1
|
Nguyen VCL, Perret T, Fabre V, Gomez A, Sirigu A. Cost and benefit of parafoveal information during reading acquisition as revealed by finger movement patterns. Sci Rep 2024; 14:25127. [PMID: 39448714 PMCID: PMC11502842 DOI: 10.1038/s41598-024-75706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Contrary to expert readers, children learning to read have limited ability to preprocess letters in parafoveal vision. Parafoveal letters induce crowding cost: the features of neighboring letters interfere with target letter identification. We longitudinally studied the weight of parafoveal cost and benefit in two group of children (N = 42), during their first school year (Group 1) and at the end of second school year (Groupe 2). Using a novel digit-tracking method, a blurred text was presented and rendered unblurred by touching the screen, allowing the user to discover a window of visible text as the finger moved along it. We compared two conditions: (1) a large window, where crowding was enhanced by the presence of parafoveal information; (2) a small window, where crowding was suppressed by blurred parafoveal information. Finger kinematics were simultaneously recorded. We found that at the beginning of first-grade, digital fixations - brief slowing or stopping of the finger on a specific point - are significantly longer in the large compared to the small window condition, as parafoveal crowding increases text processing difficulty. This effect diminishes and disappears at the end of second-grade as reading performance improves. In the large window condition, longer digital saccades - rapid movements of the finger changing position - appear by the end of first grade suggesting that parafoveal exposure become more beneficial than harmful when children acquire basic reading skills. Our results show that in beginning readers, crowding has a cognitive cost that interfere with the speed of the learning reading process. Our findings are relevant to the field of education by showing that visual crowding in first grade should not be underestimated.
Collapse
Affiliation(s)
- Viet Chau Linh Nguyen
- Institute of Cognitive Science Marc Jeannerod, Centre National de la Recherche Scientifique, Bron, 69675, France
- Trajectoires team (VCLN), EDUWELL team (AG), Lyon Neuroscience Research Center, Inserm U1028, CNRS, Lyon 1 University, Lyon, France
| | - Thomas Perret
- Institute of Cognitive Science Marc Jeannerod, Centre National de la Recherche Scientifique, Bron, 69675, France
- Trajectoires team (VCLN), EDUWELL team (AG), Lyon Neuroscience Research Center, Inserm U1028, CNRS, Lyon 1 University, Lyon, France
| | - Valentine Fabre
- Institute of Cognitive Science Marc Jeannerod, Centre National de la Recherche Scientifique, Bron, 69675, France
| | - Alice Gomez
- Institute of Cognitive Science Marc Jeannerod, Centre National de la Recherche Scientifique, Bron, 69675, France
- Trajectoires team (VCLN), EDUWELL team (AG), Lyon Neuroscience Research Center, Inserm U1028, CNRS, Lyon 1 University, Lyon, France
| | - Angela Sirigu
- Institute of Cognitive Science Marc Jeannerod, Centre National de la Recherche Scientifique, Bron, 69675, France.
- iMIND, Center of Excellence for Autism, Bron, France.
| |
Collapse
|
2
|
Yong K, Petzold A, Foster P, Young A, Bell S, Bai Y, Leff AP, Crutch S, Greenwood JA. The Graded Incomplete Letters Test (GILT): a rapid test to detect cortical visual loss, with UK Biobank implementation. Behav Res Methods 2024; 56:7748-7760. [PMID: 38890263 PMCID: PMC11362218 DOI: 10.3758/s13428-024-02448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Impairments of object recognition are core features of neurodegenerative syndromes, in particular posterior cortical atrophy (PCA; the 'visual-variant Alzheimer's disease'). These impairments arise from damage to higher-level cortical visual regions and are often missed or misattributed to common ophthalmological conditions. Consequently, diagnosis can be delayed for years with considerable implications for patients. We report a new test for the rapid measurement of cortical visual loss - the Graded Incomplete Letters Test (GILT). The GILT is an optimised psychophysical variation of a test used to diagnose cortical visual impairment, which measures thresholds for recognising letters under levels of increasing visual degradation (decreasing "completeness") in a similar fashion to ophthalmic tests. The GILT was administered to UK Biobank participants (total n=2,359) and participants with neurodegenerative conditions characterised by initial cortical visual (PCA, n=18) or memory loss (typical Alzheimer's disease, n=9). UK Biobank participants, including both typical adults and those with ophthalmological conditions, were able to recognise letters under low levels of completeness. In contrast, participants with PCA consistently made errors with only modest decreases in completeness. GILT sensitivity to PCA was 83.3% for participants reaching the 80% accuracy cut-off, increasing to 88.9% using alternative cut-offs (60% or 100% accuracy). Specificity values were consistently over 94% when compared to UK Biobank participants without or with documented visual conditions, regardless of accuracy cut-off. These first-release UK Biobank and clinical verification data suggest the GILT has utility in both rapidly detecting visual perceptual losses following posterior cortical damage and differentiating perceptual losses from common eye-related conditions.
Collapse
Affiliation(s)
- Kxx Yong
- Queen Square Institute of Neurology, University College London, London, UK.
| | - A Petzold
- Queen Square Institute of Neurology, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Neuro-ophthalmology Expertise Centre, Amsterdam UMC, Amsterdam, NL, The Netherlands
| | - P Foster
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - A Young
- Big Data Institute, Nuffield, Department of Population Health, University of Oxford, Oxford, UK
| | - S Bell
- UK Biobank, Stockport, UK
| | - Y Bai
- Queen Square Institute of Neurology, University College London, London, UK
| | - A P Leff
- Queen Square Institute of Neurology, University College London, London, UK
| | - S Crutch
- Queen Square Institute of Neurology, University College London, London, UK
| | - J A Greenwood
- Experimental Psychology, University College London, London, UK.
| |
Collapse
|
3
|
Wolfe JM, Hulleman J, Mitra A, Si W. In simple but challenging search tasks, most errors are stochastic. Atten Percept Psychophys 2024; 86:2289-2300. [PMID: 39160388 DOI: 10.3758/s13414-024-02938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 08/21/2024]
Abstract
In visual search tasks in the lab and in the real world, people routinely miss targets that are clearly visible: so-called look but fail to see (LBFTS) errors. If search displays are shown to the same observer twice, we can ask about the probability of joint errors, where the target is missed both times. If errors are "deterministic," then the probability of a second error on the same display-given that the target was missed the first time-should be high. If errors are "stochastic," the probability of joint errors should be the product of the error rate for first and second appearances. Here, we report on two versions of a T among Ls search with somewhat degraded letters to make search more difficult. In Experiment 1, Ts could either appear amidst crowded "clumps" of Ls or more in isolation. Observers made more errors when the T was in a clump, but these errors were mainly stochastic. In Experiment 2, the task was made harder by making Ts and Ls more similar. Again, errors were predominantly stochastic. If other, socially important errors are also stochastic, this would suggest that "double reading," where two observers (human or otherwise) look at each stimulus, could reduce overall error rates.
Collapse
Affiliation(s)
- Jeremy M Wolfe
- Brigham and Women's Hospital, 900 Commonwealth Ave, 3rd Floor, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, USA.
| | | | - Ava Mitra
- Brigham and Women's Hospital, 900 Commonwealth Ave, 3rd Floor, Boston, MA, 02215, USA
| | | |
Collapse
|
4
|
Gong M, Liu T, Chen Y, Sun Y. Dissociable Effects of Endogenous and Exogenous Attention on Crowding: Evidence from Event-Related Potentials. Brain Sci 2024; 14:956. [PMID: 39451971 PMCID: PMC11506501 DOI: 10.3390/brainsci14100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES Crowding is a common visual phenomenon that can significantly impair the recognition of objects in peripheral vision. Two recent behavioral studies have revealed that both exogenous and endogenous attention can alleviate crowding, but exogenous attention seems to be more effective. METHODS The present study employed the event-related potential (ERP) technique to explore the electrophysiological characteristics of the influence of these two types of attention on crowding. In the experiment, participants were required to judge whether the letter "T" was upright or inverted, which may be preceded by an exogenous cue or an endogenous cue indicating the location of the target letter. RESULTS The behavioral results showed that while exogenous cues reduced crowding in all stimulus onset asynchronies (SOAs), endogenous attention took effects only in long SOA. The ERP results indicated that both endogenous and exogenous cues significantly alleviated the inhibition of visual crowding on the N1 component. However, the endogenous cue was effective only under long SOA, while the exogenous cue was effective only under short SOA conditions. In addition, invalid exogenous cues induced a larger P3 wave amplitude than valid ones in the short SOA condition, but endogenous attention did not show such a difference. CONCLUSIONS These results indicate that both endogenous and exogenous attention can alleviate the effects of visual crowding, but they differ in effect size and temporal dynamics.
Collapse
Affiliation(s)
- Mingliang Gong
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China; (T.L.); (Y.C.); (Y.S.)
| | | | | | | |
Collapse
|
5
|
Yashar A, Carrasco M. When periphery rules: Enhanced sampling weights of the visual periphery in crowding across dimensions. Psychon Bull Rev 2024:10.3758/s13423-024-02580-7. [PMID: 39302501 DOI: 10.3758/s13423-024-02580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
Crowding, our inability to identify a feature or object - the target - due to its proximity to adjacent features or objects - flankers - exhibits a notable inner-outer asymmetry. This asymmetry is characterized by the outer flanker - more peripheral - creating stronger interference than the inner one - closer to the fovea. But crowding is not uniform across different feature dimensions. For example, in the case of orientation, this asymmetry reflects misreport errors: observers are more likely to misidentify the outer flanker as the target than the inner one. However, for spatial frequency (SF), observers tend to average the features of the target and flankers (Yashar et al., 2019). Here, we investigated whether and how the inner-outer asymmetry manifests across various feature dimensions: Gabor orientation and SF, as well as T-shape tilt and color. We reanalyzed continuous estimation reports data published by Yashar et al. (2019), focusing on a previously unanalyzed factor: the relative position of each flanker (inner vs. outer). We fit probabilistic models that assign variable weights to each flanker. Our analysis revealed that observers predominantly misreport the outer flanker as the target with Gabor orientation and T-shape tilt stimuli, and slightly so with color stimuli, whereas with Gabor SF, observers perform a weighted average of all features but also with a bias towards the outer flanker over the inner one. These findings suggest that an increased weighting on the more peripheral items is a general characteristic of crowding in peripheral vision.
Collapse
Affiliation(s)
- Amit Yashar
- Department of Special Education, Faculty of Education, University of Haifa, 199 Abba Khoushy Ave, 3498838, Haifa, Israel.
