1
|
Kumar H, Guleria S, Kimta N, Dhalaria R, Nepovimova E, Dhanjal DS, Alomar SY, Kuca K. Amaranth and buckwheat grains: Nutritional profile, development of functional foods, their pre-clinical cum clinical aspects and enrichment in feed. Curr Res Food Sci 2024; 9:100836. [PMID: 39290651 PMCID: PMC11406246 DOI: 10.1016/j.crfs.2024.100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024] Open
Abstract
The resurgence of interest in amaranth and buckwheat as nutrient-rich and versatile grains has incited extensive research aimed at exploring their potential benefits for sustainable agriculture and human nutrition. Amaranth is renowned for its gluten-free nature and exceptional nutritional profile, offering high-quality proteins, fiber, minerals, and bioactive compounds. Similarly, buckwheat is recognized for its functional and nutraceutical properties, offering a plethora of health benefits attributed to its diverse array of biologically active constituents; flavonoids, phytosterols, and antioxidants. This comprehensive review comprehends the existing understanding of the composition, anti-nutritional factors, biological activity, and potential application of these grains, emphasizing their pivotal role in addressing global food insecurity. Developed functional foods using these grains are having enhanced physicochemical properties, mineral content, phenolic content and overall sensory acceptability. In addition, the consumption of developed functional food products proved their health benefits against various type of anomalies. Moreover, enrichment of both grains in the animal feeds also showing positive health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Neetika Kimta
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Das A, Biswas S, Satyaprakash K, Bhattacharya D, Nanda PK, Patra G, Moirangthem S, Nath S, Dhar P, Verma AK, Biswas O, Tardi NI, Bhunia AK, Das AK. Ratanjot ( Alkanna tinctoria L.) Root Extract, Rich in Antioxidants, Exhibits Strong Antimicrobial Activity against Foodborne Pathogens and Is a Potential Food Preservative. Foods 2024; 13:2254. [PMID: 39063340 PMCID: PMC11275321 DOI: 10.3390/foods13142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Natural and sustainable plant-based antioxidants and antimicrobials are highly desirable for improving food quality and safety. The present investigation assessed the antimicrobial and antioxidant properties of active components from Alkanna tinctoria L. (herb) roots, also known as Ratanjot root. Two methods were used to extract active components: microwave-assisted hot water (MAHW) and ethanolic extraction. MAHW extract yielded 6.29%, while the ethanol extract yielded 18.27%, suggesting superior Ratanjot root extract powder (RRP) solubility in ethanol over water. The ethanol extract showed significantly higher antioxidant activity than the MAHW extract. Gas Chromatography-Mass Spectrometry analysis revealed three major phenolic compounds: butanoic acid, 3-hydroxy-3-methyl-; arnebin 7, and diisooctyl pthalate. The color attributes (L*, a*, b*, H°ab, C*ab) for the ethanolic and MAHW extracts revealed significant differences (p < 0.05) in all the above parameters for both types of extracts, except for yellowness (b*) and chroma (C*ab) values. The ethanol extract exhibited antimicrobial activity against 14 foodborne bacteria, with a significantly higher inhibitory effect against Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus) than the Gram-negative bacteria (Salmonella enterica serovar Typhimurium and Escherichia coli). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 25 mg/mL for the Gram-negative bacteria, while the MIC and MBC concentrations varied for Gram-positive bacteria (0.049-0.098 mg/mL and 0.098-0.195 mg/mL) and the antimicrobial effect was bactericidal. The antimicrobial activities of RRP extract remained stable under broad temperature (37-100 °C) and pH (2-6) conditions, as well as during refrigerated storage for 30 days. Application of RRP at 1% (10 mg/g) and 2.5% (25 mg/g) levels in a cooked chicken meatball model system prevented lipid oxidation and improved sensory attributes and retarded microbial growth during refrigerated (4 °C) storage for 20 days. Furthermore, the RRP extract was non-toxic when tested with sheep erythrocytes and did not inhibit the growth of probiotics, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. In conclusion, the study suggests that RRP possesses excellent antimicrobial and antioxidant activities, thus making it suitable for food preservation.
