1
|
Padilla JJE, de Souza BHS, de Souza Carneiro F, Keller E. Neem-Extract Formulation on Hypothenemus hampei Preference and Performance in Arabica Coffee Fruits and Artificial Diet. NEOTROPICAL ENTOMOLOGY 2024; 53:1149-1157. [PMID: 39141219 DOI: 10.1007/s13744-024-01186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024]
Abstract
Coffee berry borer (CBB) Hypothenemus hampei is a major biotic threat to coffee production worldwide. Studies have reported negative effects on CBB by oil-based formulations of neem (Azadirachta indica), but little information is available for other neem-extract formulations. This study evaluated CBB preference and performance in arabica coffee fruits and artificial diet treated with a neem-extract formulation (Openeem Plus®) in the field and laboratory conditions. Field experiments were performed using CBB females artificially infested in cherry or green coffee fruits confined in voile-fabric cages tied to branches of neem-treated and control plants, recording the adult mortality and offspring production. Dual-choice and no-choice bioassays assessed CBB preference and development in fruits and artificial diet treated with the neem extract compared to controls in the laboratory, respectively. As main results obtained in the field and laboratory experiments, the neem extract significantly reduced CBB oviposition in both cherry and green fruits, as well as in artificial diet compared to controls. However, the botanical product did not affect CBB adult survival and preference in the laboratory bioassays. The neem extract is promising for use in pest management strategies in sustainable arabica coffee crops by reducing CBB oviposition and offspring. These effects can contribute to lowering the pest population buildup along the crop cycle and damage potential to coffee production.
Collapse
|
2
|
Aguirre PAU, Martins KM, López CDD, Sánchez FO, Castaño AT, Velásquez CMR, Vidal AP. Effect of nanoformulation Azadirachta indica on some factors associated with the vectorial capacity and competence of Anopheles aquasalis experimentally infected with Plasmodium vivax. Acta Trop 2024; 255:107223. [PMID: 38642694 DOI: 10.1016/j.actatropica.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Malaria remains a highly prevalent infectious disease worldwide, particularly in tropical and subtropical regions. Effectively controlling of mosquitoes transmitting of Plasmodium spp. is crucial in to control this disease. A promising strategy involves utilizing plant-derived products, such as the Neem tree (Azadirachta indica), known for its secondary metabolites with biological activity against various insect groups of agricultural and public health importance. This study investigated the effects of a nanoformulation prototype Neem on factors linked to the vector competence of Anopheles aquasalis, a malaria vector in Latin America. Different concentrations of the nanoformulation were supplied through sugar solution and blood feeding, assessing impacts on longevity, fecundity, fertility, and transgenerational survival from larvae to adults. Additionally, the effects of the Neem nanoformulation and NeemAZAL® formulation on the sporogonic cycle of P. vivax were evaluated. Overall, significant impacts were observed at 100 ppm and 1,000 ppm concentrations on adult survival patterns and on survival of the F1 generation. A trend of reduced oviposition and hatching rates was also noted in nanoformulation-consuming groups, with fertility and fecundity declining proportionally to the concentration. Additionally, a significant decrease in the infection rate and intensity of P. vivax was observed in the 1,000 ppm group, with a mean of 3 oocysts per female compared to the control's 27 oocysts per female. In the commercial formulation, the highest tested concentration of 3 ppm yielded 5.36 oocysts per female. Concerning sporozoite numbers, there was a reduction of 52 % and 87 % at the highest concentrations compared to the control group. In conclusion, these findings suggest that the A. indica nanoformulation is a potential as a tool for malaria control through reduction in the vector longevity and reproductive capacity, possibly leading to decreased vector population densities. Moreover, the nanoformulation interfered with the sporogonic development of P. vivax. However, further basic research on Neem formulations, their effects, and mechanisms of action is imperative to gain a more specific perspective for safe field implementation.
Collapse
Affiliation(s)
| | - Keillen Monick Martins
- Laboratório de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, FIOCRUZ Amazônia, Brazil
| | | | | | | | | | - Adriana Pabón Vidal
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Rahman MM, Morshed MN, Adnan SM, Howlader MTH. Assessment of biorational larvicides and botanical oils against Culex quinquefasciatus Say (Diptera: Culicidae) larvae in laboratory conditions. Heliyon 2024; 10:e31453. [PMID: 38832263 PMCID: PMC11145214 DOI: 10.1016/j.heliyon.2024.e31453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Mosquitoes are known vectors that transmit deadly diseases to millions of people across the globe. The reliance on synthetic insecticides has been the sole way to combat mosquito vectors for decades. In recent years, the extensive use of conventional insecticides in mosquito suppression has led to significant pesticide resistance and serious human health hazards. In this light, investigating the potential application of biorational compounds for vector management has drawn significant attention. We, hereby, evaluated the efficacy of three microbial derivative biorational insecticides, abamectin, spinosad, and buprofezin, and two botanical oils, neem (Azadirachta indica A. Juss) and karanja oil (Pongamia pinnata Linn.) against the Culex quinquefasciatus under laboratory conditions. The fourth-instar C. quinquefasciatus larvae were exposed to different concentrations of the selected larvicides and lethality was estimated based on LC50 and LT50 with Probit analysis. All larvicides showed concentration-dependent significant effects on survival and demonstrated larvicidal activity against C. quinquefasciatus larvae. However, abamectin exerted the highest toxicity (LC50 = 10.36 ppm), exhibited statistically significant effects on C. quinquefasciatus larval mortality, followed by spinosad (LC50 = 21.32 ppm) and buprofezin (LC50 = 56.34 ppm). Abamectin caused larval mortality ranged from 30.00 to 53.33 % and 53.00-70.00 % at 06 and 07 h after treatment (HAT), respectively. In the case of botanicals, karanja oil (LC50 = 216.61 ppm) was more lethal (more than 1.5 times) and had a shorter lethal time than neem oil (LC50 = 330.93 ppm) and showed a classic pattern of relationship between concentrations and mortality over time. Overall, the present study highlighted the potential of deploying new generation biorational pesticides and botanicals in mosquito vector control programs.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Lecturer, Department of Entomology, EXIM Bank Agricultural University Bangladesh, Nawabganj-6300, Bangladesh
| | - Md Niaz Morshed
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Scientific Officer, Adaptive Research Division, Bangladesh Rice Research Institute (BRRI), Gazipur-1701, Bangladesh
| | - Saleh Mohammad Adnan
- Insect Biotechnology and Biopesticide Laboratory, Department of Entomology, Bangladesh Agricultural University, Bangladesh
- Research Entomologist, New South Wales Department of Primary Industries, Australia
| | | |
Collapse
|
4
|
Wang H, Yang X, Liu J, Xu J, Zhang R, Zheng J, Shen B, Sun Y, Zhou D. Adverse effects of knocking down chitin synthase A on female reproduction in Culex pipiens pallens (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2023; 79:4463-4473. [PMID: 37409377 DOI: 10.1002/ps.7648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Current mosquito-borne disease vector control strategies, largely based on chemical insecticides, are seriously threatened by increasing resistance worldwide. There is also growing concerned about the adverse effects of insecticides on nontarget organisms and the environment, therefore effective and ecologically friendly alternative approaches are urgently needed. Targeting critical steps of reproduction is considered a potential way to control mosquito populations. Herein, we focused on the roles of chitin synthase A (encoded by chsa) in the reproduction of female mosquitoes. RESULTS The injection of small interfering RNA targeting Cpchsa in female Culex pipiens pallens (Diptera: Culicidae) had antireproductive effects, including decreased follicle numbers, egg-laying, and hatching rate. Scanning electron microscopy observations showed that Cpchsa silencing caused a defective egg envelope, including absence of the vitelline membrane and cracked chorion layers, which resulted in abnormal permeability. Widely distributed nurse cell apoptosis and follicular epithelial cell autophagy were observed in Cpchsa-silenced ovaries during the vitellogenesis phase. Consistent with the detective egg envelope formation during oogenesis, the exochorionic eggshell structures were also affected in eggs deposited by Cpchsa-silenced mosquitoes. CONCLUSION This study provided fundamental evidence for the role of chitin synthase A in the female reproductive process of mosquitoes and might result in a novel alternative strategy for mosquito control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jin Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ruimin Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Junnan Zheng
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Chatterjee S, Bag S, Biswal D, Sarkar Paria D, Bandyopadhyay R, Sarkar B, Mandal A, Dangar TK. Neem-based products as potential eco-friendly mosquito control agents over conventional eco-toxic chemical pesticides-A review. Acta Trop 2023; 240:106858. [PMID: 36750152 DOI: 10.1016/j.actatropica.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Mosquitoes cause serious health hazards for millions of people across the globe by acting as vectors of deadly communicable diseases like malaria, filariasis, dengue and yellow fever. Use of conventional chemical insecticides to control mosquito vectors has led to the development of biological resistance in them along with adverse environmental consequences. In this light, the recent years have witnessed enormous efforts of researchers to develop eco-friendly and cost-effective alternatives with special emphasis on plant-derived mosquitocidal compounds. Neem oil, derived from neem seeds (Azadirachta indica A. Juss, Meliaceae), has been proved to be an excellent candidate against a wide range of vectors of medical and veterinary importance including mosquitoes. It is environment-friendly, and target-specific at the same time. The active ingredients of neem oil include limonoids like azadirachtin A, nimbin, salannin and numerous other substances that are still waiting to be discovered. Of these, azadirachtin has been shown to be very effective and is mainly responsible for its toxic effects. The quality of the neem oil depends on its azadirachtin content which, in turn, depends on its manufacturing process. Neem oil can be used directly or as nanoemulsions or nanoparticles or even in the form of effervescent tablets. When added to natural breeding habitat waters they exert their mosquitocidal effects by acting as ovicides, larvicides, pupicides and/or oviposition repellents. The effects are generated by impairing the physiological pathways of the immature stages of mosquitoes or directly by causing physical deformities that impede their development. Neem oil when used directly has certain disadvantages mainly related to its disintegration under atmospheric conditions rendering it ineffective. However, many of its formulations have been reported to remain stable under environmental conditions retaining its efficiency for a long time. Similarly, neem seed cake has also been found to be effective against the mosquito vectors. The greatest advantage is that the target species do not develop resistance against neem-based products mainly because of the innumerable number of chemicals present in neem and their combinations. This makes neem-based products highly potential yet unexplored candidates of mosquito control agents. The current review helps to elucidate the roles of neem oil and its various derivatives on mosquito vectors of public health concern.
