1
|
Conti G, Zingaretti N, Busato A, Quintero Sierra L, Amuso D, Scarano A, Iorio EL, Amore R, Ossanna R, Negri A, Conti A, Veronese S, De Francesco F, Riccio M, Parodi PC, Sbarbati A. Gluteal femoral subcutaneous and dermal adipose tissue in female. J Cosmet Dermatol 2024; 23:2726-2735. [PMID: 38638000 DOI: 10.1111/jocd.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND During the sexual maturation, gluteal femoral adipose tissue is subjected to numerous modifications, not observable in other regions, in particular in women and less in men. Other authors described this region, but they used imaging techniques having lower resolution, than MRI proposed in this study. High resolution imaging techniques might provide important and more detailed information about the anatomy of gluteal femoral region. METHODS This study has been performed using 7 T-magnetic resonance imaging and ultrastructural analysis in order to provide accurate description of the subcutaneous adipose tissue and dermis of gluteal femoral region. In this study specimens harvested from cadavers and form living patients have been analyzed. RESULTS The results showed the presence of three layers: superficial, middle, and deep, characterized by different organization of fat lobules. High resolution imaging showed the adipose papilla that originates from dermis and protrude in subcutaneous adipose tissue. Adipose papilla is characterized by a peculiar morphology with a basement, a neck and a head and these elements represent the functional subunits of adipose papilla. Moreover, ultrastructural study evidenced the relationship between adipocytes and sweat glands, regulated by lipid vesicles. CONCLUSIONS This study provides important information about subcutaneous and dermal fat anatomy of gluteal femoral region, improving the past knowledge, and move toward a better understanding of the cellulite physiopathology.
Collapse
Affiliation(s)
- Giamaica Conti
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
| | - Nicola Zingaretti
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medicine (DMED), University of Udine, Udine, 33100, Italy
| | - Alice Busato
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Lindsey Quintero Sierra
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, School of Medicine, University of Verona, Verona, Italy
| | - Domenico Amuso
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Antonio Scarano
- Department of Medical, Dean of Master course in Aesthetic Medicine, Oral and Biotechnological Sciences, University of Chieti-Pescara, Pescara, Italy
| | - Eugenio Luigi Iorio
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Roberto Amore
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Riccardo Ossanna
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Alessandro Negri
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Anita Conti
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Sheila Veronese
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| | - Francesco De Francesco
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Michele Riccio
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Pier Camillo Parodi
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Clinic of Plastic and Reconstructive Surgery, Academic Hospital of Udine, Department of Medicine (DMED), University of Udine, Udine, 33100, Italy
| | - Andrea Sbarbati
- Accademia del Lipofilling, Research and Training Center in Regenerative Surgery, Jesi, Italy
- Neuroscience Biomedicine and Movement Sciences Department, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Tumor and peritumoral adipose tissue crosstalk: De-differentiated adipocytes influence spread of colon carcinoma cells. Tissue Cell 2023; 80:101990. [PMID: 36542947 DOI: 10.1016/j.tice.2022.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Colorectal cancer is the second leading cause of cancer and often has a fatal course. There are many studies in the literature that have described a close functional relationship between the tumor mass and surrounding tissue, or tumor stroma, which is affected by the continuous metabolic exchange that occurs at the interface between tumor and tissues in contact with it. There is much evidence that the presence of adipose tissue in stroma plays a fundamental role in modulating the tumor microenvironment and promote tumor development, growth, and angiogenesis due to its endocrine characteristics. In this analysis, we have studied the alterations of adipose tissue surrounding colorectal tumors with MRI and optical imaging in vivo techniques to monitor tumor progression and also performed histological and molecular analysis. We detected differences in the principal adipose markers expressed by adipocytes residing around the rectal colon and observed that peritumoral adipose tissue is exposed to a mesenchymal transition process that leads to the acquisition of a less differentiated phenotype of adipocyte that represents the main cellular type present in tumor stroma. The mesenchymal transition correlated with the acquisition of more aggressive tumor phenotype and could represent a valid target for tumor therapy.
