1
|
Rossion B, Jacques C, Jonas J. The anterior fusiform gyrus: The ghost in the cortical face machine. Neurosci Biobehav Rev 2024; 158:105535. [PMID: 38191080 DOI: 10.1016/j.neubiorev.2024.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Face-selective regions in the human ventral occipito-temporal cortex (VOTC) have been defined for decades mainly with functional magnetic resonance imaging. This face-selective VOTC network is traditionally divided in a posterior 'core' system thought to subtend face perception, and regions of the anterior temporal lobe as a semantic memory component of an extended general system. In between these two putative systems lies the anterior fusiform gyrus and surrounding sulci, affected by magnetic susceptibility artifacts. Here we suggest that this methodological gap overlaps with and contributes to a conceptual gap between (visual) perception and semantic memory for faces. Filling this gap with intracerebral recordings and direct electrical stimulation reveals robust face-selectivity in the anterior fusiform gyrus and a crucial role of this region, especially in the right hemisphere, in identity recognition for both familiar and unfamiliar faces. Based on these observations, we propose an integrated theoretical framework for human face (identity) recognition according to which face-selective regions in the anterior fusiform gyrus join the dots between posterior and anterior cortical face memories.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| | | | - Jacques Jonas
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
2
|
Ribeiro M, Yordanova YN, Noblet V, Herbet G, Ricard D. White matter tracts and executive functions: a review of causal and correlation evidence. Brain 2024; 147:352-371. [PMID: 37703295 DOI: 10.1093/brain/awad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Executive functions are high-level cognitive processes involving abilities such as working memory/updating, set-shifting and inhibition. These complex cognitive functions are enabled by interactions among widely distributed cognitive networks, supported by white matter tracts. Executive impairment is frequent in neurological conditions affecting white matter; however, whether specific tracts are crucial for normal executive functions is unclear. We review causal and correlation evidence from studies that used direct electrical stimulation during awake surgery for gliomas, voxel-based and tract-based lesion-symptom mapping, and diffusion tensor imaging to explore associations between the integrity of white matter tracts and executive functions in healthy and impaired adults. The corpus callosum was consistently associated with all executive processes, notably its anterior segments. Both causal and correlation evidence showed prominent support of the superior longitudinal fasciculus to executive functions, notably to working memory. More specifically, strong evidence suggested that the second branch of the superior longitudinal fasciculus is crucial for all executive functions, especially for flexibility. Global results showed left lateralization for verbal tasks and right lateralization for executive tasks with visual demands. The frontal aslant tract potentially supports executive functions, however, additional evidence is needed to clarify whether its involvement in executive tasks goes beyond the control of language. Converging evidence indicates that a right-lateralized network of tracts connecting cortical and subcortical grey matter regions supports the performance of tasks assessing response inhibition, some suggesting a role for the right anterior thalamic radiation. Finally, correlation evidence suggests a role for the cingulum bundle in executive functions, especially in tasks assessing inhibition. We discuss these findings in light of current knowledge about the functional role of these tracts, descriptions of the brain networks supporting executive functions and clinical implications for individuals with brain tumours.
Collapse
Affiliation(s)
- Monica Ribeiro
- Service de neuro-oncologie, Hôpital La Pitié-Salpêtrière, Groupe Hospitalier Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, 75013 Paris, France
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
| | - Yordanka Nikolova Yordanova
- Service de neurochirurgie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
| | - Vincent Noblet
- ICube, IMAGeS team, Université de Strasbourg, CNRS, UMR 7357, 67412 Illkirch, France
| | - Guillaume Herbet
- Praxiling, UMR 5267, CNRS, Université Paul Valéry Montpellier 3, 34090 Montpellier, France
- Département de Neurochirurgie, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- Institut Universitaire de France
| | - Damien Ricard
- Université Paris Saclay, ENS Paris Saclay, Service de Santé des Armées, CNRS, Université Paris Cité, INSERM, Centre Borelli UMR 9010, 75006 Paris, France
- Département de neurologie, Hôpital d'Instruction des Armées Percy, Service de Santé des Armées, 92140 Clamart, France
- Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
3
|
Collée E, Vincent A, Visch-Brink E, De Witte E, Dirven C, Satoer D. Localization patterns of speech and language errors during awake brain surgery: a systematic review. Neurosurg Rev 2023; 46:38. [PMID: 36662312 PMCID: PMC9859901 DOI: 10.1007/s10143-022-01943-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/22/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023]
Abstract
Awake craniotomy with direct electrical stimulation (DES) is the standard treatment for patients with eloquent area gliomas. DES detects speech and language errors, which indicate functional boundaries that must be maintained to preserve quality of life. During DES, traditional object naming or other linguistic tasks such as tasks from the Dutch Linguistic Intraoperative Protocol (DuLIP) can be used. It is not fully clear which speech and language errors occur in which brain locations. To provide an overview and to update DuLIP, a systematic review was conducted in which 102 studies were included, reporting on speech and language errors and the corresponding brain locations during awake craniotomy with DES in adult glioma patients up until 6 July 2020. The current findings provide a crude overview on language localization. Even though subcortical areas are in general less often investigated intraoperatively, still 40% out of all errors was reported at the subcortical level and almost 60% at the cortical level. Rudimentary localization patterns for different error types were observed and compared to the dual-stream model of language processing and the DuLIP model. While most patterns were similar compared to the models, additional locations were identified for articulation/motor speech, phonology, reading, and writing. Based on these patterns, we propose an updated DuLIP model. This model can be applied for a more adequate "location-to-function" language task selection to assess different linguistic functions during awake craniotomy, to possibly improve intraoperative language monitoring. This could result in a better postoperative language outcome in the future.
Collapse
Affiliation(s)
- Ellen Collée
- Department of Neurosurgery, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, NA2118, 3015, GD, Rotterdam, the Netherlands.
| | - Arnaud Vincent
- Department of Neurosurgery, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, NA2118, 3015, GD, Rotterdam, the Netherlands
| | - Evy Visch-Brink
- Department of Neurosurgery, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, NA2118, 3015, GD, Rotterdam, the Netherlands
| | - Elke De Witte
- Department of Neurosurgery, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, NA2118, 3015, GD, Rotterdam, the Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, NA2118, 3015, GD, Rotterdam, the Netherlands
| | - Djaina Satoer
- Department of Neurosurgery, Erasmus MC University Medical Centre, Doctor Molewaterplein 40, NA2118, 3015, GD, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Collée E, Vincent A, Dirven C, Satoer D. Speech and Language Errors during Awake Brain Surgery and Postoperative Language Outcome in Glioma Patients: A Systematic Review. Cancers (Basel) 2022; 14:cancers14215466. [PMID: 36358884 PMCID: PMC9658495 DOI: 10.3390/cancers14215466] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Awake craniotomy with direct electrical stimulation (DES) is the standard treatment for patients with gliomas in eloquent areas. Even though language is monitored carefully during surgery, many patients suffer from postoperative aphasia, with negative effects on their quality of life. Some perioperative factors are reported to influence postoperative language outcome. However, the influence of different intraoperative speech and language errors on language outcome is not clear. Therefore, we investigate this relation. A systematic search was performed in which 81 studies were included, reporting speech and language errors during awake craniotomy with DES and postoperative language outcomes in adult glioma patients up until 6 July 2020. The frequencies of intraoperative errors and language status were calculated. Binary logistic regressions were performed. Preoperative language deficits were a significant predictor for postoperative acute (OR = 3.42, p < 0.001) and short-term (OR = 1.95, p = 0.007) language deficits. Intraoperative anomia (OR = 2.09, p = 0.015) and intraoperative production errors (e.g., dysarthria or stuttering; OR = 2.06, p = 0.016) were significant predictors for postoperative acute language deficits. Postoperatively, the language deficits that occurred most often were production deficits and spontaneous speech deficits. To conclude, during surgery, intraoperative anomia and production errors should carry particular weight during decision-making concerning the optimal onco-functional balance for a given patient, and spontaneous speech should be monitored. Further prognostic research could facilitate intraoperative decision-making, leading to fewer or less severe postoperative language deficits and improvement of quality of life.
Collapse
|
5
|
A Dedicated Tool for Presurgical Mapping of Brain Tumors and Mixed-Reality Navigation During Neurosurgery. J Digit Imaging 2022; 35:704-713. [PMID: 35230562 PMCID: PMC9156583 DOI: 10.1007/s10278-022-00609-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022] Open
Abstract
Brain tumor surgery requires a delicate tradeoff between complete removal of neoplastic tissue while minimizing loss of brain function. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have emerged as valuable tools for non-invasive assessment of human brain function and are now used to determine brain regions that should be spared to prevent functional impairment after surgery. However, image analysis requires different software packages, mainly developed for research purposes and often difficult to use in a clinical setting, preventing large-scale diffusion of presurgical mapping. We developed a specialized software able to implement an automatic analysis of multimodal MRI presurgical mapping in a single application and to transfer the results to the neuronavigator. Moreover, the imaging results are integrated in a commercially available wearable device using an optimized mixed-reality approach, automatically anchoring 3-dimensional holograms obtained from MRI with the physical head of the patient. This will allow the surgeon to virtually explore deeper tissue layers highlighting critical brain structures that need to be preserved, while retaining the natural oculo-manual coordination. The enhanced ergonomics of this procedure will significantly improve accuracy and safety of the surgery, with large expected benefits for health care systems and related industrial investors.