Collapse
Affiliation(s)
- Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India.
| | - Souvik Bag
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Debraj Biswal
- Department of Zoology, Government General Degree College at Mangalkote, Burdwan 713132, West Bengal, India
| | | | | | - Basanta Sarkar
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Abhijit Mandal
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Tushar Kanti Dangar
- Microbiology Laboratory, Division of Crop Production, National Rice Research Institute, Cuttack 753006, Odisha, India
| |
Collapse
|
6
|
Mossa ATH, Mohamed RI, Mohafrash SM. Development of a ‘green’ nanoformulation of neem oil-based nanoemulsion for controlling mosquitoes in the sustainable ecosystem. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Sun R, Xu Y, Liu J, Yang L, Cui G, Zhong G, Yi X. Proteomic profiling for ovarian development and azadirachtin exposure in Spodoptera litura during metamorphosis from pupae to adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113548. [PMID: 35487172 DOI: 10.1016/j.ecoenv.2022.113548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Azadirachtin is one of the most successful botanical pesticides in agricultural pest control. To build a repertoire of proteins and pathways in response to azadirachtin exposure during ovarian development, iTRAQ-based comparative proteomic was conducted. 1423 and 1686 proteins were identified as differentially accumulated proteins (DAPs) by comparing the protein abundance in adult ovary with that in pupal ovary under normal and azadirachtin exposure condition, respectively. Bioinformatics analysis indicated that pupae-to-adult transition requires proteins related to proteasome and branched chain amino acids (BCAAs) degradation for ovary development. Azadirachtin exposure strongly affected glycosylation-related pathway. And proteins related to vitamin B6 synthesis were necessary for ovary development under normal and AZA-exposure condition. RNAi assays confirmed the essential roles of DAPs related to glycosylation and vitamin B6 synthesis in moth growth and ovary development. The results enhance our understanding of the molecular regulatory network for ovary development and provide valuable resources for using AZA-responsive proteins to develop novel bio-rational insecticides.
Collapse
Affiliation(s)
- Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Yuanhao Xu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Jin Liu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Liying Yang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Men TT, Phien HH, Tu Ai TT, Van Ay N, Kim Hue NT, Khang DT, Binh TD. The insecticidal capacity of ethanol extract from Cascabela peruviana (L.) Lippold against fruit fly. Heliyon 2022; 8:e09313. [PMID: 35497027 PMCID: PMC9039844 DOI: 10.1016/j.heliyon.2022.e09313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Cascabela peruviana (L.) Lippold (C. peruviana) has been extensively used for its antifungal and antibacterial properties. However, its role in anti-insect is still under investigation. To investigate the ability of the ethanol extract of C. peruviana against insects, we used the fruit fly (Drosophila melanogaster) as a model to gain more insight into the toxic effects of this extract. We found that the ethanol extract from the stem and leaves of C. peruviana was effective against insects and contained polyphenol and flavonoid compounds. C. peruviana could induce mortality of 2nd-instar larvae and reduce growth and reproduction of fruit flies. Interestingly, the toxicity of C. peruviana extract has been remained to affect the development of the next generation of fruit flies. The locomotor activity and feeding ability of the F1 generation of this insect were significantly reduced by C. peruviana. In addition, flavonoids and polyphenols, as well as saponins and tannins were detected in the ethanol extract of C. peruviana. We assume that the ability of the extract of C. peruviana to control insects may be related to the presence of high levels of these compounds. The findings highlighted that the extract from the leaves of Cascabela peruviana has the potential to be used as an insecticide.
Collapse
Affiliation(s)
- Tran Thanh Men
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Huynh Hong Phien
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Tran Thi Tu Ai
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Nguyen Van Ay
- Department of Plant Physiology and Biochemistry, College of Agriculture, Can Tho University, Cantho City, 94000, Viet Nam
| | - Nguyen Thi Kim Hue
- Department of Biology, College of Natural Sciences, Can Tho University, Cantho City 900000, Viet Nam
| | - Do Tan Khang
- Department of Molecular Biotechnology, Biotechnology Research and Development Institute, Can Tho University, Cantho City, 94000, Viet Nam
| | - Tran Duy Binh
- Department of Functional Chemistry, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- Corresponding author.
| |
Collapse
|
9
|
Happi GM, Nangmo PK, Dzouemo LC, Kache SF, Kouam ADK, Wansi JD. Contribution of Meliaceous plants in furnishing lead compounds for antiplasmodial and insecticidal drug development. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114906. [PMID: 34910951 DOI: 10.1016/j.jep.2021.114906] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria remains one of the greatest threats to human life especially in the tropical and sub-tropical regions where it claims hundreds of thousands of lives of young children every year. Meliaceae represent a large family of trees and shrubs, which are widely used in African traditional medicine for the treatment of several ailments including fever due to malaria. The in vitro and in vivo antiplasmodial as well as insecticidal investigations of their extracts or isolated compounds have led to promising results but to the best of our knowledge, no specific review on the traditional uses, phytochemistry of the antiplasmodial, insecticidal and cytotoxic lead compounds and extracts of Meliaceae plants has been compiled. AIMS To review the literature up to 2021 on the Meliaceae family with antiplasmodial, insecticidal and cytotoxic activity. MATERIALS AND METHODS A number of online libraries including PubMed, Scifinder, Google Scholar and Web of Science were used in searching for information on antiplasmodial metabolites from Meliaceous plants. The keywords Meliaceae, malaria, Plasmodium, Anopheles and antiplasmodial were used to monitor and refine our search without language restriction. RESULTS The phytochemical investigations of genera of the family Meliaceae led to the isolation and characterization of a wide range of structural diversity of compounds, 124 of which have been evaluated for their antiplasmodial potency against 11 chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. A total of 45 compounds were reported with promising insecticidal potentials against two efficient vector species, Anopheles stephensi Liston and A. gambiae Giles. Limonoids were the most abundant (51.6%) reported compounds and they exhibited the most promising antiplasmodial activity such as gedunin (3) which demonstrated an activity equal to quinine or azadirachtin (1) displaying promising larvicidal, pupicidal and adulticidal effects on different larval instars of A. stephensi with almost 100% larval mortality at 1 ppm concentration. CONCLUSION Studies performed so far on Meliaceae plants have reported compounds with significant antiplasmodial and insecticidal activity, lending support to the use of species of this family in folk medicine, for the treatment of malaria. Moreover, results qualified several of these species as important sources of compounds for the development of eco-friendly pesticides to control mosquito vectors. However, more in vitro, in vivo and full ADMET studies are still required to provide additional data that could guide in developing novel drugs and insecticides.
Collapse
Affiliation(s)
- Gervais Mouthé Happi
- Department of Chemistry, Higher Teacher Training College, The University of Bamenda, P.O Box 39, Bambili, Cameroon
| | - Pamela Kemda Nangmo
- Institute of Medical Research and Medicinal Plants Studies, P.O. Box 13033, Yaounde, Cameroon
| | - Liliane Clotide Dzouemo
- Department of Chemistry, Faculty of Sciences, University of Douala, P. O. Box 24157, Douala, Cameroon
| | - Sorelle Fotsing Kache
- Department of Chemistry, Faculty of Sciences, University of Yaounde I, P. O. Box 812, Yaounde, Cameroon
| | | | - Jean Duplex Wansi
- Department of Chemistry, Faculty of Sciences, University of Douala, P. O. Box 24157, Douala, Cameroon.
| |
Collapse
|
10
|
Şengül Demirak MŞ, Canpolat E. Plant-Based Bioinsecticides for Mosquito Control: Impact on Insecticide Resistance and Disease Transmission. INSECTS 2022; 13:162. [PMID: 35206735 PMCID: PMC8878986 DOI: 10.3390/insects13020162] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
The use of synthetic insecticides has been a solution to reduce mosquito-borne disease transmission for decades. Currently, no single intervention is sufficient to reduce the global disease burden caused by mosquitoes. Problems associated with extensive usage of synthetic compounds have increased substantially which makes mosquito-borne disease elimination and prevention more difficult over the years. Thus, it is crucial that much safer and effective mosquito control strategies are developed. Natural compounds from plants have been efficiently used to fight insect pests for a long time. Plant-based bioinsecticides are now considered a much safer and less toxic alternative to synthetic compounds. Here, we discuss candidate plant-based compounds that show larvicidal, adulticidal, and repellent properties. Our discussion also includes their mode of action and potential impact in mosquito disease transmission and circumvention of resistance. This review improves our knowledge on plant-based bioinsecticides and the potential for the development of state-of-the-art mosquito control strategies.
