1
|
Li W, Saeki H, Yang B, Shimizu Y, Joe GH. Enhanced anti-inflammatory effect of fish myofibrillar protein by introducing pectin oligosaccharide and its molecular mechanisms. Food Chem 2025; 463:141082. [PMID: 39276689 DOI: 10.1016/j.foodchem.2024.141082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the efficacy of glycation with edible uronic acid-containing oligosaccharides via the Maillard reaction to enhance the anti-inflammatory effect of fish myofibrillar protein (Mf). Lyophilized Mf was reacted with pectin oligosaccharide (PO, half of the total protein weight) at 60 °C and 35 % relative humidity for up to 12 h to produce glycated Mf (Mf-PO). After pepsin and trypsin digestion, the anti-inflammatory effect was assessed by measuring the secretions of proinflammatory cytokines in LPS-stimulated RAW 264.7 macrophages, and the anti-inflammatory effect of Mf was enhanced by PO-glycation without marked lysine loss and browning. The effects on the expressions of genes related to the LPS-stimulated signaling pathway in macrophages were also examined. PO-glycation suppressed LPS-stimulated inflammation by suppressing expression of cd14 and enhancing suppressive effect of Mf on the TLR4-MyD88-dependent inflammatory signaling pathway. Therefore, as an edible reducing sugar, PO could be an effective bioindustrial material for developing anti-inflammatory Mf.
Collapse
Affiliation(s)
- Wenzhao Li
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Boxue Yang
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yutaka Shimizu
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Ga-Hyun Joe
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
2
|
Jiménez-González S, Delgado-Valero B, Romero-Miranda A, Islas F, Luaces M, Ramchandani B, Cuesta-Corral M, Montoro-Garrido A, Nieto ML, Martínez-Martínez E, Cachofeiro V. The mechanisms underlying the cardiac effects of modified citrus pectin in obese rats with myocardial ischemia: Role of galectin-3. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024:S0214-9168(24)00114-1. [PMID: 39638645 DOI: 10.1016/j.arteri.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Modified citrus pectin (MCP) is used as a nutritional supplement that inhibits galectin-3 activity, a central player in the cardiac damage associated with different pathological situations. In fact, we have previously observed that MCP improved cardiac function in obese infarcted rats that was associated with a reduction in cardiac fibrosis. Therefore, the aim of the present study was to further explore whether this effect could involve the modulation of gene expression of ECM components and their mediators as well as whether it could affect another two mechanisms involved in cardiac damage: mitochondrial dynamics and autophagic flux. METHODS Male Wistar rats were fed an atherogenic diet with a high content of saturated fat (35%). MI was induced by the ligation of left anterior descendant (LAD) coronary artery 6 weeks after and MCP (100mg/kg/day) or vehicle were administered for 4 weeks more. A group of rats fed a standard diet (5.3% fat) and subjected to a sham operation was used as controls. RESULTS Obese infarcted animals presented an increase in cross-linked collagen that was not affected by the administration of galectin-3 inhibitor. However, MCP reduced the increase in gene expression observed in obese infarcted rats of ECM components and mediators (collagen I, fibronectin, transforming growth factor-β and connective tissue growth factor), of components of endoplasmic reticulum stress (binding immunoglobulin protein, CCAAT-enhancer-binding homologous protein and activating transcription factor 4), of oxidative stress mediator (NADPH oxidase-4) and normalized those of the interleukin 33/ST2 system. MCP is also able to increase the levels of the mitochondrial protein Dynamin-1-like and those of both proteins involved in autophagic flux (p62 and LC3) that were reduced by the myocardial ischemia in the context of obesity. CONCLUSIONS The data show that the beneficial effect of the nutritional supplement MCP on the cardiac consequences associated with myocardial ischemia in the context of obesity could rely on its capacity to inhibit galectin-3 and to consequently modulate different downstream mechanisms, including inflammation, ER stress, oxidative stress, autophagy and mitochondrial function, which can facilitate fibrosis and cardiac remodeling in this pathological context.
Collapse
Affiliation(s)
- Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Fabian Islas
- Unidad de Imagen Cardíaca, Hospital General Universitario de Talavera de la Reina, Toledo, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, Madrid, Spain
| | - María Cuesta-Corral
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Montoro-Garrido
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Majadahonda, Spain; Institute of Molecular Biology and Genetics (IBGM-CSIC/Uva), (IBGM-CSIC/Uva), Valladolid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Majadahonda, Spain.
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, Madrid, Spain; Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Majadahonda, Spain.
| |
Collapse
|
3
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
4
|
Du S, Wang Y, Tao W, Lu S. Differential effects of enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins extracted with different methods on inhibiting the proliferation of Hela cells. Int J Biol Macromol 2024; 278:134463. [PMID: 39102920 DOI: 10.1016/j.ijbiomac.2024.134463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Previous studies have shown that modified citrus pectin (MCP) is an anti-tumor material of food grade. In this study, two enzymatically modified Ougan (Citrus Suavissima Hort. ex Tanaka) peel pectins (EMP1 and EMP2, the ones extracted by alkali and enzymatic methods) were used to investigate their differential effects on viability and physiology of Hela cells. The results showed that EMP1 and EMP2 had 88.00 % and 81.01 % galacturonic acid, 21.31 % and 20.25 % esterification degree, 10,417 g/mol and 6416 g/mol molecular weight (Mw), 82.86 % and 50.62 % RG-I, and 8.91 % and 15.70 % HG, respectively. EMP2 had higher intensities of absorption peaks than EMP1. They were irregularly shaped, with more holes on EMP1 but more wrinkles on EMP2. Both could inhibit the growth, proliferation, migration, and invasion of HeLa cells in a concentration-dependent manner, with better efficiency in EMP2. Meanwhile, EMP2 was more efficient than EMP1 in blocking the cell cycle in S phase, resulting in apoptosis. In conclusion, the variations caused by extraction resulted in differences in anti-tumor activity of MCP and EMP2 with lower Mw and higher HG exhibited better anti-tumor effects. This study would provide an experimental basis and reference for the research and development of anti-tumor supplements from citrus pectin.
Collapse
Affiliation(s)
- Shuangning Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yangguang Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Wenyang Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Gou D, Qiu P, Hong F, Wang Y, Ren P, Cheng X, Wang L, Liu T, Liu J, Zhao J. Polydopamine modified multifunctional carboxymethyl chitosan/pectin hydrogel loaded with recombinant human epidermal growth factor for diabetic wound healing. Int J Biol Macromol 2024; 274:132917. [PMID: 38851612 DOI: 10.1016/j.ijbiomac.2024.132917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The development of a multifunctional wound dressing that can adapt to the shape of wounds and provide controlled drug release is crucial for diabetic patients. This study developed a carboxymethyl chitosan-based hydrogel dressing with enhanced mechanical properties and tissue adherence that were achieved by incorporating pectin (PE) and polydopamine (PDA) and loading the hydrogel with recombinant human epidermal growth factor (rhEGF). This EGF@PDA-CMCS-PE hydrogel demonstrated robust tissue adhesion, enhanced mechanical properties, and superior water retention and vapor permeability. It also exhibited significant antioxidant capacity. The results showed that EGF@PDA-CMCS-PE could effectively scavenge 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate), (1,1-diphenyl-2-picrylhydrazyl), and superoxide anions and increase superoxide dismutase and catalase levels in vivo. In vitro cytotoxicity and antibacterial assays showed good biocompatibility and antimicrobial properties. The sustained release of EGF by the hydrogel was confirmed, with a gradual release profile over 120 h. In vivo studies in diabetic mice showed that the hydrogel significantly accelerated wound healing, with a wound contraction rate of 97.84% by day 14. Histopathological analysis revealed that the hydrogel promoted fibroblast proliferation, neovascularization, and orderly connective tissue formation, leading to a more uniform and compact wound-healing process. Thus, EGF@PDA-CMCS-PE hydrogel presents a promising tool for managing chronic diabetic wounds, offering a valuable strategy for future clinical applications.
Collapse
Affiliation(s)
- Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peng Qiu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Fandi Hong
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yufan Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiaowen Cheng
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Lei Wang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Tong Liu
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130103, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
6
|
Donadio JLS, Fabi JP. Comparative analysis of pectin and prebiotics on human microbiota modulation in early life stages and adults. Food Funct 2024; 15:6825-6846. [PMID: 38847603 DOI: 10.1039/d4fo01231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The gut microbiota is essential in human health, influencing various physiological processes ranging from digestion and metabolism to immune function and mental health. Dietary fiber pectins and prebiotics have emerged as key modulators of gut microbiota composition and function, offering potential therapeutic implications for promoting gut health and preventing intestinal inflammatory diseases. In this review, we explore the modulation of gut microbiota by dietary fiber pectins and prebiotics in infants and adults. We begin with an overview of the gut microbiota composition and function in different age groups, highlighting the factors in shaping microbial communities in both age groups, especially the effect of diet. We then delve into the impact of dietary fiber pectins and prebiotics on gut microbiota composition and function, examining their effects on digestive health, intestinal barrier integrity, immune function, metabolic health, and mental health across different life stages. We further compare how aging affects the gut function and immune system, and we discuss the main health outcomes associated with dietary fiber intake and prebiotics, including the impact on digestive health, improvement in immune function, improvement in cholesterol and glucose metabolism, weight management, mental health, and prevention of diseases. Finally, we highlight the challenges and future directions for research. By advancing the understanding of gut microbiota dynamics and translating scientific insights into clinical practice, it could harness the full potential of dietary fiber pectins and prebiotics to optimize gut health, improve overall well-being across the lifespan, and increase longevity.