Collapse
|
6
|
Patel P, Khalighinejad B, Herrero JL, Bickel S, Mehta AD, Mesgarani N. Improved Speech Hearing in Noise with Invasive Electrical Brain Stimulation. J Neurosci 2022; 42:3648-3658. [PMID: 35347046 PMCID: PMC9053855 DOI: 10.1523/jneurosci.1468-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Speech perception in noise is a challenging everyday task with which many listeners have difficulty. Here, we report a case in which electrical brain stimulation of implanted intracranial electrodes in the left planum temporale (PT) of a neurosurgical patient significantly and reliably improved subjective quality (up to 50%) and objective intelligibility (up to 97%) of speech in noise perception. Stimulation resulted in a selective enhancement of speech sounds compared with the background noises. The receptive fields of the PT sites whose stimulation improved speech perception were tuned to spectrally broad and rapidly changing sounds. Corticocortical evoked potential analysis revealed that the PT sites were located between the sites in Heschl's gyrus and the superior temporal gyrus. Moreover, the discriminability of speech from nonspeech sounds increased in population neural responses from Heschl's gyrus to the PT to the superior temporal gyrus sites. These findings causally implicate the PT in background noise suppression and may point to a novel potential neuroprosthetic solution to assist in the challenging task of speech perception in noise.SIGNIFICANCE STATEMENT Speech perception in noise remains a challenging task for many individuals. Here, we present a case in which the electrical brain stimulation of intracranially implanted electrodes in the planum temporale of a neurosurgical patient significantly improved both the subjective quality (up to 50%) and objective intelligibility (up to 97%) of speech perception in noise. Stimulation resulted in a selective enhancement of speech sounds compared with the background noises. Our local and network-level functional analyses placed the planum temporale sites in between the sites in the primary auditory areas in Heschl's gyrus and nonprimary auditory areas in the superior temporal gyrus. These findings causally implicate planum temporale in acoustic scene analysis and suggest potential neuroprosthetic applications to assist hearing in noise.
Collapse
Affiliation(s)
- Prachi Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Bahar Khalighinejad
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Jose L Herrero
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Stephan Bickel
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Ashesh D Mehta
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
7
|
Volfart A, Yan X, Maillard L, Colnat-Coulbois S, Hossu G, Rossion B, Jonas J. Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neuroimage 2022; 250:118932. [PMID: 35085763 DOI: 10.1016/j.neuroimage.2022.118932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/23/2023] Open
Abstract
Brain regions located between the right fusiform face area (FFA) in the middle fusiform gyrus and the temporal pole may play a critical role in human face identity recognition but their investigation is limited by a large signal drop-out in functional magnetic resonance imaging (fMRI). Here we report an original case who is suddenly unable to recognize the identity of faces when electrically stimulated on a focal location inside this intermediate region of the right anterior fusiform gyrus. The reliable transient identity recognition deficit occurs without any change of percept, even during nonverbal face tasks (i.e., pointing out the famous face picture among three options; matching pictures of unfamiliar or familiar faces for their identities), and without difficulty at recognizing visual objects or famous written names. The effective contact is associated with the largest frequency-tagged electrophysiological signals of face-selectivity and of familiar and unfamiliar face identity recognition. This extensive multimodal investigation points to the right anterior fusiform gyrus as a critical hub of the human cortical face network, between posterior ventral occipito-temporal face-selective regions directly connected to low-level visual cortex, the medial temporal lobe involved in generic memory encoding, and ventral anterior temporal lobe regions holding semantic associations to people's identity.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium
| | - Xiaoqian Yan
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Stanford University, Department of Psychology, CA 94305 Stanford, USA
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, CHRU-Nancy, CIC-IT, F-54000 Nancy, France; Université de Lorraine, Inserm, IADI, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| |
Collapse
|
8
|
Functional ultrasound imaging: A useful tool for functional connectomics? Neuroimage 2021; 245:118722. [PMID: 34800662 DOI: 10.1016/j.neuroimage.2021.118722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Functional ultrasound (fUS) is a hemodynamic-based functional neuroimaging technique, primarily used in animal models, that combines a high spatiotemporal resolution, a large field of view, and compatibility with behavior. These assets make fUS especially suited to interrogating brain activity at the systems level. In this review, we describe the technical capabilities offered by fUS and discuss how this technique can contribute to the field of functional connectomics. First, fUS can be used to study intrinsic functional connectivity, namely patterns of correlated activity between brain regions. In this area, fUS has made the most impact by following connectivity changes in disease models, across behavioral states, or dynamically. Second, fUS can also be used to map brain-wide pathways associated with an external event. For example, fUS has helped obtain finer descriptions of several sensory systems, and uncover new pathways implicated in specific behaviors. Additionally, combining fUS with direct circuit manipulations such as optogenetics is an attractive way to map the brain-wide connections of defined neuronal populations. Finally, technological improvements and the application of new analytical tools promise to boost fUS capabilities. As brain coverage and the range of behavioral contexts that can be addressed with fUS keep on increasing, we believe that fUS-guided connectomics will only expand in the future. In this regard, we consider the incorporation of fUS into multimodal studies combining diverse techniques and behavioral tasks to be the most promising research avenue.
Collapse
|
9
|
Rachidi I, Minotti L, Martin G, Hoffmann D, Bastin J, David O, Kahane P. The Insula: A Stimulating Island of the Brain. Brain Sci 2021; 11:1533. [PMID: 34827532 PMCID: PMC8615692 DOI: 10.3390/brainsci11111533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Direct cortical stimulation (DCS) in epilepsy surgery patients has a long history of functional brain mapping and seizure triggering. Here, we review its findings when applied to the insula in order to map the insular functions, evaluate its local and distant connections, and trigger seizures. Clinical responses to insular DCS are frequent and diverse, showing a partial segregation with spatial overlap, including a posterior somatosensory, auditory, and vestibular part, a central olfactory-gustatory region, and an anterior visceral and cognitive-emotional portion. The study of cortico-cortical evoked potentials (CCEPs) has shown that the anterior (resp. posterior) insula has a higher connectivity rate with itself than with the posterior (resp. anterior) insula, and that both the anterior and posterior insula are closely connected, notably between the homologous insular subdivisions. All insular gyri show extensive and complex ipsilateral and contralateral extra-insular connections, more anteriorly for the anterior insula and more posteriorly for the posterior insula. As a rule, CCEPs propagate first and with a higher probability around the insular DCS site, then to the homologous region, and later to more distal regions with fast cortico-cortical axonal conduction delays. Seizures elicited by insular DCS have rarely been specifically studied, but their rate does not seem to differ from those of other DCS studies. They are mainly provoked from the insular seizure onset zone but can also be triggered by stimulating intra- and extra-insular early propagation zones. Overall, in line with the neuroimaging studies, insular DCS studies converge on the view that the insula is a multimodal functional hub with a fast propagation of information, whose organization helps understand where insular seizures start and how they propagate.
Collapse
Affiliation(s)
- Inès Rachidi
- CHU Grenoble Alpes, 38000 Grenoble, France; (L.M.); (G.M.); (D.H.); (P.K.)
| | - Lorella Minotti
- CHU Grenoble Alpes, 38000 Grenoble, France; (L.M.); (G.M.); (D.H.); (P.K.)
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (J.B.); (O.D.)
| | - Guillaume Martin
- CHU Grenoble Alpes, 38000 Grenoble, France; (L.M.); (G.M.); (D.H.); (P.K.)
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (J.B.); (O.D.)
| | - Dominique Hoffmann
- CHU Grenoble Alpes, 38000 Grenoble, France; (L.M.); (G.M.); (D.H.); (P.K.)
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (J.B.); (O.D.)
| | - Olivier David
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (J.B.); (O.D.)
| | - Philippe Kahane
- CHU Grenoble Alpes, 38000 Grenoble, France; (L.M.); (G.M.); (D.H.); (P.K.)
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (J.B.); (O.D.)
| |
Collapse
|
10
|
Monticelli M, Zeppa P, Mammi M, Penner F, Melcarne A, Zenga F, Garbossa D. Where We Mentalize: Main Cortical Areas Involved in Mentalization. Front Neurol 2021; 12:712532. [PMID: 34512525 PMCID: PMC8432612 DOI: 10.3389/fneur.2021.712532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
When discussing “mentalization,” we refer to a very special ability that only humans and few species of great apes possess: the ability to think about themselves and to represent in their mind their own mental state, attitudes, and beliefs and those of others. In this review, a summary of the main cortical areas involved in mentalization is presented. A thorough literature search using PubMed MEDLINE database was performed. The search terms “cognition,” “metacognition,” “mentalization,” “direct electrical stimulation,” “theory of mind,” and their synonyms were combined with “prefrontal cortex,” “temporo-parietal junction,” “parietal cortex,” “inferior frontal gyrus,” “cingulate gyrus,” and the names of other cortical areas to extract relevant published papers. Non-English publications were excluded. Data were extracted and analyzed in a qualitative manner. It is the authors' belief that knowledge of the neural substrate of metacognition is essential not only for the “neuroscientist” but also for the “practical neuroscientist” (i.e., the neurosurgeon), in order to better understand the pathophysiology of mentalizing dysfunctions in brain pathologies, especially those in which integrity of cortical areas or white matter connectivity is compromised. Furthermore, in the context of neuro-oncological surgery, understanding the anatomical structures involved in the theory of mind can help the neurosurgeon obtain a wider and safer resection. Though beyond of the scope of this paper, an important but unresolved issue concerns the long-range white matter connections that unify these cortical areas and that may be themselves involved in neural information processing.
Collapse
Affiliation(s)
- Matteo Monticelli
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| | - Pietro Zeppa
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| | - Marco Mammi
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| | - Federica Penner
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| | - Antonio Melcarne
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| | - Francesco Zenga
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| | - Diego Garbossa
- Neurosurgery Unit, Department of Neuroscience "Rita Levi Montalcini," Turin University, Turin, Italy
| |
Collapse
|
11
|
Does the Prefrontal Cortex Play an Essential Role in Consciousness? Insights from Intracranial Electrical Stimulation of the Human Brain. J Neurosci 2021; 41:2076-2087. [PMID: 33692142 DOI: 10.1523/jneurosci.1141-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
A central debate in philosophy and neuroscience pertains to whether PFC activity plays an essential role in the neural basis of consciousness. Neuroimaging and electrophysiology studies have revealed that the contents of conscious perceptual experience can be successfully decoded from PFC activity, but these findings might be confounded by postperceptual cognitive processes, such as thinking, reasoning, and decision-making, that are not necessary for consciousness. To clarify the involvement of the PFC in consciousness, we present a synthesis of research that has used intracranial electrical stimulation (iES) for the causal modulation of neural activity in the human PFC. This research provides compelling evidence that iES of only certain prefrontal regions (i.e., orbitofrontal cortex and anterior cingulate cortex) reliably perturbs conscious experience. Conversely, stimulation of anterolateral prefrontal sites, often considered crucial in higher-order and global workspace theories of consciousness, seldom elicits any reportable alterations in consciousness. Furthermore, the wide variety of iES-elicited effects in the PFC (e.g., emotions, thoughts, and olfactory and visual hallucinations) exhibits no clear relation to the immediate environment. Therefore, there is no evidence for the kinds of alterations in ongoing perceptual experience that would be predicted by higher-order or global workspace theories. Nevertheless, effects in the orbitofrontal and anterior cingulate cortices suggest a specific role for these PFC subregions in supporting emotional aspects of conscious experience. Overall, this evidence presents a challenge for higher-order and global workspace theories, which commonly point to the PFC as the basis for conscious perception based on correlative and possibly confounded information.