Collapse
Affiliation(s)
- Meryem Ş. Şengül Demirak
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpaşa University, Tokat 60150, Turkey;
| | | |
Collapse
|
11
|
Lin M, Yang S, Huang J, Zhou L. Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules and Activities: Part Ⅰ ( Aphanamixis- Chukrasia). Int J Mol Sci 2021; 22:ijms222413262. [PMID: 34948062 PMCID: PMC8704831 DOI: 10.3390/ijms222413262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Plant-originated triterpenes are important insecticidal molecules. The research on insecticidal activity of molecules from Meliaceae plants has always received attention due to the molecules from this family showing a variety of insecticidal activities with diverse mechanisms of action. In this paper, we discuss 102 triterpenoid molecules with insecticidal activity of plants of eight genera (Aglaia, Aphanamixis, Azadirachta, Cabralea, Carapa, Cedrela, Chisocheton, and Chukrasia) in Meliaceae. In total, 19 insecticidal plant species are presented. Among these species, Azadirachta indica A. Juss is the most well-known insecticidal plant and azadirachtin is the active molecule most widely recognized and highly effective botanical insecticide. However, it is noteworthy that six species from Cedrela were reported to show insecticidal activity and deserve future study. In this paper, a total of 102 insecticidal molecules are summarized, including 96 nortriterpenes, 4 tetracyclic triterpenes, and 2 pentacyclic triterpenes. Results showed antifeedant activity, growth inhibition activity, poisonous activity, or other activities. Among them, 43 molecules from 15 plant species showed antifeedant activity against 16 insect species, 49 molecules from 14 plant species exhibited poisonous activity on 10 insect species, and 19 molecules from 11 plant species possessed growth regulatory activity on 12 insect species. Among these molecules, azadirachtins were found to be the most successful botanical insecticides. Still, other molecules possessed more than one type of obvious activity, including 7-deacetylgedunin, salannin, gedunin, azadirone, salannol, azadiradione, and methyl angolensate. Most of these molecules are only in the primary stage of study activity; their mechanism of action and structure–activity relationship warrant further study.
Collapse
Affiliation(s)
- Meihong Lin
- Key Laboratory of Natural Pesticides and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;
| | - Sifan Yang
- Organic Agriculture, Wageningen University and Research, 6708 PB Wageningen, Gelderland, The Netherlands;
| | - Jiguang Huang
- Key Laboratory of Natural Pesticides and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (J.H.); (L.Z.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (J.H.); (L.Z.)
| |
Collapse
|
12
|
Qin D, Zhou Y, Zhang P, Liu B, Zheng Q, Zhang Z. Azadirachtin downregulates the expression of the CREB gene and protein in the brain and directly or indirectly affects the cognitive behavior of the Spodoptera litura fourth-instar larvae. PEST MANAGEMENT SCIENCE 2021; 77:1873-1885. [PMID: 33284470 DOI: 10.1002/ps.6212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/21/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Azadirachtin has the potential to be used for pest control. Nevertheless, few studies have investigated the effects of azadirachtin on the cognitive behavior of pests. In this study, expression of the cAMP response element-binding protein (CREB) and its gene were studied via a series of experiments in Spodoptera litura larvae treated with azadirachtin. RESULTS RNA-Seq analysis of S. litura larvae treated with azadirachtin was undertaken. According to Kyoto Encyclopedia of Genes and Genomes analysis, the top 20 enriched pathways included neuroactive ligand-receptor interaction pathways, with seven significantly differentially expressed genes including CREB. Quantitative real time polymerase chain reaction (qRT-PCR) results indicated that the CREB gene was expressed during all developmental stages of S. litura, but relative expression of the CREB gene was significantly downregulated after treatment with azadirachtin. Grayscale statistical analysis also showed that expression levels of protein kinase A (PKA), extracellular signal-regulated kinase (ERK) and CREB proteins were significantly downregulated after treatment with azadirachtin. Moreover, RNA interference results showed that the effect of azadirachtin on the cognitive behavior of S. litura was consistent with that seen after interfering with CREB. In addition, larval selectivity to addictive odor sources was reduced, and the initial reaction time was increased. CONCLUSIONS This study clarified that azadirachtin can affect the cognitive behavior of S. litura and treatment with azadirachtin resulted in a downregulation of gene and protein expression of CREB and its pathway proteins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - You Zhou
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Benju Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Qun Zheng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Repellency and larvicidal activities of Azadirachta indica seed oil on Anopheles gambiae in Nigeria. Heliyon 2020; 6:e03920. [PMID: 32420486 PMCID: PMC7218012 DOI: 10.1016/j.heliyon.2020.e03920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/19/2019] [Accepted: 04/30/2020] [Indexed: 11/25/2022] Open
Abstract
Despite the recent decline in the global prevalence of malaria, the disease continues to be one of the major causes of morbidity and mortality among pregnant women and under-five children in Nigeria. The adoption of an integrated approach to malaria control including the use of bio-insecticide will further reduce the burden of malaria. This study determined the repellency and bio-insecticidal effects of Azadirachta indica oil on Anopheles gambiae in Ibadan, Nigeria. The study was experimental in design. Oil was extracted from the ground seed kernel of Azadirachta indica plants using N-hexane as a solvent. Larvicidal tests were carried out on 600 third and fourth instar stages of Anopheles gambiae using an aliquot of extracted oil emulsified with a surfactant (Tween 80) at concentrations ranging from 100 to 500 ppm. Mortality was recorded every 24 h for five days. Repellency tests were carried out by exposing Guinea pigs that were previously treated with the oil mixed with paraffin at 10–40%v/v concentrations, to 70 adult female Anopheles gambiae in netted cages. Data were analysed using descriptive statistics and ANOVA. The oil yield accounted for 40.0% weight of the ground seed kernel. The larvicidal effect was significant across the concentration of the emulsified Azadirachta oil ranging from 91.6-100.0%, compared to the control experiment ranging from 5-15% (LC50 and LC90: -1666.86 ppm and -2880.94 ppm respectively). A 100.0% larval mortality of Anopheles gambiae was recorded within three days at 500 ppm. All the concentrations of the oil solution also caused 100% inhibition of pupae formation. The repellent effect of adult Anopheles was significant (p < 0.05) across the concentrations but with varying degrees of protection. The highest repellent effect was observed at 40.0% (v/v). The possibility of using Azadirachta indica as bio-insecticide against Anopheles gambiae was established in this study.
Collapse
|
14
|
Qin D, Zhang P, Zhou Y, Liu B, Xiao C, Chen W, Zhang Z. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21646. [PMID: 31742777 DOI: 10.1002/arch.21646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/02/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
To clarify the types, number, and distribution of sensilla on the head of the fifth instar Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) larvae and identify the main sensilla of azadirachtin acting on larvae, scanning electron microscopy was used to study the morphology of the head and sensilla on the mouthparts. The four sensilla-sensillum basiconicum, sensillum chaeticum, sensillum styloconicum, and sensillum trichodeum-on the head of the fifth instar larvae were treated with 0, 0.1, 0.5, 1, 2, and 4 mg/kg azadirachtin by a microdrop method. The larvae showed an obvious antifeeding effect with azadirachtin. And higher the concentration of azadirachtin, the more obvious the phenomenon of antifeeding activity. The sensillum styloconicum and the sensillum trichodeum were the main sensilla for azadirachtin. When 1 mg/kg azadirachtin was used to treat sensillum styloconicum and sensillum basiconicum, the fifth instar larvae of S. litura showed obvious antifeedant activity and the cumulative feed intake for 24 hr was no more than 30% of the leaf area. Quantitative reverse-transcription polymerase chain reaction verified the expression patterns of some Grs, indicating that Grst43a was upregulated by 1.3- and 3.9-fold, Gor24 was upregulated by 2.5- and 3.3-fold, Gr5a was downregulated by 0.6-fold and upregulated by 2.0-fold, and Gr28a was downregulated by 0.8-fold and upregulated by 3.6-fold upon treatment with 0.5 mg/kg and 1 mg/kg azadirachtin in 24 hr. Gr genes participated in the identification of bitterness and we speculated that Gr genes may indirectly lead to the occurrence of antifeeding behavior.
Collapse
Affiliation(s)
- Deqiang Qin
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - You Zhou
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Benju Liu
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Chunxia Xiao
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Weibin Chen
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- Key Lab of Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Ferdenache M, Bezzar-Bendjazia R, Marion-Poll F, Kilani-Morakchi S. Transgenerational effects from single larval exposure to azadirachtin on life history and behavior traits of Drosophila melanogaster. Sci Rep 2019; 9:17015. [PMID: 31745147 PMCID: PMC6863814 DOI: 10.1038/s41598-019-53474-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023] Open
Abstract
Azadirachtin is one of the successful botanical pesticides in agricultural use with a broad-spectrum insecticide activity, but its possible transgenerational effects have not been under much scrutiny. The effects of sublethal doses of azadirachtin on life-table traits and oviposition behaviour of a model organism in toxicological studies, D. melanogaster, were evaluated. The fecundity and oviposition preference of flies surviving to single azadirachtin-treated larvae of parental generation was adversely affected and resulted in the reduction of the number of eggs laid and increased aversion to this compound over two successive generations. In parental generation, early exposure to azadirachtin affects adult's development by reducing the number of organisms, delay larval and pupal development; male biased sex ratio and induced morphological alterations. Moreover, adult's survival of the two generations was significantly decreased as compared to the control. Therefore, Single preimaginal azadirachtin treatment can affect flies population dynamics via transgenerational reductions in survival and reproduction capacity as well as reinforcement of oviposition avoidance which can contribute as repellent strategies in integrated pest management programs. The transgenerational effects observed suggest a possible reduction both in application frequency and total amount of pesticide used, would help in reducing both control costs and possible ecotoxicological risks.