Collapse
|
3
|
Ozone Activates the Nrf2 Pathway and Improves Preservation of Explanted Adipose Tissue In Vitro. Antioxidants (Basel) 2020; 9:antiox9100989. [PMID: 33066365 PMCID: PMC7602229 DOI: 10.3390/antiox9100989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
In clinical practice, administration of low ozone (O3) dosages is a complementary therapy for many diseases, due to the capability of O3 to elicit an antioxidant response through the Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)-dependent pathway. Nrf2 is also involved in the adipogenic differentiation of mesenchymal stem cells, and low O3 concentrations have been shown to stimulate lipid accumulation in human adipose-derived adult stem cells in vitro. Thus, O3 treatment is a promising procedure to improve the survival of explanted adipose tissue, whose reabsorption after fat grafting is a major problem in regenerative medicine. In this context, we carried out a pilot study to explore the potential of mild O3 treatment in preserving explanted murine adipose tissue in vitro. Scanning and transmission electron microscopy, Western blot, real-time polymerase chain reaction and nuclear magnetic resonance spectroscopy were used. Exposure to low O3 concentrations down in the degradation of the explanted adipose tissue and induced a concomitant increase in the protein abundance of Nrf2 and in the expression of its target gene Hmox1. These findings provide a promising background for further studies aimed at the clinical application of O3 as an adjuvant treatment to improve fat engraftment.
Collapse
|
4
|
Chirumbolo S. Letter to the Editor: "Effect of Aerobic and Resistance Training on Circulating Micro-RNA Expression Profile in Subjects with Type 2 Diabetes". J Clin Endocrinol Metab 2020; 105:5742022. [PMID: 32080721 DOI: 10.1210/clinem/dgaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/06/2020] [Indexed: 01/24/2023]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences-University of Verona, Verona, Italy
| |
Collapse
|
5
|
Rigotti G, Chirumbolo S, Sbarbati A. Commentary on: Progressive Improvement in Midfacial Volume 18 to 24 Months After Simultaneous Fat Grafting and Facelift: An Insight to Fat Graft Remodeling. Aesthet Surg J 2020; 40:243-245. [PMID: 31901158 DOI: 10.1093/asj/sjz307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Gino Rigotti
- Unit Head of Reconstructive Breast and Plastic Surgery, Clinica San Francesco, Verona, Italy
| | | | - Andrea Sbarbati
- Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Chirumbolo S. Oxidative Stress, Nutrition and Cancer: Friends or Foes? World J Mens Health 2020; 39:19-30. [PMID: 32202081 PMCID: PMC7752511 DOI: 10.5534/wjmh.190167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022] Open
Abstract
The relationship between cancer and nutrition, as well as nutrition and oxidative stress, shares puzzling aspects that current research is investigating as the possible components of an intriguing regulating mechanism involving the complex interplay between adipose tissue and other compartments. Along the very recent biological evolution, humans underwent a rapid change in their lifestyles and henceforth the role of the adipocytes earned a much more complex task in the fine tuning of the tissue microenvironment. A lipidic signaling language probably evolved in association with the signaling role of reactive oxygen species, which gained a fundamental part in the regulation of cell stem and plasticity. The possible relationship with cancer onset might have some causative mechanism in the impairment of this complex task, usually deregulated by drastic changes in one's own lifestyle and dietary habit. This review tries to address this issue.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
7
|
Brimas G, Skaudzius R, Brimiene V, Vaitkus R, Kareiva A. Microstructural features of lyophilized adipose - A new concept to estimate the metabolic symptoms for obese patients. Med Hypotheses 2019; 136:109526. [PMID: 31855681 DOI: 10.1016/j.mehy.2019.109526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the distribution of different morphological features in different layers of lyophilized adipose tissue. In this work the scanning electron microscopy (SEM) was adopted for investigation of lyophilized adipose tissue taken from obese patients. The adipose tissue was taken from subcutaneous (SAT), preperitoneal (PAT) and visceral (VAT) layers of adipose tissue. The obtained results of the main microstructural features provided information about morphological features of subcutaneous, preperitoneal and visceral layers in obese people. The obtained SEM results possibly could be used for the estimation of metabolic symptoms and prediction different diseases. The SEM method was never used before to investigate morphology of SAT, PAT and VAT layers of lyophilized human adipose tissue.