Collapse
|
12
|
Jonas J, Rossion B. Intracerebral electrical stimulation to understand the neural basis of human face identity recognition. Eur J Neurosci 2021; 54:4197-4211. [PMID: 33866613 DOI: 10.1111/ejn.15235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Recognizing people's identity by their faces is a key function in the human species, supported by regions of the ventral occipito-temporal cortex (VOTC). In the last decade, there have been several reports of perceptual face distortion during direct electrical stimulation (DES) with subdural electrodes positioned over a well-known face-selective VOTC region of the right lateral middle fusiform gyrus (LatMidFG; i.e., the "Fusiform Face Area", FFA). However, transient impairments of face identity recognition (FIR) have been extremely rare and only behaviorally quantified during DES with intracerebral (i.e., depth) electrodes in stereo-electroencephalography (SEEG). The three detailed cases reported so far, summarized here, were specifically impaired at FIR during DES inside different anatomical VOTC regions of the right hemisphere: the inferior occipital gyrus (IOG) and the LatMidFG, as well as a region that lies at the heart of a large magnetic susceptibility artifact in functional magnetic resonance imaging (fMRI): the anterior fusiform gyrus (AntFG). In the first two regions, the eloquent electrode contacts were systematically associated with the highest face-selective and (unfamiliar) face individuation responses as measured with intracerebral electrophysiology. Stimulation in the right AntFG did not lead to perceptual changes but also caused an inability to remember having been presented face pictures, as if the episode was never recorded in memory. These observations support the view of an extensive network of face-selective VOTC regions subtending human FIR, with at least three critical nodes in the right hemisphere associated with differential intrinsic and extrinsic patterns of reentrant connectivity.
Collapse
Affiliation(s)
- Jacques Jonas
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| |
Collapse
|
13
|
Bu L, Lu J, Zhang J, Wu J. Intraoperative Cognitive Mapping Tasks for Direct Electrical Stimulation in Clinical and Neuroscientific Contexts. Front Hum Neurosci 2021; 15:612891. [PMID: 33762913 PMCID: PMC7982856 DOI: 10.3389/fnhum.2021.612891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Direct electrical stimulation (DES) has been widely applied in both guidance of lesion resection and scientific research; however, the design and selection of intraoperative cognitive mapping tasks have not been updated in a very long time. We introduce updated mapping tasks for language and non-language functions and provide recommendations for optimal design and selection of intraoperative mapping tasks. In addition, with DES becoming more critical in current neuroscientific research, a task design that has not been widely used in DES yet (subtraction and conjunction paradigms) was introduced for more delicate mapping of brain functions especially for research purposes. We also illustrate the importance of designing a common task series for DES and other non-invasive mapping techniques. This review gives practical updated guidelines for advanced application of DES in clinical and neuroscientific research.
Collapse
Affiliation(s)
- Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|
14
|
Cuisenier P, Testud B, Minotti L, El Bouzaïdi Tiali S, Martineau L, Job AS, Trébuchon A, Deman P, Bhattacharjee M, Hoffmann D, Lachaux JP, Baciu M, Kahane P, Perrone-Bertolotti M. Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during SEEG recording. J Neurosurg 2021; 134:1251-1261. [PMID: 32330883 DOI: 10.3171/2020.2.jns192751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The authors assessed the clinical relevance of preoperative task-induced high-frequency activity (HFA) for language mapping in patients with refractory epilepsy during stereoelectroencephalography recording. Although HFA evaluation was described as a putative biomarker of cognition, its clinical relevance for mapping language networks was assessed predominantly by studies using electrocorticography (ECOG). METHODS Forty-two patients with epilepsy who underwent intracranial electrode implantation during both task-induced HFA and direct cortical stimulation (DCS) language mapping were evaluated. The spatial and functional relevance of each method in terms of specificity and sensitivity were evaluated. RESULTS The results showed that the two methods were able to map classic language regions, and a large and bilateral language network was obtained with induced HFA. At a regional level, differences were observed between methods for parietal and temporal lobes: HFA recruited a larger number of cortical parietal sites, while DCS involved more cortical temporal sites. Importantly, the results showed that HFA predicts language interference induced by DCS with high specificity (92.4%; negative predictive value 95.9%) and very low sensitivity (8.9%; positive predictive value 4.8%). CONCLUSIONS DCS language mapping appears to be more appropriate for an extensive temporal mapping than induced HFA mapping. Furthermore, induced HFA should be used as a complement to DCS to preselect the number of stimulated sites during DCS, by omitting those reported as HFA-. This may be a considerable advantage because it allows a reduction in the duration of the stimulation procedure. Several parameters to be used for each method are discussed and the results are interpreted in relation to previous results reported in ECOG studies.
Collapse
Affiliation(s)
| | | | - Lorella Minotti
- 1Department of Neurology, CHU Grenoble Alpes, Grenoble
- 3Université Grenoble Alpes, Institut des Neurosciences, GIN, Grenoble
| | | | | | - Anne-Sophie Job
- 1Department of Neurology, CHU Grenoble Alpes, Grenoble
- 3Université Grenoble Alpes, Institut des Neurosciences, GIN, Grenoble
| | - Agnès Trébuchon
- 4Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille
| | - Pierre Deman
- 3Université Grenoble Alpes, Institut des Neurosciences, GIN, Grenoble
| | | | | | - Jean-Philippe Lachaux
- 5INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, DYCOG, Lyon
- 6Université Lyon 1, Lyon, France; and
| | - Monica Baciu
- 2Université Grenoble Alpes, CNRS, LPNC UMR 5105, Grenoble
- 7Institut Universitaire de France
| | - Philippe Kahane
- 1Department of Neurology, CHU Grenoble Alpes, Grenoble
- 4Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille
| | | |
Collapse
|
15
|
Sun F, Zhang G, Ren L, Yu T, Ren Z, Gao R, Zhang X. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clin Neurophysiol 2021; 132:487-497. [PMID: 33465535 DOI: 10.1016/j.clinph.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1. METHODS We recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired. RESULTS Stimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical "homunculus". And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions. CONCLUSIONS Our results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield. SIGNIFICANCE The classical S1 homunculus was extended by providing further refinement and additional detail.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
16
|
Affiliation(s)
- Christof Koch
- MindScope Program, Allen Institute, Seattle, Washington, USA.
| |
Collapse
|
17
|
Fox KCR, Parvizi J. Fidelity of first-person reports following intracranial neuromodulation of the human brain: An empirical assessment of sham stimulation in neurosurgical patients. Brain Stimul 2020; 14:77-79. [PMID: 33130019 PMCID: PMC8720563 DOI: 10.1016/j.brs.2020.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022] Open
Affiliation(s)
- Kieran C R Fox
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA.
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Elimari N, Lafargue G. Network Neuroscience and the Adapted Mind: Rethinking the Role of Network Theories in Evolutionary Psychology. Front Psychol 2020; 11:545632. [PMID: 33101120 PMCID: PMC7545950 DOI: 10.3389/fpsyg.2020.545632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/02/2020] [Indexed: 11/29/2022] Open
Abstract
Evolutionary psychology is the comprehensive study of cognition and behavior in the light of evolutionary theory, a unifying paradigm integrating a huge diversity of findings across different levels of analysis. Since natural selection shaped the brain into a functionally organized system of interconnected neural structures rather than an aggregate of separate neural organs, the network-based account of anatomo-functional architecture is bound to yield the best mechanistic explanation for how the brain mediates the onset of evolved cognition and adaptive behaviors. While this view of a flexible and highly distributed organization of the brain is more than a century old, it was largely ignored up until recently. Technological advances are only now allowing this approach to find its rightful place in the scientific landscape. Historically, early network theories mostly relied on lesion studies and investigations on white matter circuitry, subject areas that still provide great empirical findings to this day. Thanks to new neuroimaging techniques, the traditional localizationist framework, in which any given cognitive process is thought to be carried out by its dedicated brain structure, is slowly being abandoned in favor of a network-based approach. We argue that there is a special place for network neuroscience in the upcoming quest for the biological basis of information-processing systems identified by evolutionary psychologists. By reviewing history of network theories, and by addressing several theoretical and methodological implications of this view for evolutionary psychologists, we describe the current state of knowledge about human neuroanatomy for those who wish to be mindful of both evolutionary and network neuroscience paradigms.
Collapse
Affiliation(s)
| | - Gilles Lafargue
- Department of Psychology, Université de Reims Champagne Ardenne, C2S EA 6291, Reims, France
| |
Collapse
|
19
|
Perrone-Bertolotti M, Alexandre S, Jobb AS, De Palma L, Baciu M, Mairesse MP, Hoffmann D, Minotti L, Kahane P, David O. Probabilistic mapping of language networks from high frequency activity induced by direct electrical stimulation. Hum Brain Mapp 2020; 41:4113-4126. [PMID: 32697353 PMCID: PMC7469846 DOI: 10.1002/hbm.25112] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/29/2022] Open
Abstract
Direct electrical stimulation (DES) at 50 Hz is used as a gold standard to map cognitive functions but little is known about its ability to map large‐scale networks and specific subnetwork. In the present study, we aim to propose a new methodological approach to evaluate the specific hypothesis suggesting that language errors/dysfunction induced by DES are the result of large‐scale network modification rather than of a single cortical region, which explains that similar language symptoms may be observed after stimulation of different cortical regions belonging to this network. We retrospectively examined 29 patients suffering from focal drug‐resistant epilepsy who benefitted from stereo‐electroencephalographic (SEEG) exploration and exhibited language symptoms during a naming task following 50 Hz DES. We assessed the large‐scale language network correlated with behavioral DES‐induced responses (naming errors) by quantifying DES‐induced changes in high frequency activity (HFA, 70–150 Hz) outside the stimulated cortical region. We developed a probabilistic approach to report the spatial pattern of HFA modulations during DES‐induced language errors. Similarly, we mapped the pattern of after‐discharges (3–35 Hz) occurring after DES. HFA modulations concurrent to language symptoms revealed a brain network similar to our current knowledge of language gathered from standard brain mapping. In addition, specific subnetworks could be identified within the global language network, related to different language processes, generally described in relation to the classical language regions. Spatial patterns of after‐discharges were similar to HFA induced during DES. Our results suggest that this new methodological DES‐HFA mapping is a relevant approach to map functional networks during SEEG explorations, which would allow to shift from “local” to “network” perspectives.