Collapse
Affiliation(s)
- M Ferdenache
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - R Bezzar-Bendjazia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
| | - F Marion-Poll
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
- AgroParisTech, Paris, France
| | - S Kilani-Morakchi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria.
| |
Collapse
|
16
|
Preet S, Satsangi N. Size Controlled Green Synthesis of Biocompatible Silver Nanoparticles with Enhanced Mosquito Larvicidal Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01606-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Amaral KD, Martínez LC, Pereira Lima MA, Serrão JE, Della Lucia TMC. Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:809-814. [PMID: 30243189 DOI: 10.1016/j.envpol.2018.09.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 05/27/2023]
Abstract
Leaf-cutting ants are important pests of forests and agricultural crops in the Neotropical region. Atta sexdens colonies can be composed of thousands of individuals, which form a highly complex society with a single reproductive queen. Successful control of this species is achieved only if the queen is affected. Few data are available on the lethal or sublethal effects of toxic compounds on leaf-cutting ant queens. Azadirachtin has been claimed as an effective biopesticide for insect control, but its action on leaf-cutting ants has been little explored. This study shows that azadirachtin affects oviposition in A. sexdens queens, impairing egg development by decreasing protein reserves. Azadirachtin inhibits the synthesis of vitellogenin, the major yolk protein precursor. The negative effects of azadirachtin on the reproduction of leaf-cutting ant queens suggest a potential use for the control of these insects.
Collapse
Affiliation(s)
- Karina Dias Amaral
- Department of Entomology, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil.
| | - Luis Carlos Martínez
- Department of General Biology, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil.
| | | | - José Eduardo Serrão
- Department of General Biology, Federal University of Viçosa, Viçosa, MG 36570-000, Brazil.
| | | |
Collapse
|
18
|
Oulhaci CM, Denis B, Kilani-Morakchi S, Sandoz JC, Kaiser L, Joly D, Aribi N. Azadirachtin effects on mating success, gametic abnormalities and progeny survival in Drosophila melanogaster (Diptera). PEST MANAGEMENT SCIENCE 2018; 74:174-180. [PMID: 28736861 DOI: 10.1002/ps.4678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Azadirachtin is a prominent natural pesticide and represents an alternative to conventional insecticides. It has been successfully used against insect pests. However, its effects on reproduction require further analysis. Here we investigated lethal and sublethal effects of azadirachtin, on treated adults in a model insect, Drosophila melanogaster (Meigen). Dose-mortality relationships as well as several parameters of reproduction (mating, spermatogenesis, oogenesis and fertility) were examined. RESULTS Neem-Azal, a commercial formulation of azadirachtin, applied topically on newly emerged adults, increased mortality with a positive dose-dependent relationship. The LD50 (0.63 μg) was determined 24 h after treatment using a non-linear regression. Adults surviving this dose had a mating success that was divided by 3 and a progeny production reduced by half when males were treated, and even more when females were treated. When combining probability of survival, of mating and reduced progeny, it appeared that LD50 induced a 98% reduction in reproductive rates. Reduced progeny was partially explained by the effect of adult treatment on gametes number and abnormalities. The number of cysts and the apical nuclei positions within the cysts decreased by 29.7% and 20%, respectively, in males. In females, the number of oocytes per ovary and the volume of basal oocytes also decreased by 16.1% and 32.4%, respectively. CONCLUSION Azadirachtin causes significant toxic effects in both sexes and decreases the fecundity and fertility of D. melanogaster. Females are more sensitive to azadirachtin. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chemseddine M Oulhaci
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, Algeria
| | - Béatrice Denis
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Samira Kilani-Morakchi
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, Algeria
| | - Jean-Christophe Sandoz
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Laure Kaiser
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Dominique Joly
- Laboratoire Evolution, Génomes, Comportements, Ecologie, UMR 9191, CNRS, IRD, Université Paris-Sud et Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Nadia Aribi
- Laboratoire de Biologie Animale Appliquée, Faculté des Sciences, Université Badji Mokhtar Annaba, Algeria
| |
Collapse
|
19
|
Bezzar-Bendjazia R, Kilani-Morakchi S, Maroua F, Aribi N. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:135-140. [PMID: 29183582 DOI: 10.1016/j.pestbp.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Botanical insecticides are a promising alternative to reduce the harmful effects of synthetic chemicals. Among the botanical biopesticides, azadirachtin obtained from the Indian neem tree Azadirachta indica A. Juss. (Meliaceae) is probably the biorational insecticide with greatest agriculture use nowadays due to its broad insecticide activity. The current study, evaluated the lethal and sublethal effects of azadirachtin on larval avoidance, food intake and digestive enzymes of Drosophila melanogaster larvae as biological model. Azadirachtin was applied topically at two doses LD25 (0.28μg) and LD50 (0.67μg) on early third instars larvae. Results evaluated 24h after treatment showed that larvae exhibited significant repellence to azadirachtin and prefer keeping in untreated arenas rather than moving to treated one. In addition, azadirachtin avoidance was more marked in larvae previously treated with this compound as compared with naïf larvae (controls). Moreover, azadirachtin treatment decreased significantly the amount of larval food intake. Finally, azadirachtin reduced significantly the activity of larval α-amylase, chitinase and protease and increased the activity of lipase. This finding showed that azadirachtin induced behavioral and physiological disruption affecting the ability of the insect to digest food. This rapid installation of avoidance and long term antifeedancy might reinforce the action of azadirachtin and provide a new behavioral strategy for integrated pest management programs.
Collapse
Affiliation(s)
- Radia Bezzar-Bendjazia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria
| | - Samira Kilani-Morakchi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria.
| | - Ferdenache Maroua
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria
| | - Nadia Aribi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria
| |
Collapse
|
20
|
de Oliveira PR, Anholeto LA, Bechara GH, Camargo Mathias MI. Dinotefuran-induced morphophysiological changes in semi-engorged females Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) ticks: Ultra-structural evaluation. Acta Trop 2017; 166:139-154. [PMID: 27876644 DOI: 10.1016/j.actatropica.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The present study demonstrated the effects of dinotefuran (active ingredient of the acaricide Protetor Pet®) on the ovary and midgut cells of semi engorged R. sanguineus females exposed to different concentrations of this chemical. For this, 120 semi-engorged females were divided into four treatment groups with 30 individuals each: group I or control (distilled water), group II (5000ppm), groups III (6250ppm) and group IV (8334ppm of dinotefuran). All the ticks were immersed in the different concentrations of dinotefuran or in distilled water for 5min and then dried and kept in BOD incubator for 7days. The results showed alterations mainly regarding the damaged cell structures, such as yolk granules, organelles and the plasma membrane of the germ cells. In addition, structures related with defense mechanisms were found, such as vacuoles, cytoskeletal filaments, and myelin figures in the germ cells. Damages in the generative cells of the midgut, alterations in the size of digestive cells, the number of endosomes, digestive vacuoles, digestive residues, lipid drops and organelles in the cytoplasm of the digestive cells and the presence of microvilli in the plasma membrane of these cells also demonstrate the progressive damages caused by the action of dinotefuran in the midgut and germ cells of R. sanguineus semi-engorged females. The concentrations applied partially impaired the digestive processes; and, without proper nutrition, all the ectoparasite's physiologic events are prevented from occurring, leading the individual to death. The germ cells were also damaged, and probably would not be able to advance in their development (I-V) and complete the vitellogenesis, which would affect the fertility of the female and consequently impede the formation of a new individual.
Collapse
|
21
|
Campos EVR, de Oliveira JL, Pascoli M, de Lima R, Fraceto LF. Neem Oil and Crop Protection: From Now to the Future. FRONTIERS IN PLANT SCIENCE 2016; 7:1494. [PMID: 27790224 PMCID: PMC5061770 DOI: 10.3389/fpls.2016.01494] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/20/2016] [Indexed: 05/27/2023]
Abstract
A major challenge of agriculture is to increase food production to meet the needs of the growing world population, without damaging the environment. In current agricultural practices, the control of pests is often accomplished by means of the excessive use of agrochemicals, which can result in environmental pollution and the development of resistant pests. In this context, biopesticides can offer a better alternative to synthetic pesticides, enabling safer control of pest populations. However, limitations of biopesticides, including short shelf life, photosensitivity, and volatilization, make it difficult to use them on a large scale. Here, we review the potential use of neem oil in crop protection, considering the gaps and obstacles associated with the development of sustainable agriculture in the not too distant future.