Collapse
Affiliation(s)
- Annada Das
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Subhasish Biswas
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Kaushik Satyaprakash
- Department of Veterinary Public Health and Epidemiology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Dipanwita Bhattacharya
- Department of Livestock Products Technology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| | - Gopal Patra
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Sushmita Moirangthem
- Department of Livestock Products Technology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India; (A.D.); (S.B.); (G.P.); (S.M.)
| | - Santanu Nath
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India;
| | - Arun K. Verma
- Goat Products Technology Laboratory, ICAR-Central Institute for Research on Goats, Makhdoom, Mathura 281122, India;
| | - Olipriya Biswas
- Department of Fishery Engineering, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India;
| | - Nicole Irizarry Tardi
- Molecular Food Microbiology Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA;
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, College of Agriculture, Purdue University, West Lafayette, IN 47907, USA;
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India; (P.K.N.); (S.N.)
| |
Collapse
|
3
|
Karslıoğlu B, Soncu ED, Nekoyu B, Karakuş E, Bekdemir G, Şahin B. From Waste to Consumption: Tomato Peel Flour in Hamburger Patty Production. Foods 2024; 13:2218. [PMID: 39063302 PMCID: PMC11275641 DOI: 10.3390/foods13142218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Tomato is a widely cultivated crop and its processing produces large quantities of wastes, such as pulp, seed, and peel. In recent years, the valorization of these wastes in the production of high-value-added food products has gained popularity in achieving environmental sustainability and zero waste. From this viewpoint, dried tomato peel (DTP-1%, 2%, 3%, 4%) flour was included in hamburger formulations. In patty samples, ash, carbohydrate, and dietary fiber amounts were increased due to the high fiber content of DTP flour, while moisture and fat percentages decreased with increasing amounts of DTP flour (p < 0.05). The inclusion of DTP flour retarded lipid oxidation during cooking (p < 0.05). The significantly highest cooking yield was calculated in samples including 4% DTP flour. In parallel, water-holding capacity, moisture, and fat retention values increased with increasing levels of DTP flour (p < 0.05). The enrichment of patties with DTP flour resulted in hard texture, less gumminess, and a darker, more reddish and yellowish color (p < 0.05). Hamburger samples containing 1% or 2% DTP flour were graded with closer scores in the sensory panel as compared to the control (0% DTP). Overall, our findings demonstrated that DTP flour up to 2% could be used to improve the nutritional and technological properties of patty samples.
Collapse
Affiliation(s)
- Betül Karslıoğlu
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey (G.B.)
| | - Eda Demirok Soncu
- Department of Food Engineering, Faculty of Engineering, Ankara University, Ankara 06110, Turkey;
| | - Beyzanur Nekoyu
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey (G.B.)
| | - Erdem Karakuş
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey (G.B.)
| | - Gülsedef Bekdemir
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey (G.B.)
| | - Barış Şahin
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Hasan Kalyoncu University, Gaziantep 27000, Turkey (G.B.)
| |
Collapse
|
4
|
Mohamed AI, Erukainure OL, Salau VF, Islam MS. Impact of coffee and its bioactive compounds on the risks of type 2 diabetes and its complications: A comprehensive review. Diabetes Metab Syndr 2024; 18:103075. [PMID: 39067326 DOI: 10.1016/j.dsx.2024.103075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Coffee beans have a long history of use as traditional medicine by various indigenous people. Recent focus has been given to the health benefits of coffee beans and its bioactive compounds. Research on the bioactivities, applications, and effects of processing methods on coffee beans' phytochemical composition and activities has been conducted extensively. The current review attempts to provide an update on the biological effects of coffee on type 2 diabetes (T2D) and its comorbidities. METHODS Comprehensive literature search was carried out on peer-reviewed published data on biological activities of coffee on in vitro, in vivo and epidemiological research results published from January 2015 to December 2022, using online databases such as PubMed, Google Scholar and ScienceDirect for our searches. RESULTS The main findings were: firstly, coffee may contribute to the prevention of oxidative stress and T2D-related illnesses such as cardiovascular disease, retinopathy, obesity, and metabolic syndrome; secondly, consuming up to 400 mg/day (1-4 cups per day) of coffee is associated with lower risks of T2D; thirdly, caffeine consumed between 0.5 and 4 h before a meal may inhibit acute metabolic rate; and finally, both caffeinated and decaffeinated coffee are associated with reducing the risks of T2D. CONCLUSION Available evidence indicates that long-term consumption of coffee is associated with decreased risk of T2D and its complications as well as decreased body weight. This has been attributed to the consumption of coffee with the abundance of bioactive chemicals.
