1
|
Huang H, Chen X, Wang Y, Cheng Y, Liu Z, Hu Y, Wu X, Wu C, Xiong Z. Characteristic volatile compounds of white tea with different storage times using E-nose, HS-GC-IMS, and HS-SPME-GC-MS. J Food Sci 2024; 89:9137-9153. [PMID: 39630468 DOI: 10.1111/1750-3841.17535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 12/28/2024]
Abstract
This paper studied the influence of storage duration on the flavor profile of white tea in detail, with samples produced between 2020 and 2023. Sensory evaluation was performed by quantitative descriptive analysis (QDA), followed by an in-depth aroma components analysis employing an electronic nose (E-nose), headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The QDA findings revealed a gradual transition in the flavor profile of white tea during storage, shifting from sweet, fruity, and floral to more herbal and stale characteristics. E-nose could well distinguish white tea with different storage times. A total of 55 and 53 volatile compounds were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. The orthogonal partial least squares-discriminant analysis models, based on HS-GC-IMS (R2Y = 0.998, Q2 = 0.987) and HS-SPME-GC-MS (R2Y = 0.984, Q2 = 0.993), successfully distinguished white tea samples stored for different storage times. Furthermore, 14 and 8 key compounds were screened based on the double variable criterion of one-way analysis of variance (p < 0.05) and variable importance in projection (VIP) >1.2, and their content changes were also compared. It is the gradual decrease of important aroma components such as 2-hexenal, 2-methyl-2-hepten-6-one, linalool, and geraniol, which are positively correlated with sweet, fruity, and floral aromas, and the gradual increase of hexanoic acid, thiophene, propanoic acid, dimethyl disulfide, and borneyl acetate, which are positively correlated with herbal and stale flavor, that leads to the changes in flavor and aroma of white tea during storage. The results of the study provided a reference for elucidating the aroma characteristics of white tea at different storage times as well as a theoretical basis for the quality control of white tea.
Collapse
Affiliation(s)
- Haoran Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyu Chen
- School of Electrical and Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou, China
| | - Ying Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Ye Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhijian Liu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yunchao Hu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xianzhi Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhixin Xiong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Yilmaz A, Toraman MN, Mataraci Karakas S, Ozden Z, Pinarbas E, Mercantepe T. Effect of White Tea on Leptin and Asprosin Levels in Rats Feeding a High-Fat Diet. Life (Basel) 2024; 14:1548. [PMID: 39768256 PMCID: PMC11679257 DOI: 10.3390/life14121548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Currently, obesity affects over 600 million individuals and is responsible for numerous severe health conditions, particularly diabetes and metabolic syndrome. The objective of our study was to examine the impact of white tea, known for its potent antioxidant properties, on the reduction in body weight as well as the levels of leptin and asprosin. METHODS A total of 72 male Sprague-Dawley rats were randomly assigned to 9 groups, with each group consisting of 8 rats. The groups were partitioned into two in order to examine the preventative and therapeutic effects of white tea on obesity. During this study, the case groups were administered white tea together with a high-fat diet, whereas the positive control group was administered orlistat along with a high-fat diet through oral gavage. After the experiment concluded, the levels of leptin, asprosin, and insulin hormones were evaluated in serum samples collected from rats using the ELISA method. RESULTS The findings demonstrated that the administration of white tea led to a significant decrease in body weight, serum leptin, and asprosin levels, as well as oxidative stress indicators, in rats that were fed a high-fat diet. CONCLUSIONS Utilizing natural chemicals, such as white tea, which possess minimal side effects and have powerful antioxidant activity, can mitigate the detrimental consequences associated with obesity.
Collapse
Affiliation(s)
- Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Merve Nur Toraman
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Sibel Mataraci Karakas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (M.N.T.); (S.M.K.); (E.P.)
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53020 Rize, Türkiye; (Z.O.); (T.M.)
| |
Collapse
|
3
|
Liu S, Fan B, Li X, Sun G. Global hotspots and trends in tea anti-obesity research: a bibliometric analysis from 2004 to 2024. Front Nutr 2024; 11:1496582. [PMID: 39606571 PMCID: PMC11598529 DOI: 10.3389/fnut.2024.1496582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background The prevalence of obesity and its related ailments is on the rise, posing a substantial challenge to public health. Tea, widely enjoyed for its flavors, has shown notable potential in mitigating obesity. Yet, there remains a lack of exhaustive bibliometric studies in this domain. Methods We retrieved and analyzed multidimensional data concerning tea and obesity studies from January 2004 to June 2024, using the Web of Science Core Collection database. This bibliometric investigation utilized tools such as Bibliometrix, CiteSpace, and VOSviewer to gather and analyze data concerning geographical distribution, leading institutions, prolific authors, impactful journals, citation patterns, and prevalent keywords. Results There has been a significant surge in publications relevant to this field within the last two decades. Notably, China, Hunan Agricultural University, and the journal Food and Function have emerged as leading contributors in terms of country, institution, and publication medium, respectively. Zhonghua Liu of Hunan Agricultural University has the distinction of most publications, whereas Joshua D. Lambert of The State University of New Jersey is the most cited author. Analyses of co-citations and frequently used keywords have identified critical focus areas within tea anti-obesity research. Current studies are primarily aimed at understanding the roles of tea components in regulating gut microbiota, boosting fat oxidation, and increasing metabolic rate. The research trajectory has progressed from preliminary mechanism studies and clinical trials to more sophisticated investigations into the mechanisms, particularly focusing on tea's regulatory effects on gut microbiota. Conclusion This study offers an intricate overview of the prevailing conditions, principal focus areas, and developmental trends in the research of tea's role against obesity. It delivers a comprehensive summary and discourse on the recent progress in this field, emphasizing the study's core findings and pivotal insights. Highlighting tea's efficacy in obesity prevention and treatment, this study also points out the critical need for continued research in this area.
Collapse
Affiliation(s)
- Shan Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Boyan Fan
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoping Li
- The Center for Treatment of Pre-disease, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Guixiang Sun
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Zhang J, Xin W, Zou Y, Yan J, Tang W, Ji Y, Li W. Dynamic changes and correlation analysis of microorganisms and flavonoids/ amino acids during white tea storage. Food Chem 2024; 455:139932. [PMID: 38843719 DOI: 10.1016/j.foodchem.2024.139932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
White tea stored for various times have different flavors. However, the mechanism of flavor conversion remains elusive. Flavonoids and amino acids are two typical flavor components in tea. Herein, the contents of 46 flavonoids and 40 amino acids were measured in white tea (Shoumei) stored for 1, 3, 5 and 7 years, respectively. L-tryptophan, L-ornithine and L-theanine contribute to the refreshing taste of Shoumei 1 and 3. Quercetin, rutin and hesperidin contribute to aging charm and grain aroma of Shoumei 5 and 7. 306 bacterial OTUs and 268 fungal OTUs core microbiota existed in all samples. Interestingly, white teas contained higher richness of fungi than bacteria. The correlation analysis showed that the cooperation with bacteria and fungi may result in the flavonoids and amino acids composition changes in white teas during storage. Overall, this study provides new insights into flavor conversion of white tea during storage.
Collapse
Affiliation(s)
- Jianming Zhang
- Research Management Service, Wuyi University, Wuyishan 354300, China
| | - Wei Xin
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwei Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenxin Tang
- Plant Synthetic Biology Center, and Horticulture Biology and Metabolic Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yanling Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Zou L, Sheng C, Xia D, Zhang J, Wei Y, Ning J. Mechanism of aroma formation in white tea treated with solar withering. Food Res Int 2024; 194:114917. [PMID: 39232537 DOI: 10.1016/j.foodres.2024.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/10/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Withering is a crucial process that determines the quality of white tea (WT). Solar withering (SW) is reported to contribute to the aroma quality of WT. However, the mechanism by which aroma is formed in WT subjected to SW remains unclear. In this study, through headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and transcriptomics, we found that 13 key genes enriched in the mevalonic acid and methylerythritol phosphate pathways, such as those of 1-deoxy-D-xylulose-5-phosphate synthase and terpineol synthase, were significantly upregulated, promoting the accumulation of α-terpinolene, geraniol, and nerolidol, which imparted floral and fruity odors to WT subjected to SW. Additionally, the significant upregulation of lipoxygenases enriched in the lipoxygenase pathway promoting the accumulation of hexanol, 1-octen-3-ol, (E, Z)-3,6-nonadien-1-ol, and nonanal, which contributed to the green and fresh odor in WT subjected to SW. This study provided the first comprehensive insight into the effect mechanism of SW on aroma formation in WT.