Collapse
Affiliation(s)
- Janaina Lombello Santos Donadio
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Tang X, Chen X, Ferrari M, Walvoort MTC, de Vos P. Gut Epithelial Barrier Function is Impacted by Hyperglycemia and Secondary Bile Acids in Vitro: Possible Rescuing Effects of Specific Pectins. Mol Nutr Food Res 2024; 68:e2300910. [PMID: 38794856 DOI: 10.1002/mnfr.202300910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Gut epithelial barrier disruption is commonly observed in Western diseases like diabetes and inflammatory bowel disease (IBD). Enhanced epithelial permeability triggers inflammatory responses and gut microbiota dysbiosis. Reduced bacterial diversity in IBD affects gut microbiota metabolism, altering microbial products such as secondary bile acids (BAs), which potentially play a role in gut barrier regulation and immunity. Dietary fibers such as pectin may substitute effects of these BAs. The study examines transepithelial electrical resistance of gut epithelial T84 cells and the gene expression of tight junctions after exposure to (un)sulfated secondary BAs. This is compared to the impact of the dietary fiber pectin with different degrees of methylation (DM) and blockiness (DB), with disruption induced by calcium ionophore A23187 under both normal and hyperglycemic conditions. Unsulfated lithocholic acid (LCA) and deoxycholic acid (DCA) show a stronger rescuing effect, particularly evident under 20 mM glucose levels. DM19 with high DB (HB) and DM43HB pectin exhibit rescuing effects under both glucose conditions. Notably, DM19HB and DM43HB display higher rescue effects under 20 mM glucose compared to 5 mM glucose. The study demonstrates that specific pectins such as DM19HB and DM43HB may serve as alternatives for preventing barrier disruption in the case of disturbed DCA metabolism.
Collapse
Affiliation(s)
- Xin Tang
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Xiaochen Chen
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Michela Ferrari
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
8
|
Deng RX, Zheng YY, Liu DJ, Liu JY, Zhang MN, Xi GY, Song LL, Liu P. The effect of ultrasonic power on the physicochemical properties and antioxidant activities of frosted figs pectin. ULTRASONICS SONOCHEMISTRY 2024; 106:106883. [PMID: 38703594 PMCID: PMC11081804 DOI: 10.1016/j.ultsonch.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
Ultrasound has been widely used in industry due to its high energy and efficiency. This study optimized the ultrasonic-assisted extraction (UAE) process of frosted figs pectin (FFP) using response surface methodology (RSM), and further investigated the effect of ultrasonic power on the structural characteristics and antioxidant activities of FFPs. The UAE method of FFP through RSM was optimized, and the optimal extraction process conditions, particle size of 100 mesh, pH value of 1.95, liquid-solid ratio of 47:1 (mL/g), extraction temperature of 50 °C and extraction time of 65 min, were obtained. The extraction rate of FFP under this condition was 37.97 ± 2.56 %. Then, the four FFPs modified by ultrasound were obtained by changing the ultrasonic power. Research had found that ultrasonic power had little effect on the monosaccharide composition, Zeta potential, as well as the thermal stability and appearance structure of the four FFPs. However, ultrasonic power had a significant impact on other properties of FFP: as the ultrasonic power increased, the DM% and particle size decreased continuously, while the total carbohydrate content increased. Meanwhile, ultrasonic power also had a significant impact on antioxidant activities of FFPs. From the research results, it could be seen that different ultrasonic power had certain changes in its spatial structure and properties, and the structural changes also affected the biological activity of FFP. The study of the effects of ultrasonic power on the physicochemical properties and biological activity of FFP lays the foundation for the development and application of FFP in food additives and natural drug carriers.
Collapse
Affiliation(s)
- Rui-Xue Deng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yi-Ying Zheng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Dong-Jie Liu
- Ansteel Beijing Research Institute CO., LTD., Changping, Beijing 102209, China
| | - Jing-Yi Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Meng-Nan Zhang
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guang-Yuan Xi
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Lu-Lu Song
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Pu Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| |
Collapse
|
9
|
Prabsangob N, Hangsalad S, Harnsilawat T. Effect of Organic Acid-Aided Extraction on Characteristics and Functional Properties of Pectin from Cannabis sativa L. Molecules 2024; 29:2511. [PMID: 38893387 PMCID: PMC11173500 DOI: 10.3390/molecules29112511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The extraction of cannabinoids from the inflorescence and leaves of Cannabis sativa L. is gaining interest from researchers, in addition to addressing the under-utilization of the by-products in the stems and roots of the trees. The present study investigated the recovery of pectin from the left-over parts of hemp tress using an eco-friendly method with the aid of organic acids. Different cannabis cultivars-Chalotte's Angels (CHA) and Hang-Krarog (HKR)-were used as plant materials. The stems of both cannabis cultivars contained more pectin than the roots, and tartaric acid-aided extraction provided higher yields than from citric acid. Extracting the acid solution affected some characteristics, thereby differentiating the functional properties of the derived pectin. Extraction using tartaric acid provided pectin with a higher galacturonic acid content, whereas pectin with a higher methylation degree could be prepared using citric acid. The pectin samples extracted from the stems of CHA (P-CHA) and HKR (P-HKR) had low methoxyl pectin. P-CHA had better free radical scavenging capability, whereas P-HKR showed more potent reducibility. Considering the functional properties, P-CHA showed greater emulsion formability and foaming activity, whereas P-HKR possessed a better thickening effect. The present work suggests the feasible utilization of P-CHA and P-HKR as food additives with bioactivity.
Collapse
Affiliation(s)
- Nopparat Prabsangob
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | | | | |
Collapse
|
10
|
Talekar S, Barrow CJ, Nguyen HC, Zolfagharian A, Zare S, Farjana SH, Macreadie PI, Ashraf M, Trevathan-Tackett SM. Using waste biomass to produce 3D-printed artificial biodegradable structures for coastal ecosystem restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171728. [PMID: 38492597 DOI: 10.1016/j.scitotenv.2024.171728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
The loss of ecosystem functions and services caused by rapidly declining coastal marine ecosystems, including corals and bivalve reefs and wetlands, around the world has sparked significant interest in interdisciplinary methods to restore these ecologically and socially important ecosystems. In recent years, 3D-printed artificial biodegradable structures that mimic natural life stages or habitat have emerged as a promising method for coastal marine restoration. The effectiveness of this method relies on the availability of low-cost biodegradable printing polymers and the development of 3D-printed biomimetic structures that efficiently support the growth of plant and sessile animal species without harming the surrounding ecosystem. In this context, we present the potential and pathway for utilizing low-cost biodegradable biopolymers from waste biomass as printing materials to fabricate 3D-printed biodegradable artificial structures for restoring coastal marine ecosystems. Various waste biomass sources can be used to produce inexpensive biopolymers, particularly those with the higher mechanical rigidity required for 3D-printed artificial structures intended to restore marine ecosystems. Advancements in 3D printing methods, as well as biopolymer modifications and blending to address challenges like biopolymer solubility, rheology, chemical composition, crystallinity, plasticity, and heat stability, have enabled the fabrication of robust structures. The ability of 3D-printed structures to support species colonization and protection was found to be greatly influenced by their biopolymer type, surface topography, structure design, and complexity. Considering limited studies on biodegradability and the effect of biodegradation products on marine ecosystems, we highlight the need for investigating the biodegradability of biopolymers in marine conditions as well as the ecotoxicity of the degraded products. Finally, we present the challenges, considerations, and future perspectives for designing tunable biomimetic 3D-printed artificial biodegradable structures from waste biomass biopolymers for large-scale coastal marine restoration.
Collapse
Affiliation(s)
- Sachin Talekar
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Hoang Chinh Nguyen
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Shahab Zare
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Peter I Macreadie
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Mahmud Ashraf
- School of Engineering, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Stacey M Trevathan-Tackett
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
11
|
Odriozola A, González A, Odriozola I, Álvarez-Herms J, Corbi F. Microbiome-based precision nutrition: Prebiotics, probiotics and postbiotics. ADVANCES IN GENETICS 2024; 111:237-310. [PMID: 38908901 DOI: 10.1016/bs.adgen.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.