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
6
|
Werth R. Revealing the Causes of Dyslexia through a Differential Diagnosis, a Short-Term Effective Treatment and an Appropriate Conceptual Framework. Diagnostics (Basel) 2024; 14:1965. [PMID: 39272749 PMCID: PMC11393927 DOI: 10.3390/diagnostics14171965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Various different impairments and their interactions can cause reading problems referred to as "dyslexia". Since reading requires the interaction of many abilities, the impairment of each of these abilities can result in dyslexia. Therefore, the diagnosis must differentiate various kinds of dyslexia. The diagnosis of a certain kind of dyslexia cannot be delimited to the investigation and description of symptoms but must also include the investigation of the causes of each kind of dyslexia. For this purpose, a scientifically unequivocal concept of causation and appropriate methods are needed to distinguish them from co-existing impairments that have no causal influence on reading performance. The results of applying these methods cannot be adequately accounted for by a non-scientific, intuitive understanding of necessary and sufficient conditions and causation. The methods suitable for revealing the causes of dyslexia are described in detail, and the results of applying these methods in experiments, in which 356 children with developmental dyslexia participated, are reviewed. Since the concepts of "necessary" and "sufficient" conditions and "causation" proposed in the philosophy of science are not suitable for describing causes of dyslexia and their interaction, they are replaced by a more detailed, experimentally based conceptual framework that provides an accurate description of the conditions required for correct reading and the causes of dyslexia.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 Munich, Germany
| |
Collapse
|
7
|
Tanriverdi D, Al-Nosairy KO, Hoffmann MB, Cornelissen FW. Assessing Visual Crowding in Participants With Preperimetric Glaucoma Using Eye Movement and Manual Response Paradigms. Transl Vis Sci Technol 2024; 13:8. [PMID: 39235398 PMCID: PMC11379081 DOI: 10.1167/tvst.13.9.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Purpose Crowding is the inability to distinguish objects in the periphery in the presence of clutter. Previous studies showed that crowding is elevated in patients with glaucoma. This could serve as an indicator of the functional visual performance of patients with glaucoma but at present appears too time-consuming and attentionally demanding. We examined visual crowding in individuals with preperimetric glaucoma to compare the potential effectiveness of eye movement-based and manual response paradigms. Methods We assessed crowding magnitude in 10 participants with preperimetric glaucoma and 10 age-matched controls. Crowding magnitudes were assessed using four different paradigms: a conventional two-alternative forced choice (2AFC) manual, a 2AFC and a six-alternative forced choice (6AFC) eye movement, and a serial search paradigm. All paradigms measured crowding magnitude by comparing participants' orientation discrimination thresholds in isolated and flanked stimulus conditions. Moreover, assessment times and participant preferences were compared across paradigms. Results Patients with preperimetric glaucoma exhibited elevated crowding, which was most evident in the manual-response paradigm. The serial search paradigm emerged as the fastest method for assessing thresholds, yet it could not effectively distinguish between glaucoma and control groups. The 6AFC paradigm proved challenging for both groups. Conclusions We conclude that patients with preperimetric glaucoma demonstrate heightened binocular visual crowding. This is most effectively demonstrated via the 2AFC manual response paradigm. The additional attentional demand in eye movement paradigms rendered them less effective in the elderly population of the present study. Translational Relevance Our findings underscore both the value and the complexity of efficiently evaluating crowding in elderly participants, including those with preperimetric glaucoma.
Collapse
Affiliation(s)
- Dilce Tanriverdi
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Khaldoon O Al-Nosairy
- Section for Clinical and Experimental Sensory Physiology, Ophthalmic Department, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael B Hoffmann
- Section for Clinical and Experimental Sensory Physiology, Ophthalmic Department, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frans W Cornelissen
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Kandemir G, Olivers C. Comparing Neural Correlates of Memory Encoding and Maintenance for Foveal and Peripheral Stimuli. J Cogn Neurosci 2024; 36:1807-1826. [PMID: 38940724 PMCID: PMC11324249 DOI: 10.1162/jocn_a_02203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Visual working memory is believed to rely on top-down attentional mechanisms that sustain active sensory representations in early visual cortex, a mechanism referred to as sensory recruitment. However, both bottom-up sensory input and top-down attentional modulations thereof appear to prioritize the fovea over the periphery, such that initially peripheral percepts may even be assimilated by foveal processes. This raises the question whether and how visual working memory differs for central and peripheral input. To address this, we conducted a delayed orientation recall task in which an orientation was presented either at the center of the screen or at 15° eccentricity to the left or right. Response accuracy, EEG activity, and gaze position were recorded from 30 participants. Accuracy was slightly but significantly higher for foveal versus peripheral memories. Decoding of EEG recordings revealed a clear dissociation between early sensory and later maintenance signals. Although sensory signals were clearly decodable for foveal stimuli, they were not for peripheral input. In contrast, maintenance signals were equally decodable for both foveal and peripheral memories, suggesting comparable top-down components regardless of eccentricity. Moreover, although memory representations were initially spatially specific and reflected in voltage fluctuations, later during the maintenance period, they generalized across locations, as emerged in alpha oscillations, thus revealing a dynamic transformation within memory from separate sensory traces to what we propose are common output-related codes. Furthermore, the combined absence of reliable decoding of sensory signals and robust presence of maintenance decoding indicates that storage activity patterns as measured by EEG reflect signals beyond primary visual cortex. We discuss the implications for the sensory recruitment hypothesis.
Collapse
|
9
|
Peltier C, Guillory S, Bolkhovsky J, Gever D, DeBrodt D, Diaz K. Performance During a Task That Simulates Passive Sonar Operator Duties Under Conditions of Varying Workloads. Mil Med 2024; 189:686-693. [PMID: 39160840 DOI: 10.1093/milmed/usae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION It is critical to develop and implement lab-based computer experiments that simulate real-world tasks in order to characterize operational requirements and challenges or identify potential solutions. Achieving a high degree of laboratory control, operational generalizability, and ease-of-use for a task is challenging, often leading to the development of tasks that can satisfy some facets but not all. This can result in insufficient solutions that leave real-world stakeholders with unsolved problems. MATERIALS AND METHODS This issue is addressed using a customized passive sonar simulator application that provides extensive researcher control over the design and manipulation of a sonar task; a visual appearance and cognitive demand similar to a true submarine-based sonar task; and a convenient and short training routine for sonar novices. The task requires participants to watch for multiple signal sources of varying appearance and salience and subsequently classify these signals into their respective categories. RESULTS The current study investigated the effects of stimulus signal strength and signal density on sonar task performance-including metrics of classification accuracy, classification confidence, and response times-finding an interaction between signal density and signal strength that resulted in greater performance errors with high signal density at the weakest signal strength. CONCLUSIONS The lab-based sonar application provides new possibilities for research, not limited to signal intensity and signal density but also through the manipulation of parameters such as the number of unique targets, target appearance, and task duration. This application may illuminate the operational demands that each of these factors may have on operator behavior within the dynamic tasks.
Collapse
Affiliation(s)
| | - Sylvia Guillory
- Leidos, Inc., New London, CT 06320, USA
- Warfighter Performance, Naval Submarine Medical Research Laboratory, Groton, CT 06349, USA
| | - Jeffrey Bolkhovsky
- Warfighter Performance, Naval Submarine Medical Research Laboratory, Groton, CT 06349, USA
| | - David Gever
- Leidos, Inc., New London, CT 06320, USA
- Warfighter Performance, Naval Submarine Medical Research Laboratory, Groton, CT 06349, USA
| | - Dawn DeBrodt
- Leidos, Inc., New London, CT 06320, USA
- Warfighter Performance, Naval Submarine Medical Research Laboratory, Groton, CT 06349, USA
| | - Krystina Diaz
- Leidos, Inc., New London, CT 06320, USA
- Warfighter Performance, Naval Submarine Medical Research Laboratory, Groton, CT 06349, USA
| |
Collapse
|
10
|
Waz S, Wang Y, Lu ZL. qPRF: A system to accelerate population receptive field decoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607805. [PMID: 39185219 PMCID: PMC11343136 DOI: 10.1101/2024.08.13.607805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Patterns of BOLD response can be decoded using the population receptive field (PRF) model to reveal how visual input is represented on the cortex (Dumoulin and Wandell, 2008). The time cost of evaluating the PRF model is high, often requiring days to decode BOLD signals for a small cohort of subjects. We introduce the qPRF, an efficient method for decoding that reduced the computation time by a factor of 1436 when compared to another widely available PRF decoder (Kay, Winawer, Mezer and Wandell, 2013) on a benchmark of data from the Human Connectome Project (HCP; Van Essen, Smith, Barch, Behrens, Yacoub and Ugurbil, 2013). With a specially designed data structure and an efficient search algorithm, the qPRF optimizes the five PRF model parameters according to a least-squares criterion. To verify the accuracy of the qPRF solutions, we compared them to those provided by Benson, Jamison, Arcaro, Vu, Glasser, Coalson, Van Essen, Yacoub, Ugurbil, Winawer and Kay (2018). Both hemispheres of the 181 subjects in the HCP data set (a total of 10,753,572 vertices, each with a unique BOLD time series of 1800 frames) were decoded by qPRF in 15.2 hours on an ordinary CPU. The absolute difference inR 2 reported by Benson et al. and achieved by the qPRF was negligible, with a median of 0.39% (R 2 units being between 0% and 100%). In general, the qPRF yielded a slightly better fitting solution, achieving a greaterR 2 on 99.7% of vertices. The qPRF may facilitate the development and computation of more elaborate models based on the PRF framework, as well as the exploration of novel clinical applications.