Collapse
Affiliation(s)
- Li Zou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
6
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Lin Y, Huang Y, Zhou S, Li X, Tao Y, Pan Y, Feng X, Guo H, Chen P, Chu Q. A newly-discovered tea population variety processed Bai Mu Dan white tea: Flavor characteristics and chemical basis. Food Chem 2024; 446:138851. [PMID: 38428080 DOI: 10.1016/j.foodchem.2024.138851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The quality of white tea (WT) is impacted by selected tea cultivars. To explore the organoleptic quality of a recently-discovered WT ("Caicha", CC), HS-SPME/GC-MS and UPLC were employed to identify volatile and non-volatile compounds in tea samples. Multiple statistical methods demonstrated the distinctions between CC and four mainstream WT varieties from main producing areas. CC exhibited abundant volatile alcohol, terpenoids, ketone, aldehyde and ester, as well as non-volatile lignans and coumarins, phenolic acids and low-molecular carbohydrates. These substances combinedly contributed to the flavor attributes of CC, characterized by an intense herbal/citrus-like cleanness and flower/fruit-like sweetness, scarce in existing commercial WT varieties. Sensory evaluation corroborated these findings. In conclusion, we have processed a new tea variety (CC) with WT manufacturing technology, and discovered the unique cleanness and sweetness of it. This study enriches the raw material database for WT production and blending, and boosts the development of more premium WT varieties.
Collapse
Affiliation(s)
- Yanping Lin
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Yibiao Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xiaolan Li
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yike Tao
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Haowei Guo
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Xia Y, Yuan W, Zhang S, Wang Q, Liu X, Wang H, Wu Y, Yang C, Xu J, Li L, He J, Cao Z, Wang Z, Zhao Z, Wang B. Classification and identification of tea diseases based on improved YOLOv7 model of MobileNeXt. Sci Rep 2024; 14:11799. [PMID: 38782981 PMCID: PMC11116536 DOI: 10.1038/s41598-024-62451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
To address the issues of low accuracy and slow response speed in tea disease classification and identification, an improved YOLOv7 lightweight model was proposed in this study. The lightweight MobileNeXt was used as the backbone network to reduce computational load and enhance efficiency. Additionally, a dual-layer routing attention mechanism was introduced to enhance the model's ability to capture crucial details and textures in disease images, thereby improving accuracy. The SIoU loss function was employed to mitigate missed and erroneous judgments, resulting in improved recognition amidst complex image backgrounds.The revised model achieved precision, recall, and average precision of 93.5%, 89.9%, and 92.1%, respectively, representing increases of 4.5%, 1.9%, and 2.6% over the original model. Furthermore, the model's volum was reduced by 24.69M, the total param was reduced by 12.88M, while detection speed was increased by 24.41 frames per second. This enhanced model efficiently and accurately identifies tea disease types, offering the benefits of lower parameter count and faster detection, thereby establishing a robust foundation for tea disease monitoring and prevention efforts.
Collapse
Affiliation(s)
- Yuxin Xia
- College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, 650201, China
| | - Wenxia Yuan
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Shihao Zhang
- College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming, 650201, China
| | - Qiaomei Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaohui Liu
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Houqiao Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Yamin Wu
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunhua Yang
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiayi Xu
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Li
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Junjie He
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhiyong Cao
- College of Information Engineering, Yunnan Agricultural University, Kunming, 650201, China
| | - Zejun Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Zihua Zhao
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Baijuan Wang
- College of Tea Science, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
9
|
Yang Y, Liang Q, Zhang B, Zhang J, Fan L, Kang J, Lin Y, Huang Y, Tan TC, Ho LH. Adsorption and desorption characteristics of flavonoids from white tea using macroporous adsorption resin. J Chromatogr A 2024; 1715:464621. [PMID: 38198876 DOI: 10.1016/j.chroma.2023.464621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
White tea contains the highest flavonoids compared to other teas. While there have been numerous studies on the components of different tea varieties, research explicitly focusing on the flavonoid content of white tea remains scarce, making the need for a good flavonoid purification process for white tea even more important. This study compared the adsorption and desorption performance of five types of macroporous resins: D101, HP20, HPD500, DM301, and AB-8. Among the tested resins, AB-8 was selected based on its best adsorption and desorption performance to investigate the static adsorption kinetics and dynamic adsorption-desorption purification of white tea flavonoids. The optimal purification process was determined: adsorption temperature 25 °C, crude tea flavonoid extract pH 3, ethanol concentration 80 %, sample loading flow rate and eluent flow rate 1.5 BV/min, and eluent dosage 40 BV. The results indicated that the adsorption process followed pseudo-second-order kinetics. Under the above purification conditions, the purity of the total flavonoids in the purified white tea flavonoid increased from approximately 17.69 to 46.23 %, achieving a 2.61-fold improvement, indicating good purification results. The purified white tea flavonoid can be further used for nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Yuhua Yang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China; Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia USM, Penang 11800, Malaysia
| | - Quanming Liang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Bo Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Jianming Zhang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Li Fan
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Jiahui Kang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Yiqin Lin
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, PR China.
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia USM, Penang 11800, Malaysia; Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia USM, Penang 11800, Malaysia.
| | - Lee-Hoon Ho
- Department of Food Industry, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu 22200, Malaysia
| |
Collapse
|
10
|
Wang D, Yu Z, Guo J, Liu M, Guan M, Gu Y, Li S, Ren D, Yi L. Development and comparison of parallel reaction monitoring and data-independent acquisition methods for quantitative analysis of hydrophilic compounds in white tea. J Chromatogr A 2024; 1715:464601. [PMID: 38160583 DOI: 10.1016/j.chroma.2023.464601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
In the present work, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) methods were developed for the accurate quantitation of amino acids, alkaloids nucleosides and nucleotides in tea. The quality peaks were significantly enhanced by optimizing the LC elution procedure, HCD voltage, MS resolution, and scanning event. Both methods were validated with good liner linearity (0.004-200 μg/mL), LODs (0.001-0.309 μg/mL for PRM and 0.001-0.564 μg/mL for DIA). Applied to white tea sample, the contents of these hydrophilic compounds were range from 34,655.39 to 70,586.14 mg/kg, and caffeine (32,529.02 mg/kg) and theanine (5483.46 mg/kg) were determined as the most abundant ones. Based on the quantitation data set, the white tea samples from Puer, Lincang and Xishuangbanna were clearly discriminated using multivariate data analysis. The results of the present works show that PRM and DIA have great potential in quantitative analysis of multiple hydrophilic compounds in food samples.
Collapse
Affiliation(s)
- Dan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhihao Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jie Guo
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Meiyan Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Mengdi Guan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Siyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
11
|
Zhu R, Chen Z, Lv H, Pan Y, Feng X, Chen G, Hu W, Xu T, Fan F, Gong S, Chen P, Chu Q. Another thread to uncover the aging mystery of white tea: Focusing on the natural nanoparticles in tea infusion. Food Chem 2023; 429:136838. [PMID: 37494755 DOI: 10.1016/j.foodchem.2023.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Aged white tea (WT) has promising medicinal potential, but how to accurately identify aged white tea is still a difficult problem. Inspired by tea cream, the relationship between the characteristics of nanoparticles in tea infusion and aging time was studied. The results showed that with the increase of aging time, the particle size of white tea nanoparticles (WTNs) decreased gradually. Microscopic images showed that the surface structure of WTNs was changed in three aspects: the waxy layer, the cuticle layer and the palisade tissue. Additional in vitro modeling demonstrated a strong correlation between nanoparticle size and protein and tea polyphenol content. The correlation between nanoparticle sizes and aging time was further verified in aged Pu'er raw tea. Starting with the tea infusion's nanoparticles, this study showed that the aging time of WT would impact the nanoparticles' properties, offering a unique way to determine the aging period of WT.