Collapse
Affiliation(s)
- Marcela Perrone-Bertolotti
- CNRC, Laboratoire de Psychologie et NeuroCognition, University of Grenoble Alpes, University of Savoie Mont Blanc, Grenoble, France.,Institut Universitaire de, Paris, France
| | - Sarah Alexandre
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France
| | - Anne-Sophie Jobb
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Luca De Palma
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France
| | - Monica Baciu
- CNRC, Laboratoire de Psychologie et NeuroCognition, University of Grenoble Alpes, University of Savoie Mont Blanc, Grenoble, France.,Institut Universitaire de, Paris, France
| | | | | | - Lorella Minotti
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Philippe Kahane
- CHU Grenoble Alpes, Pôle Neurologie Psychiatrie, Grenoble, France.,University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| | - Olivier David
- University of Grenoble Alpes, Grenoble Institut Neurosciences, GIN, Grenoble, France.,Inserm, Grenoble, France
| |
Collapse
|
20
|
Fox KCR, Shi L, Baek S, Raccah O, Foster BL, Saha S, Margulies DS, Kucyi A, Parvizi J. Intrinsic network architecture predicts the effects elicited by intracranial electrical stimulation of the human brain. Nat Hum Behav 2020; 4:1039-1052. [PMID: 32632334 DOI: 10.1038/s41562-020-0910-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Intracranial electrical stimulation (iES) of the human brain has long been known to elicit a remarkable variety of perceptual, motor and cognitive effects, but the functional-anatomical basis of this heterogeneity remains poorly understood. We conducted a whole-brain mapping of iES-elicited effects, collecting first-person reports following iES at 1,537 cortical sites in 67 participants implanted with intracranial electrodes. We found that intrinsic network membership and the principal gradient of functional connectivity strongly predicted the type and frequency of iES-elicited effects in a given brain region. While iES in unimodal brain networks at the base of the cortical hierarchy elicited frequent and simple effects, effects became increasingly rare, heterogeneous and complex in heteromodal and transmodal networks higher in the hierarchy. Our study provides a comprehensive exploration of the relationship between the hierarchical organization of intrinsic functional networks and the causal modulation of human behaviour and experience with iES.
Collapse
Affiliation(s)
- Kieran C R Fox
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. .,School of Medicine, Stanford University, Stanford, CA, USA.
| | - Lin Shi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sori Baek
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Omri Raccah
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Brett L Foster
- Departments of Neurosurgery and Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Srijani Saha
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique (CNRS), UMR 7225, Frontlab, Institut du Cerveau et de la Moelle Épinière, Paris, France
| | - Aaron Kucyi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Davies JL. Using transcranial magnetic stimulation to map the cortical representation of lower-limb muscles. Clin Neurophysiol Pract 2020; 5:87-99. [PMID: 32455179 PMCID: PMC7235616 DOI: 10.1016/j.cnp.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 01/25/2023] Open
Abstract
Objective To evaluate the extent to which transcranial magnetic stimulation (TMS) can identify discrete cortical representation of lower-limb muscles in healthy individuals. Methods Motor evoked potentials were recorded from resting vastus medialis, rectus femoris, vastus lateralis, medial and lateral hamstring, and medial and lateral gastrocnemius muscles on the right leg of 16 young healthy adults using bipolar surface electrodes. TMS was delivered through a 110-mm double-cone coil at 63 sites over the left hemisphere. Location and size of cortical representation and number of discrete peaks were quantified. Results Within the quadriceps group there was a main effect of muscle on anterior-posterior centre of gravity (p = 0.010), but the magnitude of the difference was small. There was also a main effect of muscle on medial-lateral hotspot (p = 0.027) and map volume (p = 0.047), but no post-hoc tests were significant. The topography of each lower-limb muscle was complex and variable across individuals. Conclusions TMS delivered with a 110-mm double-cone coil could not reliably identify discrete cortical representations of resting lower-limb muscles when responses were measured using bipolar surface electromyography. Significance The characteristics of the cortical representation provide a basis against which to evaluate cortical reorganisation in clinical populations.
Collapse
Affiliation(s)
- Jennifer L Davies
- School of Healthcare Sciences, Cardiff University, United Kingdom.,Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, United Kingdom.,Cardiff University Brain Research Imaging Centre, Cardiff University, United Kingdom
| |
Collapse
|
22
|
Herbet G, Duffau H. Revisiting the Functional Anatomy of the Human Brain: Toward a Meta-Networking Theory of Cerebral Functions. Physiol Rev 2020; 100:1181-1228. [PMID: 32078778 DOI: 10.1152/physrev.00033.2019] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For more than one century, brain processing was mainly thought in a localizationist framework, in which one given function was underpinned by a discrete, isolated cortical area, and with a similar cerebral organization across individuals. However, advances in brain mapping techniques in humans have provided new insights into the organizational principles of anatomo-functional architecture. Here, we review recent findings gained from neuroimaging, electrophysiological, as well as lesion studies. Based on these recent data on brain connectome, we challenge the traditional, outdated localizationist view and propose an alternative meta-networking theory. This model holds that complex cognitions and behaviors arise from the spatiotemporal integration of distributed but relatively specialized networks underlying conation and cognition (e.g., language, spatial cognition). Dynamic interactions between such circuits result in a perpetual succession of new equilibrium states, opening the door to considerable interindividual behavioral variability and to neuroplastic phenomena. Indeed, a meta-networking organization underlies the uniquely human propensity to learn complex abilities, and also explains how postlesional reshaping can lead to some degrees of functional compensation in brain-damaged patients. We discuss the major implications of this approach in fundamental neurosciences as well as for clinical developments, especially in neurology, psychiatry, neurorehabilitation, and restorative neurosurgery.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France; Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors," INSERM U1191, Institute of Functional Genomics, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
23
|
Oelschlägel M, Meyer T, Morgenstern U, Wahl H, Gerber J, Reiß G, Koch E, Steiner G, Kirsch M, Schackert G, Sobottka SB. Mapping of language and motor function during awake neurosurgery with intraoperative optical imaging. Neurosurg Focus 2020; 48:E3. [PMID: 32006940 DOI: 10.3171/2019.11.focus19759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022]
Abstract
Intraoperative optical imaging (IOI) is a marker-free, contactless, and noninvasive imaging technique that is able to visualize metabolic changes of the brain surface following neuronal activation. Although it has been used in the past mainly for the identification of functional brain areas under general anesthesia, the authors investigated the potential of the method during awake surgery. Measurements were performed in 10 patients who underwent resection of lesions within or adjacent to cortical language or motor sites. IOI was applied in 3 different scenarios: identification of motor areas by using finger-tapping tasks, identification of language areas by using speech tasks (overt and silent speech), and a novel approach-the application of IOI as a feedback tool during direct electrical stimulation (DES) mapping of language. The functional maps, which were calculated from the IOI data (activity maps), were qualitatively compared with the functional MRI (fMRI) and the electrophysiological testing results during the surgical procedure to assess their potential benefit for surgical decision-making.The results reveal that the intraoperative identification of motor sites with IOI in good agreement with the preoperatively acquired fMRI and the intraoperative electrophysiological measurements is possible. Because IOI provides spatially highly resolved maps with minimal additional hardware effort, the application of the technique for motor site identification seems to be beneficial in awake procedures. The identification of language processing sites with IOI was also possible, but in the majority of cases significant differences between fMRI, IOI, and DES were visible, and therefore according to the authors' findings the IOI results are too unspecific to be useful for intraoperative decision-making with respect to exact language localization. For this purpose, DES mapping will remain the method of choice.Nevertheless, the IOI technique can provide additional value during the language mapping procedure with DES. Using a simple difference imaging approach, the authors were able to visualize and calculate the spatial extent of activation for each stimulation. This might enable surgeons in the future to optimize the mapping process. Additionally, differences between tumor and nontumor stimulation sites were observed with respect to the spatial extent of the changes in cortical optical properties. These findings provide further evidence that the method allows the assessment of the functional state of neurovascular coupling and is therefore suited for the delineation of pathologically altered tissue.
Collapse
Affiliation(s)
- Martin Oelschlägel
- 1Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
| | - Tobias Meyer
- 2ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft mbH, Dresden
| | - Ute Morgenstern
- 3Institute of Biomedical Engineering, Faculty of Electrical and Computer Engineering, Technische Universität Dresden
| | - Hannes Wahl
- 4Institute and Polyclinic of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden
| | - Johannes Gerber
- 4Institute and Polyclinic of Diagnostic and Interventional Neuroradiology, Carl Gustav Carus University Hospital, Technische Universität Dresden
| | - Gilfe Reiß
- 6Department of Neurosurgery, Carl Gustav Carus University Hospital, Technische Universität Dresden, Saxony, Germany
| | - Edmund Koch
- 1Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
| | - Gerald Steiner
- 1Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden
| | - Matthias Kirsch
- 5Department of Neurosurgery, Asklepios Kliniken Schildautal Seesen; and
| | - Gabriele Schackert
- 6Department of Neurosurgery, Carl Gustav Carus University Hospital, Technische Universität Dresden, Saxony, Germany
| | - Stephan B Sobottka
- 6Department of Neurosurgery, Carl Gustav Carus University Hospital, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
24
|
Muller L, Rolston JD, Fox NP, Knowlton R, Rao VR, Chang EF. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception. J Neural Eng 2019; 15:026015. [PMID: 29160232 DOI: 10.1088/1741-2552/aa9bf9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Direct electrical stimulation (DES) is a clinical gold standard for human brain mapping and readily evokes conscious percepts, yet the neurophysiological changes underlying these percepts are not well understood. APPROACH To determine the neural correlates of DES, we stimulated the somatosensory cortex of ten human participants at frequency-amplitude combinations that both elicited and failed to elicit conscious percepts, meanwhile recording neural activity directly surrounding the stimulation site. We then compared the neural activity of perceived trials to that of non-perceived trials. MAIN RESULTS We found that stimulation evokes distributed high gamma activity, which correlates with conscious perception better than stimulation parameters themselves. SIGNIFICANCE Our findings suggest that high gamma activity is a reliable biomarker for perception evoked by both natural and electrical stimuli.