Collapse
Affiliation(s)
- Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Jesús Álvarez-Herms
- Phymo® Lab, Physiology, and Molecular Laboratory, Collado Hermoso, Segovia, Spain
| | - Francesc Corbi
- Institut Nacional d'Educació Física de Catalunya (INEFC), Centre de Lleida, Universitat de Lleida (UdL), Lleida, Spain
| |
Collapse
|
12
|
Shuai M, Li Y, Guan F, Fu G, Sun C, Ren Q, Wang L, Zhang T. Breaking barriers: How modified citrus pectin inhibits galectin-8. Food Funct 2024; 15:4887-4893. [PMID: 38597504 DOI: 10.1039/d4fo00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Inhibition of galectin-3-mediated interactions by modified citrus pectin (MCP) could affect several rate-limiting steps in cancer metastasis, but the ability of MCP to antagonize galectin-8 function remains unknown. We hypothesized that MCP could bind to galectin-8 in addition to galectin-3. In this study, a combination of gradual ethanol precipitation and DEAE-Sepharose Fast Flow chromatography was used to isolate several fractions from MCP. The ability of these fractions to antagonize galectin-8 function was studied as well as the primary structure and initial structure-function relationship of the major active component MCP-30-3. The results showed that MCP-30-3 (168 kDa) was composed of Gal (13.8%), GalA (63.1%), GlcA (13.0%), and Glc (10.1%). MCP-30-3 could specifically bind to galectin-8, with an MIC value of 0.04 mg mL-1. After MCP-30-3 was hydrolyzed by β-galactosidase or pectinase, its binding activity was significantly reduced. These results provide new insights into the interaction between MCP structure and galectin function, as well as the potential utility in the development of functional foods.
Collapse
Affiliation(s)
- Ming Shuai
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Yiqing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Fanqi Guan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Guixia Fu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Qianqian Ren
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Li Wang
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, China.
- School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
13
|
Díaz Ruiz E, González Ariza A, León Jurado JM, Arando Arbulu A, Fernández-Bolaños Guzmán J, Bermúdez Oria A, Delgado Bermejo JV, Navas González FJ. Evaluation of the effect of the addition of an olive oil-derived antioxidant (Pectoliv-80A) in the extender for cryopreservation of rooster sperm through the use of a discriminant statistical tool. Poult Sci 2024; 103:103630. [PMID: 38513548 PMCID: PMC10973192 DOI: 10.1016/j.psj.2024.103630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
During the poultry sperm cryopreservation process, an excess of reactive oxygen species is generated resulting in oxidative stress which harms the quality of avian spermatozoa. To counteract this effect, the addition of exogenous antioxidants, such as Pectoliv-80A (a by-product of olive oil), to the cryopreservation diluent is interesting. For this purpose, 16 roosters belonging to the Utrerana avian breed were used. Six semen pools (from the 6 different replicates) were divided into 4 aliquots corresponding to different concentrations of Pectoliv-80A that were tested (0, 300, 400, and 500 μg/mL), and the cryopreservation process was carried out. To evaluate post-thawing semen quality, different parameters such as motility, membrane functionality, reactive oxygen species production, lipid peroxidation, and acrosome integrity were studied. A discriminant canonical analysis was used to determine both the differences between the Pectoliv-80A concentration groups and the discriminant power of the aforementioned parameter used for semen evaluation. Total motility and membrane functionality were reported to be the most discriminant variables for differentiating the different antioxidant enrichment groups and concluded that concentrations of 300 μg/mL showed the most desirable quality of post-thawing semen. The present study could lead to the optimization of both cryopreservation and quality evaluation techniques of the sperm of rooster species, that support the conservation program of endangered local breeds.
Collapse
Affiliation(s)
- Esther Díaz Ruiz
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, 14071, Spain
| | | | | | - Ander Arando Arbulu
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, Córdoba, 14071, Spain
| | | | - Alejandra Bermúdez Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, (CSIC), Sevilla, 41013, Spain
| | | | | |
Collapse
|
14
|
Yang J, Liao Y, Cao C, Yu Q, Zhang D, Yan C. Structural identification and anti-neuroinflammatory effects of a pectin-arabinoglucuronogalactan complex, AOPB-1-1, isolated from Asparagus officinalis. Int J Biol Macromol 2024; 268:131593. [PMID: 38631571 DOI: 10.1016/j.ijbiomac.2024.131593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Asparagus officinalis L. is a horticultural crop that contains a variety of bioactive compounds with anti-inflammatory effects. Aqueous extracts of A. officinalis can noticeably improve the learning and memory function of model mice. Herein, a pectin-arabinoglucuronogalactan complex (AOPB-1-1) with a relative molecular weight of 90.8 kDa was isolated from A. officinalis. The repeating structural unit of AOPB-1-1 was identified through monosaccharide composition, methylation analysis, uronic acid reduction, partial acid hydrolysis, and nuclear magnetic resonance spectroscopy. AOPB-1-1 contains the rhamnogalacturonan-I (RG-I) domain of pectin polysaccharides (PPs) and arabinoglucuronogalactan (AGG) regions. The backbone of the AGG region is composed of →3,6)-β-D-Galp-(1→ and →4)-β-D-Glcp-(1→ residues substituted at the 4-position to the →4)-α-D-GalAp-(1→ residues of the RG-I main chain. The anti-neuroinflammatory activity of AOPB-1-1 suggests that it can significantly reduce the content of inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) and inhibit the expression of inflammatory genes including cyclooxygenase-2 (COX2), nitric oxide synthase (iNOS), TNF-α, IL-6, and interleukin-1β (IL-1β) in LPS-stimulated BV2 cells. Furthermore, its inhibitory effects on TNF-α and IL-6 levels were even better than those of minocycline. The significant anti-neuroinflammatory activity of AOPB-1-1 suggests its applicability as a therapeutic option for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuechan Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chao Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Donadio JLS, Prado SBRD, Soares CG, Tamarossi RI, Heidor R, Moreno FS, Fabi JP. Ripe papaya pectins inhibit the proliferation of colon cancer spheroids and the formation of chemically induced aberrant crypts in rats colons. Carbohydr Polym 2024; 331:121878. [PMID: 38388061 DOI: 10.1016/j.carbpol.2024.121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Pectins are a class of soluble polysaccharides that can have anticancer properties through several mechanisms. This study aimed to characterize the molecular structure of water-soluble fractions (WSF) derived from ripe and unripe papayas and assess their biological effects in two models: the 3D colon cancer spheroids to measure cell viability and cytotoxicity, and the in vivo model to investigate the inhibition of preneoplastic lesions in rats. WSF yield was slightly higher in ripe papaya, and both samples mainly consisted of pectin. Both pectins inhibited the growth of colon cancer HT29 and HCT116 spheroids. Unripe pectin disturbed HT29/NIH3T3 spheroid formation, decreased HCT116 spheroid viability, and increased spheroid cytotoxicity. Ripe pectin had a more substantial effect on the reduction of spheroid viability for HT29 spheroids. Furthermore, in vivo experiments on a rat model revealed a decrease in aberrant crypt foci (ACF) formation for both pectins and increased apoptosis in colonocytes for ripe papaya pectins. The results suggest potential anticancer properties of papaya pectin, with ripe pectin showing a higher potency.
Collapse
Affiliation(s)
- Janaina L S Donadio
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil
| | | | - Caroline Giacomelli Soares
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Rodrigo Invernort Tamarossi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Renato Heidor
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil
| | - João Paulo Fabi
- University of São Paulo, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Av. Prof. Lineu Prestes 580, São Paulo, SP, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers, São Paulo Research Foundation, Rua do Lago, 250, São Paulo, SP, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Iñiguez-Moreno M, Pizaña-Aranda JJP, Ramírez-Gamboa D, Ramírez-Herrera CA, Araújo RG, Flores-Contreras EA, Iqbal HMN, Parra-Saldívar R, Melchor-Martínez EM. Enhancing pectin extraction from orange peel through citric acid-assisted optimization based on a dual response. Int J Biol Macromol 2024; 263:130230. [PMID: 38373564 DOI: 10.1016/j.ijbiomac.2024.130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Pectin is widely used in several products in the industry. Conventionally, strong and harmful acids are used for its extraction. This study optimized the extraction of orange peel's pectin using citric acid, considering yield and degree of esterification (DE) as response variables. Proximal analyses were performed, and the samples were subjected to a Box-Behnken design on three central points, considering as variables the temperature, time, and pH. The results of proximate analyses of the orange peels revealed 11.76 % moisture content, 87.26 % volatiles, 0.09 % ash, 50.45 % soluble carbohydrates, 70.60 % total carbohydrates, 0.89 % fixed carbon, 5.35 % lipids, and 36.75 mg GAE/g of phenolic compounds. The resulting second-order polynomial model described the relation of the input and output variables related to each other. The best performance to obtain a higher yield (18.18 %) of high methoxyl pectin (DE 50 %) was set at 100 °C/30 min/pH 2.48. Pectin showed antioxidant properties by ABTS and DPPH assays and similar thermal properties to the commercial polymer. Its equivalent weight was 1219.51 mol/g, and the methoxyl and anhydrouronic acid were 2.23 and 67.10 %, respectively. Hence, pectin extraction with citric acid results in a high-quality polymer and could be used as a gelling agent, stabilizer, or texturizer in food products.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - José Juan Pablo Pizaña-Aranda
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Diana Ramírez-Gamboa
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | | | - Rafael G Araújo
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda A Flores-Contreras
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School and Engineering and Science, 64849, Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Mexico.
| |
Collapse
|
17
|
Yao Z, Zhu K, Gu T, Schmitz OJ, Li D. An active derivatization detection method for inline monitoring the isolation of carbohydrates by preparative liquid chromatography. J Chromatogr A 2024; 1719:464730. [PMID: 38367394 DOI: 10.1016/j.chroma.2024.464730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Polysaccharides have unique physio-chemical properties and various biological functions and have rapidly expanded interest over the last two decades. The purification of polysaccharides and their degraded oligosaccharides is challenging because carbohydrates have no chromophore and need a proper detector to monitor the chromatographic elution process. This study proposed an active derivatization detection (ADD) method based on active splitting from post-column flow, a microchannel reactor for efficient derivatization of polysaccharide reducing sugars with p-hydroxybenzoic acid hydrazide, and in-line detection by the UV detector of liquid chromatography system. The method and device were validated by the use of 11 monosaccharides, sulfated oligosaccharides (from degraded carrageenan), and polysaccharides (from Zizania latifolia). It has shown much better performance than the traditional phenol-sulfuric acid method (gold standard). Moreover, the ADD module presumes an add-in to the original preparative LC system, independent of the scale of the purification process and type of system. The developed method is versatile for chromatographic separation of carbohydrates and lays the foundation for their subsequent studies.