Collapse
Affiliation(s)
- Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Helin Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Yani Pan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Feng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Guicai Chen
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weilian Hu
- College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tianhua Xu
- Zhejiang Esigma Biotechnology Co., Ltd, No.3, Chunchao Rd, Chang'an Town, Haining City 314422, China
| | - Fangyuan Fan
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuying Gong
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Ping Chen
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Ma L, Sun Y, Wang X, Zhang H, Zhang L, Yin Y, Wu Y, Du L, Du Z. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7136-7152. [PMID: 37337850 DOI: 10.1002/jsfa.12798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-β-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while β-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yangyang Sun
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xuejiao Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Linqi Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yage Yin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yumeng Wu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ziping Du
- College of Economics and Management, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
13
|
Abiri B, Amini S, Hejazi M, Hosseinpanah F, Zarghi A, Abbaspour F, Valizadeh M. Tea's anti-obesity properties, cardiometabolic health-promoting potentials, bioactive compounds, and adverse effects: A review focusing on white and green teas. Food Sci Nutr 2023; 11:5818-5836. [PMID: 37823174 PMCID: PMC10563719 DOI: 10.1002/fsn3.3595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/02/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Tea is one of the most commonly consumed beverages in the world. Morocco, Japan, and China have consumed green tea for centuries. White tea, which is a variety of green teas, is very popular in China and is highly revered for its taste. Presently, both teas are consumed in other countries around the world, even as functional ingredients, and novel research is constantly being conducted in these areas. We provide an update on the health benefits of white and green teas in this review, based on recent research done to present. After a general introduction, we focused on tea's anti-obesity and human health-promoting potential, adverse effects, and new approaches to tea and its bioactive compounds. It has been found that the health benefits of tea are due to its bioactive components, mainly phenolic compounds. Of these, catechins are the most abundant. This beverage (or its extracts) has potential anti-inflammatory and antioxidant properties, which could contribute to body weight control and the improvement of several chronic diseases. However, some studies have mentioned the possibility of toxic effects; therefore, reducing tea consumption is a good idea, especially during the last trimester of pregnancy. Additionally, new evidence will provide insight into the possible effects of tea on the human gut microbiota, and even on the viruses responsible for SARS-CoV-2. A beverage such as this may favor beneficial gut microbes, which may have important implications due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Shirin Amini
- Department of NutritionShoushtar Faculty of Medical SciencesShoushtarIran
| | - Mahdi Hejazi
- Department of Nutrition, School of Public HealthIran University of Medical SciencesTehranIran
| | - Farhad Hosseinpanah
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | - Faeze Abbaspour
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Majid Valizadeh
- Obesity Research Center, Research Institute for Endocrine SciencesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
14
|
Deng H, Liu J, Xiao Y, Wu JL, Jiao R. Possible Mechanisms of Dark Tea in Cancer Prevention and Management: A Comprehensive Review. Nutrients 2023; 15:3903. [PMID: 37764687 PMCID: PMC10534731 DOI: 10.3390/nu15183903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Tea is one of the most popular drinks in the world. Dark tea is a kind of post-fermented tea with unique sensory characteristics that is produced by the special fermentation of microorganisms. It contains many bioactive substances, such as tea polyphenols, theabrownin, tea polysaccharides, etc., which have been reported to be beneficial to human health. This paper reviewed the latest research on dark tea's potential in preventing and managing cancer, and the mechanisms mainly involved anti-oxidation, anti-inflammation, inhibiting cancer cell proliferation, inducing cancer cell apoptosis, inhibiting tumor metastasis, and regulating intestinal flora. The purpose of this review is to accumulate evidence on the anti-cancer effects of dark tea, the corresponding mechanisms and limitations of dark tea for cancer prevention and management, the future prospects, and demanding questions about dark tea's possible contributions as an anti-cancer adjuvant.
Collapse
Affiliation(s)
- Huilin Deng
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Jia Liu
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau, China;
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China;
| | - Rui Jiao
- Department of Food Science and Engineering, Institute of Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510632, China; (H.D.); (J.L.)
| |
Collapse
|
15
|
Salem MA, Aborehab NM, Abdelhafez MM, Ismail SH, Maurice NW, Azzam MA, Alseekh S, Fernie AR, Salama MM, Ezzat SM. Anti-Obesity Effect of a Tea Mixture Nano-Formulation on Rats Occurs via the Upregulation of AMP-Activated Protein Kinase/Sirtuin-1/Glucose Transporter Type 4 and Peroxisome Proliferator-Activated Receptor Gamma Pathways. Metabolites 2023; 13:871. [PMID: 37512578 PMCID: PMC10385210 DOI: 10.3390/metabo13070871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
White, green, and oolong teas are produced from the tea plant (Camellia sinensis (L.) Kuntze) and are reported to have anti-obesity and hypolipidemic effects. The current study aims to investigate the anti-obesity effects of a tea mixture nano-formulation by targeting the AMPK/Sirt-1/GLUT-4 axis in rats. In vitro lipase and α-amylase inhibition assays were used to determine the active sample, which was then incorporated into a nanoparticle formulation subjected to in vivo anti-obesity testing in rats by measuring the expression level of different genes implicated in adipogenesis and inflammation using qRT-PCR. Moreover, metabolomic analysis was performed for each tea extract using LC/ESI MS/MS coupled to chemometrics in an attempt to find a correlation between the constituents of the extracts and their biological activity. The in vitro pancreatic lipase and α-amylase inhibition assays demonstrated more effective activity in the tea mixture than the standards, orlistat and acarbose, respectively, and each tea alone. Thus, the herbal tea mixture and its nanoparticle formulation were evaluated for their in vivo anti-obesity activity. Intriguingly, the tea mixture significantly decreased the serum levels of glucose and triglycerides and increased the mRNA expression of GLUT-4, P-AMPK, Sirt-1, and PPAR-γ, which induce lipolysis while also decreasing the mRNA expression of TNF-α and ADD1/SREBP-1c, thereby inhibiting the inflammation associated with obesity. Our study suggests that the tea mixture nano-formulation is a promising therapeutic agent in the treatment of obesity and may also be beneficial in other metabolic disorders by targeting the AMPK/Sirt-1/Glut-4 pathway.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr Street, Shibin Elkom 32511, Menoufia, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai M Abdelhafez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed, Giza 12588, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - May A Azzam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Maha M Salama
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo 11837, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
16
|
Hao Z, Feng J, Chen Q, Lin H, Zhou X, Zhuang J, Wang J, Tan Y, Sun Z, Wang Y, Yu B. Comparative volatiles profiling in milk-flavored white tea and traditional white tea Shoumei via HS-SPME-GC-TOFMS and OAV analyses. Food Chem X 2023; 18:100710. [PMID: 37397202 PMCID: PMC10314143 DOI: 10.1016/j.fochx.2023.100710] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/04/2023] Open
Abstract
White tea is a mildly fermented tea processed with withering and drying. Milk-flavored white tea has a unique milk flavor compared to the traditional white tea. Little is known about the aromas that make white tea taste milky. Here we conducted the volatile profiling via headspace solid-phase microextraction (HS-SPME)-gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) and chemometrics to explore the key volatiles making milk-flavored white tea taste milky. Sixty-seven volatiles were identified, with 7 volatiles (OAV > 1 and VIP > 1) were characterized as the typical aromas. Green and light fruity scent volatiles, such as methyl salicylate, benzyl alcohol, and phenylethyl alcohol, were richer in TFs than MFs. Strong fruity and cheese aromas, such as dihydro-5-pentyl-2(3H)-furanone, 2-pentyl-furan, (E)-6,10-dimethyl-5,9-undecadien-2-one, and hexanal, were more abundant in MFs than TFs. Dihydro-5-pentyl-2(3H)-furanone, recognized as coconut and creamy aroma, should be the essential volatile for milky flavor. Also, (E)-6,10-dimethyl-5,9-undecadien-2-one and 2-pentyl-furan may contribute to the milk scent formation.