Collapse
Affiliation(s)
- Estefânia V. R. Campos
- Department of Environmental Engineering, São Paulo State UniversitySorocaba, Brazil
- Department of Biochemistry, Institute of Biology, State University of CampinasCampinas, Brazil
| | | | - Mônica Pascoli
- Department of Environmental Engineering, São Paulo State UniversitySorocaba, Brazil
| | - Renata de Lima
- Department of Biotechnology, University of SorocabaSorocaba, Brazil
| | - Leonardo F. Fraceto
- Department of Environmental Engineering, São Paulo State UniversitySorocaba, Brazil
- Department of Biochemistry, Institute of Biology, State University of CampinasCampinas, Brazil
| |
Collapse
|
22
|
Bezzar-Bendjazia R, Kilani-Morakchi S, Aribi N. Larval exposure to azadirachtin affects fitness and oviposition site preference of Drosophila melanogaster. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 133:85-90. [PMID: 27742366 DOI: 10.1016/j.pestbp.2016.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 06/06/2023]
Abstract
Azadirachtin, a biorational insecticide, is one of the prominent biopesticide commercialized today and represent an alternative to conventional insecticides. The current study examined the lethal and sublethal effects of azadirachtin on Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae) as biological model. Various doses ranging from 0.1 to 2μg were applied topically on early third instar larvae and the cumulative mortality of immature stage was determined. In second series of experiments, azadirachtin was applied at its LD25 (0.28μg) and LD50 (0.67μg) and evaluated on fitness (development duration, fecundity, adult survival) and oviposition site preference with and without choice. Results showed that azadirachtin increased significantly at the two tested doses the duration of larval and pupal development. Moreover, azadirachtin treatment reduced significantly adult's survival of both sex as compared to control. In addition, azadirachtin affected fecundity of flies by a significant reduction of the number of eggs laid. Finally results showed that females present clear preference for oviposition in control medium. Pre-imaginal exposure (L3) to azadirachtin increased aversion to this substance suggesting a memorability of the learned avoidance. The results provide some evidence that larval exposure to azadirachtin altered adult oviposition preference as well as major fitness traits of D. melanogaster. Theses finding may reinforce behavioural avoidance of azadirachtin and contribute as repellent strategies in integrated pest management programmes.
Collapse
Affiliation(s)
- Radia Bezzar-Bendjazia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria.
| | - Samira Kilani-Morakchi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria.
| | - Nadia Aribi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000 Annaba, Algeria.
| |
Collapse
|
23
|
Yerbanga RS, Rayaisse JB, Vantaux A, Salou E, Mouline K, Hien F, Habluetzel A, Dabiré RK, Ouédraogo JB, Solano P, Lefèvre T. Neemazal ® as a possible alternative control tool for malaria and African trypanosomiasis? Parasit Vectors 2016; 9:263. [PMID: 27146309 PMCID: PMC4857419 DOI: 10.1186/s13071-016-1538-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Research efforts to identify possible alternative control tools for malaria and African trypanosomiasis are needed. One promising approach relies on the use of traditional plant remedies with insecticidal activities. METHODS In this study, we assessed the effect of blood treated with different doses of NeemAzal ® (NA, neem seed extract) on mosquitoes (Anopheles coluzzii) and tsetse flies (Glossina palpalis gambiensis) (i) avidity to feed on the treated blood, (ii) longevity, and (iii) behavioural responses to human and calf odours in dual-choice tests. We also gauged NeemAzal ® toxicity in mice. RESULTS In An. coluzzii, the ingestion of NA in bloodmeals offered by membrane feeding resulted in (i) primary antifeedancy; (ii) decreased longevity; and (iii) reduced response to host odours. In G. palpalis gambiensis, NA caused (i) a knock-down effect; (ii) decreased or increased longevity depending on the dose; and (iii) reduced response to host stimuli. In both cases, NA did not affect the anthropophilic rate of activated insects. Overall, the most significant effects were observed with NA treated bloodmeals at a dose of 2000 μg/ml for mosquitoes and 50 μg/ml for tsetse flies. Although no mortality in mice was observed after 14 days of follow-up at oral doses of 3.8, 5.6, 8.4 and 12.7 g/kg, behavioural alterations were noticed at doses above 8 g/kg. CONCLUSION This study revealed promising activity of NA on A. coluzzii and G. palpalis gambiensis but additional research is needed to assess field efficacy of neem products to be possibly integrated in vector control programmes.
Collapse
Affiliation(s)
- R Serge Yerbanga
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso.
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo Dioulasso, Burkina Faso
| | - Amélie Vantaux
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso.,MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Ernest Salou
- Centre International de Recherche Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo Dioulasso, Burkina Faso
| | - Karine Mouline
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso.,MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - François Hien
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso.,MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Annette Habluetzel
- University of Camerino, School of Pharmacy, Piazza dei Costantini, 62032, Camerino, MC, Italy
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Jean Bosco Ouédraogo
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso
| | - Philippe Solano
- Centre International de Recherche Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo Dioulasso, Burkina Faso.,INTERTRYP, UMR 177 IRD-CIRAD, Montpellier, France
| | - Thierry Lefèvre
- Institut de Recherche en Sciences de la Santé (IRSS), Bobo Dioulasso, Burkina Faso. .,MIVEGEC (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle), UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France.
| |
Collapse
|
24
|
Neem oil increases the efficiency of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Parasit Vectors 2015; 8:669. [PMID: 26715150 PMCID: PMC4696216 DOI: 10.1186/s13071-015-1280-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 11/20/2022] Open
Abstract
Background Entomopathogenic fungi are potential candidates for use in integrated vector management and many isolates are compatible with synthetic and natural insecticides. Neem oil was tested separately and in combination with the entomopathogenic fungus Metarhizium anisopliae against larvae of the dengue vector Aedes aegypti. Our aim was to increase the effectiveness of the fungus for the control of larval mosquito populations. Methods Commercially available neem oil was used at concentrations ranging from 0.0001 to 1 %. Larval survival rates were monitored over a 7 day period following exposure to neem. The virulence of the fungus M. anisopliae was confirmed using five conidial concentrations (1 × 105 to 1 × 109 conidia mL−1) and survival monitored over 7 days. Two concentrations of fungal conidia were then tested together with neem (0.001 %). Survival curve comparisons were carried out using the Log-rank test and end-point survival rates were compared using one-way ANOVA. Results 1 % neem was toxic to A. aegypti larvae reducing survival to 18 % with S50 of 2 days. Neem had no effect on conidial germination or fungal vegetative growth in vitro. Larval survival rates were reduced to 24 % (S50 = 3 days) when using 1 × 109 conidia mL−1. Using 1 × 108 conidia mL−1, 30 % survival (S50 = 3 days) was observed. We tested a “sub-lethal” neem concentration (0.001 %) together with these concentrations of conidia. For combinations of neem + fungus, the survival rates were significantly lower than the survival rates seen for fungus alone or for neem alone. Using a combination of 1 × 107 conidia mL−1 + neem (0.001 %), the survival rates were 36 %, whereas exposure to the fungus alone resulted in 74 % survival and exposure to neem alone resulted in 78 % survival. When using 1 × 108 conidia mL−1, the survival curves were modified, with a combination of the fungus + neem resulting in 12 % survival, whilst the fungus alone at this concentration also significantly reduced survival rates (28 %). Conclusions The use of adjuvants is an important strategy for maintaining/increasing fungal virulence and/or shelf-life. The addition of neem to conidial suspensions improved virulence, significantly reducing larval survival times and percentages. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1280-9) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U. Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 2015; 114:2243-53. [PMID: 25782680 DOI: 10.1007/s00436-015-4417-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
Nearly 1.4 billion people in 73 countries worldwide are threatened by lymphatic filariasis, a parasitic infection that leads to a disease commonly known as elephantiasis. Filariasis is vectored by mosquitoes, with special reference to the genus Culex. The main control tool against mosquito larvae is represented by treatments with organophosphates and insect growth regulators, with negative effects on human health and the environment. Recently, green-synthesized nanoparticles have been proposed as highly effective larvicidals against mosquito vectors. In this research, we attempted a reply to the following question: do green-synthesized nanoparticles affect predation rates of copepods against mosquito larvae? We proposed a novel method of seaweed-mediated synthesis of silver nanoparticles using the frond extract of Caulerpa scalpelliformis. The toxicity of the seaweed extract and silver nanoparticles was assessed against the filarial vector Culex quinquefasciatus. Then, we evaluated the predatory efficiency of the cyclopoid crustacean Mesocyclops longisetus against larval instars of C. quinquefasciatus in a nanoparticle-contaminated water environment. Green-synthesized silver nanoparticles were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). In mosquitocidal assays, the LC₅₀ values of the C. scalpelliformis extract against C. quinquefasciatus were 31.38 ppm (I), 46.49 ppm (II), 75.79 ppm (III), 102.26 ppm (IV), and 138.89 ppm (pupa), while LC₅₀ of silver nanoparticles were 3.08 ppm, (I), 3.49 ppm (II), 4.64 ppm (III), 5.86 ppm (IV), and 7.33 ppm (pupa). The predatory efficiency of the copepod M. longisetus in the control treatment was 78 and 59% against I and II instar larvae of C. quinquefasciatus. In a nanoparticle-contaminated environment, predation efficiency was 84 and 63%, respectively. Predation was higher against first instar larvae over other instars. Overall, our study showed that seaweed-synthesized silver nanoparticles can be proposed in synergy with biological control agents against Culex larvae, since their use leads to little detrimental effects against aquatic predators, such as copepods.
