021/acssynbio.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Polyhydroxybutyrate (PHB) is an attractive biodegradable polymer that can be produced through the microbial fermentation of organic wastes or wastewater. However, its mass production has been restricted by the poor utilization of organic wastes due to the presence of inhibitory substances, slow microbial growth, and high energy input required for feedstock sterilization. Here, Vibrio natriegens, a fast-growing bacterium with a broad substrate spectrum and high tolerance to salt and toxic substances, was genetically engineered to enable efficient PHB production from nonsterilized fermentation of organic wastes. The key genes encoding the PHB biosynthesis pathway of V. natriegens were identified through base editing and overexpressed. The metabolically engineered strain showed 166-fold higher PHB content (34.95 wt %) than the wide type when using glycerol as a substrate. Enhanced PHB production was also achieved when other sugars were used as feedstock. Importantly, it outperformed the engineered Escherichia coli MG1655 in PHB productivity (0.053 g/L/h) and tolerance to toxic substances in crude glycerol, without obvious activity decline under nonsterilized fermentation conditions. Our work demonstrates the great potential of engineered V. natriegens for low-cost PHB bioproduction and lays a foundation for exploiting this strain as a next-generation model chassis microorganism in synthetic biology.
Collapse
Affiliation(s)
- Hui-Hui Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jie Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Jia-Qi Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Qi-Zhong Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Ru Li He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Zhou-Hua Cheng
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jun-Lu Lv
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Wei-Qiang Lin
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jing Wu
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230088, China
| | - Wen-Wei Li
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
40
|
Zhang FL, Zhang L, Zeng DW, Liao S, Fan Y, Champreda V, Runguphan W, Zhao XQ. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects. Biotechnol Adv 2023; 68:108222. [PMID: 37516259 DOI: 10.1016/j.biotechadv.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Traditional plastic products have caused serious environmental pollution due to difficulty to be degraded in the natural environment. In the recent years, biodegradable plastics are receiving increasing attention due to advantages in natural degradability and environmental friendliness. Biodegradable plastics have potential to be used in food, agriculture, industry, medicine and other fields. However, the high production cost of such plastics is the bottleneck that limits their commercialization and application. Yeasts, including budding yeast and non-conventional yeasts, are widely studied to produce biodegradable plastics and their organic acid monomers. Compared to bacteria, yeast strains are more tolerable to multiple stress conditions including low pH and high temperature, and also have other advantages such as generally regarded as safe, and no phage infection. In addition, synthetic biology and metabolic engineering of yeast have enabled its rapid and efficient engineering for bioproduction using various renewable feedstocks, especially lignocellulosic biomass. This review focuses on the recent progress in biosynthesis technology and strategies of monomeric organic acids for biodegradable polymers, including polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), and polybutylene adipate terephthalate (PBAT) using yeast cell factories. Improving the performance of yeast as a cell factory and strategies to improve yeast acid stress tolerance are also discussed. In addition, the critical challenges and future prospects for the production of biodegradable plastic monomer using yeast are also discussed.
Collapse
Affiliation(s)
- Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Yachao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Yin J, Yang J, Yu X, Chen T, He S. Enhanced poly(3-hydroxybutyrateco-3-hydroxyvalerate) production from high-concentration propionate by a novel halophile Halomonas sp. YJ01: Detoxification of the 2-methylcitrate cycle. BIORESOURCE TECHNOLOGY 2023; 388:129738. [PMID: 37714496 DOI: 10.1016/j.biortech.2023.129738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
As a carbon substrate, propionate can be used to synthesize poly(3-hydroxybutyrateco-3-hydroxyvalerate) [PHBV] biopolymer, but high concentrations can inhibit PHBV production. Therefore, novel PHBV producers that can utilize high propionate concentrations are needed. Here, a novel halophile, Halomonas sp. YJ01 was applied to PHBV production via a propionate-dependent pathway, and optimal culture growth conditions were determined. The maximum poly(3-hydroxybutyrate) [PHB] content and yield in the presence of glucose were 89.5 wt% and 5.7 g/L, respectively. This strain utilizes propionate and volatile fatty acids (VFAs) for PHBV accumulation. Multiple genes related to polyhydroxyalkanoate (PHA) synthesis were identified using whole-genome annotation. The PHBV yield and 3HV fraction obtained by strain YJ01 utilizing 15 g/L propionate were 0.86 g/L and 29 mol%, respectively, but in cultures with glucose-propionate, it decreased its copolymer dry weight. This indicates that propionyl-CoA was converted to pyruvate through the 2-methylcitrate cycle (2MCC), which reduced propionate detoxification for the strain.