Collapse
Affiliation(s)
- Sebastian Waz
- Center for Neural Science, New York University, 4 Washington Place, New York, 10003, NY, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, 699 S. Mill Avenue, Tempe, 85281, AZ, USA
| | - Zhong-Lin Lu
- Center for Neural Science, New York University, 4 Washington Place, New York, 10003, NY, USA
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Pudong New District, 200124, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science, 3663 Zhongshan Road North, Putuo District, 200062, Shanghai, China
| |
Collapse
|
11
|
Pruitt J, Knotts JD, Odegaard B. Consistent metacognitive efficiency and variable response biases in peripheral vision. J Vis 2024; 24:4. [PMID: 39110584 PMCID: PMC11314628 DOI: 10.1167/jov.24.8.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/17/2024] [Indexed: 08/11/2024] Open
Abstract
Across the visual periphery, perceptual and metacognitive abilities differ depending on the locus of visual attention, the location of peripheral stimulus presentation, the task design, and many other factors. In this investigation, we aimed to illuminate the relationship between attention and eccentricity in the visual periphery by estimating perceptual sensitivity, metacognitive sensitivity, and response biases across the visual field. In a 2AFC detection task, participants were asked to determine whether a signal was present or absent at one of eight peripheral locations (±10°, 20°, 30°, and 40°), using either a valid or invalid attentional cue. As expected, results revealed that perceptual sensitivity declined with eccentricity and was modulated by attention, with higher sensitivity on validly cued trials. Furthermore, a significant main effect of eccentricity on response bias emerged, with variable (but relatively unbiased) c'a values from 10° to 30°, and conservative c'a values at 40°. Regarding metacognitive sensitivity, significant main effects of attention and eccentricity were found, with metacognitive sensitivity decreasing with eccentricity, and decreasing in the invalid cue condition. Interestingly, metacognitive efficiency, as measured by the ratio of meta-d'a/d'a, was not modulated by attention or eccentricity. Overall, these findings demonstrate (1) that in some circumstances, observers have surprisingly robust metacognitive insights into how performance changes across the visual field and (2) that the periphery may be subject to variable detection biases that are contingent on the exact location in peripheral space.
Collapse
Affiliation(s)
- Joseph Pruitt
- University of Florida, Gainesville, FL, USA
- https://orcid.org/0000-0002-4887-6090
| | | | - Brian Odegaard
- University of Florida, Gainesville, FL, USA
- https://orcid.org/0000-0002-5459-1884
| |
Collapse
|
12
|
Waugh SJ, Fronius M. Landolt C-Tests With "Fixed" Arcmin Separations Detect Amblyopia But Underestimate Crowding in Moderate-to-Severe Amblyopic Children and Adults. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 39177974 PMCID: PMC11346165 DOI: 10.1167/iovs.65.10.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Purpose Crowding is exaggerated in central vision of strabismic amblyopia, impacting on reading ability. Crowding magnitude and interocular differences (IODs) in acuity are indicators for detection, assessment, and monitoring of treatment. Lateral masking (including contour interaction) also affects acuity and can mimic or ameliorate crowding. We investigated lateral masking/contour interaction and crowding impact on crowding magnitude and IOD measures in healthy and amblyopic pediatric and juvenile/adult groups using two Landolt C-tests with "fixed" arcmin separations. Methods Acuity (logMAR) was measured with Landolt C-tests with specified 2.6' ("crowded") and 35' ("uncrowded") separations. Crowding magnitudes (crowded - uncrowded acuities) and IODs were calculated. Participants were 69 subjects with strabismic amblyopia (n = 39 pediatric, i.e. children ≤8 years of age), 31 subjects with anisometropic amblyopia (n = 14 pediatric), and 76 healthy controls (n = 36 pediatric). Subjects with amblyopia were subgrouped by acuity as low severity (<0.4 logMAR) or high severity (≥0.4 logMAR) using the 35' separation C-test. Results Crowding magnitudes were greater in strabismic than in anisometropic amblyopia and control/fellow eyes. They were higher in pediatric control/fellow eyes than in juvenile/adult eyes. In high severity strabismic amblyopia, crowding magnitudes progressively and significantly reduced (slope = -0.17 ± 0.07, P < 0.05) with worsening acuity. IODs for this group were higher on the 2.6' C-test, but lower than expected. In high severity pediatric subjects with anisometropic amblyopia, seven of eight had lower IODs measured with the "crowded" than the "uncrowded" C-tests. Conclusions These C-tests detect amblyopia but underestimate crowding in children and adults with high severity strabismic amblyopia. Separate isolated optotype acuity and crowding distance tests may better target specific functions, while minimizing the impact of masking.
Collapse
Affiliation(s)
- Sarah J. Waugh
- Centre for Vision across the Life Span, School of Applied Sciences, University of Huddersfield, United Kingdom
| | - Maria Fronius
- Goethe University Hospital, Department of Ophthalmology, Child Vision Research Unit, Frankfurt, Germany
| |
Collapse
|
13
|
Lu X, Jiang R, Song M, Wu Y, Ge Y, Chen N. Seeing in crowds: Averaging first, then max. Psychon Bull Rev 2024; 31:1856-1866. [PMID: 38337141 DOI: 10.3758/s13423-024-02468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Crowding, a fundamental limit in object recognition, is believed to result from excessive integration of nearby items in peripheral vision. To understand its pooling mechanisms, we measured subjects' internal response distributions in an orientation crowding task. Contrary to the prediction of an averaging model, we observed a pattern suggesting that the perceptual judgement is made based on choosing the largest response across the noise-perturbed items. A model featuring first-stage averaging and second-stage signed-max operation predicts the diverse errors made by human observers under various signal strength levels. These findings suggest that different rules operate to resolve the bottleneck at early and high-level stages of visual processing, implementing a combination of linear and nonlinear pooling strategies.
Collapse
Affiliation(s)
- Xincheng Lu
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 506, Weiqing Building, Beijing, 100084, People's Republic of China
| | - Ruijie Jiang
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 506, Weiqing Building, Beijing, 100084, People's Republic of China
| | - Meng Song
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 506, Weiqing Building, Beijing, 100084, People's Republic of China
| | - Yiting Wu
- Khoury College of Computer Sciences, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Yiran Ge
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 506, Weiqing Building, Beijing, 100084, People's Republic of China
| | - Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Room 506, Weiqing Building, Beijing, 100084, People's Republic of China.
- IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
14
|
Hochmitz I, Abu-Akel A, Yeshurun Y. Interference across time: dissociating short from long temporal interference. Front Psychol 2024; 15:1393065. [PMID: 39114585 PMCID: PMC11305178 DOI: 10.3389/fpsyg.2024.1393065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024] Open
Abstract
Our ability to identify an object is often impaired by the presence of preceding and/or succeeding task-irrelevant items. Understanding this temporal interference is critical for any theoretical account of interference across time and for minimizing its detrimental effects. Therefore, we used the same sequences of 3 orientation items, orientation estimation task, and computational models, to examine temporal interference over both short (<150 ms; visual masking) and long (175-475 ms; temporal crowding) intervals. We further examined how inter-item similarity modifies these different instances of temporal interference. Qualitatively different results emerged for interference of different scales. Interference over long intervals mainly degraded the precision of the target encoding while interference over short intervals mainly affected the signal-to-noise ratio. Although both interference instances modulated substitution errors (reporting a wrong item) and were alleviated with dissimilar items, their characteristics were markedly disparate. These findings suggest that different mechanisms mediate temporal interference of different scales.
Collapse
Affiliation(s)
- Ilanit Hochmitz
- The Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | - Ahmad Abu-Akel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
- The Haifa Brain and Behavior Hub (HBB), University of Haifa, Haifa, Israel
| | - Yaffa Yeshurun
- The Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
L-Miao L, Reynvoet B, Sayim B. The radial-tangential anisotropy of numerosity perception. J Vis 2024; 24:15. [PMID: 39046720 PMCID: PMC11271808 DOI: 10.1167/jov.24.7.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Humans can estimate the number of visually presented items without counting. In most studies on numerosity perception, items are uniformly distributed across displays, with identical distributions in central and eccentric parts. However, the neural and perceptual representation of the human visual field differs between the fovea and the periphery. For example, in peripheral vision, there are strong asymmetries with regard to perceptual interferences between visual items. In particular, items arranged radially usually interfere more strongly with each other than items arranged tangentially (the radial-tangential anisotropy). This has been shown for crowding (the deleterious effect of clutter on target identification) and redundancy masking (the reduction of the number of perceived items in repeating patterns). In the present study, we tested how the radial-tangential anisotropy of peripheral vision impacts numerosity perception. In four experiments, we presented displays with varying numbers of discs that were predominantly arranged radially or tangentially, forming strong and weak interference conditions, respectively. Participants were asked to report the number of discs. We found that radial displays were reported as less numerous than tangential displays for all radial and tangential manipulations: weak (Experiment 1), strong (Experiment 2), and when using displays with mixed contrast polarity discs (Experiments 3 and 4). We propose that numerosity perception exhibits a significant radial-tangential anisotropy, resulting from local spatial interactions between items.
Collapse
Affiliation(s)
- Li L-Miao
- Université de Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
- Faculty of Psychology and Educational Sciences, KU Leuven Kulak, Kortrijk, Belgium
- https://miaoli-psy.github.io/
| | - Bert Reynvoet
- Faculty of Psychology and Educational Sciences, KU Leuven Kulak, Kortrijk, Belgium
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- https://www.kuleuven.be/wieiswie/nl/person/00047096
| | - Bilge Sayim
- Université de Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
- https://www.appearancelab.org/bilge
| |
Collapse
|
16
|
Groh JM, Schmehl MN, Caruso VC, Tokdar ST. Signal switching may enhance processing power of the brain. Trends Cogn Sci 2024; 28:600-613. [PMID: 38763804 DOI: 10.1016/j.tics.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Our ability to perceive multiple objects is mysterious. Sensory neurons are broadly tuned, producing potential overlap in the populations of neurons activated by each object in a scene. This overlap raises questions about how distinct information is retained about each item. We present a novel signal switching theory of neural representation, which posits that neural signals may interleave representations of individual items across time. Evidence for this theory comes from new statistical tools that overcome the limitations inherent to standard time-and-trial-pooled assessments of neural signals. Our theory has implications for diverse domains of neuroscience, including attention, figure binding/scene segregation, oscillations, and divisive normalization. The general concept of switching between functions could also lend explanatory power to theories of grounded cognition.