Collapse
Affiliation(s)
- Leah Muller
- Department of Biological Engineering, University of California, San Francisco, San Francisco, CA, United States of America. Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States of America
| | | | | | | | | | | |
Collapse
|
25
|
Mahon BZ, Miozzo M, Pilcher WH. Direct electrical stimulation mapping of cognitive functions in the human brain. Cogn Neuropsychol 2019; 36:97-102. [PMID: 31514643 DOI: 10.1080/02643294.2019.1630375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
Abstract
Direct electrical stimulation (DES) is a well-established clinical tool for mapping cognitive functions while patients are undergoing awake neurosurgery or invasive long-term monitoring to identify epileptogenic tissue. Despite the proliferation of a range of invasive and noninvasive methods for mapping sensory, motor and cognitive processes in the human brain, DES remains the clinical gold standard for establishing the margins of brain tissue that can be safely removed while avoiding long-term neurological deficits. In parallel, and principally over the last two decades, DES has emerged as a powerful scientific tool for testing hypotheses of brain organization and mechanistic hypotheses of cognitive function. DES can cause transient "lesions" and thus can support causal inferences about the necessity of stimulated brain regions for specific functions, as well as the separability of sensory, motor and cognitive processes. This Special Issue of Cognitive Neuropsychology emphasizes the use of DES as a research tool to advance understanding of normal brain organization and function.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University , Pittsburgh , PA , USA
- Department of Neurosurgery, University of Rochester Medical Center , Rochester , NY , USA
- Department of Neurology, University of Rochester Medical Center , Rochester , NY , USA
- Carnegie Mellon Neuroscience Institute, Carnegie Mellon University , Pittsburgh , PA , USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Michele Miozzo
- Department of Psychology, The New School , New York , NY , USA
| | - Webster H Pilcher
- Department of Neurosurgery, University of Rochester Medical Center , Rochester , NY , USA
| |
Collapse
|
26
|
Yu K, Yu T, Qiao L, Liu C, Wang X, Zhou X, Ni D, Zhang G, Li Y. Electrical stimulation of the insulo-opercular region: visual phenomena and altered body-ownership symptoms. Epilepsy Res 2018; 148:96-106. [DOI: 10.1016/j.eplepsyres.2018.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/16/2018] [Accepted: 09/26/2018] [Indexed: 01/08/2023]
|
27
|
Early onset motor semiology in seizures triggered by cortical stimulation during SEEG. Epilepsy Behav 2018; 88:262-267. [PMID: 30317060 DOI: 10.1016/j.yebeh.2018.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/15/2018] [Accepted: 09/15/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The objective of the study was to describe electroclinical patterns in habitual seizures with motor semiology at onset, triggered by diagnostic stimulation, in patients undergoing presurgical evaluation using stereoelectroencephalography (SEEG). METHODS Seizure semiology, stimulation parameters, electroclinical data, and anatomical localization were evaluated in stimulated and spontaneous seizures. RESULTS From 120 habitual seizures triggered by 50-Hz train bipolar stimulation during SEEG, 20 presented initial motor semiology (elementary motor signs, complex motor behavior, or both). Two patterns occurred: long latency onset (7/20), where semiology occurred after the stimulation train, following visible cortical epileptic discharge similarly to spontaneous seizures; and short latency onset (13/20), in which typical semiological expression occurred during the stimulation train, preceding typical cortical discharge. CONCLUSIONS This novel observation shows that in some conditions, seizures with habitual motor semiology could be triggered early during stimulation, before typical cortical epileptic discharge became visible. The earliness of clinical onset with regard to visible cortical discharge, notably in comparison with clinically similar spontaneous seizures, suggests differences in electrophysiological mechanisms that require further investigation. These may involve preferential involvement of descending corticosubcortical connections within the same epileptogenic network for a given patient.
Collapse
|
28
|
Muscle Synergies Obtained from Comprehensive Mapping of the Cortical Forelimb Representation Using Stimulus Triggered Averaging of EMG Activity. J Neurosci 2018; 38:8759-8771. [PMID: 30150363 DOI: 10.1523/jneurosci.2519-17.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 07/16/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Neuromuscular control of voluntary movement may be simplified using muscle synergies similar to those found using non-negative matrix factorization. We recently identified synergies in electromyography (EMG) recordings associated with both voluntary movement and movement evoked by high-frequency long-duration intracortical microstimulation applied to the forelimb representation of the primary motor cortex (M1). The goal of this study was to use stimulus-triggered averaging (StTA) of EMG activity to investigate the synergy profiles and weighting coefficients associated with poststimulus facilitation, as synergies may be hard-wired into elemental cortical output modules and revealed by StTA. We applied StTA at low (LOW, ∼15 μA) and high intensities (HIGH, ∼110 μA) to 247 cortical locations of the M1 forelimb region in two male rhesus macaques while recording the EMG of 24 forelimb muscles. Our results show that 10-11 synergies accounted for 90% of the variation in poststimulus EMG facilitation peaks from the LOW-intensity StTA dataset while only 4-5 synergies were needed for the HIGH-intensity dataset. Synergies were similar across monkeys and current intensities. Most synergy profiles strongly activated only one or two muscles; all joints were represented and most, but not all, joint directions of motion were represented. Cortical maps of the synergy weighting coefficients suggest only a weak organization. StTA of M1 resulted in highly diverse muscle activations, suggestive of the limiting condition of requiring a synergy for each muscle to account for the patterns observed.SIGNIFICANCE STATEMENT Coordination of muscle activity and the neural origin of potential muscle synergies remains a fundamental question of neuroscience. We previously demonstrated that high-frequency long-duration intracortical microstimulation-evoked synergies were unrelated to voluntary movement synergies and were not clearly organized in the cortex. Here we present stimulus-triggered averaging facilitation-related muscle synergies, suggesting that when fundamental cortical output modules are activated, synergies approach the limit of single-muscle control. Thus, we conclude that if the CNS controls movement via linear synergies, those synergies are unlikely to be called from M1. This information is critical for understanding neural control of movement and the development of brain-machine interfaces.
Collapse
|
29
|
Electrical Stimulation Mapping of the Brain: Basic Principles and Emerging Alternatives. J Clin Neurophysiol 2018; 35:86-97. [PMID: 29499015 DOI: 10.1097/wnp.0000000000000440] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The application of electrical stimulation mapping (ESM) of the brain for clinical use is approximating a century. Despite this long-standing history, the value of ESM for guiding surgical resections and sparing eloquent cortex is documented largely by small retrospective studies, and ESM protocols are largely inherited and lack standardization. Although models are imperfect and mechanisms are complex, the probabilistic causality of ESM has guaranteed its perpetuation into the 21st century. At present, electrical stimulation of cortical tissue is being revisited for network connectivity. In addition, noninvasive and passive mapping techniques are rapidly evolving to complement and potentially replace ESM in specific clinical situations. Lesional and epilepsy neurosurgery cases now offer different opportunities for multimodal functional assessments.
Collapse
|
30
|
Rofes A, Mandonnet E, de Aguiar V, Rapp B, Tsapkini K, Miceli G. Language processing from the perspective of electrical stimulation mapping. Cogn Neuropsychol 2018; 36:117-139. [PMID: 29996708 DOI: 10.1080/02643294.2018.1485636] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Electrical Stimulation (ES) is a neurostimulation technique that is used to localize language functions in the brain of people with intractable epilepsy and/or brain tumors. We reviewed 25 ES articles published between 1984 and 2018 and interpreted them from a cognitive neuropsychological perspective. Our aim was to highlight ES as a tool to further our understanding of cognitive models of language. We focused on associations and dissociations between cognitive functions within the framework of two non-neuroanatomically specified models of language. Also, we discussed parallels between the ES and the stroke literatures and showed how ES data can help us to generate hypotheses regarding how language is processed. A good understanding of cognitive models of language is essential to motivate task selection and to tailor surgical procedures, for example, by avoiding testing the same cognitive functions and understanding which functions may be more or less relevant to be tested during surgery.
Collapse
Affiliation(s)
- Adrià Rofes
- Global Brain Health Institute, Trinity College Dublin , Dublin , Ireland.,Department of Cognitive Science, Johns Hopkins University , Baltimore , MD , USA
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital , Paris , France.,University Diderot Paris 7 , Paris , France.,Frontlab, INSERM, ICM , Paris , France
| | - Vânia de Aguiar
- Department of Neurology, Johns Hopkins University , Baltimore , MD , USA
| | - Brenda Rapp
- Department of Cognitive Science, Johns Hopkins University , Baltimore , MD , USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins University , Baltimore , MD , USA
| | - Gabriele Miceli
- Center for Mind and Brain Sciences, University of Trento , Trento , Italy
| |
Collapse
|
31
|
Moore BD, Aron AR, Tandon N. Closed-loop intracranial stimulation alters movement timing in humans. Brain Stimul 2018; 11:886-895. [PMID: 29598890 DOI: 10.1016/j.brs.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/20/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND A prime objective driving the recent development of human neural prosthetics is to stimulate neural circuits in a manner time-locked to ongoing brain activity. The human supplementary motor area (SMA) is a particularly useful target for this objective because it displays characteristic neural activity just prior to voluntary movement. OBJECTIVE Here, we tested a method that detected activity in the human SMA related to impending movement and then delivered cortical stimulation with intracranial electrodes to influence the timing of movement. METHODS We conducted experiments in nine patients with electrodes implanted for epilepsy localization: five patients with SMA electrodes and four control patients with electrodes outside the SMA. In the first experiment, electrocorticographic (ECoG) recordings were used to localize the electrode of interest during a task involving bimanual finger movements. In the second experiment, a real-time sense-and-stimulate (SAS) system was implemented that delivered an electrical stimulus when pre-movement gamma power exceeded a threshold. RESULTS Stimulation based on real-time detection of this supra-threshold activity resulted in significant slowing of motor behavior in all of the cases where stimulation was carried out in the SMA patients but in none of the patients where stimulation was performed at the control site. CONCLUSIONS The neurophysiological correlates of impending movement can be used to trigger a closed loop stimulation device and influence ongoing motor behavior in a manner imperceptible to the subject. This is the first report of a human closed loop system designed to alter movement using direct cortical recordings and direct stimulation.