Collapse
Affiliation(s)
- Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jincan Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Xiaoqin Yu
- Zhejiang Best Energy and Environment Co., Ltd, Hangzhou 310000, China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shanying He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
42
|
Murueva AV, Shershneva AM, Shishatskaya EI, Volova TG. Characteristics of Microparticles Based on Resorbable Polyhydroxyalkanoates Loaded with Antibacterial and Cytostatic Drugs. Int J Mol Sci 2023; 24:14983. [PMID: 37834429 PMCID: PMC10573759 DOI: 10.3390/ijms241914983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The development of controlled drug delivery systems, in the form of microparticles, is an important area of experimental pharmacology. The success of the design and the quality of the obtained microparticles are determined by the method of manufacture and the properties of the material used as a carrier. The goal is to obtain and characterize microparticles depending on their method of preparation, the chemical composition of the polymer and the load of the drugs. To obtain microparticles, four types of degradable PHAs, differing in their chemical compositions, degrees of crystallinity, molecular weights and temperature characteristics, were used (poly-3-hydroxybutyrate and copolymers 3-hydroxybutyric-co-3-hydroxyvaleric acid, 3-hydroxybutyric-co-4-hydroxybutyric acid, and 3-hydroxybutyric-co-3-hydroxyhexanoic acid). The characteristics of microparticles from PHAs were studied. Good-quality particles with an average particle diameter from 0.8 to 65.0 μm, having satisfactory ζ potential values (from -18 to -50 mV), were obtained. The drug loading content, encapsulation efficiency and in vitro release were characterized. Composite microparticles based on PHAs with additives of polyethylene glycol and polylactide-co-glycolide, and loaded with ceftriaxone and 5-fluorouracil, showed antibacterial and antitumor effects in E. coli and HeLa cultures. The results indicate the high potential of PHAs for the design of modern and efficient drug delivery systems.
Collapse
Affiliation(s)
- Anastasiya V. Murueva
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Anna M. Shershneva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
- Chemistry Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint Petersburg, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS” (IBP SB RAS), 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia; (A.V.M.); (E.I.S.)
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodny Pr., 660041 Krasnoyarsk, Russia;
| |
Collapse
|
43
|
Zhila NO, Kiselev EG, Volkov VV, Mezenova OY, Sapozhnikova KY, Shishatskaya EI, Volova TG. Properties of Degradable Polyhydroxyalkanoates Synthesized from New Waste Fish Oils (WFOs). Int J Mol Sci 2023; 24:14919. [PMID: 37834364 PMCID: PMC10573456 DOI: 10.3390/ijms241914919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
The synthesis of PHA was first investigated using WFOs obtained from smoked-sprat heads, substandard fresh sprats, and fresh mackerel heads and backbones. All the WFOs ensured the growth of the wild-type strain Cupriavidus necator B-10646 and the synthesis of PHA, regardless of the degree of lipid saturation (from 0.52 to 0.65) and the set and ratio of fatty acids (FA), which was represented by acids with chain lengths from C14 to C24. The bacterial biomass concentration and PHA synthesis were comparable (4.1-4.6 g/L and about 70%) when using WFO obtained from smoked-sprat heads and fresh mackerel, and it was twice as high as the bacterial biomass concentration from the fresh sprat waste. This depended on the type of WFO, the bacteria synthesized P(3HB) homopolymer or P(3HB-co-3HV-co-3HHx) copolymer, which had a lower degree of crystallinity (Cx 71%) and a lower molecular weight (Mn 134 kDa) compared to the P(3HB) (Mn 175-209 kDa and Cx 74-78%) at comparable temperatures (Tmelt and Tdegr of 158-168 °C and 261-284 °C, respectively). The new types of WFO, studied for the first time, are suitable as a carbon substrates for PHA synthesis. The WFOs obtained in the production of canned Baltic sprat and Baltic mackerel can be considered a promising and renewable substrate for PHA biosynthesis.