Collapse
Affiliation(s)
- Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
- Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, Fujian, China
| | - Jiao Feng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Qianlian Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongzheng Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Jiayun Zhuang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinyuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanping Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhilin Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanfei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Bugui Yu
- Zhenghe Ruiming Tea Co., LTD, Zhenghe 353600, Fujian, China
| |
Collapse
|
17
|
Ali HS, Barzani HA, Yardım Y. Utilizing epicatechin voltammetric oxidation signal for the estimation of total phenolic content in the tea samples via the unmodified boron-doped diamond electrode surface. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
18
|
Yao Q, Yan SA, Huang M, Zheng Y, Chen M, Lin Q. Assessing transfer of aluminum during tea brewing and associated population health risks. Drug Chem Toxicol 2023; 46:423-429. [PMID: 35266432 DOI: 10.1080/01480545.2022.2049288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Tea is consumed widely around the world owing to its refreshing taste and potential health benefits. However, drinking tea is considered a major route for dietary aluminum exposure in areas where tea consumption is relatively large. To assess the health risk associated with drinking tea, the contamination level of aluminum was determined in 81 tea samples. The transfer rate of aluminum during tea brewing was investigated. Then based on the site-specific exposure parameters such as consumption data and body weight for six different subpopulations in Fujian, the exposure risks were estimated using a probabilistic approach. Results demonstrate that the contents of aluminum in green tea, white tea, oolong tea, and black tea were significantly different according to the one-way ANOVA analysis (p < 0.05). The transfer rate of aluminum were 32.6%, 31.6%, 26.3%, and 14% for white tea, black tea, oolong tea, and green tea, respectively. With respect to the oral reference dose, the exposure of inhabitants in Fujian to aluminum through drinking tea is under control (even at the 99th percentile).
Collapse
Affiliation(s)
- Qinghua Yao
- Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China.,Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Sun-An Yan
- Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China.,Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Minmin Huang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China.,Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yunyun Zheng
- Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China.,Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meizhen Chen
- Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiu Lin
- Fujian Key Laboratory of Agro-Products Quality and Safety, Fuzhou, China.,Institute of Quality Standards Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
19
|
Chen H, Zhang X, Jiang R, Ouyang J, Liu Q, Li J, Wen H, Li Q, Chen J, Xiong L, Huang J, Liu Z. Characterization of aroma differences on three drying treatments in Rucheng Baimao (Camellia pubescens) white tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
20
|
Zhou S, Zhang J, Ma S, Ou C, Feng X, Pan Y, Gong S, Fan F, Chen P, Chu Q. Recent advances on white tea: Manufacturing, compositions, aging characteristics and bioactivities. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
21
|
Caliskan H, Gumus D, Kizil M. Reducing effects of tea marinades on heterocyclic aromatic amines formation in chicken thigh meat: focus on white and oolong tea. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Association between Different Types of Tea Consumption and Risk of Gynecologic Cancer: A Meta-Analysis of Cohort Studies. Nutrients 2023; 15:nu15020403. [PMID: 36678274 PMCID: PMC9865679 DOI: 10.3390/nu15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plenty of studies have shown that tea has an effect of inhibiting gynecologic tumors. However, there still remained controversy of the association between tea and gynecologic tumors in epidemiological studies. In this study, PubMed, Embase, and Cochrane Database were used to search the literature from 1 January 1960 to 26 December 2022 to investigate the association between tea intake and gynecologic cancer risk. In total, 19 cohort studies with 2,020,980 subjects and 12,155 gynecological tumor cases were retrieved. The pooled relative risk (RR) of gynecologic tumor for tea intake was 1.00 (95% CI: 0.96-1.04). RRs were 0.94 (95% CI: 0.88-1.01) for ovarian cancer, 1.02 (95% CI: 0.97-1.07) for endometrial cancer, and 1.06 (95% CI: 0.91-1.23) for cervical cancer. Subgroup analyses were adopted based on the tea type and geographic location. Interestingly, significant preventive impact of non-herbal tea on ovarian cancer (pooled relative risk: 0.67; 95% CI: 0.55-0.81) was found, especially for black tea (pooled relative risk: 0.64; 95% CI: 0.51-0.80). Dose-response analysis indicated that although it is not statistically significant, a decreasing trend of ovarian cancer risk could be observed when the tea consumption was 1.40 to 3.12 cups/day. In conclusion, our findings suggested that ovarian cancer, but not other gynecologic cancers, could possibly be prevented by drinking non-herbal tea. In addition, the preventive impact of green tea on gynecologic cancer seemed to be relatively weak and needs further cohorts to validate it.
Collapse
|
23
|
The relationship between bacterial dynamics, phenols and antioxidant capability during compressed white tea storage. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Jiang L, Zheng K. Towards the intelligent antioxidant activity evaluation of green tea products during storage: A joint cyclic voltammetry and machine learning study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Ali K, Zaidi S, Khan AA, Khan AU. Orally fed EGCG coronate food released TiO 2 and enhanced penetrability into body organs via gut. BIOMATERIALS ADVANCES 2022; 144:213205. [PMID: 36442452 DOI: 10.1016/j.bioadv.2022.213205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Owing to unique nano-scale properties, TiO2-NPs (T-NPs) are employed as food-quality enhancers in >900 processed food products. Whereas, epigallocatechin-3-gallate (EGCG), a green tea polyphenol is consumed in traditional brewed tea, globally. Taken together, we aimed to investigate whether human gastric-acid digested T-NPs and complex tea catechins yield ionic species (Ti4+, Ti3+ etc.) and active EGCG forms to meet favourable conditions for in vivo bio-genesis of EGCG-coronated TiO2-NPs (ET-NPs) in human gut. Secondly, compared to bare-surface micro and nano-scale TiO2, i.e., T-MPs and T-NPs, respectively, how EGCG coronation on ET-NPs in the gut facilitates the modulation of intrinsic propensity of internalization of TiO2 species into bacteria, body-organs, and gut-microbiota (GM), and immune system. ET-NPs were synthesized in non-toxic aqueous solution at varied pH (3-10) and characterised by state-of-the-arts for crystallinity, surface-charge, EGCG-encapsulation, stability, size, composition and morphology. Besides, flow-cytometry (FCM), TEM, EDS, histopathology, RT-PCR, 16S-rRNA metagenomics and ELISA were also performed to assess the size and surface dependent activities of ET-NPs, T-NPs and T-MPs vis-a-vis planktonic bacteria, biofilm, GM bacterial communities and animal's organs. Electron-microscopic, NMR, FTIR, DLS, XRD and EDS confirmed the EGCG coronation, dispersity, size-stability of ET-NPs, crystallinity and elemental composition of ET-NPs-8 and T-NPs. Besides, FCM, RT-PCR, 16S-rRNA metagenomics, histopathology, SEM and EDS analyses exhibited that EGCG coronation in ET-NPs-8 enhanced the penetration into body organs (i.e., liver and kidney etc.) and metabolically active bacterial communities of GM.