Collapse
Affiliation(s)
- Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dembo EG, Abay SM, Dahiya N, Ogboi JS, Christophides GK, Lupidi G, Chianese G, Lucantoni L, Habluetzel A. Impact of repeated NeemAzal-treated blood meals on the fitness of Anopheles stephensi mosquitoes. Parasit Vectors 2015; 8:94. [PMID: 25884799 PMCID: PMC4330930 DOI: 10.1186/s13071-015-0700-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbal remedies are widely used in many malaria endemic countries to treat patients, in particular in the absence of anti-malarial drugs and in some settings to prevent the disease. Herbal medicines may be specifically designed for prophylaxis and/or for blocking malaria transmission to benefit both, the individual consumer and the community at large. Neem represents a good candidate for this purpose due to its inhibitory effects on the parasite stages that cause the clinical manifestations of malaria and on those responsible for infection in the vector. Furthermore, neem secondary metabolites have been shown to interfere with various physiological processes in insect vectors. This study was undertaken to assess the impact of the standardised neem extract NeemAzal on the fitness of the malaria vector Anopheles stephensi following repeated exposure to the product through consecutive blood meals on treated mice. METHODS Batches of An. stephensi mosquitoes were offered 5 consecutive blood meals on female BALB/c mice treated with NeemAzal at an azadirachtin A concentration of 60, 105 or 150 mg/kg. The blood feeding capacity was estimated by measuring the haematin content of the rectal fluid excreted by the mosquitoes during feeding. The number of eggs laid was estimated by image analysis and their hatchability assessed by direct observations. RESULTS A dose and frequency dependent impact of NeemAzal treatment on the mosquito feeding capacity, oviposition and egg hatchability was demonstrated. In the 150 mg/kg treatment group, the mosquito feeding capacity was reduced by 50% already at the second blood meal and by 50 to 80% in all treatment groups at the fifth blood meal. Consequently, a 50 - 65% reduction in the number of eggs laid per female mosquito was observed after the fifth blood meal in all treatment groups. Similarly, after the fifth treated blood meal exposure, hatchability was found to be reduced by 62% and 70% in the 105 and 150 mg/kg group respectively. CONCLUSIONS The findings of this study, taken together with the accumulated knowledge on neem open the challenging prospects of designing neem-based formulations as multi-target phytomedicines exhibiting preventive, parasite transmission-blocking as well as anti-vectorial properties.
Collapse
Affiliation(s)
- Edson G Dembo
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Solomon M Abay
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Nisha Dahiya
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Johnbull S Ogboi
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | | | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Giuseppina Chianese
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131, Naples, Italy.
| | - Leonardo Lucantoni
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,Current address: Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia.
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| |
Collapse
|
27
|
Barbosa WF, De Meyer L, Guedes RNC, Smagghe G. Lethal and sublethal effects of azadirachtin on the bumblebee Bombus terrestris (Hymenoptera: Apidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:130-142. [PMID: 25300506 DOI: 10.1007/s10646-014-1365-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2014] [Indexed: 06/04/2023]
Abstract
Azadirachtin is a biorational insecticide commonly reported as selective to a range of beneficial insects. Nonetheless, only few studies have been carried out with pollinators, usually emphasizing the honeybee Apis mellifera and neglecting other important pollinator species such as the bumblebee Bombus terrestris. Here, lethal and sublethal effects of azadirachtin were studied on B. terrestris via oral exposure in the laboratory to bring out the potential risks of the compound to this important pollinator. The compound was tested at different concentrations above and below the maximum concentration that is used in the field (32 mg L(-1)). As most important results, azadirachtin repelled bumblebee workers in a concentration-dependent manner. The median repellence concentration (RC50) was estimated as 504 mg L(-1). Microcolonies chronically exposed to azadirachtin via treated sugar water during 11 weeks in the laboratory exhibited a high mortality ranging from 32 to 100 % with a range of concentrations between 3.2 and 320 mg L(-1). Moreover, no reproduction was scored when concentrations were higher than 3.2 mg L(-1). At 3.2 mg L(-1), azadirachtin significantly inhibited the egg-laying and, consequently, the production of drones during 6 weeks. Ovarian length decreased with the increase of the azadirachtin concentration. When azadirachtin was tested under an experimental setup in the laboratory where bumblebees need to forage for food, the sublethal effects were stronger as the numbers of drones were reduced already with a concentration of 0.64 mg L(-1). Besides, a negative correlation was found between the body mass of male offspring and azadirachtin concentration. In conclusion, our results as performed in the laboratory demonstrated that azadirachtin can affect B. terrestris with a range of sublethal effects. Taking into account that sublethal effects are as important as lethal effects for the development and survival of the colonies of B. terrestris, this study confirms the need to test compounds on their safety, especially when they have to perform complex tasks such as foraging. The latter agrees with the recent European Food Safety Authority guidelines to assess 'potentially deleterious' compounds for sublethal effects on behavior.
Collapse
Affiliation(s)
- Wagner Faria Barbosa
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | | | | | | |
Collapse
|
28
|
Roma GC, Camargo-Mathias MI, Nunes PH, Remédio RN, de Faria AU, Bechara GH. Effects of andiroba (Carapa guianensis) oil in ticks: Ultrastructural analysis of the synganglion of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Acta Trop 2015; 141:7-15. [PMID: 25261600 DOI: 10.1016/j.actatropica.2014.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 11/25/2022]
Abstract
The present study performed an analysis of the ultrastructural changes induced by andiroba seed oil in the synganglion of Rhipicephalus sanguineus female ticks, aiming to provide scientific grounds to help in the creation of more specific and efficient methods of control. The synganglion consists of a mass of fused nerves externally covered by the neural lamella, a uniform and acellular layer. Just below, the perineurium is found, formed by glial cells. Internally, the synganglion is subdivided into an outer cortical region (cortex), which contains the cellular bodies of the neural cells and an inner region, the neuropile, formed by a set of nerve fibers (extensions of the neural cells). The results showed that the synganglion of females exposed to andiroba oil showed structural changes, such as: irregular and apparently thinner neural lamella, perineurium glial cells presenting large cytoplasmic vacuoles, decrease in the extensions of glial cells, separation of cortex cells, which were formerly attached through their membranes, neural cells presenting irregular plasma membranes and cytoplasm with autophagic vacuoles and mitochondria with disorganized cristae and in process of degeneration. This study confirmed the neurotoxic action of the andiroba oil, which would probably be able to impair the neural functions. Thus, it is suggested that this product has the potential to be used as an alternative method to control ticks.
Collapse
|
29
|
Remedio R, Nunes P, Anholeto L, Camargo-Mathias M. Morphological alterations in the synganglion and integument ofRhipicephalus sanguineusticks exposed to aqueous extracts of neem leaves (Azadirachta indicaA. JUSS). Microsc Res Tech 2014; 77:989-98. [DOI: 10.1002/jemt.22427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/06/2014] [Indexed: 11/11/2022]
Affiliation(s)
- R.N. Remedio
- Departamento de Biologia; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Bela Vista Rio Claro São Paulo Brazil
| | - P.H. Nunes
- Departamento de Biologia; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Bela Vista Rio Claro São Paulo Brazil
| | - L.A. Anholeto
- Departamento de Biologia; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Bela Vista Rio Claro São Paulo Brazil
| | - M.I. Camargo-Mathias
- Departamento de Biologia; Universidade Estadual Paulista “Júlio de Mesquita Filho”; Bela Vista Rio Claro São Paulo Brazil
| |
Collapse
|
30
|
Qiao J, Zou X, Lai D, Yan Y, Wang Q, Li W, Deng S, Xu H, Gu H. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. PEST MANAGEMENT SCIENCE 2014; 70:1041-7. [PMID: 24002996 DOI: 10.1002/ps.3644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 05/16/2023]
Abstract
BACKGROUND Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. RESULTS Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. CONCLUSION Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel.
Collapse
Affiliation(s)
- Jingda Qiao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scudeler EL, Padovani CR, Santos DCD. Effects of neem oil (Azadirachta indica A. Juss) on the replacement of the midgut epithelium in the lacewing Ceraeochrysa claveri during larval-pupal metamorphosis. Acta Histochem 2014; 116:771-80. [PMID: 24560939 DOI: 10.1016/j.acthis.2014.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/13/2022]
Abstract
Larvae of the lacewing Ceraeochrysa claveri were fed on eggs of Diatraeasaccharalis treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval period. Pupae obtained from treated larvae were used in the study at five days after the completion of cocoon spinning to investigate the effects of neem oil on the replacement of the midgut epithelium during the larval-pupal transition. We observed that the old larval epithelium was shed into the midgut lumen and transformed into the yellow body. Old cells from the yellow body were destroyed by apoptosis and autophagy and were not affected by neem oil. However, neem oil did affect the new pupal epithelium. Cells from treated pupae showed cellular injuries such as a loss of microvilli, cytoplasmic vacuolization, an increase of glycogen stores, deformation of the rough endoplasmic reticulum and dilation of the perinuclear space. Additionally, the neem oil treatment resulted in the release of cytoplasmic protrusions, rupture of the plasma membrane and leakage of cellular debris into the midgut lumen, characteristics of cell death by necrosis. The results indicate that neem oil ingestion affects the replacement of midgut epithelium, causing cytotoxic effects that can alter the organism's physiology due to extensive cellular injuries.
Collapse
|
32
|
Transmission blocking activity of Azadirachta indica and Guiera senegalensis extracts on the sporogonic development of Plasmodium falciparum field isolates in Anopheles coluzzii mosquitoes. Parasit Vectors 2014; 7:185. [PMID: 24735564 PMCID: PMC3996177 DOI: 10.1186/1756-3305-7-185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/10/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Targeting the stages of the malaria parasites responsible for transmission from the human host to the mosquito vector is a key pharmacological strategy for malaria control. Research efforts to identify compounds that are active against these stages have significantly increased in recent years. However, at present, only two drugs are available, namely primaquine and artesunate, which reportedly act on late stage gametocytes. METHODS In this study, we assessed the antiplasmodial effects of 5 extracts obtained from the neem tree Azadirachta indica and Guiera senegalensis against the early vector stages of Plasmodium falciparum, using field isolates. In an ex vivo assay gametocytaemic blood was supplemented with the plant extracts and offered to Anopheles coluzzii females by membrane feeding. Transmission blocking activity was evaluated by assessing oocyst prevalence and density on the mosquito midguts. RESULTS Initial screening of the 5 plant extracts at 250 ppm revealed transmission blocking activity in two neem preparations. Up to a concentration of 70 ppm the commercial extract NeemAzal completely blocked transmission and at 60 ppm mosquitoes of 4 out of 5 replicate groups remained uninfected. Mosquitoes fed on the ethyl acetate phase of neem leaves at 250 ppm showed a reduction in oocyst prevalence of 59.0% (CI₉₅ 12.0 - 79.0; p < 10-4) and in oocyst density of 90.5% (CI₉₅ 86.0 - 93.5; p < 10-4 ), while the ethanol extract from the same plant part did not exhibit any activity. No evidence of transmission blocking activity was found using G. senegalensis ethyl acetate extract from stem galls. CONCLUSIONS The results of this study highlight the potential of antimalarial plants for the discovery of novel transmission blocking molecules, and open up the potential of developing standardized transmission blocking herbal formulations as malaria control tools to complement currently used antimalarial drugs and combination treatments.