Collapse
Affiliation(s)
- Natalia O. Zhila
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Evgeniy G. Kiselev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Vladimir V. Volkov
- Centre for Advanced Protein Use Technologies, Kaliningrad State Technical University, Sovetsky Avenue, 1, Kaliningrad 236022, Russia; (V.V.V.); (O.Y.M.)
| | - Olga Ya. Mezenova
- Centre for Advanced Protein Use Technologies, Kaliningrad State Technical University, Sovetsky Avenue, 1, Kaliningrad 236022, Russia; (V.V.V.); (O.Y.M.)
| | - Kristina Yu. Sapozhnikova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk 660036, Russia; (E.G.K.); (K.Y.S.); (E.I.S.); (T.G.V.)
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., Krasnoyarsk 660041, Russia
| |
Collapse
|
44
|
Grzesiak J, Gawor J, Rogala MM, Kouřilová X, Obruča S. Genetic engineering of low-temperature polyhydroxyalkanoate production by Acidovorax sp. A1169, a psychrophile isolated from a subglacial outflow. Extremophiles 2023; 27:25. [PMID: 37709928 PMCID: PMC10501959 DOI: 10.1007/s00792-023-01311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyalkanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concerning PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a temperature of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, production of PHA and also on the methodology for genetic engineering of psychrophiles.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Małgorzata Marta Rogala
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Xenie Kouřilová
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Stanislav Obruča
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
45
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
46
|
Goswami L, Kushwaha A, Napathorn SC, Kim BS. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives. Int J Biol Macromol 2023; 247:125743. [PMID: 37423435 DOI: 10.1016/j.ijbiomac.2023.125743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbial polyhydroxyalkanoates (PHA) are encouraging biodegradable polymers, which may ease the environmental problems caused by petroleum-derived plastics. However, there is a growing waste removal problem and the high price of pure feedstocks for PHA biosynthesis. This has directed to the forthcoming requirement to upgrade waste streams from various industries as feedstocks for PHA production. This review covers the state-of-the-art progress in utilizing low-cost carbon substrates, effective upstream and downstream processes, and waste stream recycling to sustain entire process circularity. This review also enlightens the use of various batch, fed-batch, continuous, and semi-continuous bioreactor systems with flexible results to enhance the productivity and simultaneously cost reduction. The life-cycle and techno-economic analyses, advanced tools and strategies for microbial PHA biosynthesis, and numerous factors affecting PHA commercialization were also covered. The review includes the ongoing and upcoming strategies viz. metabolic engineering, synthetic biology, morphology engineering, and automation to expand PHA diversity, diminish production costs, and improve PHA production with an objective of "zero-waste" and "circular bioeconomy" for a sustainable future.
Collapse
Affiliation(s)
- Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | | | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
47
|
Olivito F, Jagdale P, Oza G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF). TOXICS 2023; 11:698. [PMID: 37624203 PMCID: PMC10457969 DOI: 10.3390/toxics11080698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
In this paper we produced a bio-based polyether-polyurethane foam PU1 through the prepolymer method. The prepolymer was obtained by the reaction of PEG 400 with L-Lysine ethyl ester diisocyanate (L-LDI). The freshly prepared prepolymer was extended with 2,5-bis(hydroxymethyl)furan (BHMF) to produce the final polyurethane. The renewable chemical BHMF was produced through the chemical reduction of HMF by sodium borohydride. HMF was produced by a previously reported procedure from fructose using choline chloride and ytterbium triflate. To evaluate the degradation rate of the foam PU1, we tested the chemical stability by soaking it in a 10% sodium hydroxide solution. The weight loss was only 12% after 30 days. After that, we proved that enzymatic hydrolysis after 30 days using cholesterol esterase was more favoured than hydrolysis with NaOH, with a weight loss of 24%, probably due to the hydrophobic character of the PU1 and a better adhesion of the enzyme on the surface with respect to water. BHMF was proved to be of crucial importance for the enzymatic degradation assay at 37 °C in phosphate buffer solution, because it represents the breaking point inside the polyurethane chain. Soil burial degradation test was monitored for three months to evaluate whether the joint activity of sunlight, climate changes and microorganisms, including bacteria and fungi, could further increase the biodegradation. The unexpected weight loss after soil burial degradation test was 45% after three months. This paper highlights the potential of using sustainable resources to produce new biodegradable materials.