Collapse
Affiliation(s)
- Khursheed Ali
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sahar Zaidi
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Aijaz A Khan
- Department of Anatomy, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
26
|
Geographical origin identification of Chinese white teas, and their differences in tastes, chemical compositions and antioxidant activities among three production regions. Food Chem X 2022; 16:100504. [DOI: 10.1016/j.fochx.2022.100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
27
|
Evaluation of the effects of solar withering on nonvolatile compounds in white tea through metabolomics and transcriptomics. Food Res Int 2022; 162:112088. [DOI: 10.1016/j.foodres.2022.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
28
|
Ahmadi E, Elhamirad AH, Mollania N, Saeidi Asl MR, Pedramnia A. Incorporation of white tea extract in nano-liposomes: optimization, characterization, and stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2050-2060. [PMID: 34562028 DOI: 10.1002/jsfa.11544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/20/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the present study, an extraction method affected by sonication intensity (40%, 70% and 100%), sonication time (5, 10 and 15 min) and different solvents (ethanol, methanol and a combination of ethanol/methanol) was optimized to extract the white tea with the greatest polyphenolic compounds using a response surface methodology. To prepare the nano-liposomal vesicles, phospholipids and cholesterol in various proportions (60:0, 40:20, 30:30 and 20:40) were applied based on thin-film hydration and ultrasound method. The nano-capsules enriched in bioactive compounds were examined through particle characteristics, encapsulation efficiency, morphological analysis, thermal properties and Fourier transform infrared spectroscopy. RESULTS The observations showed that the extraction yield highly depended on the type of solvent with varying permeability, sonication time and power. The highest total phenolic content (68.38 mg GA g-1 ) and free radical scavenging activity (77.65%) were observed for the following optimal conditions: 70% for sonication intensity, 15 min for sonication time and methanol as solvent. Characteristics of nanoliposomes within a compositional ratio of lecithin/cholesterol (40:20) and with a zeta potential of -56 ± 0.01 mV, as well as white tea extract (WTE) samples with an average particle diameter of 82.20 ± 0.08, microencapsulation efficiency of 76.5% ± 0.081, polydispersity index of 0.06 ± 0.02 and span value of 0.69 ± 0.03. are used as the optimal formulation for microencapsulation of antioxidant WTE. The results demonstrated an increment in thermal stability of liposomal WTE samples compared to other samples. CONCLUSION The findings of the present study indicated that nano-liposomes comprise an effective technology for coating the WTE, as well as to increasing its stability and thermal properties. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elham Ahmadi
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Amir Hossein Elhamirad
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Nasrin Mollania
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Mohammad Reza Saeidi Asl
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Ahmad Pedramnia
- Department of Food Science and Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| |
Collapse
|
29
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
30
|
López V, Cásedas G, Petersen-Ross K, Powrie Y, Smith C. Neuroprotective and anxiolytic potential of green rooibos ( Aspalathus linearis) polyphenolic extract. Food Funct 2022; 13:91-101. [PMID: 34877951 DOI: 10.1039/d1fo03178c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
South African rooibos (Aspalathus linearis) tea is globally consumed for its health benefits and caffeine free nature, but no information is available on the neuroprotective capacity of (unfermented) green rooibos. Our aim was to investigate the cytoprotective activity of green rooibos in neuronal cells, including probing antioxidant and enzyme inhibitory properties that could explain observed effects in these cells. We also investigated the anxiolytic potential of green rooibos using zebrafish larval models. Green rooibos extract (Green oxithin™) was assessed for its neuroprotective potential in Neuro-2a cells treated with different concentrations of the extract (12.5-25-50-100 μg mL-1) and different concentrations of hydrogen peroxide (250 or 125 μM) as oxidizing agent. Cell viability (MTT) and redox status (intracellular ROS) were also quantified in these cells. Antioxidant properties of the extract were quantified using cell-free systems (DPPH, ORAC and xanthine/xanthine oxidase), and potential neuroprotection evaluated in terms of its potential to inhibit key enzymes of the CNS (monoamine oxidase A (MOA-A), acetylcholinesterase (AChE) and tyrosinase (TYR)). Results demonstrated that green rooibos extract exerted significant cytoprotective properties in Neuro-2a cells, particularly when exposed to lethal 250 μM hydrogen peroxide, increasing cell survival by more than 100%. This may be ascribed (at least partially) to its capacity to limit intracellular ROS accumulation in these cells. Data from cell-free systems confirmed that green rooibos was able to scavenge free radicals (synthetic and physiological) in a dose dependent manner with a similar profile activity to vitamins C and E. Green rooibos also acted as a moderate MAO-A inhibitor, but had no significant effect on AChE or TYR. Finally, zebrafish larvae treated with lower doses of green rooibos demonstrated a significant anxiolytic effect in the light-dark anxiety model. Using the PTZ excitotoxicity model, green rooibos was shown to rescue GABA receptor signalling, which together with its demonstrated inhibition of MAO-A, may account for the anxiolytic outcome. Current data confirms that green rooibos could be considered a "functional brain food" and may be a good option as starting ingredient in the development of new nutraceuticals.
Collapse
Affiliation(s)
- Víctor López
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain.,Instituto Agroalimentario de Aragón, IA2, Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Universidad San Jorge, Villanueva de Gállego, Zaragoza, Spain
| | - Kelly Petersen-Ross
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Yigael Powrie
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| | - Carine Smith
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.
| |
Collapse
|
31
|
Berilli P, Fanaro GB, Santos JP, Reyes Reyes FG, Iglesias AH, Reis M, Cazarin CBB, Maróstica Junior MR. White tea modulates antioxidant defense of endurance-trained rats. Curr Res Physiol 2022; 5:256-264. [PMID: 35800140 PMCID: PMC9253650 DOI: 10.1016/j.crphys.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The interest in nutritional strategies that may counteract the deleterious oxidative effects induced by strenuous exercises is remarkable. Herein, the impact of white tea (Camellia sinensis) (WT), a polyphenol-rich beverage, on antioxidant status in endurance-trained rats after one session of exhaustive exercise were evaluated. Male Wistar rats were divided into groups, which received: control groups - water, and testing groups - WT1 (0.25%; w/v) or WT2 (0.5%; w/v). Drinks were consumed, ad libitum, for 5 or 10 weeks, concomitantly with the running training. Exhaustive running tests were applied before and after the experimental periods. WT intake increased the serum antioxidant capacity of rats in a dose-dependent manner (P < 0.001), which was unaccompanied by the activity of endogenous antioxidant enzymes SOD, GPx, and GR, and GSH content. Inflammatory markers in serum [IL-1β (P = 0.004) and IL-6 (P = 0.001)] could be downregulated by tea intake. In liver tissue, lower levels of lipid oxidation (P < 0.05) and improved antioxidant defenses (SOD, GPx, GR, and GSH, P < 0.05) were related to the consumption of 10.13039/100010269WT in both doses, supporting protective effects in this responsible metabolic organ. In conclusion, long-term consumption of WT could be a promising adjuvant to exercise-stress management, emphasizing its ability to regulate antioxidant responses and prevent oxidative tissue damage. White tea intake improved antioxidant status of blood and liver of runner rats. White tea intake promoted protective effect against liver lipid peroxidation after an exhaustive exercise. Long term white tea intake did not enhance physical performance.