Collapse
Affiliation(s)
- Bartlett D Moore
- Vivian L Smith Department of Neurosurgery, McGovern Medical School, Houston, TX, 77030, USA
| | - Adam R Aron
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nitin Tandon
- Vivian L Smith Department of Neurosurgery, McGovern Medical School, Houston, TX, 77030, USA; Mischer Neurosciences Institute, Memorial Hermann Hospital, Texas Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
32
|
Herbet G, Moritz-Gasser S, Duffau H. Electrical stimulation of the dorsolateral prefrontal cortex impairs semantic cognition. Neurology 2018; 90:e1077-e1084. [PMID: 29444964 DOI: 10.1212/wnl.0000000000005174] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/07/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the prefrontal cortical structures causally involved in verbal and nonverbal semantic cognition in both cerebral hemispheres. METHODS We retrospectively screened the intraoperative brain mapping data of 584 patients who underwent neurosurgery for neoplastic tumor under local anesthesia with direct cortical electrostimulation. Patients were included if they were right-handed, recently diagnosed with a diffuse low-grade glioma, and had a positive language mapping for verbal (naming task) and nonverbal (visual semantic association task) semantic cognition in the prefrontal cortex (n = 49). Among these, 30 were tested intraoperatively with both the naming and the semantic association tasks, while 19 were tested with the naming task only. Subsequently, each semantic site (n = 85) was plotted individually onto a common stereotaxic space for detailed analyses. RESULTS The cortical sites associated with verbal semantic disturbances (n = 45) were distributed in the pars opercularis (n = 14) and pars triangularis (n = 19) of the left inferior frontal gyrus, and left dorsolateral prefrontal cortex (dlPFC, n = 12); only 2 sites were observed in the right dlPFC. In contrast, all but one cortical site associated with nonverbal semantic disturbances were observed in the left dorsolateral cortex (n = 8). In the right hemisphere, the same disturbances were found in the dlPFC (n = 14) and pars opercularis (n = 2). CONCLUSION The present study demonstrated the critical role of the dlPFC in the semantic network, and indicated its specific and bilateral involvement in nonverbal semantic cognition in right-handers.
Collapse
Affiliation(s)
- Guillaume Herbet
- From the Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center; Institute for Neuroscience of Montpellier, INSERM 1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center; and University of Montpellier, France.
| | - Sylvie Moritz-Gasser
- From the Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center; Institute for Neuroscience of Montpellier, INSERM 1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center; and University of Montpellier, France
| | - Hugues Duffau
- From the Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center; Institute for Neuroscience of Montpellier, INSERM 1051, Team "Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors," Saint Eloi Hospital, Montpellier University Medical Center; and University of Montpellier, France
| |
Collapse
|
33
|
Oelschlägel M, Meyer T, Schackert G, Kirsch M, Sobottka SB, Morgenstern U. Intraoperative optical imaging of metabolic changes after direct cortical stimulation – a clinical tool for guidance during tumor resection? ACTA ACUST UNITED AC 2018; 63:587-594. [DOI: 10.1515/bmt-2017-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Brain tumor resection is even today one of the most challenging disciplines in neurosurgery. The current state of the art for the identification of tumor tissue during the surgical procedure comprises a wide variety of different tools, each with its own limitations and drawbacks. In this paper, we present a novel approach, the use of optical imaging in connection with direct electrical cortical stimulation (DCS), for identification of impaired tumor tissue and functional intact normal brain tissue under intraoperative conditions. Measurements with an optical imaging setup were performed as a proof of concept on three patients who underwent tumor resection of superficial gliomas. Direct electrical stimulations were applied on tumor tissue and surrounding brain tissue in each patient and characteristic features from the observed changes in the optical properties were compared between the different groups. The results reveal that in all patients a differentiation between non-functional tumor tissue and functional intact brain tissue was possible, and the technique might be a useful clinical tool in the future.
Collapse
Affiliation(s)
- Martin Oelschlägel
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden , Institut für Biomedizinische Technik , D – 01307 Dresden , Germany , Phone: +49 351 463 32118, Fax: +49 351 463 36026
| | - Tobias Meyer
- Institute of Biomedical Engineering, Faculty of Electrical and Computer Engineering , Technische Universität Dresden , 01307 Dresden , Germany
- ABX-CRO Advanced Pharmaceutical Services Forschungsgesellschaft m.b.H. , 01307 Dresden , Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden , 01307 Dresden , Germany
| | - Matthias Kirsch
- Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden , 01307 Dresden , Germany
| | - Stephan B. Sobottka
- Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus , Technische Universität Dresden , 01307 Dresden , Germany
| | - Ute Morgenstern
- Institute of Biomedical Engineering, Faculty of Electrical and Computer Engineering , Technische Universität Dresden , 01307 Dresden , Germany
| |
Collapse
|
34
|
Babajani-Feremi A, Holder CM, Narayana S, Fulton SP, Choudhri AF, Boop FA, Wheless JW. Predicting postoperative language outcome using presurgical fMRI, MEG, TMS, and high gamma ECoG. Clin Neurophysiol 2018; 129:560-571. [PMID: 29414401 DOI: 10.1016/j.clinph.2017.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To predict the postoperative language outcome using the support vector regression (SVR) and results of multimodal presurgical language mapping. METHODS Eleven patients with epilepsy received presurgical language mapping using functional MRI (fMRI), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and high-gamma electrocorticography (hgECoG), as well as pre- and postoperative neuropsychological evaluation of language. We constructed 15 (24-1) SVR models by considering the extent of resected language areas identified by all subsets of four modalities as input feature vector and the postoperative language outcome as output. We trained and cross-validated SVR models, and compared the cross-validation (CV) errors of all models for prediction of language outcome. RESULTS Seven patients had some level of postoperative language decline and two of them had significant postoperative decline in naming. Some parts of language areas identified by four modalities were resected in these patients. We found that an SVR model consisting of fMRI, MEG, and hgECoG provided minimum CV error, although an SVR model consisting of fMRI and MEG was the optimal model that facilitated the best trade-off between model complexity and prediction accuracy. CONCLUSIONS A multimodal SVR can be used to predict the language outcome. SIGNIFICANCE The developed multimodal SVR models in this study can be utilized to calculate the language outcomes of different resection plans prior to surgery and select the optimal surgical plan.
Collapse
Affiliation(s)
- Abbas Babajani-Feremi
- University of Tennessee Health Science Center, Department of Pediatrics and Department of Anatomy and Neurobiology, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA.
| | - Christen M Holder
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Shalini Narayana
- University of Tennessee Health Science Center, Department of Pediatrics and Department of Anatomy and Neurobiology, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Stephen P Fulton
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Asim F Choudhri
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - Frederick A Boop
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| | - James W Wheless
- University of Tennessee Health Science Center, Department of Pediatrics, Le Bonheur Children's Hospital, Neuroscience Institute, Memphis, TN, USA
| |
Collapse
|
35
|
Boly M, Massimini M, Tsuchiya N, Postle BR, Koch C, Tononi G. Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral Cortex? Clinical and Neuroimaging Evidence. J Neurosci 2017; 37:9603-9613. [PMID: 28978697 PMCID: PMC5628406 DOI: 10.1523/jneurosci.3218-16.2017] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/14/2023] Open
Abstract
The role of the frontal cortex in consciousness remains a matter of debate. In this Perspective, we will critically review the clinical and neuroimaging evidence for the involvement of the front versus the back of the cortex in specifying conscious contents and discuss promising research avenues.Dual Perspectives Companion Paper: Should a Few Null Findings Falsify Prefrontal Theories of Conscious Perception?, by Brian Odegaard, Robert T. Knight, and Hakwan Lau.
Collapse
Affiliation(s)
- Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, Wisconsin 53705,
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan 20157, Italy
- Instituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20148, Italy
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing, and Health Sciences, Monash University, Melbourne, 3800 Victoria, Australia
- Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, 3800 Victoria, Australia
| | - Bradley R Postle
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53705, and
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin 53719,
| |
Collapse
|
36
|
Castellano A, Cirillo S, Bello L, Riva M, Falini A. Functional MRI for Surgery of Gliomas. Curr Treat Options Neurol 2017; 19:34. [PMID: 28831723 DOI: 10.1007/s11940-017-0469-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Advanced neuroimaging techniques such as functional MRI (fMRI) and diffusion MR tractography have been increasingly used at every stage of the surgical management of brain gliomas, as a means to improve tumor resection while preserving brain functions. This review provides an overview of the last advancements in the field of functional MRI techniques, with a particular focus on their current clinical use and reliability in the preoperative and intraoperative setting, as well as their future perspectives for personalized multimodal management of patients with gliomas. RECENT FINDINGS fMRI and diffusion MR tractography give relevant insights on the anatomo-functional organization of eloquent cortical areas and subcortical connections near or inside a tumor. Task-based fMRI and diffusion tensor imaging (DTI) tractography have proven to be valid and highly sensitive tools for localizing the distinct eloquent cortical and subcortical areas before surgery in glioma patients; they also show good accuracy when compared with intraoperative stimulation mapping data. Resting-state fMRI functional connectivity as well as new advanced HARDI (high angular resolution diffusion imaging) tractography methods are improving and reshaping the role of functional MRI for surgery of gliomas, with potential benefit for personalized treatment strategies. Noninvasive functional MRI techniques may offer the opportunity to perform a multimodal assessment in brain tumors, to be integrated with intraoperative mapping and clinical data for improving surgical management and oncological and functional outcome in patients affected by gliomas.