Collapse
Affiliation(s)
- Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Cosenza, Italy
| | - Pravin Jagdale
- Circular Carbon GmbH, Europaring 4, 94315 Straubing, Germany;
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Mexico;
| |
Collapse
|
48
|
Volova TG, Uspenskaya MV, Kiselev EG, Sukovatyi AG, Zhila NO, Vasiliev AD, Shishatskaya EI. Effect of Monomers of 3-Hydroxyhexanoate on Properties of Copolymers Poly(3-Hydroxybutyrate- co 3-Hydroxyhexanoate). Polymers (Basel) 2023; 15:2890. [PMID: 37447536 DOI: 10.3390/polym15132890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain Cupriavidus necator B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain C. necator NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.3) compared to P(3HB) (70-76%, 720 kDa, and 2.2). The industrial sample had differences in its thermal behavior, including a lower glass transition temperature (-2.4 °C), two peaks in its crystallization and melting regions, a lower melting point (Tmelt) (112/141 °C), and a more pronounced gap between Tmelt and the temperature of thermal degradation (Tdegr). The process, shape, and size of the spherulites formed during the isothermal crystallization of P(3HB) and P(3HB-co-3HHx) were generally similar, but differed in the maximum growth rate of the spherulites during exothermic crystallization, which was 3.5-3.7 μm/min for P(3HB), and 0.06-1.25 for the P(3HB-co-3HHx) samples. The results from studying the thermal properties and the crystallization mechanism of P(3HB-co-3HHx) copolymers are important for improving the technologies for processing polymer products from melts.
Collapse
Affiliation(s)
- Tatiana G Volova
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Mayya V Uspenskaya
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| | - Evgeniy G Kiselev
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksey G Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Natalia O Zhila
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
| | - Aleksander D Vasiliev
- V. Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, 660036 Krasnoyarsk, Russia
- Basic Department of Solid State Physics and Nanotechnology, School of Engineering Physics and Radio Electronics, Siberian Federal University, Kirensky St. 26, 660074 Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, 660036 Krasnoyarsk, Russia
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia
- Chemical Engineering Center, Research Institute «Bioengineering» ITMO University, Kronverksky Pr. 49, 197101 Saint Petersburg, Russia
| |
Collapse
|
49
|
Satoh T. New prebiotics by ketone donation. Trends Endocrinol Metab 2023:S1043-2760(23)00091-7. [PMID: 37271711 DOI: 10.1016/j.tem.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Integrity of the microbiome is an essential element for human gut health. 3-Hydroxybutyrate (3HB) secreted into the gut lumen has gained attention as a regulator of gut physiology, including stem cell expansion. In this opinion, I propose new prebiotics leading to gut health by use of a ketone (3HB) donor. When exogenous 3HB is supplied through ketone donation, it has the potential to markedly improve gut health by altering the gut microbiome and systemic metabolic status. Poly-hydroxybutyrate (PHB) donates 3HB and primarily influences microbiota, making it an effective prebiotic for improving the gut environment. Thus, exogenous 3HB donation to the lumen of the gut may aid gut health by maintaining the integrity of microbiome.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Antiaging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan.
| |
Collapse
|
50
|
Ignatova L, Brazhnikova Y, Omirbekova A, Usmanova A. Polyhydroxyalkanoates (PHAs) from Endophytic Bacterial Strains as Potential Biocontrol Agents against Postharvest Diseases of Apples. Polymers (Basel) 2023; 15:polym15092184. [PMID: 37177330 PMCID: PMC10180590 DOI: 10.3390/polym15092184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Due to the increasing use and accumulation of petrochemical plastics in the environment and the rapid depletion of natural resources, microbial polyhydroxyalkanoates have great potential to replace them. This study provides new insights in the field of obtaining of polyhydroxyalkanoates (PHAs) from endophytic bacterial strains and applying them as potential biocontrol agents against postharvest diseases of apples. Two strains-Pseudomonas flavescens D5 and Bacillus aerophilus A2-accumulated PHAs in amounts ranging from 2.77 to 5.9 g L-1. The potential to use low-cost substrates such as beet molasses and soapstock for PHA accumulation was shown. The PHAs produced by the Ps. flavescens D5 strain had pronounced antagonistic activity against Penicillium expansum (antifungal property = 62.98-73.08%). The use of PHAs as biocontrol agents significantly reduced the severity of apple blue mold, especially in the preventive treatment option.
Collapse
Affiliation(s)
- Lyudmila Ignatova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Yelena Brazhnikova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Anel Omirbekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| | - Aizhamal Usmanova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050038, Kazakhstan
| |
Collapse
|