Collapse
|
32
|
Chen G, Peng Y, Xie M, Xu W, Chen C, Zeng X, Liu Z. A critical review of Fuzhuan brick tea: processing, chemical constituents, health benefits and potential risk. Crit Rev Food Sci Nutr 2021; 63:5447-5464. [PMID: 34964426 DOI: 10.1080/10408398.2021.2020718] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fuzhuan brick tea (FBT) is a traditional popular beverage in the border regions of China. Nowadays, FBT has been attracted great attention due to its uniquely flavor and various health-promoting functions. An increasing number of efforts have been devoted to the studies on health benefits and chemistry of FBT over the last decades. However, FBT was still received much less attention than green tea, oolong tea and black tea. Therefore, it is necessary to review the current encouraging findings about processing, microorganisms, chemical constituents, health benefits and potential risk of FBT. The fungus fermentation is the key stage for processing of FBT, which is involved in a complex and unique microbial fermentation process. The fungal community in FBT is mainly dominated by "golden flower" fungi, which is identified as Aspergillus cristatus. A great diversity of novel compounds is formed and identified after a series of biochemical reactions during the fermentation process of FBT. FBT shows various biological activities, such as antioxidant, anti-inflammatory, anti-obesity, anti-bacterial, and anti-tumor activities. Furthermore, the potential risk of FBT was also discussed. It is expected that this review could be useful for stimulating further research of FBT.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yujia Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Weiqi Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chunxu Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
33
|
David SR, Abdullah K, Shanmugam R, Thangavelu L, Das SK, Rajabalaya R. Green Synthesis, Characterization and In Vivo Evaluation of White Tea Silver Nanoparticles with 5-Fluorouracil on Colorectal Cancer. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00905-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Camellia sinensis in Dentistry: Technological Prospection and Scientific Evidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9966738. [PMID: 34504542 PMCID: PMC8423564 DOI: 10.1155/2021/9966738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022]
Abstract
Purpose This study aimed to evaluate reports of patents for oral care formulations, based on Camellia sinensis (C. sinensis), deposited and granted in intellectual property banks. Methods A survey was conducted through collection, treatment, and analysis of extracted information from patent reports selected. The documentary research was conducted in January 2021 on formulations with C. sinensis for dental applications, including since the first patent deposits until the current time. The risk of bias of clinical trials with these formulations was analyzed to verify the scientific evidence. The data extracted represent the distribution of the number of patents by banks, annual evolution of patent deposits, applicant of patents by country, distribution of patents according to International Patent Classification codes, and the types of patented products. Results Data and information from 20 selected patents were extracted. The United States Patent and Trademark Office (USPTO) and World Intellectual Property Organization (WIPO) were the banks with the largest number of patents for products/formulations with C. sinensis for oral care applications with 7 (35%) and 6 (30%) patent registrations, respectively. Other banks did not provide patents related to the search. Patents of compositions were the largest with 14 filings, and the remainder of formulations are represented specially by mouthwashes and toothpastes. As for clinical application, 18 patents were filed as products with antimicrobial and antibiofilm action, while 2 patents are directed to the treatment of xerostomia. In general, the aspects of the studies of clinical efficacy pointed to a low risk of bias. Conclusion The study pointed out a small number of products protected by patents for Camellia sinensis for oral care indication, highlighting mainly mouthwash compositions and formulations. In the methodological parameters of clinical trials carried out with the formulations, the majority pointed out a low risk of bias.
Collapse
|
35
|
YAO Q, LIN Q, YAN SA, HUANG M, CHEN L. Dietary risk assessment of fluoride, lead, chromium, and cadmium through consumption of Tieguanyin tea and white tea. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.69220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Qinghua YAO
- Fujian Academy of Agricultural Sciences, China
| | - Qiu LIN
- Fujian Academy of Agricultural Sciences, China
| | - Sun-an YAN
- Fujian Academy of Agricultural Sciences, China
| | | | - Lihua CHEN
- Fujian Academy of Agricultural Sciences, China
| |
Collapse
|
36
|
Gurkan G, Erdogan MA, Yigitturk G, Erbas O. The Restorative Effect of Gallic Acid on the Experimental Sciatic Nerve Damage Model. J Korean Neurosurg Soc 2021; 64:873-881. [PMID: 34376039 PMCID: PMC8590909 DOI: 10.3340/jkns.2021.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Peripheral nerve injuries occur mostly as a result of mechanical trauma. Due to the microvascular deterioration in peripheral nerve damage, it becomes challenging to remove free oxygen radicals. Gallic acid is a powerful antioxidant with anti-inflammatory effects and a free radical scavenger. The purpose of the study is to show that gallic acid contributes to the restorative effect in mechanical nerve damage, considering its antioxidant and anti-inflammatory effects.
Methods Thirty male Sprague Dawley albino mature rats were included in the study. Ten of them constituted the control group, 10 out of 20 rats for which sciatic nerve damage was caused, constituted the saline group, and 10 formed the gallic acid group. Post-treatment motor functions, histological, immunohistochemical, and biochemical parameters of the rats were evaluated.
Results Compared to the surgery+saline group, lower compound muscle action potential (CMAP) latency, higher CMAP amplitude, and higher inclined plane test values were found in the surgery+gallic acid group. Similarly, a higher nerve growth factor (NGF) percentage, a higher number of axons, and a lower percentage of fibrosis scores were observed in the surgery+gallic acid group. Finally, lower tissue malondialdehyde (MDA) and higher heat shock protein-70 (HSP-70) values were determined in the surgery+gallic acid group.
Conclusion Gallic acid positively affects peripheral nerve injury healing due to its anti-inflammatory and antioxidant effects. It has been thought that gallic acid can be used as a supportive treatment in peripheral nerve damage.
Collapse
Affiliation(s)
- Gokhan Gurkan
- Department of Neurosurgery, Katip Celebi University Atatürk Training and Research Hospital, Izmir, Turkey
| | - Mumin Alper Erdogan
- Department of Physiology, Faculty of Medicine, Katip Celebi University, Izmir, Turkey
| | - Gurkan Yigitturk
- Department of Histology, Faculty of Medicine, Sitki Kocman University, Mugla, Turkey
| | - Oytun Erbas
- Department of Physiology, Istanbul Bilim University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
37
|
Yao Q, Li J, Yan SA, Huang M, Lin Q. Occurrence of pesticides in white tea and a corresponding risk exposure assessment for the different residents in Fujian, China. J Food Sci 2021; 86:3743-3754. [PMID: 34250597 DOI: 10.1111/1750-3841.15826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 11/30/2022]
Abstract
White tea has been of increasing public interest worldwide owing to its health benefits. Based on 2 years of surveillance, the long-term and cumulative chronic exposure risks of pesticide residues through white tea drinking were assessed for different subpopulations in Fujian, China. Twenty-five different pesticides were found, and 74.8% of samples contained at least one pesticide residue. The most frequently detected pesticide was bifenthrin with detection rates of 61.6%. Risk assessment was performed using both the deterministic approach and semiprobabilistic model under the best-case and the worst-case scenarios. The results demonstrated that the dietary risks were extremely low for six different subpopulations in which the risks for adults over the age of 41 were relatively higher. The risk ranking scheme indicated that isocarbophos and triazophos were considered to be of medium risk. The different use suggestions for the 25 positive pesticides are proposed to further minimize the exposure risk to consumer health. PRACTICAL APPLICATION: Tea is the second most popular nonalcoholic beverage throughout the world. Pesticides are used to improve the yield of tea. Pesticide residues in tea could be one of the exposure pathways for consumers. Monitoring residual levels and assessing the health risk assessment in tea are thus in an urge.