Collapse
Affiliation(s)
- Zhen Yao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Kehan Zhu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Tianyi Gu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China
| | - Oliver J Schmitz
- Applied Analytical Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45141, Germany
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
18
|
Chen K, Zhang Q, Yang S, Zhang S, Chen G. Comparative Study on the Impact of Different Extraction Technologies on Structural Characteristics, Physicochemical Properties, and Biological Activities of Polysaccharides from Seedless Chestnut Rose ( Rosa sterilis) Fruit. Foods 2024; 13:772. [PMID: 38472885 DOI: 10.3390/foods13050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Seedless chestnut rose (Rosa sterilis S. D. Shi, RS) is a fresh type of R. roxburghii Tratt with copious functional components in its fruit. Polysaccharides are recognized as one of the vital bioactive compounds in RS fruits, but their antioxidant and hypoglycemic properties have not been extensively explored. Hence, in this study, accelerated solvent extraction (RSP-W), citric acid (RSP-C), 5% sodium hydroxide/0.05% sodium borohydride (RSP-A), and 0.9% sodium chloride (RSP-S) solution extraction were individually utilized to obtain RS fruit polysaccharides. The physicochemical properties, structural characteristics, and biological activities were then compared. Results indicated that extraction methods had significant influences on the extraction yield, uronic acid content, monosaccharide composition, molecular weight, particle size, thermal stability, triple-helical structure, and surface morphology of RSPs apart from the major linkage bands and crystalline characteristics. The bioactivity tests showed that the RSP-S, which had the greatest amount of uronic acid and a comparatively lower molecular weight, exhibited more potent antioxidant and α-glucosidase inhibitory property. Furthermore, all RSPs inhibited α-glucosidase through a mixed-type manner and quenched their fluorescence predominantly via a static quenching mechanism, with RSP-S showing the highest binding efficiency. Our findings provide a theoretical basis for utilizing RSPs as functional ingredients in food industries.
Collapse
Affiliation(s)
- Kaiwen Chen
- College of Food Science and Engineering, Guiyang University, 130 Jianlongdong Road, Nanming District, Guiyang 550005, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiuqiu Zhang
- College of Food Science and Engineering, Guiyang University, 130 Jianlongdong Road, Nanming District, Guiyang 550005, China
| | - Shengzhen Yang
- College of Food Science and Engineering, Guiyang University, 130 Jianlongdong Road, Nanming District, Guiyang 550005, China
| | - Shengyan Zhang
- College of Food Science and Engineering, Guiyang University, 130 Jianlongdong Road, Nanming District, Guiyang 550005, China
| | - Guangjing Chen
- College of Food Science and Engineering, Guiyang University, 130 Jianlongdong Road, Nanming District, Guiyang 550005, China
| |
Collapse
|
19
|
Butt HS, Ulriksen ES, Rise F, Wangensteen H, Duus JØ, Inngjerdingen M, Inngjerdingen KT. Structural elucidation of novel pro-inflammatory polysaccharides from Daphne mezereum L. Carbohydr Polym 2024; 324:121554. [PMID: 37985118 DOI: 10.1016/j.carbpol.2023.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Daphne mezereum L., an important medicinal plant in Scandinavian folk medicine, was used to treat ailments such as diarrhea, swelling and stomach pain. A range of natural compounds have been isolated, but little attention has been given to the polysaccharides in this plant. Previous work in our group have shown that a polysaccharide enriched fraction from the bark of D. mezereum exhibited pro-inflammatory effects. To pursue this further, the aim of the present work was to isolate and characterize these polysaccharides. From the ethanol-precipitate of a water extract, one neutral (DMP-NF) and one acidic (DMP-AF) fraction was isolated by anion-exchange chromatography. GC, GC-MS and 1D- and 2D-NMR were used to characterize the polysaccharide structures. DMP-NF appeared to be a mixture of arabinan, arabinogalactan and hemicelluloses such as xyloglucan, mannan and xylan. DMP-AF contained a pectic polysaccharide mainly consisting of an unusually long homogalacturonan backbone. Enzymatic treatment by pectinase of DMP-AF yielded DMP-ED, which contained a rhamnogalacturonan-I backbone with arabinan, galactan and arabinogalactan side chains. Both DMP-NF and DMP-ED induced IFN-γ and TNF-α secretion in peripheral blood mononuclear cells (PBMCs), DMP-ED being the most potent fraction. DMP-AF was less active, which might be due to a less sterically available rhamnogalacturonan-I domain.
Collapse
Affiliation(s)
- Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Emilie Steinbakk Ulriksen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, P.O. Box 1057, Blindern, NO-0316 Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway
| | - Jens Øllgaard Duus
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, P.O. Box 1057, Blindern, NO-0316 Oslo, Norway
| | - Kari Tvete Inngjerdingen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
20
|
Mileti O, Baldino N, Luzzi S, Lupi FR, Gabriele D. Interfacial Rheological Study of β-Casein/Pectin Mixtures at the Air/Water Interface. Gels 2024; 10:41. [PMID: 38247764 PMCID: PMC10815610 DOI: 10.3390/gels10010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Colloidal food products, such as emulsions, foams, gels, and dispersions, are complex systems that need the presence of stabilizing agents to enable their formation and provide stability. Proteins are often used for food foams and emulsions because of their ability to lower interfacial tension and make viscoelastic interfaces. Generally, to improve the resistance against rupture, polysaccharides are used in association with the proteins. Pectin is a complex polysaccharide that can help to stabilize foams or emulsions. This work aims at studying the mechanical resistance of the interface formed by mixtures of β-casein and pectin at high and low methoxylation degrees at the air/water interface using dilatational and shear kinematics. Frequency sweep tests, in the linear region, were performed in shear at different aging times and in dilatational mode, and the rheological data were analyzed. The transient data of the surface tension were analyzed by kinetic models to obtain the characteristic rates of the interfacial phenomena. The kinetic mechanisms of the protein/pectin mixed systems are controlled by protein and show a weak gel behavior for short aging times. The interfaces obtained with both pectins in a mixture with β-casein evolved with time, gelling and showing a solid-like behavior at concentrations of 1 and 10 g/L and after 3.5 h of aging time. The interfacial shear trend obtained suggests a good stabilizing effect of the pectins from citrus with long aging times.
Collapse
Affiliation(s)
| | - Noemi Baldino
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.) University of Calabria, I-87036 Rende, Italy; (O.M.); (S.L.); (F.R.L.); (D.G.)
| | | | | | | |
Collapse
|
21
|
Bermúdez-Oria A, Castejón ML, Fernández-Prior Á, Rodríguez-Gutiérrez G, Fernández-Bolaños J. An Acid-Free Alternative to Pectin Production from the Cell Walls of Olive Oil Waste and Different Fruits Using Choline Chloride. Foods 2023; 12:4166. [PMID: 38002223 PMCID: PMC10670671 DOI: 10.3390/foods12224166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The pectin from the cell walls of olive waste (alperujo) and apple, orange and strawberry fruits was extracted using choline chloride (ChCl) and the yield and chemical and structural compositions were compared to pectin extracted using citric acid (CA) and ammonium oxalate/oxalic acid (AOOA). According to the results, the alperujo pectin extracted using ChCl from alcohol-insoluble residue (AIR) showed a higher yield (2.20-2.88% on the basis of dry weight of AIR) than using CA (0.65-1.22%) but lower than using AOOA (3.92-5.42%). For fruit pectin, the highest yield was obtained using CA (8.81-16%), followed by AOOA (5.4-6.63%), although for apple pectin, ChCl gave a similar yield (5.36%) to AOOA. The uronic acid contents in all ChCl pectins (45.9-70.6% dry basis AIR) were higher or similar to that of the other extracting agents (30.6-65.2%), although a lower level of neutral sugar side chains was detected, with a lower degree of branching and degree of methylation. The NMR and FT-IR spectroscopy of the pectin isolated using ChCl confirmed its slightly different structural composition with respect to CA and AOOA pectin. Therefore, depending on the source material and functionality, pectin isolated using ChCl could be an acid-free alternative to pectin production.