Collapse
|
33
|
Tiwari R, Verma AK, Chakrabort S, Dhama K, Singh SV. Neem (Azadirachta indica) and its Potential for Safeguarding Health of Animals and Humans: A Review. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jbs.2014.110.123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop 2014; 130:123-30. [PMID: 24239749 DOI: 10.1016/j.actatropica.2013.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 11/23/2022]
Abstract
Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.
Collapse
|
35
|
Roma GC, Mathias MIC, De Faria AU, De Oliveira PR, Furquim KCS, Bechara GH. Morphological and cytochemical changes in synganglion ofRhipicephalus sanguineus(Latreille, 1806) (Acari: Ixodidae) female ticks from exposure of andiroba oil (Carapa guianensis). Microsc Res Tech 2013; 76:687-96. [DOI: 10.1002/jemt.22219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/28/2013] [Accepted: 03/31/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Gislaine Cristina Roma
- Departamento de Biologia; Instituto de Biociências, UNESP-Universidade Estadual Paulista; São Paulo; Brazil
| | | | - Adriano Uemura De Faria
- Departamento de Biologia; Instituto de Biociências, UNESP-Universidade Estadual Paulista; São Paulo; Brazil
| | - Patrícia Rosa De Oliveira
- Departamento de Biologia; Instituto de Biociências, UNESP-Universidade Estadual Paulista; São Paulo; Brazil
| | | | - Gervásio Henrique Bechara
- Departamento de Biologia; Instituto de Biociências, UNESP-Universidade Estadual Paulista; São Paulo; Brazil
| |
Collapse
|
36
|
ZHIQING MA, GULIA-NUSS MONIKA, ZHANG XING, BROWN MARKR. Effects of the botanical insecticide, toosendanin, on blood digestion and egg production by female Aedes aegypti (Diptera: Culicidae): topical application and ingestion. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:112-121. [PMID: 23427659 PMCID: PMC3893133 DOI: 10.1603/me12119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Botanical insecticides offer novel chemistries and actions that may provide effective mosquito control. Toosendanin (TSN, 95% purity) is one such insecticide used to control crop pests in China, and in this study, it was evaluated for lethal and sublethal effects on larvae and females of the yellowfever mosquito, Aedes aegypti (L.). TSN was very toxic to first instar larvae after a 24 h exposure (LC50 = 60.8 microg/ml) and to adult females up to 96 h after topical treatment (LD50 = 4.3 microg/female) or ingestion in a sugar bait (LC50 = 1.02 microg/microl). Treatment of first instars for 24 h with a range of sublethal doses (6.3-25 microg/ml) delayed development to pupae by 1 to 2 d. Egg production and larval hatching from eggs were dose dependently reduced (>45%) by TSN doses (1.25-10.0 microg) topically applied to females 24 h before or 1 h after a bloodmeal. Ingestion of TSN (0.031-0.25 microg/microl of sugar bait) by females 24 h before a bloodmeal also greatly reduced egg production and larval hatch; no eggs were oviposited by females ingesting the highest dose. Further studies revealed that topical or ingested TSN dose-dependently disrupted yolk deposition in oocytes, blood ingestion and digestion, and ovary ecdysteroid production in blood-fed females. Overall, our results indicate that TSN is an effective insecticide for Ae. aegypti larvae and adults, because of its overt toxicity at high doses and disruption of development and reproduction at sublethal doses.
Collapse
Affiliation(s)
- MA ZHIQING
- Biorational Pesticide Research and Development Center, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China 712100
| | | | - XING ZHANG
- Biorational Pesticide Research and Development Center, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China 712100
| | - MARK R. BROWN
- Department of Entomology, University of Georgia, Athens, GA 30602
| |
Collapse
|
37
|
Scudeler EL, dos Santos DC. Effects of neem oil (Azadirachta indica A. Juss) on midgut cells of predatory larvae Ceraeochrysa claveri (Navás, 1911) (Neuroptera: Chrysopidae). Micron 2012; 44:125-32. [PMID: 22739123 DOI: 10.1016/j.micron.2012.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022]
Abstract
The effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree, Azadirachta indica, on the midgut cells of predatory larvae Ceraeochrysa claveri were analyzed. C. claveri were fed on eggs of Diatraea saccharalis treated with neem oil at a concentration of 0.5%, 1% and 2% during throughout the larval period. Light and electron microscopy showed severe damages in columnar cells, which had many cytoplasmic protrusions, clustering and ruptured of the microvilli, swollen cells, ruptured cells, dilatation and vesiculation of rough endoplasmic reticulum, development of smooth endoplasmic reticulum, enlargement of extracellular spaces of the basal labyrinth, intercellular spaces and necrosis. The indirect ingestion of neem oil with prey can result in severe alterations showing direct cytotoxic effects of neem oil on midgut cells of C. claveri larvae. Therefore, the safety of neem oil to non-target species as larvae of C. claveri was refuted, thus the notion that plants derived are safer to non-target species must be questioned in future ecotoxicological studies.
Collapse
Affiliation(s)
- Elton Luiz Scudeler
- Universidade Estadual Paulista (UNESP), Departamento de Morfologia, Instituto de Biociências, Campus de Botucatu, 18618-970 Botucatu, SP, Brazil.
| | | |
Collapse
|
38
|
Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol Res 2012; 111:609-18. [PMID: 22398832 DOI: 10.1007/s00436-012-2876-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
Abstract
The present study was carried out on Solanum xanthocarpum fruit extract and copepods Mesocyclops thermocyclopoides, which were assessed for the control of dengue vector, Aedes aegypti, under laboratory conditions. The medicinal plants were collected from the outskirts of Bharathiar University, Coimbatore, Tamil Nadu, India. The shade-dried fruit materials were extracted by employing the Soxhlet apparatus with methanol (organic solvent) 8 h and the extracts were filtered through a Buchner funnel with Whatman number 1 filter paper. The fruit extracts were concentrated at reduced temperature on a rotary vacuum evaporator and stored at a temperature of 4°C. S. xanthocarpum fruit extract (SXFE) at 100, 150, 200, 250, and 300 ppm caused significant mortality of Ae. aegypti. The LC(50) and LC(90) of S. xanthocarpum against the first to fourth instar larvae and pupae were 170.91, 195.07, 221.45, 253.18, and 279.52 ppm and 320.62, 366.48, 410.20, 435.16, and 462.10 ppm, respectively. A study was conducted to test whether the predatory efficiency of copepods on first instars changed in the presence of SXFE. The percentage of predatory efficiency of copepod was 6.5 % in treatments without SFXE and the percentage of predatory efficiency increased up to 8.7 % when copepods were combined with SFXE. This increase in predation efficiency may be caused by detrimental effects of the SFXE active principle compound (solanocarpine and solanocarpidine) on the mosquito larvae. Repeated application of fruit extract of S. xanthocarpum does not cause changes in copepod populations because fruit extract is highly degradable in the environment. Therefore, the present investigation clearly exhibits that the fruit extract of S. xanthocarpum and copepod M. thermocyclopoides could serve as a potential of highest mortality rate against the mosquito larvae under laboratory conditions. This is a new eco-friendly approach for the control of Ae. aegypti mosquito as target species. Therefore, this study provides the first report on the combined effect of mosquitocidal activity of this fruit extract and copepods of M. thermocyclopoides against dengue vector Ae. aegypti from India.
Collapse
|
39
|
An SSH library responsive to azadirachtin A constructed in Spodoptera litura Fabricius cell lines. J Biotechnol 2012; 159:115-20. [PMID: 22425906 DOI: 10.1016/j.jbiotec.2012.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 12/24/2011] [Accepted: 02/26/2012] [Indexed: 11/23/2022]
Abstract
The present study revealed differentially expressed genes responsive to azadirachtin A (Aza) in Spodoptera litura cell line through suppression subtractive hybridization. In the Aza-responsive SSH library, approximately 270 sequences represent 53 different identified genes encoding proteins with various predicted functions, and the percentages of the gene clusters were 26.09% (genetic information processing), 11.41% (cell growth and death), 7.07% (metabolism), 6.52% (signal transduction/transport) and 2.72% (immunity), respectively. Eleven clones homologous to identified genes were selected to be confirmed through quantitative real time polymerase chain reaction. Among the eleven clones validated, all but one transcript of lipase showed an increase in SL cell line collected from ETA, whereas the transcripts of other genes were lower in the SL cell line collected from ETA compared with that of UETA. These genes were considered to be related to the response of SL cell line to Aza. These will provide a new clue to uncover the molecular mechanisms of Aza acting on SL cell line.