Collapse
Affiliation(s)
- Jennifer M Groh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27705, USA; Department of Neurobiology, Duke University, Durham, NC, 27705, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27705, USA; Department of Computer Science, Duke University, Durham, NC, 27705, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, 27705, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, 27705, USA.
| | - Meredith N Schmehl
- Department of Neurobiology, Duke University, Durham, NC, 27705, USA; Center for Cognitive Neuroscience, Duke University, Durham, NC, 27705, USA; Duke Institute for Brain Sciences, Duke University, Durham, NC, 27705, USA
| | - Valeria C Caruso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Surya T Tokdar
- Department of Statistical Science, Duke University, Durham, NC, 27705, USA
| |
Collapse
|
17
|
Kim T, Pasupathy A. Neural Correlates of Crowding in Macaque Area V4. J Neurosci 2024; 44:e2260232024. [PMID: 38670806 PMCID: PMC11170949 DOI: 10.1523/jneurosci.2260-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Visual crowding refers to the phenomenon where a target object that is easily identifiable in isolation becomes difficult to recognize when surrounded by other stimuli (distractors). Many psychophysical studies have investigated this phenomenon and proposed alternative models for the underlying mechanisms. One prominent hypothesis, albeit with mixed psychophysical support, posits that crowding arises from the loss of information due to pooled encoding of features from target and distractor stimuli in the early stages of cortical visual processing. However, neurophysiological studies have not rigorously tested this hypothesis. We studied the responses of single neurons in macaque (one male, one female) area V4, an intermediate stage of the object-processing pathway, to parametrically designed crowded displays and texture statistics-matched metameric counterparts. Our investigations reveal striking parallels between how crowding parameters-number, distance, and position of distractors-influence human psychophysical performance and V4 shape selectivity. Importantly, we also found that enhancing the salience of a target stimulus could alleviate crowding effects in highly cluttered scenes, and this could be temporally protracted reflecting a dynamical process. Thus, a pooled encoding of nearby stimuli cannot explain the observed responses, and we propose an alternative model where V4 neurons preferentially encode salient stimuli in crowded displays. Overall, we conclude that the magnitude of crowding effects is determined not just by the number of distractors and target-distractor separation but also by the relative salience of targets versus distractors based on their feature attributes-the similarity of distractors and the contrast between target and distractor stimuli.
Collapse
Affiliation(s)
- Taekjun Kim
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Anitha Pasupathy
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| |
Collapse
|
18
|
Lecce M, Miazza D, Muzio C, Parigi M, Miazza A, Bergomi MG. Visuospatial, oculomotor, and executive reading skills evolve in elementary school, and errors are significant: a topological RAN study. Front Psychol 2024; 15:1383969. [PMID: 38903458 PMCID: PMC11188999 DOI: 10.3389/fpsyg.2024.1383969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
We investigate the development of visuospatial and oculomotor reading skills in a cohort of elementary school children. Employing a longitudinal methodology, the study applies the Topological serial digit Rapid Automated Naming (Top-RAN) battery, which evaluates visuospatial reading skills leveraging metrics addressing crowding, distractors, and voluntary attention orientation. The participant pool comprises 142 students (66 males, 76 females), including 46 non-native speakers (21 males, 25 females), representing a diverse range of ethnic backgrounds. The Top-RAN dataset encompasses performance, error, and self-correction metrics for each subtest and student, underscoring the significance of these factors in the process of reading acquisition. Analytical methods include dimensionality reduction, clustering, and classification algorithms, consolidated into a Python package to facilitate reproducible results. Our results indicate that visuospatial reading abilities vary according to the task and demonstrate a marked evolution over time, as seen in the progressive decrease in execution times, errors, and self-corrections. This pattern supports the hypothesis that the growth of oculomotor, attentional, and executive skills is primarily fostered by educational experiences and maturation. This investigation provides valuable insights into the dynamic nature of these skills during pivotal educational stages.
Collapse
|
19
|
Holyfield C, Pope L, Light J, Jakobs E, Laubscher E, McNaughton D, Pfaff O. Effects of an AAC feature on decoding and encoding skills of adults with Down syndrome. Augment Altern Commun 2024; 40:140-154. [PMID: 37888962 PMCID: PMC11232569 DOI: 10.1080/07434618.2023.2266025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Literacy skills can assist in the navigation and enjoyment of adult life. For individuals who have reached adulthood without strong literacy skills, opportunities for continued literacy learning are few. Redesigning AAC technologies to support literacy skill development could extend literacy learning opportunities for adults with developmental disabilities who have limited speech. The current preliminary study evaluated an AAC technology feature designed to support literacy development. The study used a multiple probe across participants design. Three adults with Down syndrome who had limited speech and only basic decoding skills participated. Results suggest the participants made modest gains in decoding accuracy after interacting using the AAC app with the literacy supportive feature, though performance was highly variable. Results also offer emerging evidence that, for two participants, some generalization to encoding performance may have also been achieved. Results showed that, for all the participants, interacting using the literacy supportive feature increased their reading confidence. Altogether, the study's results show preliminary evidence that the feature can support adults with Down syndrome in their ongoing literacy learning, though access to formal instruction is still critical. Future research is needed to continue to explore this and other AAC technology redesigns to increase learning opportunities for the people who use the technology every day to communicate.
Collapse
Affiliation(s)
- Christine Holyfield
- Department of Rehabilitation, Human Resources, and Communication Disorders, University of Arkansas
| | - Lauramarie Pope
- Department of Communication Sciences and Disorders, Pennsylvania State University
| | - Janice Light
- Department of Communication Sciences and Disorders, Pennsylvania State University
| | - Erik Jakobs
- Department of Communication Sciences and Disorders, Pennsylvania State University
| | - Emily Laubscher
- Department of Communication Sciences and Disorders, Pennsylvania State University
| | - David McNaughton
- Department of Educational Psychology, Counseling, and Special Education, Pennsylvania State University
| | - Olivia Pfaff
- Department of Communication Sciences and Disorders, Pennsylvania State University
| |
Collapse
|
20
|
Cutler J, Bodet A, Rivest J, Cavanagh P. The word superiority effect overcomes crowding. Vision Res 2024; 222:108436. [PMID: 38820621 DOI: 10.1016/j.visres.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024]
Abstract
Crowding and the word superiority effect are two perceptual phenomena that influence reading. The identification of the inner letters of a word can be hindered by crowding from adjacent letters, but it can be facilitated by the word context itself (the word superiority effect). In the present study, strings of four-letters (words and non-words) with different inter-letter spacings (ranging from an optimal spacing to produce crowding to a spacing too large to produce crowding) were presented briefly in the periphery and participants were asked to identify the third letter of the string. Each word had a partner word that was identical except for its third letter (e.g., COLD, CORD) so that guessing as the source of the improved performance for words could be ruled out. Unsurprisingly, letter identification accuracy for words was better than non-words. For non-words, it was lowest at closer spacings, confirming crowding. However, for words, accuracy remained high at all inter-letter spacings showing that crowding did not prevent identification of the inner letters. This result supports models of "holistic" word recognition where partial cues can lead to recognition without first identifying individual letters. Once the word is recognized, its inner letters can be recovered, despite their feature loss produced by crowding.
Collapse
Affiliation(s)
- June Cutler
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada
| | - Alexandre Bodet
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada
| | - Josée Rivest
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada; Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada.
| | - Patrick Cavanagh
- Department of Psychology, Glendon College, York University, Toronto, ON, M4N 3M6, Canada; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA; Centre for Vision Research, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
21
|
Manaligod de Jesus SA, Ito H, Kanematsu T. Retracing the rabbit's path: Effects of altering the second flash position in the visual saltation illusion. Iperception 2024; 15:20416695241254016. [PMID: 38778865 PMCID: PMC11110517 DOI: 10.1177/20416695241254016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Two dots shown in quick succession at one point and a third at a distance on the same linear path creates an illusion of intervening flashes on a visual field, a phenomenon known as the reduced visual rabbit illusion or visual saltation illusion. This study presents this illusion in a novel way by altering the position of the second flash, which has been typically presented only in the same position as the first flash. A series of experiments were conducted to observe whether saltation would occur if the second flash was presented in the same position as the third flash, out of sequential order relative to the first and last flash, or out of linear alignment at the midpoint between the first and the last flash. When all three flashes were presented in quick succession, participants misperceived the second flash to occur close to the midpoint between the first and last flash. Saltation was achieved in all three novel conditions, hinting a particular neurological process may be responsible for shared outcomes.
Collapse
Affiliation(s)
| | - Hiroyuki Ito
- Center for Applied Perceptual Science, Kyushu University, Fukuoka, Japan
| | - Tama Kanematsu
- Center for Applied Perceptual Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Malania M, Lin YS, Hörmandinger C, Werner JS, Greenlee MW, Plank T. Training-induced changes in population receptive field properties in visual cortex: Impact of eccentric vision training on population receptive field properties and the crowding effect. J Vis 2024; 24:7. [PMID: 38771584 PMCID: PMC11114612 DOI: 10.1167/jov.24.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/15/2024] [Indexed: 05/22/2024] Open
Abstract
This study aimed to investigate the impact of eccentric-vision training on population receptive field (pRF) estimates to provide insights into brain plasticity processes driven by practice. Fifteen participants underwent functional magnetic resonance imaging (fMRI) measurements before and after behavioral training on a visual crowding task, where the relative orientation of the opening (gap position: up/down, left/right) in a Landolt C optotype had to be discriminated in the presence of flanking ring stimuli. Drifting checkerboard bar stimuli were used for pRF size estimation in multiple regions of interest (ROIs): dorsal-V1 (dV1), dorsal-V2 (dV2), ventral-V1 (vV1), and ventral-V2 (vV2), including the visual cortex region corresponding to the trained retinal location. pRF estimates in V1 and V2 were obtained along eccentricities from 0.5° to 9°. Statistical analyses revealed a significant decrease of the crowding anisotropy index (p = 0.009) after training, indicating improvement on crowding task performance following training. Notably, pRF sizes at and near the trained location decreased significantly (p = 0.005). Dorsal and ventral V2 exhibited significant pRF size reductions, especially at eccentricities where the training stimuli were presented (p < 0.001). In contrast, no significant changes in pRF estimates were found in either vV1 (p = 0.181) or dV1 (p = 0.055) voxels. These findings suggest that practice on a crowding task can lead to a reduction of pRF sizes in trained visual cortex, particularly in V2, highlighting the plasticity and adaptability of the adult visual system induced by prolonged training.
Collapse
Affiliation(s)
- Maka Malania
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Yih-Shiuan Lin
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - John S Werner
- Department of Ophthalmology and Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Mark W Greenlee
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Tina Plank
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
23
|
Moshkovitz A, Lev M, Polat U. Crowding under scotopic and photopic vision in albino and normal-sighted participants. Sci Rep 2024; 14:8234. [PMID: 38589506 PMCID: PMC11001935 DOI: 10.1038/s41598-024-58369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
Crowding is a phenomenon in which the ability to recognize an object in a clutter deteriorates. It is, therefore, a fundamental aspect of object recognition and crucial in deciphering resolution. For visually impaired individuals, deficiency in crowding has a tremendous effect on vision and may reflect and predict the amount of deterioration in vision. It is well established that albinos suffer much more from crowding than normally sighted individuals under daylight luminance conditions. However, to our knowledge, this study is the first to investigate crowding in albino participants under low light conditions. In this study, we explored the crowding effect in a group of albino participants (n = 9) and a control group of normally sighted participants (n = 9). Crowding was conducted under daylight (photopic vision) and low light (scotopic vision). We measured the visual acuity threshold under crowding in three-letter spacing (0.5, 1, and 1.5) and compared it to a single target. Results indicate that albino participants experienced stronger crowding than the control under the photopic condition, while crowding under the scotopic condition was apparent in the albino but abolished for the control group. These findings highlight the importance of considering luminance when discussing the visually impaired population in general. In particular, it suggests that crowding in albinism is based on a peripheral-like mechanism and may indicate a cessation in visual development.