Collapse
Affiliation(s)
| | | | | | | | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Pablo Olavide University, Building 46, Ctra de Utrera km 1, 41013 Seville, Spain; (A.B.-O.); (M.L.C.); (Á.F.-P.); (G.R.-G.)
| |
Collapse
|
22
|
Ek P, Gu BJ, Richter JK, Dey D, Saunders SR, Ganjyal GM. High methoxyl pectin can improve the extrusion characteristics and increase the dietary fiber content of starch-cellulose extrudates. J Food Sci 2023; 88:4156-4168. [PMID: 37623924 DOI: 10.1111/1750-3841.16742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Improving total dietary fiber content while maintaining the texture/expansion of extruded products is a challenge. Pectin has a dual function; it is a source of dietary fiber and it also functions as a hydrocolloid, which could improve the texture of high-fiber extruded foods. The objective of this study was to evaluate the impacts of pectin types from citrus peel on the expansion characteristics of starch-cellulose extrudates. High and low methoxyl pectin (HMP and LMP) was added to the starch-cellulose mixtures and extruded using a twin-screw extruder. The pasting properties of raw mixtures, extrusion properties, microstructure, and dietary fiber contents of the extrudates were studied. The inclusion of HMP in raw material improved the peak viscosity (629.7 ± 8.1 to 754.7 ± 80.1 mPa s) and maintained the final viscosity compared to the control (starch-cellulose mixture alone), unlike LMP. HMP relatively maintained the extrusion process parameters such as torque, back pressure, and specific mechanical energy as the control. Interestingly, the addition of 7% of HMP had a similar expansion ratio (3.41 ± 0.08 to 2.35 ± 0.06) compared to the control (3.46 ± 0.08 to 2.32 ± 0.09) under the extrusion conditions studied. The total dietary fiber content improved from 12.22 ± 0.01% to 18.26 ± 0.63% (w/w). HMP maintained the expansion characteristic of starch-cellulose extrudates and improved its total dietary fiber content relative to LMP. Adding HMP to the mixtures improved the extensibility of the melt, favoring bubble growth and expansion of the starch-cellulose extrudates. Fourier transform infrared spectroscopy data suggested that there could be intermolecular interactions between starch, cellulose, and pectin, but the nature of these interactions needs further investigation. PRACTICAL APPLICATION: The study provides practical information on the influence of the addition of high and low methoxyl pectin on starch-cellulose extrudates. The results can help the industry to produce snack products that are more nutritious but are still well accepted by the consumers.
Collapse
Affiliation(s)
- Pichmony Ek
- School of Food Science, Washington State University, Pullman, Washington, USA
- Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Bon-Jae Gu
- School of Food Science, Washington State University, Pullman, Washington, USA
- Department of Food Science and Technology, Food and Feed Extrusion Research Center, Kongju National University, Yesan, Chungnam, Republic of Korea
| | - Jana K Richter
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Debomitra Dey
- School of Food Science, Washington State University, Pullman, Washington, USA
- CW Brabender Instruments Inc., South Hackensack, New Jersey, USA
| | - Steven R Saunders
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, USA
| | - Girish M Ganjyal
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
23
|
Chen Y, Zhang Y, Chang L, Sun W, Duan W, Qin J. Mussel-inspired self-healing hydrogel form pectin and cellulose for hemostasis and diabetic wound repairing. Int J Biol Macromol 2023; 246:125644. [PMID: 37394213 DOI: 10.1016/j.ijbiomac.2023.125644] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Diabetic wound is considered as a kind of chronic wound prone to infection and difficult to repair due to high glucose level in the blood of patients. In this research, a biodegradable self-healing hydrogel with mussel inspired bioadhesion and anti-oxidation properties is fabricated based on Schiff-base cross-linking. The hydrogel was designed from dopamine coupled pectin hydrazide (Pec-DH) and oxidized carboxymethyl cellulose (DCMC) for mEGF loading as a diabetic wound repair dressing. The Pectin and CMC as natural feedstock endowed the hydrogel with biodegradability to avoid possible side effects, while the coupled catechol structure could enhance the tissue adhesion of the hydrogel for hemostasis. The results showed the Pec-DH/DCMC hydrogel formed fast and can cover irregular wounds with good sealing effect. The catechol structure also improved the reactive oxygen species (ROS) scavenging ability of the hydrogel, which can eliminate the negative effect of ROS during wound healing. The in vivo diabetic wound healing experiment revealed the hydrogel as mEGF loading vehicle greatly enhanced the diabetic wound repairing rate in mice model. As a result, the Pec-DH/DCMC hydrogel could show advantages as EGF carrier in wound healing applications.
Collapse
Affiliation(s)
- Yanai Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yu Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Weichen Sun
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenhao Duan
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
24
|
Hamdi A, Viera-Alcaide I, Costa S, Lino-Neto T, Guillén-Bejarano R, Rodríguez-Arcos R, Jiménez-Araujo A. A Sustainable Approach for the Valorization of Underutilized Date Fruits. Molecules 2023; 28:5807. [PMID: 37570777 PMCID: PMC10420846 DOI: 10.3390/molecules28155807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Secondary varieties of date fruits are often discarded because they do not have commercial value. However, their phytochemicals are very similar to those of the primary ones and therefore, they can be valorized as a source of compounds of interest, mainly phenols and dietary fiber. Their chemical composition changes with ripening, so their characterization throughout this process is of great significance. Date fruit samples were harvested at Khalal, Rutab, and Tamer stages, and a mixture of fruits from ornamental date trees was also analyzed. Aqueous and ethanolic extracts were studied for their phenolic composition. In aqueous extracts, phenols decreased with ripening, while in the ethanolic ones having higher phenolic content. Chelidonic acid, a γ-pyrone, was the major compound found in all extracts, but in the ethanolic ones, flavonoids were also present in similar amounts. After purification by adsorption chromatography, all extracts were assayed for their antimicrobial activity. Those from the Tamer stage showed the highest activity, especially against Gram-positive bacteria. The fibrous residues after aqueous and ethanolic extractions were also characterized. Their chemical composition suggested that they can be considered as a good source of prebiotic arabinoxylans and antioxidant fiber, whose antiradical activity correlated with their phenolic content. Date fruits from secondary varieties are promising as a worthwhile starting point for obtaining new value-added products.
Collapse
Affiliation(s)
- Amel Hamdi
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), Building 46, Carretera de Utrera Km1, 41013 Sevilla, Spain; (A.H.); (I.V.-A.); (R.G.-B.); (R.R.-A.)
- Molecular Biology and Biochemical Engineering Department, Centro Andaluz de Biología del Desarrollo (CABD), University Pablo de Olavide (UPO), CSIC/UPO/Junta de Andalucía, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Isabel Viera-Alcaide
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), Building 46, Carretera de Utrera Km1, 41013 Sevilla, Spain; (A.H.); (I.V.-A.); (R.G.-B.); (R.R.-A.)
| | - Susana Costa
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.C.); (T.L.-N.)
| | - Teresa Lino-Neto
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.C.); (T.L.-N.)
| | - Rafael Guillén-Bejarano
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), Building 46, Carretera de Utrera Km1, 41013 Sevilla, Spain; (A.H.); (I.V.-A.); (R.G.-B.); (R.R.-A.)
| | - Rocío Rodríguez-Arcos
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), Building 46, Carretera de Utrera Km1, 41013 Sevilla, Spain; (A.H.); (I.V.-A.); (R.G.-B.); (R.R.-A.)
| | - Ana Jiménez-Araujo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Pablo de Olavide (UPO), Building 46, Carretera de Utrera Km1, 41013 Sevilla, Spain; (A.H.); (I.V.-A.); (R.G.-B.); (R.R.-A.)
| |
Collapse
|
25
|
Bakr AF, Farag MA. Soluble Dietary Fibers as Antihyperlipidemic Agents: A Comprehensive Review to Maximize Their Health Benefits. ACS OMEGA 2023; 8:24680-24694. [PMID: 37483202 PMCID: PMC10357562 DOI: 10.1021/acsomega.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023]
Abstract
The number of hypercholesterolemic people is increasing rapidly worldwide, with elevated lipid profiles representing a major risk factor of coronary heart diseases. Dietary intervention was shown to improve the lipid profile, thus enhancing the quality of life. Dietary fiber is a nondigestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber, and is classified according to its water solubility properties as either soluble (SDF) or insoluble dietary fiber (IDF). Consumption of SDF is associated with several health benefits such as reduced lipid levels, lower blood pressure, improved blood glucose control, improved immune function, and reduced inflammation. SDF has been shown to lower blood cholesterol by several action mechanisms including directly due to the gelling, mucilaginous, and viscous fiber nature, and indirectly due to its fermented products and modulation of the gut microbiome. This review aims to provide a holistic overview on how SDF impacts the lipid profile. We start by providing an overview of the chemical structure of the major SDFs including mucilage, gums (gum arabic and guar gum), pectin, and inulin.