Collapse
|
40
|
Kiss T, Cadar D, Spînu M. Tick prevention at a crossroad: new and renewed solutions. Vet Parasitol 2012; 187:357-66. [PMID: 22424918 DOI: 10.1016/j.vetpar.2012.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/13/2012] [Accepted: 02/19/2012] [Indexed: 11/15/2022]
Abstract
Ticks have major economic impact through diseases they transmit, direct losses due to their detrimental effect and the efforts invested in prevention measures directed against them. Chemical acaricides represent the main line of anti-tick defense in both humans and domestic animals, but increasing concerns regarding development of acaricide resistance, especially in the cattle tick Rhipicephalus microplus, and environmental safety issues indicate the need for other, less aggressive but equally efficient methods. This paper aims to evaluate the potential, the scientific and economical limitations and future research directions regarding different alternative methods of tick control and their use in integrated pest management, with a separate reference to the pet industry. New research data in each field is presented and the economical aspects for each approach are individually emphasized.
Collapse
Affiliation(s)
- Timea Kiss
- University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Faculty of Veterinary Medicine, Department of Infectious Diseases, Mănăştur st. 3-5, 400372, Cluj-Napoca, Romania.
| | | | | |
Collapse
|
41
|
Denardi SE, Bechara GH, de Oliveira PR, Camargo Mathias MI. Ultrastructural Analysis of the Oocytes of FemaleRhipicephalus sanguineus(Latreille, 1806) (Acari: Ixodidae) Ticks Subjected to the Action ofAzadirachta indicaA. Juss (Neem). Ultrastruct Pathol 2012; 36:56-67. [DOI: 10.3109/01913123.2011.588819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion--a potent larvicidal agent against Culex quinquefasciatus. PEST MANAGEMENT SCIENCE 2012; 68:158-63. [PMID: 21726037 DOI: 10.1002/ps.2233] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/22/2011] [Accepted: 05/17/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nanoemulsion composed of neem oil and non-ionic surfactant Tween 20, with a mean droplet size ranging from 31.03 to 251.43 nm, was formulated for various concentrations of the oil and surfactant. The larvicidal effect of the formulated neem oil nanoemulsion was checked against Culex quinquefasciatus. RESULTS O/W emulsion was prepared using neem oil, Tween 20 and water. Nanoemulsion of 31.03 nm size was obtained at a 1:3 ratio of oil and surfactant, and it was found to be stable. The larger droplet size (251.43 nm) shifted to a smaller size of 31.03 nm with increase in the concentration of Tween 20. The viscosity of the nanoemulsion increased with increasing concentration of Tween 20. The lethal concentration (LC50) of the nanoemulsion against Cx. quinquefasciatus was checked for 1:0.30, 1:1.5 and 1:3 ratios of oil and surfactant respectively. The LC50 decreased with droplet size. The LC50 for the ratio 1:3 nanoemulsions was 11.75 mg L(-1). CONCLUSION The formulated nanoemulsion of 31.03 nm size was found to be an effective larvicidal agent. This is the first time that a neem oil nanoemulsion of this droplet size has been reported. It may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus.
Collapse
Affiliation(s)
- C H Anjali
- Centre for Nanobiotechnology, School of Biosciences and Technology, VIT University, Vellore, India
| | | | | | | |
Collapse
|
43
|
A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 2011; 110:1801-13. [DOI: 10.1007/s00436-011-2702-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 10/14/2011] [Indexed: 11/26/2022]
|
44
|
Kumar AN, Murugan K, Madhiyazhagan P, Prabhu K. Spinosad and neem seed kernel extract as bio–controlling agents for malarial vector, Anopheles stephensi and non–biting midge, Chironomus circumdatus. ASIAN PAC J TROP MED 2011; 4:614-8. [DOI: 10.1016/s1995-7645(11)60158-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/16/2011] [Accepted: 06/15/2011] [Indexed: 11/15/2022] Open
|
45
|
Denardi SE, Bechara GH, Oliveira PRD, Camargo-Mathias MI. Azadirachta indica A. Juss (neem) induced morphological changes on oocytes of Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae) tick females. Exp Parasitol 2010; 126:462-70. [DOI: 10.1016/j.exppara.2010.05.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 05/18/2010] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|
46
|
Iyyadurai R, Surekha V, Sathyendra S, Paul Wilson B, Gopinath K. Azadirachtin poisoning: a case report. Clin Toxicol (Phila) 2010; 48:857-8. [DOI: 10.3109/15563650.2010.518148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Chianese G, Yerbanga SR, Lucantoni L, Habluetzel A, Basilico N, Taramelli D, Fattorusso E, Taglialatela-Scafati O. Antiplasmodial triterpenoids from the fruits of neem, Azadirachta indica. JOURNAL OF NATURAL PRODUCTS 2010; 73:1448-52. [PMID: 20669933 DOI: 10.1021/np100325q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Eight known and two new triterpenoid derivatives, neemfruitins A (9) and B (10), have been isolated from the fruits of neem, Azadirachta indica, a traditional antimalarial plant used by Asian and African populations. In vitro antiplasmodial tests evidenced a significant activity of the known gedunin and azadirone and the new neemfruitin A and provided useful information about the structure-antimalarial activity relationships in the limonoid class.
Collapse
Affiliation(s)
- Giuseppina Chianese
- Dipartimento di Chimica delle Sostanze Naturali, Università di Napoli Federico II, Via D. Montesano, 49, I-80131, Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cardoso AF, Cres RL, Moura AS, Almeida FD, Bijovsky AT. Culex quinquefasciatus vitellogenesis: morphological and biochemical aspects. Mem Inst Oswaldo Cruz 2010; 105:254-62. [DOI: 10.1590/s0074-02762010000300003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 02/22/2010] [Indexed: 11/21/2022] Open
|
49
|
Lucantoni L, Yerbanga RS, Lupidi G, Pasqualini L, Esposito F, Habluetzel A. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi. Malar J 2010; 9:66. [PMID: 20196858 PMCID: PMC2846955 DOI: 10.1186/1475-2875-9-66] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 03/02/2010] [Indexed: 11/10/2022] Open
Abstract
Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (Azadirachta indica, Meliaceae) seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule organizing centres and with the assembly of cytoskeletal microtubules, which are both fundamental processes in Plasmodium gametogenesis and ookinete formation. Conclusions This work demonstrated in vivo transmission blocking activity of an azadirachtin-enriched neem seed extract at an azadirachtin dose compatible with 'druggability' requisites. These results and evidence of anti-plasmodial activity of neem products accumulated over the last years encourage to convey neem compounds into the drug discovery & development pipeline and to evaluate their potential for the design of novel or improved transmission-blocking remedies.
Collapse
Affiliation(s)
- Leonardo Lucantoni
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università di Camerino, Camerino (MC), Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Dua VK, Pandey AC, Raghavendra K, Gupta A, Sharma T, Dash AP. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes. Malar J 2009; 8:124. [PMID: 19500429 PMCID: PMC2702347 DOI: 10.1186/1475-2875-8-124] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 06/08/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of mosquitoes. Azadirachta indica (Meliaceae) and its derived products have shown a variety of insecticidal properties. The present paper discusses the larvicidal activity of neem-based biopesticide for the control of mosquitoes. METHODS Larvicidal efficacy of an emulsified concentrate of neem oil formulation (neem oil with polyoxyethylene ether, sorbitan dioleate and epichlorohydrin) developed by BMR & Company, Pune, India, was evaluated against late 3rd and early 4th instar larvae of different genera of mosquitoes. The larvae were exposed to different concentrations (0.5-5.0 ppm) of the formulation along with untreated control. Larvicidal activity of the formulation was also evaluated in field against Anopheles, Culex, and Aedes mosquitoes. The formulation was diluted with equal volumes of water and applied @ 140 mg a.i./m(2) to different mosquito breeding sites with the help of pre calibrated knapsack sprayer. Larval density was determined at pre and post application of the formulation using a standard dipper. RESULTS Median lethal concentration (LC(50)) of the formulation against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was found to be 1.6, 1.8 and 1.7 ppm respectively. LC(50) values of the formulation stored at 26 degrees C, 40 degrees C and 45 degrees C for 48 hours against Ae. aegypti were 1.7, 1.7, 1.8 ppm while LC(90) values were 3.7, 3.7 and 3.8 ppm respectively. Further no significant difference in LC(50) and LC(90) values of the formulation was observed against Ae. aegypti during 18 months storage period at room temperature. An application of the formulation at the rate of 140 mg a.i./m(2) in different breeding sites under natural field conditions provided 98.1% reduction of Anopheles larvae on day 1; thereafter 100% reduction was recorded up to week 1 and more than 80% reduction up to week 3, while percent reduction against Culex larvae was 95.5% on day 1, and thereafter 80% reduction was achieved up to week 3. The formulation also showed 95.1% and, 99.7% reduction of Aedes larvae on day 1 and day 2 respectively; thereafter 100% larval control was observed up to day 7. CONCLUSION The neem oil formulation was found effective in controlling mosquito larvae in different breeding sites under natural field conditions. As neem trees are widely distributed in India, their formulations may prove to be an effective and eco-friendly larvicide, which could be used as an alternative for malaria control.
Collapse
Affiliation(s)
- Virendra K Dua
- National Institute of Malaria Research, Field Unit, Sector-III, BHEL, Hardwar 249043, India
| | - Akhilesh C Pandey
- National Institute of Malaria Research, Field Unit, Sector-III, BHEL, Hardwar 249043, India
| | | | - Ashish Gupta
- National Institute of Malaria Research, Field Unit, Sector-III, BHEL, Hardwar 249043, India
| | - Trilochan Sharma
- National Institute of Malaria Research, Field Unit, Sector-III, BHEL, Hardwar 249043, India
| | - Aditya P Dash
- National Institute of Malaria Research, 22 Sham Nath Marg, Delhi 110054, India
| |
Collapse
|