Collapse
Affiliation(s)
- Almahi I Mohamed
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ochuko L Erukainure
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Microbiology, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Veronica F Salau
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa; Department of Pharmacology, University of the Free State, Bloemfontein, 9300, South Africa
| | - Md Shahidul Islam
- Department of Biochemistry, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Zhang M, Chai Y, Li F, Bao Y. Effect of Pleurotus eryngii on the Characteristics of Pork Patties during Freezing and Thawing Cycles. Foods 2024; 13:501. [PMID: 38338636 PMCID: PMC10855685 DOI: 10.3390/foods13030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Temperature fluctuations severely damage the quality, oxidation stability, and structure of pork patties. This study investigated the potential reasons for Pleurotus eryngii (Pe) to protect frozen pork patties from quality degradation caused by temperature fluctuations and promoted the application of a natural ingredient. In this experiment, the pH, the water holding capacity (WHC), the properties of color and texture, the appearance, the degree of protein and lipid oxidation, and the microstructure of patties with different additions of Pe (0%, 0.25%, 0.50%, 1.00%, and 2.00%) were intensified during freezing and thawing (F-T) cycles. The results showed that patties with 0.50% Pe exhibited a distinguishable improvement in the changes of pH, WHC, color, and texture during F-T cycles (p < 0.05). With the times of F-T cycles increasing, 0.50% Pe was able to inhibit lipid oxidation of patties by decreasing the peroxide value (POV) and the thiobarbituric acid reactive substances (TBARS) value to 0.87 and 0.66-fold, respectively, compared to those in the control group. It was also able to suppress the protein oxidation of the patties with a protein sulfhydryl content increasing to 1.13-fold and a carbonyl content decreasing to 0.49-fold compared to the patties in the control group (p < 0.05) after 5 F-T cycles. In addition, the figures of appearance and microstructure of samples indicated that 0.50% Pe effectively restrained the deterioration of structure features from patties after 5 F-T cycles. Thus, the addition of Pe effectively maintained the characteristics of pork patties under F-T cycles.
Collapse
Affiliation(s)
- Miaojing Zhang
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.Z.); (Y.C.)
| | - Yangyang Chai
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.Z.); (Y.C.)
| | - Fangfei Li
- Key Laboratory of Forest Food Resource Utilization in Heilongjiang Province, Northeast Forestry University, Harbin 150040, China
| | - Yihong Bao
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.Z.); (Y.C.)
| |
Collapse
|
6
|
Dong S, Li L, Hao F, Fang Z, Zhong R, Wu J, Fang X. Improving quality of poultry and its meat products with probiotics, prebiotics, and phytoextracts. Poult Sci 2024; 103:103287. [PMID: 38104412 DOI: 10.1016/j.psj.2023.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Remarkable changes have occurred in poultry farming and meat processing in recent years, driven by advancements in breeding technology, feed processing technology, farming conditions, and management practices. The incorporation of probiotics, prebiotics, and phytoextracts has made significant contributions to the development of poultry meat products that promote both health and functionality throughout the growth phase and during meat processing. Poultry fed with these substances improve meat quality, while incorporating probiotics, prebiotics, and phytoextracts in poultry processing, as additives or supplements, inhibits pathogens and offers health benefits to consumers. However, it is vital to assess the safety of functional fermented meat products containing these compounds and their potential effects on consumer health. Currently, there's still uncertainty in these aspects. Additionally, research on utilizing next-generation probiotic strains and synergistic combinations of probiotics and prebiotics in poultry meat products is in its early stages. Therefore, further investigation is required to gain a comprehensive understanding of the beneficial effects and safety considerations of these substances in poultry meat products in the future. This review offered a comprehensive overview of the applications of probiotics and prebiotics in poultry farming, focusing on their effects on nutrient utilization, growth efficiency, and gut health. Furthermore, potential of probiotics, prebiotics, and phytoextracts in enhancing poultry meat production was explored for improved health benefits and functionality, and possible issues associated with the use of these substances were discussed. Moreover, the conclusions drawn from this review and potential future perspectives in this field are presented.