Collapse
Affiliation(s)
- Alaa F. Bakr
- Pathology
Department, Faculty of Veterinary Medicine, Cairo University, Gamaa Street, 12211 Giza, Egypt
| | - Mohamed A. Farag
- Pharmacognosy
Department, College of Pharmacy, Cairo University, Kasr el Aini Street, P.O. Box 11562, 12613 Cairo, Egypt
| |
Collapse
|
26
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
27
|
Thinh PD, Rasin AB, Silchenko AS, Trung VT, Kusaykin MI, Hang CTT, Menchinskaya ES, Pislyagin EA, Ermakova SP. Pectins from the sea grass Enhalus acoroides (L.f.) Royle: Structure, biological activity and ability to form nanoparticles. Int J Biol Macromol 2023; 242:124714. [PMID: 37148937 DOI: 10.1016/j.ijbiomac.2023.124714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Two pectins from the seagrass Enhalus acoroides (L.f.) Royle were isolated for the first time. Their structures and biological activities were investigated. NMR spectroscopy showed one of them to consist exclusively from the repeating →4-α-d-GalpUA→ residue (Ea1), while the other had a much more complex structure that also included 1→3-linked α-d-GalpUA residues, 1→4-linked β-apiose residues and small amounts of galactose and rhamnose (Ea2). The pectin Ea1 showed noticeable dose-dependent immunostimulatory activity, the Ea2 fraction was less effective. Both pectins were used to create pectin-chitosan nanoparticles for the first time, and the influence of pectin/chitosan mass ratio on their size and zeta potential was investigated. Ea1 particles were slightly smaller than Ea2 particles (77 ± 16 nm vs 101 ± 12 nm) and less negatively charged (-23 mV vs -39 mV). Assessment of their thermodynamic parameters showed that only the second pectin could form nanoparticles at room temperature.
Collapse
Affiliation(s)
- Pham Duc Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, 650000 Nhatrang, KhanhHoa, Viet Nam.
| | - Anton B Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Artem S Silchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Vo Thanh Trung
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, 650000 Nhatrang, KhanhHoa, Viet Nam
| | - Mikhail I Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia.
| | - Cao Thi Thuy Hang
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, 650000 Nhatrang, KhanhHoa, Viet Nam
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| | - Svetlana P Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 159, Prospect 100-let Vladivostoku, 690022 Vladivostok, Russia
| |
Collapse
|
28
|
Niu H, Dou Z, Hou K, Wang W, Chen X, Chen X, Chen H, Fu X. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Crit Rev Food Sci Nutr 2023; 64:8911-8931. [PMID: 37114929 DOI: 10.1080/10408398.2023.2204509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
In recent years, RG-I pectin isolated by low-temperature alkaline extraction methods has attracted the attention of a large number of researchers due to its huge health benefits. However, studies on other applications of RG-I pectin are still lacking. In this study, we summarized the sources (e.g. potato pulp, sugar beet pulp, okra, apple pomace, citrus peel, pumpkin, grapefruit, ginseng, etc.), extraction methods, fine structure and applications of RG-I pectin in physiological activities (e.g. anti-cancer, anti-inflammatory, anti-obesity, anti-oxidation, immune regulation, prebiotics, etc.), emulsions, gels, etc. These neutral sugar side chains not only endow RG-I pectin with various physiological activities but the entanglement and cross-linking of these side chains also endow RG-I pectin with excellent emulsifying and gelling properties. We believe that this review can not only provide a comprehensive reading for new workers interested in RG-I pectin, but also provide a valuable reference for future research directions of RG-I pectin.
Collapse
Affiliation(s)
- Hui Niu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, PR China
| | - Xianwei Chen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
29
|
Roy S, Priyadarshi R, Łopusiewicz Ł, Biswas D, Chandel V, Rhim JW. Recent progress in pectin extraction, characterization, and pectin-based films for active food packaging applications: A review. Int J Biol Macromol 2023; 239:124248. [PMID: 37003387 DOI: 10.1016/j.ijbiomac.2023.124248] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Pectin is an abundant complex polysaccharide obtained from various plants. Safe, biodegradable, and edible pectin has been extensively utilized in the food industry as a gelling agent, thickener, and colloid stabilizer. Pectin can be extracted in a variety of ways, thus affecting its structure and properties. Pectin's excellent physicochemical properties make it suitable for many applications, including food packaging. Recently, pectin has been spotlighted as a promising biomaterial for manufacturing bio-based sustainable packaging films and coatings. Functional pectin-based composite films and coatings are useful for active food packaging applications. This review discusses pectin and its use in active food packaging applications. First, basic information and characteristics of pectin, such as the source, extraction method, and structural characteristics, were described. Then, various methods of pectin modification were discussed, and the following section briefly described pectin's physicochemical properties and applications in the food sector. Finally, the recent development of pectin-based food packaging films and coatings and their use in food packaging were comprehensively discussed.
Collapse
Affiliation(s)
- Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India.
| | - Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Łukasz Łopusiewicz
- Center of Bioimmobilization and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland
| | - Deblina Biswas
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India; Department of Instrumentation and Control Engineering, Dr. B. R. Ambedkar National Institute of Technology Jalandhar, Jalandhar 144011, India
| | - Vinay Chandel
- School of Bioengineering and Food Technology, Shoolini University, Solan 173229, India
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
30
|
Yu B, Zhang D, Wu Y, Tao W, Luorong Q, Luo J, Tan L, Chen H, Cao W. A new polysaccharide from Hawk tea: Structural characterization and immunomodulatory activity associated with regulating gut microbiota. Food Chem 2023; 418:135917. [PMID: 36940546 DOI: 10.1016/j.foodchem.2023.135917] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
In this study, a novel 28.6 kDa acidic polysaccharide (HTP-1), containing → 4)-GalpA-(1→, →2)-Rhap-(1 → and → 3,6)-Galp-(1 → residues as the backbone, analogous to pectin, was isolated from mature Hawk tea leaves. HTP-1 exhibited significant immunoregulatory activities on CTX-induced immunosuppressed mice in a dose-depend manner by alleviating jejunum injury and improving the levels of immune organ indexes, cytokines and immunoglobulins. Moreover, HTP-1 supplementation boosted the content of SCFAs, altered the intestinalmicrobiota composition, and raised the abundances of beneficial bacteria Muribaculaceae, Lactobacillaceae, Bacteroidaceae, Prevotellaceae and Ruminococcaceae, which showed a strong positive correlation with most immune indicators. The current findings suggested that the immunomodulatory action of HTP-1 might rely on the regulation of the gut microbiota, and these results may also serve as a foundation for the future exploitation of HTP-1 as functional foods.
Collapse
Affiliation(s)
- Bao Yu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Dan Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yingqin Wu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wei Tao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Quji Luorong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Juan Luo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lihong Tan
- College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Huan Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weiguo Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
31
|
Ai Z, Liu Y, Shi X, Hu W, Zhang Y, An R, Lei G. The Protective Effects of Apple Pectin and Citrus Pectins on Post-Cerebral I/R Depression in Mice: The Role of NF-κB-p65 and pSTAT3 pathways. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
32
|
Maqbool Z, Khalid W, Atiq HT, Koraqi H, Javaid Z, Alhag SK, Al-Shuraym LA, Bader DMD, Almarzuq M, Afifi M, AL-Farga A. Citrus Waste as Source of Bioactive Compounds: Extraction and Utilization in Health and Food Industry. Molecules 2023; 28:molecules28041636. [PMID: 36838623 PMCID: PMC9960763 DOI: 10.3390/molecules28041636] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The current research was conducted to extract the bioactive compounds from citrus waste and assess their role in the development of functional foods to treat different disorders. The scientific name of citrus is Citrus L. and it belongs to the Rutaceae family. It is one of the most important fruit crops that is grown throughout the world. During processing, a large amount of waste is produced from citrus fruits in the form of peel, seeds, and pomace. Every year, the citrus processing industry creates a large amount of waste. The citrus waste is composed of highly bioactive substances and phytochemicals, including essential oils (EOs), ascorbic acid, sugars, carotenoids, flavonoids, dietary fiber, polyphenols, and a range of trace elements. These valuable compounds are used to develop functional foods, including baked products, beverages, meat products, and dairy products. Moreover, these functional foods play an important role in treating various disorders, including anti-aging, anti-mutagenic, antidiabetic, anti-carcinogenic, anti-allergenic, anti-oxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective activity. EOs are complex and contain several naturally occurring bioactive compounds that are frequently used as the best substitutes in the food industry. Citrus essential oils have many uses in the packaging and food safety industries. They can also be used as an alternative preservative to extend the shelf lives of different food products.