Collapse
Affiliation(s)
- Avital Moshkovitz
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
24
|
Sharma D, Lupkin SM, McGinty VB. Orbitofrontal high-gamma reflects spike-dissociable value and decision mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587758. [PMID: 38617349 PMCID: PMC11014579 DOI: 10.1101/2024.04.02.587758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orbitofrontal cortex (OFC) plays a crucial role in value-based decision-making. While previous research has focused on spiking activity in OFC neurons, the role of OFC local field potentials (LFPs) in decision-making remains unclear. LFPs are important because they can reflect synaptic and subthreshold activity not directly coupled to spiking, and because they are potential targets for less invasive forms of brain-machine interface (BMI). We recorded LFPs and spiking activity using multi-channel vertical probes while monkeys performed a two-option value-based decision-making task. We compared the value- and decision-coding properties of high-gamma range LFPs (HG, 50-150 Hz) to the coding properties of spiking multi-unit activity (MUA) recorded concurrently on the same electrodes. Results show that HG and MUA both represent the values of decision targets, and that their representations have similar temporal profiles in a trial. However, we also identified value-coding properties of HG that were dissociable from the concurrently-measured MUA. On average across channels, HG amplitude increased monotonically with value, whereas the average value encoding in MUA was net neutral. HG also encoded a signal consistent with a comparison between the values of the two targets, a signal which was much weaker in MUA. In individual channels, HG was better able to predict choice outcomes than MUA; however, when simultaneously recorded channels were combined in population-based decoder, MUA provided more accurate predictions than HG. Interestingly, HG value representations were accentuated in channels in or near shallow cortical layers, suggesting a dissociation between neuronal sources of HG and MUA. In summary, we find that HG signals are dissociable from MUA with respect to cognitive variables encoded in prefrontal cortex, evident in the monotonic encoding of value, stronger encoding of value comparisons, and more accurate predictions about behavior. High-frequency LFPs may therefore be a viable - or even preferable - target for BMIs to assist cognitive function, opening the possibility for less invasive access to mental contents that would otherwise be observable only with spike-based measures.
Collapse
Affiliation(s)
- Dixit Sharma
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
- Graduate Program in Neuroscience, Rutgers University – Newark
| | - Shira M. Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
- Graduate Program in Neuroscience, Rutgers University – Newark
| | - Vincent B. McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
| |
Collapse
|
25
|
Zhaoping L. Peripheral vision is mainly for looking rather than seeing. Neurosci Res 2024; 201:18-26. [PMID: 38000447 DOI: 10.1016/j.neures.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Vision includes looking and seeing. Looking, mainly via gaze shifts, selects a fraction of visual input information for passage through the brain's information bottleneck. The selected input is placed within the attentional spotlight, typically in the central visual field. Seeing decodes, i.e., recognizes and discriminates, the selected inputs. Hence, peripheral vision should be mainly devoted to looking, in particular, deciding where to shift the gaze. Looking is often guided exogenously by a saliency map created by the primary visual cortex (V1), and can be effective with no seeing and limited awareness. In seeing, peripheral vision not only suffers from poor spatial resolution, but is also subject to crowding and is more vulnerable to illusions by misleading, ambiguous, and impoverished visual inputs. Central vision, mainly for seeing, enjoys the top-down feedback that aids seeing in light of the bottleneck which is hypothesized to starts from V1 to higher areas. This feedback queries for additional information from lower visual cortical areas such as V1 for ongoing recognition. Peripheral vision is deficient in this feedback according to the Central-peripheral Dichotomy (CPD) theory. The saccades engendered by peripheral vision allows looking to combine with seeing to give human observers the impression of seeing the whole scene clearly despite inattentional blindness.
Collapse
Affiliation(s)
- Li Zhaoping
- University of Tübingen, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
26
|
Di Dona G, Zamfira DA, Battista M, Battaglini L, Perani D, Ronconi L. The role of parietal beta-band activity in the resolution of visual crowding. Neuroimage 2024; 289:120550. [PMID: 38382861 DOI: 10.1016/j.neuroimage.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/23/2024] Open
Abstract
Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.
Collapse
Affiliation(s)
- Giuseppe Di Dona
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| | - Denisa Adina Zamfira
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Martina Battista
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Piazza S. Francesco 19, 55100 Lucca LU, Italy
| | - Luca Battaglini
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova PD, Italy
| | - Daniela Perani
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy
| | - Luca Ronconi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milano MI, Italy; School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milano MI, Italy.
| |
Collapse
|
27
|
Tanriverdi D, Cornelissen FW. Rapid assessment of peripheral visual crowding. Front Neurosci 2024; 18:1332701. [PMID: 38629049 PMCID: PMC11019380 DOI: 10.3389/fnins.2024.1332701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Visual crowding, the phenomenon in which the ability to distinguish objects is hindered in cluttered environments, has critical implications for various ophthalmic and neurological disorders. Traditional methods for assessing crowding involve time-consuming and attention-demanding psychophysical tasks, making routine examination challenging. This study sought to compare trial-based Alternative Forced-Choice (AFC) paradigms using either manual or eye movement responses and a continuous serial search paradigm employing eye movement responses to evaluate their efficiency in rapidly assessing peripheral crowding. In all paradigms, we manipulated the orientation of a central Gabor patch, which could be presented alone or surrounded by six Gabor patches. We measured participants' target orientation discrimination thresholds using adaptive psychophysics to assess crowding magnitude. Depending on the paradigm, participants either made saccadic eye movements to the target location or responded manually by pressing a key or moving a mouse. We compared these paradigms in terms of crowding magnitude, assessment time, and paradigm demand. Our results indicate that employing eye movement-based paradigms for assessing peripheral visual crowding yields results faster compared to paradigms that necessitate manual responses. Furthermore, when considering similar levels of confidence in the threshold measurements, both a novel serial search paradigm and an eye movement-based 6AFC paradigm proved to be the most efficient in assessing crowding magnitude. Additionally, crowding estimates obtained through either the continuous serial search or the 6AFC paradigms were consistently higher than those obtained using the 2AFC paradigms. Lastly, participants did not report a clear difference between paradigms in terms of their perceived demand. In conclusion, both the continuous serial search and the 6AFC eye movement response paradigms enable a fast assessment of visual crowding. These approaches may potentially facilitate future routine crowding assessment. However, the usability of these paradigms in specific patient populations and specific purposes should be assessed.
Collapse
Affiliation(s)
- Dilce Tanriverdi
- Laboratory for Experimental Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
28
|
Morton MP, Denagamage S, Hudson NV, Nandy AS. Non-uniform contextual interactions in the visual cortex place fundamental limits on spatial vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553380. [PMID: 37645826 PMCID: PMC10462024 DOI: 10.1101/2023.08.15.553380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A prevailing assumption in our understanding of how neurons in the primary visual cortex (V1) integrate contextual information is that such processes are spatially uniform. Conversely, perceptual phenomena such as visual crowding, the impaired ability to accurately recognize a target stimulus among distractors, suggest that interactions among stimuli are distinctly non-uniform. Prior studies have shown flankers at specific spatial geometries exert differential effects on target perception. To resolve this discrepancy, we investigated how flanker geometry impacted the representation of a target stimulus in the laminar microcircuits of V1. Our study reveals flanker location differentially impairs stimulus representation in excitatory neurons in the superficial and input layers of V1 by tuned suppression and untuned facilitation of orientation responses. Mechanistically, this effect can be explained by asymmetrical spatial kernels in a normalization model of cortical activity. Strikingly, these non-uniform modulations of neural representation mirror perceptual anisotropies. These results establish the non-uniform spatial integration of information in the earliest stages of cortical processing as a fundamental limitation of spatial vision.
Collapse
|
29
|
Van der Burg E, Ledegang WD, Kooi FL, Houben MMJ, Groen EL. Attentional Tunneling in Pilots During a Visual Tracking Task With a Head Mounted Display. HUMAN FACTORS 2024:187208241236395. [PMID: 38445657 DOI: 10.1177/00187208241236395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
OBJECTIVE We examined whether active head aiming with a Helmet Mounted Display (HMD) can draw the pilot's attention away from a primary flight task. Furthermore, we examined whether visual clutter increases this effect. BACKGROUND Head up display symbology can result in attentional tunneling, and clutter makes it difficult to identify objects. METHOD Eighteen military pilots had to simultaneously perform an attitude control task while flying in clouds and a head aiming task in a fixed-base flight simulator. The former consisted of manual compensation for roll disturbances of the aircraft, while the latter consisted of keeping a moving visual target inside a small or large head-referenced circle. A "no head aiming" condition served as a baseline. Furthermore, all conditions were performed with or without visual clutter. RESULTS Head aiming led to deterioration of the attitude control task performance and an increase of the amount of roll-reversal errors (RREs). This was even the case when head aiming required minimal effort. Head aiming accuracy was significantly lower when the roll disturbances in the attitude control task were large compared to when they were small. Visual clutter had no effect on both tasks. CONCLUSION We suggest that active head aiming of HMD symbology can cause attentional tunneling, as expressed by an increased number of RREs and less accuracy on a simultaneously performed attitude control task. APPLICATION This study improves our understanding in the perceptual and cognitive effects of (military) HMDs, and has implications for operational use and possibly (re)design of HMDs.
Collapse
Affiliation(s)
- Erik Van der Burg
- TNO Human Factors, Soesterberg, The Netherlands
- University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Cobos MI, Melcón M, Rodríguez-San Esteban P, Capilla A, Chica AB. The role of brain oscillations in feature integration. Psychophysiology 2024; 61:e14467. [PMID: 37990794 DOI: 10.1111/psyp.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023]
Abstract
Our sensory system is able to build a unified perception of the world, which although rich, is limited and inaccurate. Sometimes, features from different objects are erroneously combined. At the neural level, the role of the parietal cortex in feature integration is well-known. However, the brain dynamics underlying correct and incorrect feature integration are less clear. To explore the temporal dynamics of feature integration, we studied the modulation of different frequency bands in trials in which feature integration was correct or incorrect. Participants responded to the color of a shape target, surrounded by distractors. A calibration procedure ensured that accuracy was around 70% in each participant. To explore the role of expectancy in feature integration, we introduced an unexpected feature to the target in the last blocks of trials. Results demonstrated the contribution of several frequency bands to feature integration. Alpha and beta power was reduced for hits compared to illusions. Moreover, gamma power was overall larger during the experiment for participants who were aware of the unexpected target presented during the last blocks of trials (as compared to unaware participants). These results demonstrate that feature integration is a complex process that can go wrong at different stages of information processing and is influenced by top-down expectancies.