Collapse
Affiliation(s)
- Gintautas Brimas
- Clinic of Gastroenterology, Nephrourology and Surgery, Department of General Surgery, Vilnius University, Siltnamiu 29, LT-04130 Vilnius, Lithuania
| | - Ramunas Skaudzius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vilma Brimiene
- Clinic of Gastroenterology, Nephrourology and Surgery, Faculty of Medicine, Center of Abdominal Surgery, Vilnius University, Santariskiu 2, LT-08661 Vilnius, Lithuania
| | - Rimantas Vaitkus
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
8
|
Rigotti G, Chirumbolo S. Biological Morphogenetic Surgery: A Minimally Invasive Procedure to Address Different Biological Mechanisms. Aesthet Surg J 2019; 39:745-755. [PMID: 30137183 DOI: 10.1093/asj/sjy198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present a methodology called biological morphogenetic surgery (BMS) that can recover (enlarge or reduce) the shape/volume of anatomic structures/tissues affected by congenital or acquired malformations based on a minimally invasive procedure. This emerges as a new concept in which the main task of surgery is the biological modulation of different remodeling and repair mechanisms. When applied, for example, to a tuberous breast deformity, the "enlarging BMS" expands the retracted tissue surrounding the gland through a cutting tip of a needle being inserted through small incisions percutaneously, accounting for the biological activity of the grafted fat. The obtained spaces might be spontaneously occupied and later filled with autologous grafted fat, which promotes tissue expansion by eliciting adipogenesis and preventing fibrosis. The "reducing BMS" creates an interruption of the contact between the derma and the hypoderma of the abnormally large areola and then promotes adipocytes to induce a fibrotic reaction, leading to areola reduction. Current evidence suggests that BMS might induce a bivalent mesenchymalization of the adipocyte, which promotes either new adipogenesis and angiogenesis of local fat (expanding BMS) or the granulation tissue/fibrotic response (reducing BMS), thus leading to the physiological recovery of the affected structures/tissues to normality. Level of Evidence: 4.
Collapse
Affiliation(s)
- Gino Rigotti
- Unit Head of Reconstructive Breast and Plastic Surgery, Clinica San Francesco, Verona, Italy
| | - Salvatore Chirumbolo
- Department of Neuroscience, Biomedicine and Movement Sciences-University of Verona, Verona, Italy
| |
Collapse
|
9
|
Costanzo M, Boschi F, Carton F, Conti G, Covi V, Tabaracci G, Sbarbati A, Malatesta M. Low ozone concentrations promote adipogenesis in human adipose-derived adult stem cells. Eur J Histochem 2018; 62. [PMID: 30176704 PMCID: PMC6151336 DOI: 10.4081/ejh.2018.2969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022] Open
Abstract
Ozone is a strong oxidant, highly unstable atmospheric gas. Its medical use at low concentrations has been progressively increasing as an alternative/adjuvant treatment for several diseases. In this study, we investigated the effects of mild ozonisation on human adipose-derived adult stem (hADAS) cells i.e., mesenchymal stem cells occurring in the stromal-vascular fraction of the fat tissue and involved in the tissue regeneration processes. hADAS cells were induced to differentiate into the adipoblastic lineage, and the effect of low ozone concentrations on the adipogenic process was studied by combining histochemical, morphometric and ultrastructural analyses. Our results demonstrate that ozone treatment promotes lipid accumulation in hADAS without inducing deleterious effects, thus paving the way to future studies aimed at elucidating the effect of mild ozonisation on adipose tissue for tissue regeneration and engineering.
Collapse
Affiliation(s)
- Manuela Costanzo
- University of Verona, Department of Neurosciences, Biomedicine and Movement Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nicu C, Pople J, Bonsell L, Bhogal R, Ansell DM, Paus R. A guide to studying human dermal adipocytes in situ. Exp Dermatol 2018; 27:589-602. [DOI: 10.1111/exd.13549] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Carina Nicu
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - Laura Bonsell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | | | - David M. Ansell
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
| | - Ralf Paus
- Centre for Dermatology Research; The University of Manchester; Manchester UK
- NIHR Manchester Biomedical Research Centre; Manchester Academic Health Science Centre; Manchester UK
- Department of Dermatology and Cutaneous Surgery; Miller School of Medicine; University of Miami; Miami FL USA
| |
Collapse
|
11
|
Marinozzi MR, Pandolfi L, Malatesta M, Colombo M, Collico V, Lievens PMJ, Tambalo S, Lasconi C, Vurro F, Boschi F, Mannucci S, Sbarbati A, Prosperi D, Calderan L. Innovative approach to safely induce controlled lipolysis by superparamagnetic iron oxide nanoparticles-mediated hyperthermic treatment. Int J Biochem Cell Biol 2017; 93:62-73. [PMID: 29111382 DOI: 10.1016/j.biocel.2017.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
During last years, evidence has been provided on the involvement of overweight and obesity in the pathogenesis and aggravation of several life-threatening diseases. Here, we demonstrate that, under appropriate administration conditions, polyhedral iron oxide nanoparticles are efficiently and safely taken up by 3T3 cell line-derived adipocytes (3T3 adipocytes) in vitro. Since these nanoparticles proved to effectively produce heat when subjected to alternating magnetic field, 3T3 adipocytes were submitted to superparamagnetic iron oxide nanoparticles-mediated hyperthermia treatment (SMHT), with the aim of modulating their lipid content. Notably, the treatment resulted in a significant delipidation persisting for at least 24h, and in the absence of cell death, damage or dedifferentiation. Interestingly, transcript expression of adipose triglyceride lipase (ATGL), a key gene involved in canonical lipolysis, was not modulated upon SMHT, suggesting the involvement of a novel/alternative mechanism in the effective lipolysis observed. By applying the same experimental conditions successfully used for 3T3 adipocytes, SMHT was able to induce delipidation also in primary cultures of human adipose-derived adult stem cells. The success of this pioneering approach in vitro opens promising perspectives for the application of SMHT in vivo as an innovative safe and physiologically mild strategy against obesity, potentially useful in association with balanced diet and healthy lifestyle.