Collapse
Affiliation(s)
- Zahra Maqbool
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Waseem Khalid
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan
- Correspondence:
| | - Hafiz Taimoor Atiq
- Department of Food Science and Technology, Muhammad Nawaz Sharif University of Agriculture, Multan 23546, Pakistan
| | - Hyrije Koraqi
- Faculty of Food Science and Biotechnology, UBT-Higher Education Institution, Rexhep Krasniqi No. 56, 10000 Pristina, Kosovo
| | - Zaryab Javaid
- Department of Pharmacy, University of Central Punjab, Lahore 54590, Pakistan
| | - Sadeq K. Alhag
- Biology Department, College of Science and Arts, King Khalid University, Muhayl Asser 61913, Saudi Arabia
| | - Laila A. Al-Shuraym
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - D. M. D. Bader
- Chemistry Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammed Almarzuq
- Unit of Scientific Research, Applied College, Qassim University, Buraidah 52571, Saudi Arabia
| | - Mohamed Afifi
- Biochemistry Department, Faculty of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Ammar AL-Farga
- Biochemistry Department, Faculty of Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
33
|
Wu J, Yu C, Shen S, Ren Y, Cheng H, Xiao H, Liu D, Chen S, Ye X, Chen J. RGI-Type Pectic Polysaccharides Modulate Gut Microbiota in a Molecular Weight-Dependent Manner In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2160-2172. [PMID: 36648986 DOI: 10.1021/acs.jafc.2c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the fermentation characteristics of high rhamnogalacturonan I pectic polysaccharides (RGI) and free-radical degraded RGI (DRGI) were evaluated by a human fecal batch-fermentation model, and their structural properties were also investigated. As a result, the Mw of RGI decreased from 246.8 to 11.6 kDa, and the branches were broken dramatically. Fermentation showed that RGI degraded faster and produced more acetate and propionate than DRGI. Both of them reduced the Firmicutes/Bacteroidetes ratio and promoted the development of Bacteroides, Bifidobacterium, and Lactobacillus, bringing benefits to the gut ecosystem. However, the composition and metabolic pathways of the microbiota in RGI and DRGI were different. Most of the dominant bacteria of RGI (such as [Eubacterium]_eligens_group) participated in carbohydrate utilization, leading to better performance in glucolipid metabolism and energy metabolism. This work elucidated that large molecular weight matters in the gut microbiota modulatory effect of RGI-type pectic polysaccharides in vitro.
Collapse
Affiliation(s)
- Jiaxiong Wu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Innovation Center, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou310058, China
- NingboTech University, Ningbo315100, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
34
|
Structural Characteristics, Rheological Properties, and Antioxidant and Anti-Glycosylation Activities of Pectin Polysaccharides from Arabica Coffee Husks. Foods 2023; 12:foods12020423. [PMID: 36673516 PMCID: PMC9857985 DOI: 10.3390/foods12020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As primary coffee by-products, Arabica coffee husks are largely discarded during coffee-drying, posing a serious environmental threat. However, coffee husks could be used as potential material for extracting pectin polysaccharides, with high bioactivities and excellent processing properties. Thus, the present study aimed to extract the pectin polysaccharide from Arabica coffee husk(s) (CHP). The CHP yield was calculated after vacuum freeze-drying, and its average molecular weight (Mw) was detected by gel permeation chromatography (GPC). The structural characteristics of CHP were determined by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Additionally, the rheological and antioxidant properties of CHP and the inhibition capacities of advanced glycation end products (AGEs) with different concentrations were evaluated. The interaction mechanisms between galacturonic acid (GalA) and the AGE receptor were analyzed using molecular docking. The results demonstrated that the CHP yield was 19.13 ± 0.85%, and its Mw was 1.04 × 106 Da. The results of the structural characteristics results revealed that CHP was an amorphous and low-methoxyl pectic polysaccharide linked with an α-(1→6) glycosidic bond, and mainly composed of rhamnose (Rha, 2.55%), galacturonic acid (GalA, 45.01%), β-N-acetyl glucosamine (GlcNAc, 5.17%), glucose (Glc, 32.29%), galactose (Gal, 6.80%), xylose (Xyl, 0.76%), and arabinose (Ara, 7.42%). The surface microstructure of CHP was rough with cracks, and its aqueous belonged to non-Newtonian fluid with a higher elastic modulus (G'). Furthermore, the results of the antioxidant properties indicated that CHP possessed vigorous antioxidant activities in a dose manner, and the inhibition capacities of AGEs reached their highest of 66.0 ± 0.35% at 1.5 mg/mL of CHP. The molecular docking prediction demonstrated that GalA had a good affinity toward AGE receptors by -6.20 kcal/mol of binding energy. Overall, the study results provide a theoretical basis for broadening the application of CHP in the food industry.
Collapse
|
35
|
Influence of Citric Acid and Hydrochloric Acid with High-Pressure Processing on Characteristics of Pectic Polysaccharide from Choerospondias axillaris Fruit Peel. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-02996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Jiao X, Li F, Zhao J, Wei Y, Zhang L, Wang H, Yu W, Li Q. Structural diversity and physicochemical properties of polysaccharides isolated from pumpkin (Cucurbita moschata) by different methods. Food Res Int 2023; 163:112157. [PMID: 36596108 DOI: 10.1016/j.foodres.2022.112157] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Natural polysaccharides were isolated and purified from Cucurbita moschata by hot water extraction and mild acid-base sequential extraction. Chemical and instrumental studies revealed that hot water-extracted and mild acid-extracted polysaccharides with molecular masses of 48 kDa and 85 kDa were both pectic polysaccharides with homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) domains, while mild acid-extracted polysaccharide was more dominated by branched RG-I with higher contents of galactose (10.59 %) and arabinose (8.08 %). Furthermore, mild acid-extracted polysaccharide exhibited better thickening and emulsifying properties, likely due to its larger molecular mass and higher branching degree. Mild base-extracted polysaccharide with a molecular mass of 18 kDa was a glucan-like polysaccharide. It showed the strongest thermostability and gel behavior among these pumpkin polysaccharides, likely attributed to its unique network structure stabilized by substantial intra/intermolecular hydrogen bonds. This study aimed to establish the structure-property relationships between these structurally diverse pumpkin polysaccharides from different extraction methods and provided theoretical foundations for their targeted application in foods.
Collapse
Affiliation(s)
- Xu Jiao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, No. 308, Ningxia Road, Laoshan District, Qingdao, Shandong 266071, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Yunlu Wei
- School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Segment of Qinglong Avenue, Fucheng District, Mianyang, Sichuan 621010, China
| | - Luyao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Wenjun Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, No. 17, Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
37
|
The effect of three pectin fractions variation on the browning of different dried apple products. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Huang Y, Ren A, Wan Y, Liu Y. Effect of the pectin contents and nanostructure on the stem straightness of two Paeonia lactiflora cultivars. PeerJ 2023; 11:e15166. [PMID: 37073273 PMCID: PMC10106084 DOI: 10.7717/peerj.15166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
Herbaceous peony (Paeonia lactiflora Pall.) is an ancient ornamental crop and, in recent decades, an emerging popular cut flower. Straight stems are a vital criterion for cut herbaceous peony selection, while many cultivars bend as the plant develops. Pectin helps maintain the mechanical strength of the cell wall. However, little is known about its role in the stem bending of herbaceous peony. Two herbaceous peony cultivars with contrasting stem morphologies ('Dong Fang Shao Nv', upright; 'Lan Tian Piao Xiang', bending gradually) at five developmental stages were used as materials to investigate the effects of pectin content and nanostructure on straightness using the carbazole colorimetric method and atomic force microscopy observations. The contents of water-soluble pectin (WSP), CDTA-soluble pectin (CSP), and sodium carbonate-soluble pectin (SSP) differed significantly between the two cultivars, and the contents and angle of the flower and branch showed correlations. For the pectin nanostructure, WSP showed agglomerates and long chains, with a higher proportion of broad agglomerates at the later stages of the bending cultivar than the upright cultivar. CSP showed branched chains, and the proportion of broad chains was higher in the upright cultivar at later stages, while CSP shape changed from agglomerates to chains in the bending cultivar. SSP mainly consisted of short linear main chains, and side chains in the upright stem were stacked, and the bent cultivar had more broad and short chains. It can be concluded that the contents, nanometric shape, and size of the three kinds of pectin are highly likely to affect herbaceous peony stem straightness. This study provides a theoretical basis for the role of pectin in the production and breeding of herbaceous peony cut flowers.
Collapse
Affiliation(s)
- Yiran Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Anqi Ren
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yingling Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yan Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, China
- National Engineering Research Center for Floriculture, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, China
- School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
39
|
Hou T, Guo S, Liu Z, Lin H, Song Y, Li Q, Mao X, Wang W, Cao Y, Liu G. Novel Pectic Polysaccharides Isolated from Immature Honey Pomelo Fruit with High Immunomodulatory Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238573. [PMID: 36500662 PMCID: PMC9739730 DOI: 10.3390/molecules27238573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
A novel pectic polysaccharide (HPP-1) with high immunomodulatory activity was extracted and isolated from the immature honey pomelo fruit (Citrus grandis). Characterization of its chemical structure indicated that HPP-1 had a molecular weight of 59,024 D. In addition, HPP-1 was primarily composed of rhamnose, arabinose, fucose, mannose, and galactose at a molar ratio of 1.00:11.12:2.26:0.56:6.40. Fourier-transform infrared spectroscopy, periodic acid oxidation, and Smith degradation results showed that HPP-1 had α- and β-glycosidic linkages and 1 → 2, 1 → 4, 1 → 6, and 1 → 3 glycosidic bonds. 13C NMR and 1H NMR analyses revealed that the main glycogroups included 1,4-D-GalA, 1,6-β-D-Gal, 1,6-β-D-Man, 1,3-α-L-Ara, and 1,2-α-L-Rha. Immunomodulatory bioactivity analysis using a macrophage RAW264.7 model in vitro revealed that NO, TNF-α, and IL-6 secretions were all considerably increased by HPP-1. Moreover, RT-PCR results showed that HPP-1-induced iNOS, TNF-α, and IL-6 expression was significantly increased in macrophages. HPP-1-mediated activation in macrophages was due to the stimulation of the NF-κB and MAPK signaling pathways based on western blot analyses. HPP-1 extracted from immature honey pomelo fruit has potential applications as an immunomodulatory supplement.