Collapse
Affiliation(s)
- M I Cobos
- Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada (UGR), Granada, Spain
- Department of Experimental Psychology, University of Granada (UGR), Granada, Spain
| | - M Melcón
- Department of Biological and Health Psychology, Autonomous University of Madrid (UAM), Madrid, Spain
| | - P Rodríguez-San Esteban
- Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada (UGR), Granada, Spain
- Department of Experimental Psychology, University of Granada (UGR), Granada, Spain
| | - A Capilla
- Department of Biological and Health Psychology, Autonomous University of Madrid (UAM), Madrid, Spain
| | - A B Chica
- Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada (UGR), Granada, Spain
- Department of Experimental Psychology, University of Granada (UGR), Granada, Spain
| |
Collapse
|
31
|
Veríssimo IS, Nudelman Z, Olivers CNL. Does crowding predict conjunction search? An individual differences approach. Vision Res 2024; 216:108342. [PMID: 38198971 DOI: 10.1016/j.visres.2023.108342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Searching for objects in the visual environment is an integral part of human behavior. Most of the information used during such visual search comes from the periphery of our vision, and understanding the basic mechanisms of search therefore requires taking into account the inherent limitations of peripheral vision. Our previous work using an individual differences approach has shown that one of the major factors limiting peripheral vision (crowding) is predictive of single feature search, as reflected in response time and eye movement measures. Here we extended this work, by testing the relationship between crowding and visual search in a conjunction-search paradigm. Given that conjunction search involves more fine-grained discrimination and more serial behavior, we predicted it would be strongly affected by crowding. We tested sixty participants with regard to their sensitivity to both orientation and color-based crowding (as measured by critical spacing) and their efficiency in searching for a color/orientation conjunction (as indicated by manual response times and eye movements). While the correlations between the different crowding tasks were high, the correlations between the different crowding measures and search performance were relatively modest, and no higher than those previously observed for single-feature search. Instead, observers showed very strong color selectivity during search. The results suggest that conjunction search behavior relies more on top-down guidance (here by color) and is therefore relatively less determined by individual differences in sensory limitations as caused by crowding.
Collapse
Affiliation(s)
- Inês S Veríssimo
- Department of Experimental and Applied Psychology, Cognitive Psychology Section, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands; Institute for Brain and Behavior, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | - Zachary Nudelman
- Department of Experimental and Applied Psychology, Cognitive Psychology Section, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Christian N L Olivers
- Department of Experimental and Applied Psychology, Cognitive Psychology Section, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
32
|
Siman-Tov Z, Lev M, Polat U. Probing the Bottleneck of Awareness Formed by Foveal Crowding: A Neurophysiological Study. Brain Sci 2024; 14:169. [PMID: 38391743 PMCID: PMC10886460 DOI: 10.3390/brainsci14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Crowding occurs when an easily identified isolated stimulus is surrounded by stimuli with similar properties, making it very difficult to identify. Crowding is suggested as a mechanism that creates a bottleneck in object recognition and awareness. Recently, we showed that brief presentation times at the fovea resulted in a significant crowding effect on target identification, impaired the target's color awareness, and resulted in a slower reaction time. However, when tagging the target with a red letter, the crowding effect is abolished. Crowding is widely considered a grouping; hence, it is pre-attentive. An event-related potential (ERP) study that investigated the spatial-temporal properties of crowding suggested the involvement of higher-level visual processing. Here, we investigated whether ERP's components may be affected by crowding and tagging, and whether the temporal advantage of ERP can be utilized to gain further information about the crowding mechanism. The participants reported target identification using our standard foveal crowing paradigm. It is assumed that crowding occurs due to a suppressive effect; thus, it can be probed by changes in perceptual (N1, ~160 ms) and attentive (P3 ~300-400 ms) components. We found a suppression effect (less negative ERP magnitude) in N1 under foveal crowding, which was recovered under tagging conditions. ERP's amplitude components (N1 and P3) and the behavioral proportion correct are highly correlated. These findings suggest that crowding is an early grouping mechanism that may be combined with later processing involving the segmentation mechanism.
Collapse
Affiliation(s)
- Ziv Siman-Tov
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
33
|
Upadhyayula A, Henderson JM. Spatiotemporal jump detection during continuous film viewing: Insights from a flicker paradigm. Atten Percept Psychophys 2024; 86:559-566. [PMID: 38172463 DOI: 10.3758/s13414-023-02837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
We investigated how sensitive visual processing is to spatiotemporal disruptions in ongoing visual events. Prior work has demonstrated that participants often miss spatiotemporal disruptions in videos presented in the form of scene edits or disruptions during saccades. Here, we asked whether this phenomenon generalizes to spatiotemporal disruptions that are not tied to saccades. In two flicker paradigm experiments, participants were instructed to identify spatiotemporal disruptions created when videos either jumped forward or backward in time. Participants often missed the jumps, and forward jumps were reported less frequently compared with backward jumps, demonstrating that a flicker paradigm produces effects similar to a saccade contingent disruption paradigm. These results suggest that difficulty detecting spatiotemporal disruptions is a general phenomenon that extends beyond trans-saccadic events.
Collapse
Affiliation(s)
- Aditya Upadhyayula
- Department of Psychological & Brain Sciences, Washington University in St. Louis, CB 1125, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| | - John M Henderson
- Center for Mind and Brain, University of California, Davis, USA
- Department of Psychology, University of California, Davis, USA
| |
Collapse
|
34
|
Shechter A, Medina S, Share DL, Yashar A. Language-universal and script-specific factors in the recognition of letters in visual crowding: The effects of lexicality, hemifield, and transitional probabilities in a right-to-left script. Cortex 2024; 171:319-329. [PMID: 38070387 DOI: 10.1016/j.cortex.2023.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 02/12/2024]
Abstract
Peripheral letter recognition is fundamentally limited not by the visibility of letters but by the spacing between them, i.e., 'crowding'. Crowding imposes a significant constraint on reading, however, the interplay between crowding and reading is not fully understood. Using a letter recognition task in varying display conditions, we investigated the effects of lexicality (words versus pseudowords), visual hemifield, and transitional letter probability (bigram/trigram frequency) among skilled readers (N = 14. and N = 13) in Hebrew - a script read from right to left. We observed two language-universal effects: a lexicality effect and a right hemifield (left hemisphere) advantage, as well as a strong language-specific effect - a left bigram advantage stemming from the right-to-left reading direction of Hebrew. The latter finding suggests that transitional probabilities are essential for parafoveal letter recognition. The results reveal that script-specific contextual information such as letter combination probabilities is used to accurately identify crowded letters.
Collapse
Affiliation(s)
- Adi Shechter
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, The University of Haifa, Haifa, Israel; Department of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel
| | - Sivan Medina
- Department of Learning and Instructional Sciences, Faculty of Education, University of Haifa, Haifa, Israel
| | - David L Share
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, The University of Haifa, Haifa, Israel; Department of Learning Disabilities, Faculty of Education, University of Haifa, Haifa, Israel
| | - Amit Yashar
- The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, The University of Haifa, Haifa, Israel; Department of Special Education, Faculty of Education, University of Haifa, Haifa, Israel.
| |
Collapse
|
35
|
Van der Burg E, Cass J, Olivers CNL. A CODE model bridging crowding in sparse and dense displays. Vision Res 2024; 215:108345. [PMID: 38142531 DOI: 10.1016/j.visres.2023.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Visual crowding is arguably the strongest limitation imposed on extrafoveal vision, and is a relatively well-understood phenomenon. However, most investigations and theories are based on sparse displays consisting of a target and at most a handful of flanker objects. Recent findings suggest that the laws thought to govern crowding may not hold for densely cluttered displays, and that grouping and nearest neighbour effects may be more important. Here we present a computational model that accounts for crowding effects in both sparse and dense displays. The model is an adaptation and extension of an earlier model that has previously successfully accounted for spatial clustering, numerosity and object-based attention phenomena. Our model combines grouping by proximity and similarity with a nearest neighbour rule, and defines crowding as the extent to which target and flankers fail to segment. We show that when the model is optimized for explaining crowding phenomena in classic, sparse displays, it also does a good job in capturing novel crowding patterns in dense displays, in both existing and new data sets. The model thus ties together different principles governing crowding, specifically Bouma's law, grouping, and nearest neighbour similarity effects.
Collapse
Affiliation(s)
| | - John Cass
- MARCS Institute of Brain, Behaviour & Development, Western Sydney University, Australia
| | - Christian N L Olivers
- Institute for Brain and Behaviour Amsterdam, the Netherlands; Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
36
|
Moore CM, Zheng Q. Limited midlevel mediation of visual crowding: Surface completion fails to support uncrowding. J Vis 2024; 24:11. [PMID: 38294775 PMCID: PMC10839818 DOI: 10.1167/jov.24.1.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/10/2023] [Indexed: 02/01/2024] Open
Abstract
Visual crowding refers to impaired object recognition that is caused by nearby stimuli. It increases with eccentricity. Image-level explanations of crowding maintain that it is caused by information loss within early encoding processes that vary in functionality with eccentricity. Alternative explanations maintain that the interference is not limited to two-dimensional image-level interactions but that it is mediated within representations that reflect three-dimensional scene structure. Uncrowding refers to when adding stimulus information to a display, which increases the noise at an image level, nonetheless decreasing the amount of crowding that occurs. Uncrowding has been interpreted as evidence of midlevel mediation of crowding because the additional information tends to provide an opportunity for perceptually organizing stimuli into distinct and therefore protected representations. It is difficult, however, to rule out image-level explanations of crowding and uncrowding when stimulus differences exist between conditions. We adapted displays of a specific form of uncrowding to minimize stimulus differences across conditions, while retaining the potential for perceptual organization, specifically perceptual surface completion. Uncrowding under these conditions would provide strong support for midlevel mediation of crowding. In five experiments, however, we found no evidence of midlevel mediation of crowding, indicating that at least for this version of uncrowding, image-level explanations cannot be ruled out.