Collapse
Affiliation(s)
- Qinghua Yao
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jie Li
- Technical Centre of Rongcheng Customs District, Fuzhou, China
| | - Sun-An Yan
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Minmin Huang
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qiu Lin
- Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
38
|
Xia X, Wang X, Wang H, Lin Z, Shao K, Xu J, Zhao Y. Ameliorative effect of white tea from 50-year-old tree of Camellia sinensis L. (Theaceae) on kidney damage in diabetic mice via SIRT1/AMPK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 272:113919. [PMID: 33577915 DOI: 10.1016/j.jep.2021.113919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic kidney damage (DKD) is one of the most common complications of diabetes, which is known as a chronic inflammatory kidney disease caused by persistent hyperglycemia. White tea was originally used as a folk medicine to treat measles in ancient China. What arouses our interest is that there is a traditional method to treat diabetes with white tea taken from over 30-year-old tree of Camellia sinensis L. However, there are few reports on the renal protection of white tea. AIM OF THE STUDY This present study was designed to study the potential protective effects of white tea (WT) and old tree white tea (OTWT) on high-fat-diet (HFD) combined with streptozotocin (STZ)-induced type 2 diabetic mice to explore the possible mechanism of WT/OTWT against DKD. MATERIALS AND METHODS C57BL/6 mice were randomly divided into four groups: NC, T2D, WT (400 mg/kg·b.w, p.o.), OTWT (400 mg/kg·b.w, p.o.). Diabetes was established in all groups except NC group, by six weeks of HFD feeding combined with STZ (50 mg/kg, i.p.) for 3 times, treatments were administered for six weeks and then all the animals were decapitated; kidney tissues and blood samples were collected for the further analysis, including: levels of insulin, lipid metabolism (TG, TC, HDL, LDL, FFA), antioxidative enzymes (catalase (CAT), super oxide dismutase (SOD), glutathione peroxidase (GPx)), blood urea nitrogen (BUN) and creatine, inflammatory cytokines (TNF-α, IL-1β, COX-2, iNOS, MCP-1), advanced glycation end products (AGE), receptor of AGE (RAGE), Nrf2, AMPK, SIRT1, and PGC-1α. H&E, PAS and Masson staining were performed to examine the histopathological alterations of the kidneys. RESULTS Our data showed that WT and OTWT reversed the abnormal serum lipids (TG, TC, HDL, LDL, FFA) in T2D mice, upregulated antioxidative enzymes levels (CAT, SOD, GPx) and inhibit the excessive production of proinflammatory mediators (including MCP-1, TNF-α, IL1β, COX-2 and iNOS) by varying degrees, and OTWT was more effective. In histopathology, OTWT could significantly alleviate the accumulation of renal AGE in T2D mice, thereby improving the structural changes of the kidneys, such as glomerular hypertrophy, glomerular basement membrane thickening and kidney FIbrosis. CONCLUSIONS Both WT and OTWT could alleviate the diabetic changes in T2D mice via hypoglycemic, hypolipidemic, anti-oxidative and anti-inflammatory effects, while OTWT was more evident. OTWT could prominently alleviate the accumulation of AGE in the kidneys of T2D mice, thereby ameliorating the renal oxidative stress and inflammatory damage, which was associated with the activation of SIRT1/AMPK pathway.
Collapse
Affiliation(s)
- Xiaoyan Xia
- School of Traditional Chinese Medicine, Shanxi Datong University, Datong, 037009, China; School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xude Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Zhenchuan Lin
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Keping Shao
- Pinpin Tea Industry Co., Ltd., Fujian, 355200, China.
| | - Jing Xu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
39
|
Hinojosa-Nogueira D, Pérez-Burillo S, Pastoriza de la Cueva S, Rufián-Henares JÁ. Green and white teas as health-promoting foods. Food Funct 2021; 12:3799-3819. [PMID: 33977999 DOI: 10.1039/d1fo00261a] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tea is one of the most consumed beverages around the world and as such, it is constantly the object of novel research. This review focuses on the research performed during the last five years to provide an updated view of the current position of tea regarding human health. According to most authors, tea health benefits can be traced back to its bioactive components, mostly phenolic compounds. Among them, catechins are the most abundant. Tea has an important antioxidant capacity and anti-inflammatory properties, which make this beverage (or its extracts) a potential aid in the fight against several chronic diseases. On the other hand, some studies report the possibility of toxic effects and it is advisable to reduce tea consumption, such as in the last trimester of pregnancy. Additionally, new technologies are increasing researchers' possibilities to study the effect of tea on human gut microbiota and even against SARS CoV-2. This beverage favours some beneficial gut microbes, which could have important repercussions due to the influence of gut microbiota on human health.
Collapse
Affiliation(s)
- Daniel Hinojosa-Nogueira
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - Sergio Pérez-Burillo
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Silvia Pastoriza de la Cueva
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain.
| | - José Ángel Rufián-Henares
- Departamento de Nutrición y Bromatología, Instituo de Nutrición Y Tecnología de los Alimentos, Centro de Investigación BIomédica, Universidad de Granada, Granada, Spain. and Instituto de Investigación Biosanitaria ibs.GRANADA, Universidad de Granada, Granada, Spain
| |
Collapse
|
40
|
Kırmızıkaya G, Karakaya M, Babaoğlu AS. Black, green, and white tea infusions and powder forms improve oxidative stability of minced beef throughout refrigerated storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Görkem Kırmızıkaya
- Department of Biology, Faculty of Science Fırat University Elazığ Turkey
| | - Mustafa Karakaya
- Department of Food Engineering, Agriculture Faculty Selçuk University Konya Turkey
| | - Ali Samet Babaoğlu
- Department of Food Engineering, Agriculture Faculty Selçuk University Konya Turkey
| |
Collapse
|
41
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
42
|
Chen QC, Zhu Y, Yan H, Chen M, Xie DC, Wang MQ, Ni DJ, Lin Z. Identification of Aroma Composition and Key Odorants Contributing to Aroma Characteristics of White Teas. Molecules 2020; 25:E6050. [PMID: 33371407 PMCID: PMC7767441 DOI: 10.3390/molecules25246050] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022] Open
Abstract
The identification of aroma composition and key odorants contributing to aroma characteristics of white tea is urgently needed, owing to white tea's charming flavors and significant health benefits. In this study, a total of 238 volatile components were identified in the three subtypes of white teas using headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). The multivariate statistical analysis demonstrated that the contents of 103 volatile compounds showed extremely significant differences, of which 44 compounds presented higher contents in Baihaoyinzhen and Baimudan, while the other 59 compounds exhibited higher contents in Shoumei. The sensory evaluation experiment carried out by gas chromatography-olfactometry/mass spectrometry (GC-O/MS) revealed 44 aroma-active compounds, of which 25 compounds were identified, including 9 alcohols, 6 aldehydes, 5 ketones, and 5 other compounds. These odorants mostly presented green, fresh, floral, fruity, or sweet odors. Multivariate analyses of chemical characterization and sensory evaluation results showed that high proportions of alcohols and aldehydes form the basis of green and fresh aroma characteristic of white teas, and phenylethyl alcohol, γ-Nonalactone, trans-β-ionone, trans-linalool oxide (furanoid), α-ionone, and cis-3-hexenyl butyrate were considered as the key odorants accounting for the different aroma characteristics of the three subtypes of white tea. The results will contribute to in-depth understand chemical and sensory markers associated with different subtypes of white tea, and provide a solid foundation for tea aroma quality control and improvement.
Collapse
Affiliation(s)
- Qin-Cao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
- College of Agriculture, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Qingshan Lake District, Nanchang 330045, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Yin Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
| | - Han Yan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
| | - Mei Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
| | - Dong-Chao Xie
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
| | - Meng-Qi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
| | - De-Jiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Zhi Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, No. 9 Meiling South Road, West lake District, Hangzhou 310008, China; (Q.-C.C.); (Y.Z.); (H.Y.); (M.C.); (D.-C.X.); (M.-Q.W.)
| |
Collapse
|
43
|
Ni H, Jiang Q, Lin Q, Ma Q, Wang L, Weng S, Huang G, Li L, Chen F. Enzymatic hydrolysis and auto-isomerization during β-glucosidase treatment improve the aroma of instant white tea infusion. Food Chem 2020; 342:128565. [PMID: 33199121 DOI: 10.1016/j.foodchem.2020.128565] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/04/2020] [Accepted: 11/02/2020] [Indexed: 12/25/2022]
Abstract
The aroma changes in instant white tea resulting from β-glucosidase treatment was investigated by quantitative descriptive analysis (QDA), gas chromatography-mass spectrometry (GC-MS), odour activity value analysis (OAV), aroma reconstruction and omission tests. The grassy, floral and sweet notes increased significantly (P < 0.05), and the roasted note decreased significantly (P < 0.05) upon β-glucosidase treatment. Quantitative analysis showed that the concentrations of benzaldehyde, benzeneacetaldehyde, (Z)-3-hexen-1-ol, linalool, phenylethyl alcohol, cis-linalool oxide, trans-linalool oxide, hexanol, hotrienol and (E)-2-hexen-1-ol increased significantly (P < 0.05) after treatment; however, (Z)-3-hexen-1-ol isomerized to (E)-2-hexen-1-ol. OAV analysis, aroma reconstruction and the omission test showed that the grassy, floral and sweet notes increased as the (Z)-3-hexen-1-ol, cis/trans-linalool oxide and benzeneacetaldehyde increased, whereas the roasted note declined under the same conditions. The enzymatic hydrolysis of glycosidic precursors and the auto-isomerization of volatile compounds provide new information for understanding how β-glucosidase treatment improves the aroma of tea products.