Collapse
Affiliation(s)
- Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shenglan Guo
- Guangzhou Shuke Industrial Co., Ltd., Guangzhou 510642, China
| | - Zhuokun Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongyu Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yu Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiqi Li
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 402160, China
| | - Xin Mao
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 402160, China
| | - Wencan Wang
- Chongqing Sweet Pet Products Co., Ltd., Chongqing 402160, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.C.); (G.L.); Tel./Fax: +86-020-8586234 (Y.C. & G.L.)
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.C.); (G.L.); Tel./Fax: +86-020-8586234 (Y.C. & G.L.)
| |
Collapse
|
40
|
Song H, Han L, Zhang Z, Li Y, Yang L, Zhu D, Wang S, He Y, Liu H. Structural properties and bioactivities of pectic polysaccharides isolated from soybean hulls. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Jin H, Li M, Tian F, Yu F, Zhao W. An Overview of Antitumour Activity of Polysaccharides. Molecules 2022; 27:molecules27228083. [PMID: 36432183 PMCID: PMC9692906 DOI: 10.3390/molecules27228083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Cancer incidence and mortality are rapidly increasing worldwide; therefore, effective therapies are required in the current scenario of increasing cancer cases. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, and they have become the focus of current antitumour drug research owing to their significant antitumour effects. In addition to the direct antitumour activity of some natural polysaccharides, their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in natural polysaccharides and polysaccharide-based nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Hongzhen Jin
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Maohua Li
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Feng Tian
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Fan Yu
- College of Life Sciences, Nankai University, Weijin Road, Nankai District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| | - Wei Zhao
- College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China
- Correspondence: (F.Y.); (W.Z.)
| |
Collapse
|
42
|
Research Progress on the Therapeutic Effect of Polysaccharides on Non-Alcoholic Fatty Liver Disease through the Regulation of the Gut–Liver Axis. Int J Mol Sci 2022; 23:ijms231911710. [PMID: 36233011 PMCID: PMC9570256 DOI: 10.3390/ijms231911710] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting global public health at present, which can induce cirrhosis and liver cancer in serious cases. However, NAFLD is a multifactorial disease, and there is still a lack of research on its mechanism and therapeutic strategy. With the development of the gut–liver axis theory, the association between the gut–liver axis and the pathogenesis of NAFLD has been gradually disclosed. Polysaccharides, as a kind of natural product, have the advantages of low toxicity, multi-target and multi-pathway action. It has been reported that polysaccharides can affect the gut–liver axis at multiple interrelated levels, such as maintaining the ecological balance of gut microbiota (GM), regulating the metabolites of GM and improving the intestinal barrier function, which thereby plays a protective role in NAFLD. These studies have great scientific significance in understanding NAFLD based on the gut–liver axis and developing safe and effective medical treatments. Herein, we reviewed the recent progress of polysaccharides in improving nonalcoholic fatty liver disease (NAFLD) through the gut–liver axis.
Collapse
|
43
|
Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. Potential of pectin for biomedical applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1866-1900. [PMID: 35699216 DOI: 10.1080/09205063.2022.2088525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Pectin is a polysaccharide extracted from various plants, such as apples, oranges, lemons, and it possesses some beneficial effects on human health, including being hypoglycemic and hypocholesterolemic. Therefore, pectin is used in various pharmaceutical and biomedical applications. Meanwhile, its low mechanical strength and fast degradation rate limit its usage as drug delivery devices and tissue engineering scaffolds. To enhance these properties, it can be modified or combined with other organic molecules or polymers and/or inorganic compounds. These materials can be prepared as nano sized drug carriers in the form of spheres, capsules, hydrogels, self assamled micelles, etc., for treatment purposes (mostly cancer). Different composites or blends of pectin can also be produced as membranes, sponges, hydrogels, or 3D printed matrices for tissue regeneration applications. This review is concentrated on the properties of pectin based materials and focus especially on the utilization of these materials as drug carriers and tissue engineering scaffolds, including 3D printed and 3D bioprinted systems covering the studies in the last decade and especially in the last 5 years.
Collapse
Affiliation(s)
- Nazlı Seray Bostancı
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Büyüksungur
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Chemistry, METU, Ankara, Turkey
- Tissue Engineering and Biomaterial Research Center, Near East University, (NEU), Lefkosa, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, METU BIOMATEN, Ankara, Turkey
- Department of Engineering Sciences, METU, Ankara, Turkey
| |
Collapse
|
44
|
Physicochemical, structural and functional properties of pomelo spongy tissue pectin modified by different green physical methods: A comparison. Int J Biol Macromol 2022; 222:3195-3202. [DOI: 10.1016/j.ijbiomac.2022.10.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
45
|
Lu Y, Ma J, Yang Q, Zhang Z, Wu R, Xiao C, Li W, Li Y, Gao C. Physicochemical and emulsifying properties of pectin from Ottelia acuminata inflorescence. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Zou YF, Li CY, Fu YP, Jiang QX, Peng X, Li LX, Song X, Zhao XH, Li YP, Chen XF, Feng B, Huang C, Jia RY, Ye G, Tang HQ, Yin ZQ. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv.) Diels. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115446. [PMID: 35675860 DOI: 10.1016/j.jep.2022.115446] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.
Collapse
Affiliation(s)
- Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yu-Ping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Quan-Xing Jiang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Li-Xia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Hong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yang-Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xing-Fu Chen
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bing Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ren-Yong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Gang Ye
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Hua-Qiao Tang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Qiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
47
|
Khaytmetova SB, Turaev AS, Khalilova GA. Isolation and Physicochemical Characteristics of Pectin from Inonotus Hispidus. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Niu H, Hou K, Chen H, Fu X. A review of sugar beet pectin-stabilized emulsion: extraction, structure, interfacial self-assembly and emulsion stability. Crit Rev Food Sci Nutr 2022; 64:852-872. [PMID: 35950527 DOI: 10.1080/10408398.2022.2109586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, sugar beet pectin as a natural emulsifier has shown great potential in food and pharmaceutical fields. However, the emulsification performance depends on the molecular structure of sugar beet pectin, and the molecular structure is closely related to the extraction method. This review summarizes the extraction methods of pectin, structure characterization methods and the current research status of sugar beet pectin-stabilized emulsions. The structural characteristics of sugar beet pectin (such as degree of methylation, degree of acetylation, degree of blockiness, molecular weight, ferulic acid content, protein content, neutral sugar side chains, etc.) are of great significance to the emulsifying activity and stability of sugar beet pectin. Compared with traditional hot acid extraction method, ultrasonic-assisted extraction, microwave-assisted extraction, subcritical water-assisted extraction, induced electric field-assisted extraction and enzyme-assisted extraction can improve the yield of sugar beet pectin. At the same time, compared with harsh extraction conditions (too high temperature, too strong acidity, too long extraction time, etc.), mild extraction conditions can better preserve these emulsifying groups in sugar beet pectin molecules, which are beneficial to improve the emulsifying properties of sugar beet pectin. In addition, the interfacial self-assembly behavior of sugar beet pectin induced by the molecular structure is crucial to the long-term stability of the emulsion. This review provides a direction for extracting or modifying sugar beet pectin with specific structure and function, which is instructive for finding alternatives to gum arabic.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
| | - Keke Hou
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, Haikou, PR China
- Maritime Academy, Hainan Vocational University of Science and Technology, Haikou, PR China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, PR China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, PR China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China
| |
Collapse
|
49
|
Han Y, Itenberg SA, Wu X, Xiao H. Guidelines for inflammation models in mice for food components. EFOOD 2022. [DOI: 10.1002/efd2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanhui Han
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| | - Sasha A. Itenberg
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health Miami University Oxford Ohio USA
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
50
|
Zhang Y, Liu P, Wang C, Zhang F, Linhardt RJ, Eliezer D, Li Q, Zhao J. Homogalacturonan from squash: Characterization and tau-binding pattern of a sulfated derivative. Carbohydr Polym 2022; 285:119250. [PMID: 35287864 PMCID: PMC9482147 DOI: 10.1016/j.carbpol.2022.119250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/02/2022]
Abstract
A pectic polysaccharide (WAP) was isolated from squash and identified as a homogalacturonan with a molecular mass of 83.2 kDa by GPC, monosaccharide composition analysis, FT-IR and NMR spectra. Sulfation modification of WAP was carried out and a sulfated derivative (SWAP) was obtained with a substitution degree of 1.81. The NMR spectrum indicated that the sulfation modification mainly occurred at the C-2 and C-3 positions of galacturonan residues. The binding pattern of SWAP to tau K18 protein was observed in 2D 1H15N HSQC spectra of tau, which resembled the tau-heparin interaction, with R2 domain as the major binding region. These results suggest that SWAP has the potential to act as a heparin mimic to inhibit the transcellular spread of tau; thus natural polysaccharide from squash may be developed into therapies for AD and related tauopathies.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Panhang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States of America; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States of America
| | - David Eliezer
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, United States of America
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|