Collapse
Affiliation(s)
- Maria Rosaria Marinozzi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Laura Pandolfi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Manuela Malatesta
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | - Veronica Collico
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy
| | | | - Stefano Tambalo
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy; Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy
| | - Chiara Lasconi
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Federica Vurro
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Federico Boschi
- Dipartimento di Informatica, Università di Verona, 37134 Verona, Italy
| | - Silvia Mannucci
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Andrea Sbarbati
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 20126 Milano, Italy.
| | - Laura Calderan
- Dipartimento di Neuroscienze, Biomedicina e Movimento, Università di Verona, 37134 Verona, Italy.
| |
Collapse
|
12
|
Rigotti G, Sbarbati A. Commentary on: The Effect of Lipoaspirates on Human Keratinocytes. Aesthet Surg J 2016; 36:952-3. [PMID: 27246227 DOI: 10.1093/asj/sjw076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gino Rigotti
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Sbarbati is a Full Professor of Human Anatomy, University of Verona, Verona; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signalling (TES) ONLUS, Padua, Italy
| | - Andrea Sbarbati
- Dr Rigotti is Chief of Plastic and Regenerative Surgery, Regenerative Surgery Unit, San Francesco Clinic, Verona, Italy. Dr Sbarbati is a Full Professor of Human Anatomy, University of Verona, Verona; Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signalling (TES) ONLUS, Padua, Italy
| |
Collapse
|
13
|
Conti G, Jurga M, Benati D, Bernardi P, Mosconi E, Rigotti G, Buvé M, Van Wemmel K, Sbarbati A. Cryopreserved Subcutaneous Adipose Tissue for Fat Graft. Aesthetic Plast Surg 2015. [PMID: 26202141 DOI: 10.1007/s00266-015-0538-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Cryopreservation of subcutaneous white adipose tissue (sWAT) avoids multiple surgeries in patients subjected to reconstructive procedure. Fat grafts were performed subcutaneously on 26 mice treated with fresh (13 mice) or cryopreserved (13 mice) human sWAT. Cytofluorometry for CD marker expression of stem cells, differentiation capability, and in vivo survival of fat grafts were evaluated. In vitro analysis evidenced that cryopreservation did not affect the stem potential of samples. In vivo MRI showed that grafts were well preserved in 13 mice treated with fresh sWAT, whereas in 13 animals treated with thawed fat, graft volumes were strongly reduced after 1 week. Ultrastructural studies performed both on fresh and thawed specimens demonstrated that grafts performed with thawed sWAT are able to store lipids more slowly with respect to grafts performed with fresh sWAT and adipocytes maintained a multilocular appearance. Collected data demonstrated that the protocol of cryopreservation could maintain the regenerative capability of the sWAT, but the rate of reabsorption after fat grafting is higher using cryopreserved sWAT. Maintaining the stem potential of sWAT after cryopreservation is a very important aspect for reconstructive and regenerative medicine. The employment of cryopreserved sWAT represents an interesting goal for surgeons. Surely there is the necessity to improve the protocol of cryopreservation. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
Collapse
Affiliation(s)
- Giamaica Conti
- Anatomy and Histology Section, Department of Neurological and Movement Sciences, University of Verona, Strada le Grazie 8, 37134, Verona, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|