Collapse
Affiliation(s)
- Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy.
| | - Sara Cirillo
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| | - Lorenzo Bello
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy.,Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University and IRCCS San Raffaele Scientific Institute, Via Olgettina 58-60, 20132, Milan, Italy
| |
Collapse
|
37
|
A multielectrode array microchannel platform reveals both transient and slow changes in axonal conduction velocity. Sci Rep 2017; 7:8558. [PMID: 28819130 PMCID: PMC5561146 DOI: 10.1038/s41598-017-09033-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
Due to their small dimensions, electrophysiology on thin and intricate axonal branches in support of understanding their role in normal and diseased brain function poses experimental challenges. To reduce experimental complexity, we coupled microelectrode arrays (MEAs) to bi-level microchannel devices for the long-term in vitro tracking of axonal morphology and activity with high spatiotemporal resolution. Our model allowed the long-term multisite recording from pure axonal branches in a microscopy-compatible environment. Compartmentalizing the network structure into interconnected subpopulations simplified access to the locations of interest. Electrophysiological data over 95 days in vitro (DIV) showed an age-dependent increase of axonal conduction velocity, which was positively correlated with, but independent of evolving burst activity over time. Conduction velocity remained constant at chemically increased network activity levels. In contrast, low frequency (1 Hz, 180 repetitions) electrical stimulation of axons or network subpopulations evoked amplitude-dependent direct (5-35 ms peri-stimulus) and polysynaptic (35-1,000 ms peri-stimulus) activity with temporarily (<35 ms) elevated propagation velocities along the perisomatic branches. Furthermore, effective stimulation amplitudes were found to be significantly lower (>250 mV) in microchannels when compared with those reported for unconfined cultures (>800 mV). The experimental paradigm may lead to new insights into stimulation-induced axonal plasticity.
Collapse
|
38
|
Fausto C. The Integration of Emotional Expression and Experience: A Pragmatist Review of Recent Evidence From Brain Stimulation. EMOTION REVIEW 2017. [DOI: 10.1177/1754073917723461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A common view in affective neuroscience considers emotions as a multifaceted phenomenon constituted by independent affective and motor components. Such dualistic connotation, obtained by rephrasing the classic Darwin and James’s theories of emotion, leads to the assumption that emotional expression is controlled by motor centers in the anterior cingulate, frontal operculum, and supplementary motor area, whereas emotional experience depends on interoceptive centers in the insula. Recent stimulation studies provide a different perspective. I will outline two sets of findings. First, affective experiences can be elicited also following the stimulation of motor centers. Second, emotional expressions can be elicited by stimulating interoceptive regions. Echoing the original pragmatist theories of emotion, I will make a case for the notion that emotional experience emerges from the integration of sensory and motor signals, encoded in the same functional network.
Collapse
Affiliation(s)
- Caruana Fausto
- Unit of Neuroscience, University of Parma, Italy
- Unit of Philosophy, University of Parma, Italy
| |
Collapse
|
39
|
Herbet G, Yordanova YN, Duffau H. Left Spatial Neglect Evoked by Electrostimulation of the Right Inferior Fronto-occipital Fasciculus. Brain Topogr 2017; 30:747-756. [DOI: 10.1007/s10548-017-0574-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
|
40
|
Zanin E, Riva M, Bambini V, Cappa SF, Magrassi L, Moro A. The contribution of surgical brain mapping to the understanding of the anatomo-functional basis of syntax: A critical review. Neurol Sci 2017. [PMID: 28624915 DOI: 10.1007/s10072-017-3016-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A wide range of studies on language assessment during awake brain surgery is nowadays available. Yet, a consensus on a standardized protocol for intraoperative language mapping is still lacking. More specifically, very limited information is offered about intraoperative assessment of a crucial component of language such as syntax. This review aims at critically analyzing the intraoperative studies investigating the cerebral basis of syntactic processing. A comprehensive query was performed on the literature, returning a total of 18 studies. These papers were analyzed according to two complementary criteria, based on the distinction between morphosyntax and syntax. The first criterion focused on the tasks and stimuli employed intraoperatively. Studies were divided into three different groups: group 1 included those studies that overtly aimed at investigating morphosyntactic processes; group 2 included studies that did not explicitly focus on syntax, yet employed stimuli requiring morphosyntactic processing; and group 3 included studies reporting some generic form of syntactic deficit, although not further investigated. The second criterion focused on the syntactic structures of the sentences assessed intraoperatively, analyzing the canonicity of sentence structure (i.e., canonical versus non-canonical word order). The global picture emerging from our analysis indicates that what was investigated in the intraoperative literature is morphosyntactic processing, rather than pure syntax. The study of the neurobiology of syntax during awake surgery seems thus to be still at an early stage, in need of systematic, linguistically grounded investigations.
Collapse
Affiliation(s)
- Elia Zanin
- Neurocognition, Epistemogy and Theoretical Syntax Research Center (NETS), Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria, 15, 27100, Pavia, Italy.
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Valentina Bambini
- Neurocognition, Epistemogy and Theoretical Syntax Research Center (NETS), Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria, 15, 27100, Pavia, Italy
| | - Stefano F Cappa
- Neurocognition, Epistemogy and Theoretical Syntax Research Center (NETS), Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria, 15, 27100, Pavia, Italy.,IRCCS S. Cuore Fatebenefratelli, 25125, Brescia, Italy
| | - Lorenzo Magrassi
- Neurocognition, Epistemogy and Theoretical Syntax Research Center (NETS), Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria, 15, 27100, Pavia, Italy.,Neurosurgery - Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy.,Istituto di Genetica Molecolare - Consiglio Nazionale delle Ricerche, 27100, Pavia, Italy
| | - Andrea Moro
- Neurocognition, Epistemogy and Theoretical Syntax Research Center (NETS), Scuola Universitaria Superiore IUSS Pavia, Piazza della Vittoria, 15, 27100, Pavia, Italy
| |
Collapse
|
41
|
Papagno C, Comi A, Riva M, Bizzi A, Vernice M, Casarotti A, Fava E, Bello L. Mapping the brain network of the phonological loop. Hum Brain Mapp 2017; 38:3011-3024. [PMID: 28321956 DOI: 10.1002/hbm.23569] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/15/2017] [Accepted: 03/05/2017] [Indexed: 11/08/2022] Open
Abstract
The cortical and subcortical neural correlates underlying item and order information in verbal short-term memory (STM) were investigated by means of digit span in 29 patients with direct electrical stimulation during awake surgery for removal of a neoplastic lesion. Stimulation of left Broca's area interfered with span, producing significantly more item than order errors, as compared to the stimulation of the supramarginal/angular gyrus, which also interfered with span but, conversely, produced more order than item errors. Similarly, stimulation of the third segment of the left superior longitudinal fasciculus (SLF-III), also known as anterior segment of the arcuate fascicle (AF), produced more order than item errors. Therefore, we obtained two crucial results: first, we were able to distinguish between content and order information storage. Second, we demonstrated that the SLF-III is involved in transferring order information from Geschwind's area to Broca's area. In a few patients, we demonstrated that also order information of nonverbal material was disrupted by left supramarginal gyrus stimulation. Order information is thus likely stored in the supramarginal gyrus, possibly independently from the nature of the material. Hum Brain Mapp 38:3011-3024, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Costanza Papagno
- Dipartimento di Psicologia, Università di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milano, 20126, Italy.,CIMeC and CeRiN, University of Trento and Rovereto, Rovereto, 38068, Italy
| | - Alessandro Comi
- Dipartimento di Psicologia, Università di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milano, 20126, Italy
| | - Marco Riva
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, via Manzoni 56, Rozzano, MI, 20089, Italy
| | - Alberto Bizzi
- Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, via Celoria 11, Milano, MI, 20133, Italy
| | - Mirta Vernice
- Dipartimento di Psicologia, Università di Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, Milano, 20126, Italy
| | - Alessandra Casarotti
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, via Manzoni 56, Rozzano, MI, 20089, Italy
| | - Enrica Fava
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, via Manzoni 56, Rozzano, MI, 20089, Italy
| | - Lorenzo Bello
- Unit of Oncological Neurosurgery, Humanitas Research Hospital, via Manzoni 56, Rozzano, MI, 20089, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, Milano, 20122, Italy
| |
Collapse
|
42
|
Yordanova YN, Duffau H, Herbet G. Neural pathways subserving face-based mentalizing. Brain Struct Funct 2017; 222:3087-3105. [DOI: 10.1007/s00429-017-1388-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
43
|
Ghinda CD, Duffau H. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas. Front Surg 2017; 4:3. [PMID: 28197403 PMCID: PMC5281570 DOI: 10.3389/fsurg.2017.00003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/07/2023] Open
Abstract
Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach.
Collapse
Affiliation(s)
- Cristina Diana Ghinda
- Department of Neurosurgery, The Ottawa Hospital, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Neuroscience Division, University of Ottawa, Ottawa, ON, Canada
| | - Hugues Duffau
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier University Medical Center, Montpellier, France; Brain Plasticity, Stem Cells and Glial Tumors Team, National Institute for Health and Medical Research (INSERM), Montpellier, France
| |
Collapse
|
44
|
Electrical Microstimulation of the Pulvinar Biases Saccade Choices and Reaction Times in a Time-Dependent Manner. J Neurosci 2017; 37:2234-2257. [PMID: 28119401 PMCID: PMC5338763 DOI: 10.1523/jneurosci.1984-16.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/04/2022] Open
Abstract
The pulvinar complex is interconnected extensively with brain regions involved in spatial processing and eye movement control. Recent inactivation studies have shown that the dorsal pulvinar (dPul) plays a role in saccade target selection; however, it remains unknown whether it exerts effects on visual processing or at planning/execution stages. We used electrical microstimulation of the dPul while monkeys performed saccade tasks toward instructed and freely chosen targets. Timing of stimulation was varied, starting before, at, or after onset of target(s). Stimulation affected saccade properties and target selection in a time-dependent manner. Stimulation starting before but overlapping with target onset shortened saccadic reaction times (RTs) for ipsiversive (to the stimulation site) target locations, whereas stimulation starting at and after target onset caused systematic delays for both ipsiversive and contraversive locations. Similarly, stimulation starting before the onset of bilateral targets increased ipsiversive target choices, whereas stimulation after target onset increased contraversive choices. Properties of dPul neurons and stimulation effects were consistent with an overall contraversive drive, with varying outcomes contingent upon behavioral demands. RT and choice effects were largely congruent in the visually-guided task, but stimulation during memory-guided saccades, while influencing RTs and errors, did not affect choice behavior. Together, these results show that the dPul plays a primary role in action planning as opposed to visual processing, that it exerts its strongest influence on spatial choices when decision and action are temporally close, and that this choice effect can be dissociated from motor effects on saccade initiation and execution. SIGNIFICANCE STATEMENT Despite a recent surge of interest, the core function of the pulvinar, the largest thalamic complex in primates, remains elusive. This understanding is crucial given the central role of the pulvinar in current theories of integrative brain functions supporting cognition and goal-directed behaviors, but electrophysiological and causal interference studies of dorsal pulvinar (dPul) are rare. Building on our previous studies that pharmacologically suppressed dPul activity for several hours, here we used transient electrical microstimulation at different periods while monkeys performed instructed and choice eye movement tasks, to determine time-specific contributions of pulvinar to saccade generation and decision making. We show that stimulation effects depend on timing and behavioral state and that effects on choices can be dissociated from motor effects.