Collapse
Affiliation(s)
- Cathleen M Moore
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Qingzi Zheng
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
37
|
Yassin M, Lev M, Polat U. Space, time, and dynamics of binocular interactions. Sci Rep 2023; 13:21449. [PMID: 38052879 DOI: 10.1038/s41598-023-48380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
Binocular summation (BS), defined as the superiority of binocular over monocular visual performance, shows that thresholds are about 40% (a factor of 1.4) better in binocular than in monocular viewing. However, it was reported that different amounts of BS exist in a range from 1.4 to 2 values because BS is affected by the spatiotemporal parameters of the stimulus. Lateral interactions can be defined as the neuron's ability to affect the neighboring neurons by either inhibiting or exciting their activity. We investigated the effect of the spatial and temporal domains on binocular interactions and BS under the lateral masking paradigm and how BS would be affected by lateral interactions via a lateral masking experiment. The two temporal alternative forced-choice (2TAFC) method was used. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ), presented at 4 different presentation times (40, 80, 120, and 200 ms) using a different order of measurements across the different experiments. Opaque lenses were used to control the monocular and binocular vision. BS is absent at close distances (2λ), depending on the presentation time's order, for the collinear but not for the orthogonal configuration. However, BS exists at more distant flankers (collinear and orthogonal, 3λ). BS is not uniform (1.4); it depends on the stimulus condition, the presentation times, the order, and the method that was used to control the monocular and binocular vision.
Collapse
Affiliation(s)
- Marzouk Yassin
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
38
|
McGinty VB, Lupkin SM. Behavioral read-out from population value signals in primate orbitofrontal cortex. Nat Neurosci 2023; 26:2203-2212. [PMID: 37932464 PMCID: PMC11006434 DOI: 10.1038/s41593-023-01473-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
The primate orbitofrontal cortex (OFC) has long been recognized for its role in value-based decisions; however, the exact mechanism linking value representations in the OFC to decision outcomes has remained elusive. Here, to address this question, we show, in non-human primates, that trial-wise variability in choices can be explained by variability in value signals decoded from many simultaneously recorded OFC neurons. Mechanistically, this relationship is consistent with the projection of activity within a low-dimensional value-encoding subspace onto a potentially higher-dimensional, behaviorally potent output subspace. Identifying this neural-behavioral link answers longstanding questions about the role of the OFC in economic decision-making and suggests population-level read-out mechanisms for the OFC similar to those recently identified in sensory and motor cortex.
Collapse
Affiliation(s)
- Vincent B McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA.
| | - Shira M Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
- Behavioral and Neural Sciences Graduate Program, Rutgers University-Newark, Newark, NJ, USA
| |
Collapse
|
39
|
Bennett D, Radulescu A, Zorowitz S, Felso V, Niv Y. Affect-congruent attention modulates generalized reward expectations. PLoS Comput Biol 2023; 19:e1011707. [PMID: 38127874 PMCID: PMC10781156 DOI: 10.1371/journal.pcbi.1011707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 01/10/2024] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Positive and negative affective states are respectively associated with optimistic and pessimistic expectations regarding future reward. One mechanism that might underlie these affect-related expectation biases is attention to positive- versus negative-valence features (e.g., attending to the positive reviews of a restaurant versus its expensive price). Here we tested the effects of experimentally induced positive and negative affect on feature-based attention in 120 participants completing a compound-generalization task with eye-tracking. We found that participants' reward expectations for novel compound stimuli were modulated in an affect-congruent way: positive affect induction increased reward expectations for compounds, whereas negative affect induction decreased reward expectations. Computational modelling and eye-tracking analyses each revealed that these effects were driven by affect-congruent changes in participants' allocation of attention to high- versus low-value features of compounds. These results provide mechanistic insight into a process by which affect produces biases in generalized reward expectations.
Collapse
Affiliation(s)
- Daniel Bennett
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Angela Radulescu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sam Zorowitz
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Valkyrie Felso
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Yael Niv
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
40
|
Asanowicz D, Panek B, Kotlewska I, van der Lubbe R. On the Relevance of Posterior and Midfrontal Theta Activity for Visuospatial Attention. J Cogn Neurosci 2023; 35:1972-2001. [PMID: 37788304 DOI: 10.1162/jocn_a_02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The aim of this study was to examine whether oscillatory activity in the theta-band is relevant for selective visuospatial attention when there is a need for the suppression of interfering and distracting information. A variant of the Eriksen flanker task was employed with bilateral arrays: one array consisting of a target and congruent or incongruent flankers and the second array consisting of neutral distractors. The bilateral arrays were preceded either by a 100% valid spatial cue or by a neutral cue. In the cue-target interval, a major burst in medial frontal theta power was observed, which was largest in the spatial cue condition. In the latter condition, additionally a posterior theta increase was observed that was larger over sites ipsilateral to the forthcoming target array. Functional connectivity analyses revealed that this pretarget posterior theta was related to the midfrontal theta. No such effects were observed in the neutral cue condition. After onset of the bilateral arrays, a major burst in posterior theta activity was observed in both cue conditions, which again was larger above sites ipsilateral to the target array. Furthermore, this posterior theta was in all cases related to the midfrontal theta. Taken together, the findings suggest that a fronto-posterior theta network plays an important role in the suppression of irrelevant and conflicting visual information. The results also suggest that the reciprocal relation between visuospatial attention and executive response control may be closer than commonly thought.
Collapse
Affiliation(s)
| | - Bartłomiej Panek
- Jagiellonian University, Kraków, Poland
- Adam Mickiewicz University, Poznań, Poland
| | | | - Rob van der Lubbe
- Adam Mickiewicz University, Poznań, Poland
- University of Twente, Enschede, The Netherlands
| |
Collapse
|
41
|
Benhaim-Sitbon L, Lev M, Polat U. Abnormal basic visual processing functions in binocular fusion disorders. Sci Rep 2023; 13:19301. [PMID: 37935803 PMCID: PMC10630403 DOI: 10.1038/s41598-023-46291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
Heterophoria is a common type of binocular fusion disorder that consists of a latent eye misalignment with potential consequences on daily activities such as reading or working on a computer (with CVS). Crowding, a type of contextual modulation, can also impair reading. Our recent studies found an abnormal pattern of low-level visual processing with larger perceptive fields (PF) in heterophoria. The PF is the fundamental processing unit of human vision and both masking and crowding depend on its size. We investigated how heterophoria would impact the PF's size via a lateral masking experiment and consequently affect the foveal crowding at different letter-spacings (the crowding zone). More specifically, we explored the relationship between crowding, lateral masking, the PF's size, and the amount of heterophoria. The binocular horizontal PF's size was larger with heterophoric subjects, in agreement with our previous study. We found a stronger crowding and an extended crowding zone associated with slower response times; this shows that the processing of letter identification under both crowded and uncrowded conditions requires more processing effort in heterophoric individuals. In agreement with previous studies, we found a correlation between the crowding zone and the PF's size; each was strongly correlated with the amount of phoria. These findings resemble those involving the PF size and the extended crowding found at the fovea in amblyopia and young children. We suggest that these findings could help explain the inter-observers' variability found in the masking literature, and the reading difficulties often encountered in subjects with high heterophoria.
Collapse
Affiliation(s)
- Laura Benhaim-Sitbon
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
42
|
Liang J, Maher S, Zhaoping L. Eye movement evidence for the V1 Saliency Hypothesis and the Central-peripheral Dichotomy theory in an anomalous visual search task. Vision Res 2023; 212:108308. [PMID: 37659334 DOI: 10.1016/j.visres.2023.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Typically, searching for a target among uniformly tilted non-targets is easier when this target is perpendicular, rather than parallel, to the non-targets. The V1 Saliency Hypothesis (V1SH) - that V1 creates a saliency map to guide attention exogenously - predicts exactly the opposite in a special case: each target or non-target is a pair of equally-sized disks, a homo-pair of two disks of the same color, black or white, or a hetero-pair of two disks of the opposite color; the inter-disk displacement defines its orientation. This prediction - parallel advantage - was supported by the finding that parallel targets require shorter reaction times (RTs) to report targets' locations. Furthermore, it is stronger for targets further from the center of search images, as predicted by the Central-peripheral Dichotomy (CPD) theory entailing that saliency effects are stronger in peripheral than in central vision. However, the parallel advantage could arise from a shorter time required to recognize - rather than to shift attention to - the parallel target. By gaze tracking, the present study confirms that the parallel advantage is solely due to the RTs for the gaze to reach the target. Furthermore, when the gaze is sufficiently far from the target during search, saccade to a parallel, rather than perpendicular, target is more likely, demonstrating the Central-peripheral Dichotomy more directly. Parallel advantage is stronger among observers encouraged to let their search be guided by spontaneous gaze shifts, which are presumably guided by bottom-up saliency rather than top-down factors.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Severin Maher
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Li Zhaoping
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
43
|
Venugopal D, Wood JM, Black AA, Bentley SA. Effect of low luminance on face recognition in adults with central and peripheral vision loss. Ophthalmic Physiol Opt 2023; 43:1344-1355. [PMID: 37392062 DOI: 10.1111/opo.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE To investigate the effect of low luminance on face recognition, specifically facial identity discrimination (FID) and facial expression recognition (FER), in adults with central vision loss (CVL) and peripheral vision loss (PVL) and to explore the association between clinical vision measures and low luminance FID and FER. METHODS Participants included 33 adults with CVL, 17 with PVL and 20 controls. FID and FER were assessed under photopic and low luminance conditions. For the FID task, 12 sets of three faces with neutral expressions were presented and participants asked to indicate the odd-face-out. For FER, 12 single faces were presented and participants asked to name the expression (neutral, happy or angry). Photopic and low luminance visual acuity (VA) and contrast sensitivity (CS) were recorded for all participants and for the PVL group, Humphrey Field Analyzer (HFA) 24-2 mean deviation (MD). RESULTS FID accuracy in CVL, and to a lesser extent PVL, was reduced under low compared with photopic luminance (mean reduction 20% and 8% respectively; p < 0.001). FER accuracy was reduced only in CVL (mean reduction 25%; p < 0.001). For both CVL and PVL, low luminance and photopic VA and CS were moderately to strongly correlated with low luminance FID (ρ = 0.61-0.77, p < 0.05). For PVL, better eye HFA 24-2 MD was moderately correlated with low luminance FID (ρ = 0.54, p = 0.02). Results were similar for low luminance FER. Together, photopic VA and CS explained 75% of the variance in low luminance FID, and photopic VA explained 61% of the variance in low luminance FER. Low luminance vision measures explained little additional variance. CONCLUSION Low luminance significantly reduced face recognition, particularly for adults with CVL. Worse VA and CS were associated with reduced face recognition. Clinically, photopic VA is a good predictor of face recognition under low luminance conditions.