Collapse
Affiliation(s)
- Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Qingxiang Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Qi Lin
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Qiongqing Ma
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China.
| | - Lu Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, China.
| | - Shuyi Weng
- Fujian Da Ming Co., Ltd, Zhangzhou, Fujian Province, China.
| | - Gaoling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Feng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
44
|
Shi Y, Wang J, Fang X, Gu S, Wang X. Wireless sensor network model with uncertain delay and packet loss based on intelligent fuzzy system. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2020. [DOI: 10.3233/jifs-179931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The utilization of fuzzy logic in WSNs is demonstrated to be a promising procedure since it permits joining and assessing various parameters in an effective way. Fuzzy logic is a decent methodology because of the execution prerequisites can be effectively supported by sensor hubs, while it can improve the general system execution. This paper studies the robust H∞ control considering time delay and packet loss related uncertainty in wireless sensor network system based on the basic theory of intelligent fuzzy systems. The model of a wireless sensor network with questionable time lag and packet loss is given first. The stability of the system is proved by the augmented Lyapunov functional and the linear matrix inequality (LMIs) method, with its demonstrated H∞ property. In order to solve the uncertain time delay and packet loss, the memory robust H∞ controller is proposed based on LMIs. Numerical examples and simulation results examines the potency of the presented method in solving the delay and packet loss of wireless sensor networks as well as the accuracy and precision of the system.
Collapse
Affiliation(s)
- Yuanbo Shi
- Northeastern University, School of Information Science and Engineering, Liaoning Shenyang, China
- Liaoning Shihua University, School of Computer and Communication Engineering, Liaoning Fushun, China
| | - Jianhui Wang
- Northeastern University, School of Information Science and Engineering, Liaoning Shenyang, China
| | - Xiaoke Fang
- Northeastern University, School of Information Science and Engineering, Liaoning Shenyang, China
| | - Shusheng Gu
- Northeastern University, School of Information Science and Engineering, Liaoning Shenyang, China
| | - Xiao Wang
- Northeastern University, School of Information Science and Engineering, Liaoning Shenyang, China
| |
Collapse
|
45
|
Ni H, Jiang QX, Zhang T, Huang GL, Li LJ, Chen F. Characterization of the Aroma of an Instant White Tea Dried by Freeze Drying. Molecules 2020; 25:molecules25163628. [PMID: 32784994 PMCID: PMC7464167 DOI: 10.3390/molecules25163628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
The aroma of an instant white tea (IWT) was extracted through simultaneous distillation–extraction (SDE) and analyzed by sensory evaluation, gas chromatography-mass spectrometry-olfactometry (GC-MS-O), aroma reconstruction, omission test and synergistic interaction analysis. Sensory evaluation showed the IWT was dominated with floral and sweet notes. The SDE extract had the aroma similar to the IWT. The main volatile components in the SDE extract were benzyl alcohol, linalool, hotrienol, geraniol, α-terpineol, coumarin, camphene, benzeneacetaldehyde, 2-hexanone, cis-jasmin lactone and phenylethyl alcohol. GC-MS-O and aroma reconstruction experiments showed 16 aroma-active compounds. Linalool, trans-β-damascenone and camphene were the major contributors to floral, sweet and green notes based on flavor dilution analysis and omission test. Linalool and trans-β-damascenone had synergistic effect to promote floral and sweet notes. Camphene and trans-β-damascenone had synergistic effect to reduce green and sweet notes. The study helps to understand the aroma of IWT and antagonism interactions among aroma-active volatiles.
Collapse
Affiliation(s)
- Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (H.N.); (Q.-X.J.); (T.Z.); (G.-L.H.); (F.C.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Qing-Xiang Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (H.N.); (Q.-X.J.); (T.Z.); (G.-L.H.); (F.C.)
| | - Ting Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (H.N.); (Q.-X.J.); (T.Z.); (G.-L.H.); (F.C.)
| | - Gao-Ling Huang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (H.N.); (Q.-X.J.); (T.Z.); (G.-L.H.); (F.C.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Li-Jun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (H.N.); (Q.-X.J.); (T.Z.); (G.-L.H.); (F.C.)
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Correspondence: ; Tel.: +86-189-5925-4686
| | - Feng Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (H.N.); (Q.-X.J.); (T.Z.); (G.-L.H.); (F.C.)
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
46
|
Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chem 2020; 332:127412. [PMID: 32623128 DOI: 10.1016/j.foodchem.2020.127412] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/01/2023]
Abstract
In this study, metabolomics and proteomics were employed to investigate the change mechanism of nonvolatile compounds during white tea processing. A total of 99 nonvolatile compounds were identified, among which the contents of 13 free amino acids, caffeine, theaflavins, 7 nucleosides and nucleotides, and 5 flavone glycosides increased significantly, while the contents of theanine, catechins, theasinesins, 3 proanthocyanidins, and phenolic acids decreased significantly during the withering period. The results of proteomics indicated that the degradation of proteins accounted for the increase in free amino acid levels; the weakened biosynthesis, in addition to oxidation, also contributed to the decrease in flavonoid levels; the degradation of ribonucleic acids contributed to the increase in nucleoside and nucleotide levels during the withering period. In addition, the drying process was found to slightly promote the formation of white tea taste. Our study provides a novel characterization of white tea taste formation during processing.
Collapse
|
47
|
Li C, Zong B, Guo H, Luo Z, He P, Gong S, Fan F. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117697. [PMID: 31699592 DOI: 10.1016/j.saa.2019.117697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/15/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
White tea is a special tea product with increasing market demand. The assessment of white tea quality is mainly based on panel sensory by sensory evaluation experts, which is time costly and is limited by many uncertainties. This study established a rapid and accurate method for classification of white teas produced from buds and young leaves and that produced from mature leaves and shoots using near-infrared spectroscopy (NIR). Back propagation neural network modelling and support vector machine (SVM) modelling were compared with six pre-processing methods. The best performance was provided by SVM with particle swarm optimization combined with Savitzky-Golay filter pre-processing method, achieving the accuracy of 98.92% in test samples. The NIR-related chemical compounds of two categories of white teas produced from fresh leaves with different maturity were analyzed, including catechins, alkaloids, amino acids and flavonol glycosides. Compared with chemical component concentration, NIR absorbance had a distinct advantage in quick classification of white teas based on the principal components analysis. In addition, the sensory characteristics of two categories white teas produced from fresh leaves with different maturity were also assessed by panelist. The result showed that characteristics of "umami-like" and "smooth" were more likely present in white teas produced from buds and young leaves, while "woody" and "coarse" characteristics were usually present in white teas produced from mature leaves and shoots. Thus, NIR technique is a rapid and reliable method for discrimination of white teas produced from fresh leaves with different maturity, and is a potential method to discriminate sensory characteristics of white teas.
Collapse
Affiliation(s)
- Chunlin Li
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Bangzheng Zong
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Haowei Guo
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Zhou Luo
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Puming He
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
| | - Shuying Gong
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
| | - Fangyuan Fan
- Institute of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
| |
Collapse
|
48
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
49
|
Xie D, Dai W, Lu M, Tan J, Zhang Y, Chen M, Lin Z. Nontargeted metabolomics predicts the storage duration of white teas with 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols as marker compounds. Food Res Int 2019; 125:108635. [DOI: 10.1016/j.foodres.2019.108635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
|
50
|
Silva LBAR, Pinheiro-Castro N, Novaes GM, Pascoal GDFL, Ong TP. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res Int 2019; 125:108646. [PMID: 31554120 DOI: 10.1016/j.foodres.2019.108646] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
|