Collapse
|
45
|
Southwell DG, Riva M, Jordan K, Caverzasi E, Li J, Perry DW, Henry RG, Berger MS. Language outcomes after resection of dominant inferior parietal lobule gliomas. J Neurosurg 2017; 127:781-789. [PMID: 28059657 DOI: 10.3171/2016.8.jns16443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The dominant inferior parietal lobule (IPL) contains cortical and subcortical regions essential for language. Although resection of IPL tumors could result in language deficits, little is known about the likelihood of postoperative language morbidity or the risk factors predisposing to this outcome. METHODS The authors retrospectively examined a series of patients who underwent resections of gliomas from the dominant IPL. Postoperative language outcomes were characterized across the patient population. To identify factors associated with postoperative language morbidity, the authors then compared features between those patients who experienced postoperative deficits and those who experienced no postoperative language dysfunction. RESULTS Twenty-four patients were identified for analysis. Long-term language deficits occurred in 29.2% of patients (7 of 24): 3 of these patients had experienced preoperative language deficits, whereas new long-term language deficits occurred in 4 patients (16.7%; 4 of 24). Of those patients who exhibited preoperative language deficits, 62.5% (5 of 8) experienced long-term resolution of their language deficits with surgical treatment. All patients underwent intraoperative brain mapping by direct electrical stimulation. Awake, intraoperative cortical language mapping was performed on 17 patients (70.8%). Positive cortical language sites were identified in 23.5% of these patients (4 of 17). Awake, intraoperative subcortical language mapping was performed in 8 patients (33.3%). Positive subcortical language sites were identified in 62.5% of these patients (5 of 8). Patients with positive cortical language sites exhibited a higher rate of long-term language deficits (3 of 4, 75%), compared with those who did not (1 of 13, 7.7%; p = 0.02). Although patients with positive subcortical language sites exhibited a higher rate of long-term language deficits than those who exhibited only negative sites (40.0% vs 0.0%, respectively), this difference was not statistically significant (p = 0.46). Additionally, patients with long-term language deficits were older than those without deficits (p < 0.05). CONCLUSIONS In a small number of patients with preoperative language deficits, IPL glioma resection resulted in improved language function. However, in patients with intact preoperative language function, resection of IPL gliomas may result in new language deficits, especially if the tumors are diffuse, high-grade lesions. Thus, language-dominant IPL glioma resection is not risk-free, yet it is safe and its morbidity can be reduced by the use of cortical and subcortical stimulation mapping.
Collapse
Affiliation(s)
| | - Marco Riva
- Università degli Studi di Milano, Milan, Italy
| | - Kesshi Jordan
- Neurology, and.,Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, California; and
| | - Eduardo Caverzasi
- Neurology, and.,Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Jing Li
- Departments of 1 Neurological Surgery
| | | | - Roland G Henry
- Neurology, and.,Radiology and Biomedical Imaging, University of California, San Francisco, California.,Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, California; and
| | | |
Collapse
|
46
|
Brain and Music: An Intraoperative Stimulation Mapping Study of a Professional Opera Singer. World Neurosurg 2016; 93:486.e13-8. [DOI: 10.1016/j.wneu.2016.06.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022]
|
47
|
Herbet G, Moritz-Gasser S, Duffau H. Direct evidence for the contributive role of the right inferior fronto-occipital fasciculus in non-verbal semantic cognition. Brain Struct Funct 2016; 222:1597-1610. [PMID: 27568379 DOI: 10.1007/s00429-016-1294-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/17/2016] [Indexed: 11/29/2022]
Abstract
The neural foundations underlying semantic processing have been extensively investigated, highlighting a pivotal role of the ventral stream. However, although studies concerning the involvement of the left ventral route in verbal semantics are proficient, the potential implication of the right ventral pathway in non-verbal semantics has been to date unexplored. To gain insights on this matter, we used an intraoperative direct electrostimulation to map the structures mediating the non-verbal semantic system in the right hemisphere. Thirteen patients presenting with a right low-grade glioma located within or close to the ventral stream were included. During the 'awake' procedure, patients performed both a visual non-verbal semantic task and a verbal (control) task. At the cortical level, in the right hemisphere, we found non-verbal semantic-related sites (n = 7 in 6 patients) in structures commonly associated with verbal semantic processes in the left hemisphere, including the superior temporal gyrus, the pars triangularis, and the dorsolateral prefrontal cortex. At the subcortical level, we found non-verbal semantic-related sites in all but one patient (n = 15 sites in 12 patients). Importantly, all these responsive stimulation points were located on the spatial course of the right inferior fronto-occipital fasciculus (IFOF). These findings provide direct support for a critical role of the right IFOF in non-verbal semantic processing. Based upon these original data, and in connection with previous findings showing the involvement of the left IFOF in non-verbal semantic processing, we hypothesize the existence of a bilateral network underpinning the non-verbal semantic system, with a homotopic connectional architecture.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, 34295, Montpellier, France. .,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, 34091, Montpellier, France. .,University of Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France.
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, 34295, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, 34091, Montpellier, France.,University of Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, 34295, Montpellier, France.,National Institute for Health and Medical Research (INSERM), U1051, Team "Plasticity of the Central Nervous System, Human Stem Cells and Glial Tumors", Institute for Neurosciences of Montpellier, Montpellier University Medical Center, 80 Av Augustin Fliche, 34091, Montpellier, France.,University of Montpellier, 163 rue Auguste Broussonnet, 34090, Montpellier, France
| |
Collapse
|
48
|
Smile and laughter elicited by electrical stimulation of the frontal operculum. Neuropsychologia 2016; 89:364-370. [DOI: 10.1016/j.neuropsychologia.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/08/2016] [Accepted: 07/02/2016] [Indexed: 01/18/2023]
|
49
|
Desmurget M, Sirigu A. Revealing humans' sensorimotor functions with electrical cortical stimulation. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140207. [PMID: 26240422 DOI: 10.1098/rstb.2014.0207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Direct electrical stimulation (DES) of the human brain has been used by neurosurgeons for almost a century. Although this procedure serves only clinical purposes, it generates data that have a great scientific interest. Had DES not been employed, our comprehension of the organization of the sensorimotor systems involved in movement execution, language production, the emergence of action intentionality or the subjective feeling of movement awareness would have been greatly undermined. This does not mean, of course, that DES is a gold standard devoid of limitations and that other approaches are not of primary importance, including electrophysiology, modelling, neuroimaging or psychophysics in patients and healthy subjects. Rather, this indicates that the contribution of DES cannot be restricted, in humans, to the ubiquitous concepts of homunculus and somatotopy. DES is a fundamental tool in our attempt to understand the human brain because it represents a unique method for mapping sensorimotor pathways and interfering with the functioning of localized neural populations during the performance of well-defined behavioural tasks.
Collapse
Affiliation(s)
- Michel Desmurget
- Centre de Neuroscience Cognitive, CNRS, UMR 5229, 67 boulevard Pinel, Bron 69500, France Université Claude Bernard, Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69100, France
| | - Angela Sirigu
- Centre de Neuroscience Cognitive, CNRS, UMR 5229, 67 boulevard Pinel, Bron 69500, France Université Claude Bernard, Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69100, France
| |
Collapse
|
50
|
Vincent M, Rossel O, Hayashibe M, Herbet G, Duffau H, Guiraud D, Bonnetblanc F. The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping? Rev Neurosci 2016; 27:231-58. [DOI: 10.1515/revneuro-2015-0029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/17/2015] [Indexed: 11/15/2022]
Abstract
AbstractBoth electrical microstimulation (EMS) and direct electrical stimulation (DES) of the brain are used to perform functional brain mapping. EMS is applied to animal fundamental neuroscience experiments, whereas DES is performed in the operating theatre on neurosurgery patients. The objective of the present review was to shed new light on electrical stimulation techniques in brain mapping by comparing EMS and DES. There is much controversy as to whether the use of DES during wide-awake surgery is the ‘gold standard’ for studying the brain function. As part of this debate, it is sometimes wrongly assumed that EMS and DES induce similar effects in the nervous tissues and have comparable behavioural consequences. In fact, the respective stimulation parameters in EMS and DES are clearly different. More surprisingly, there is no solid biophysical rationale for setting the stimulation parameters in EMS and DES; this may be due to historical, methodological and technical constraints that have limited the experimental protocols and prompted the use of empirical methods. In contrast, the gap between EMS and DES highlights the potential for new experimental paradigms in electrical stimulation for functional brain mapping. In view of this gap and recent technical developments in stimulator design, it may now be time to move towards alternative, innovative protocols based on the functional stimulation of peripheral nerves (for which a more solid theoretical grounding exists).
Collapse
Affiliation(s)
- Marion Vincent
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | - Olivier Rossel
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | - Mitsuhiro Hayashibe
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | | | | | - David Guiraud
- 1INRIA, Université de Montpellier, LIRMM, équipe DEMAR, F-34095 Montpellier, France
| | | |
Collapse
|