Collapse
Affiliation(s)
- Dinesh Venugopal
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Joanne M Wood
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alex A Black
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sharon A Bentley
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
44
|
Chiu TY, Drieghe D. The role of visual crowding in eye movements during reading: Effects of text spacing. Atten Percept Psychophys 2023; 85:2834-2858. [PMID: 37821744 PMCID: PMC10600290 DOI: 10.3758/s13414-023-02787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Visual crowding, generally defined as the deleterious influence of clutter on visual discrimination, is a form of inhibitory interaction between nearby objects. While the role of crowding in reading has been established in psychophysics research using rapid serial visual presentation (RSVP) paradigms, how crowding affects additional processes involved in natural reading, including parafoveal processing and saccade targeting, remains unclear. The current study investigated crowding effects on reading via two eye-tracking experiments. Experiment 1 was a sentence-reading experiment incorporating an eye-contingent boundary change in which reader's parafoveal processing was quantified through comparing reading times after valid or invalid information was presented in the parafovea. Letter spacing was jointly manipulated to compare how crowding affects parafoveal processing. Experiment 2 was a passage-reading experiment with a line spacing manipulation. In addition to replicating previously observed letter spacing effects on global reading parameters (i.e., more but shorter fixations with wider spacing), Experiment 1 found an interaction between preview validity and letter spacing indicating that the efficiency of parafoveal processing was constrained by crowding and visual acuity. Experiment 2 found reliable but subtle influences of line spacing. Participants had shorter fixation durations, higher skipping probabilities, and less accurate return sweeps when line spacing was increased. In addition to extending the literature on the role of crowding to reading in ecologically valid scenarios, the current results inform future research on characterizing the influence of crowding in natural reading and comparing effects of crowding across reader populations.
Collapse
Affiliation(s)
- Tzu-Yao Chiu
- School of Psychology, University of Southampton, Southampton, UK.
- Department of Psychology, The Ohio State University, 225 Psychology Building, 1835 Neil Avenue, Columbus, OH, 43210, USA.
| | - Denis Drieghe
- School of Psychology, University of Southampton, Southampton, UK
| |
Collapse
|
45
|
Kim T, Pasupathy A. Neural correlates of crowding in macaque area V4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562617. [PMID: 37905025 PMCID: PMC10614871 DOI: 10.1101/2023.10.16.562617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Visual crowding refers to the phenomenon where a target object that is easily identifiable in isolation becomes difficult to recognize when surrounded by other stimuli (distractors). Extensive psychophysical studies support two alternative possibilities for the underlying mechanisms. One hypothesis suggests that crowding results from the loss of visual information due to pooled encoding of multiple nearby stimuli in the mid-level processing stages along the ventral visual pathway. Alternatively, crowding may arise from limited resolution in decoding object information during recognition and the encoded information may remain inaccessible unless it is salient. To rigorously test these alternatives, we studied the responses of single neurons in macaque area V4, an intermediate stage of the ventral, object-processing pathway, to parametrically designed crowded displays and their texture-statistics matched metameric counterparts. Our investigations reveal striking parallels between how crowding parameters, e.g., number, distance, and position of distractors, influence human psychophysical performance and V4 shape selectivity. Importantly, we found that enhancing the salience of a target stimulus could reverse crowding effects even in highly cluttered scenes and such reversals could be protracted reflecting a dynamical process. Overall, we conclude that a pooled encoding of nearby stimuli cannot explain the observed responses and we propose an alternative model where V4 neurons preferentially encode salient stimuli in crowded displays.
Collapse
Affiliation(s)
- Taekjun Kim
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Anitha Pasupathy
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| |
Collapse
|
46
|
Qiu Z, Wu D, Muehlebach BJ. Differential modulation on neural activity related to flankers during face processing: A visual crowding study. Neurosci Lett 2023; 815:137496. [PMID: 37748673 DOI: 10.1016/j.neulet.2023.137496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
In this visual crowding study, we manipulated the perceivability of a central crowded face (a fearful or a neutral face) by varying the similarity between the central face and the surrounding flanker stimuli. We presented participants with pairs of visual clutters and recorded their electroencephalography during an emotion judgement task. In an upright flanker condition where both the central target face and flanker faces were upright faces, participants were less likely to report seeing the target face, and their P300 was weakened, compared to a scrambled flanker condition where scrambled face images were used as flankers. Additionally, at ∼ 120 ms post-stimulus, a posterior negativity was found for the upright compared to scrambled flanker condition, however only for fearful face targets. We concluded that early neural responses seem to be affected by the perceptual characteristics of both target and flanker stimuli whereas later-stage neural activity is associated with post-perceptual evaluation of the stimuli in this visual crowding paradigm.
Collapse
Affiliation(s)
- Zeguo Qiu
- School of Psychology, The University of Queensland, Brisbane 4072, Australia.
| | - Dihua Wu
- School of Psychology, The University of Queensland, Brisbane 4072, Australia.
| | | |
Collapse
|
47
|
Chen N, Ai H, Lu X. Context-dependent attentional spotlight in pulvinar-V1 interaction. Neuroimage 2023; 279:120341. [PMID: 37619793 DOI: 10.1016/j.neuroimage.2023.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Spatial attention is often described as a mental spotlight that enhances information processing at the attended location. Using fMRI, we investigated background connectivity between the pulvinar and V1 in relation to focused versus diffused attention allocation, in weak and strong crowding contexts. Our findings revealed that focused attention led to enhanced correlations between the pulvinar and V1. Notably, this modulation was initiated by the pulvinar, and the strength of the modulation was dependent on the saliency of the target. These findings suggest that the pulvinar initiates information reweighting to V1, which underlies attentional selection in cluttered scenes.
Collapse
Affiliation(s)
- Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, People's Republic of China; THU-IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Hailin Ai
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xincheng Lu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
48
|
Chen L, Chen G, Gong X, Fang F. Integrating electric field modeling and pre-tDCS behavioral performance to predict the individual tDCS effect on visual crowding. J Neural Eng 2023; 20:056019. [PMID: 37750681 DOI: 10.1088/1741-2552/acfa8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Objective.Transcranial direct current stimulation (tDCS) has been broadly used to modulate brain activity with both bipolar and high-definition montages. However, tDCS effects can be highly variable. In this work, we investigated whether the variability in the tDCS effects could be predicted by integrating individualized electric field modeling and individual pre-tDCS behavioral performance.Approach.Here, we first compared the effects of bipolar tDCS and 4 × 1 high-definition tDCS (HD-tDCS) with respect to the alleviation of visual crowding, which is the inability to identify targets in the presence of nearby flankers and considered to be an essential bottleneck of object recognition and visual awareness. We instructed subjects to perform an orientation discrimination task with both isolated and crowded targets in the periphery and measured their orientation discrimination thresholds before and after receiving 20 min of bipolar tDCS, 4 × 1 HD-tDCS, or sham stimulation over the visual cortex. Individual anatomically realistic head models were constructed to simulate tDCS-induced electric field distributions and quantify tDCS focality. Finally, a multiple linear regression model that used pre-tDCS behavioral performance and tDCS focality as factors was used to predict post-tDCS behavioral performance.Main results.We found that HD-tDCS, but not bipolar tDCS, could significantly alleviate visual crowding. Moreover, the variability in the tDCS effect could be reliably predicted by subjects' pre-tDCS behavioral performance and tDCS focality. This prediction model also performed well when generalized to other two tDCS protocols with a different electrode size or a different stimulation intensity.Significance.Our study links the variability in the tDCS-induced electric field and the pre-tDCS behavioral performance in a visual crowding task to the variability in post-tDCS performance. It provides a new approach to predicting individual tDCS effects and highlights the importance of understanding the factors that determine tDCS effectiveness while developing more robust protocols.
Collapse
Affiliation(s)
- Luyao Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
| | - Guanpeng Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Xizi Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, People's Republic of China
- Beijing Academy of Artificial Intelligence, Beijing 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, People's Republic of China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, People's Republic of China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
49
|
Werth R. Dyslexia Due to Visual Impairments. Biomedicines 2023; 11:2559. [PMID: 37760998 PMCID: PMC10526907 DOI: 10.3390/biomedicines11092559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Reading involves many different abilities that are necessary or sufficient conditions for fluent and flawless reading. The absence of one necessary or of all sufficient conditions is a cause of dyslexia. The present study investigates whether too short fixation times and an impaired ability to recognize a string of letters simultaneously are causes of dyslexia. The frequency and types of reading mistakes were investigated in a tachistoscopic pseudoword experiment with 100 children with dyslexia to test the impact of too short fixation times and the attempts of children with dyslexia to recognize more letters simultaneously than they can when reading pseudowords. The experiment demonstrates that all types of reading mistakes disappear when the fixation time increases and/or the number of letters that the children try to recognize simultaneously is reduced. The results cannot be interpreted as being due to altered visual crowding, impaired attention, or impaired phonological awareness, but can be regarded as an effect of impaired temporal summation and a dysfunction in the ventral stream of the visual system.
Collapse
Affiliation(s)
- Reinhard Werth
- Institute for Social Pediatrics and Adolescent Medicine, Ludwig-Maximilians-University of Munich, Haydnstr. 5, D-80336 München, Germany
| |
Collapse
|
50
|
Ai H, Cui Y, Chen N. A "Bandwidth" in cortical representations of multiple faces. Cereb Cortex 2023; 33:10028-10035. [PMID: 37522262 DOI: 10.1093/cercor/bhad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The human ability to process multiple items simultaneously can be constrained by the extent to which those items are represented by distinct neural populations. In the current study, we used fMRI to investigate the cortical representation of multiple faces. We found that the addition of a second face to occupy both visual hemifields led to an increased response, whereas a further addition of faces within the same visual hemifield resulted in a decreased response. This pattern was widely observed in the occipital visual cortex, the intraparietal sulcus, and extended to the posterior inferotemporal cortex. A parallel trend was found in a behavioral change-detection task, revealing a perceptual "bandwidth" of multiface processing. The sensitivity to face clutter gradually decreased along the ventral pathway, supporting the notion of a buildup of clutter-tolerance representation. These cortical response patterns to face clutters suggest that adding signals with nonoverlapping cortical representation enhanced perception, while adding signals that competed for representation resources impaired perception.
Collapse
Affiliation(s)
- Hailin Ai
- Department of Psychology, School of Social Sciences, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Yuwei Cui
- Department of Psychology, School of Social Sciences, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
- THU-IDG/McGovern Institute for Brain Research, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|