Collapse
Affiliation(s)
- Sashuang Dong
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Lanyin Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Fanyu Hao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China
| | - Ziying Fang
- Weiran Food Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518000, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512000, PR China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
7
|
Drioiche A, Ailli A, Remok F, Saidi S, Gourich AA, Asbabou A, Kamaly OA, Saleh A, Bouhrim M, Tarik R, Kchibale A, Zair T. Analysis of the Chemical Composition and Evaluation of the Antioxidant, Antimicrobial, Anticoagulant, and Antidiabetic Properties of Pistacia lentiscus from Boulemane as a Natural Nutraceutical Preservative. Biomedicines 2023; 11:2372. [PMID: 37760813 PMCID: PMC10525226 DOI: 10.3390/biomedicines11092372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Pistacia lentiscus L. has traditionally been employed as a diuretic and stimulant in the treatment of hypertension. Our interest centered on analyzing the chemical profile of the plant's leaves and its in vitro, in vivo, and in silico antioxidant, antimicrobial, anticoagulant, and antidiabetic effects in order to valorize this species and prepare new high-value products that can be used in the agro-food and pharmaceutical industries. When this species' essential oil was hydrodistilled and subjected to GC-MS analysis, the results showed that the principal components were germacrene D (17.54%), spathulenol (17.38%), bicyclogermacrene (12.52%), and terpinen-4-ol (9.95%). The extraction of phenolic compounds was carried out by decoction and Soxhlet. The determination of total polyphenols, flavonoids, and tannins of aqueous and organic extracts by spectrophotometric methods demonstrated the richness of this species in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of the aqueous extract of P. lentiscus revealed the presence of 3,5-di-O-galloyl quinic acid, gallic acid, and 3,4,5-tri-O-galloyl quinic acid specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and Total Antioxidant Capacity) revealed that P. lentiscus is a very promising source of natural antioxidants. The antimicrobial activity of the essential oil and aqueous extract (E0) was studied by microdilution on the microplate. The results revealed the effectiveness of the aqueous extract compared to the essential oil against Gram-negative bacteria (K. pneumoniae, A. baumannii, E. aerogenes, E. cloacae, P. fluorescence, Salmonella sp., Shigella sp., and Y. enterolitica) and candidoses (C. krusei and C. albicans). The measurements of prothrombin time (PT) and activated partial thromboplastin time (aPTT) of the aqueous extract (E0) can significantly prolong these tests from concentrations of 2.875 and 5.750 mg/mL, respectively. The antihyperglycemic effect of the aqueous extract (E0) showed a strong in vitro inhibitory activity of α-amylase and α-glucosidase compared to acarbose. Thus, it significantly inhibited postprandial hyperglycemia in Wistar albino rats. The in-silico study of the major compounds of the essential oil and extract (E0) carried out using PASS, SwissADME, pkCSM, and molecular docking tools confirmed our in vitro and in vivo results. The studied compounds showed a strong ability to be absorbed by the gastrointestinal tract and to passively diffuse through the blood-brain barrier, a similarity to drugs, and water solubility. Molecular docking experiments deduced the probable mode of action of the identified compounds on their respective target proteins, such as NADPH oxidase, thrombin, α-amylase, and α-glucosidase. Furthermore, given the demonstrated antioxidant, antimicrobial, anticoagulant, and antidiabetic effects, we can affirm the richness of P. lentiscus in bioactive molecules and its use in traditional medicine as a source of preservative agent.
Collapse
Affiliation(s)
- Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
- Medical Microbiology Laboratory, Mohamed V. Hospital, Meknes 50000, Morocco
| | - Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Firdaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Soukaina Saidi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Aman Allah Gourich
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Ayoub Asbabou
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (O.A.K.); (A.S.)
| | - Mohamed Bouhrim
- Team of Functional and Pathological Biology, Laboratory of Biological Engineering, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco;
| | - Redouane Tarik
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Amale Kchibale
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201, Zitoune, Meknes 50070, Morocco; (A.A.); (F.R.); (S.S.); (A.A.G.); (A.A.); (R.T.); (A.K.)
| |
Collapse
|
8
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
9
|
Xu Y, Qi J, Yu M, Zhang R, Lin H, Yan H, Li C, Jia J, Hu Y. Insight into the mechanism of water-insoluble dietary fiber from star anise (Illicium verum Hook. f.) on water-holding capacity of myofibrillar protein gels. Food Chem 2023; 423:136348. [PMID: 37201258 DOI: 10.1016/j.foodchem.2023.136348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
This study aimed to determine the efficacy of star anise dietary fiber (SADF) in alleviating the oxidative damage of myofibrillar protein (MP) from the perspective of volatile components. SADF and SADF without essential oils (EOs) (NSADF) were added to oxidized MP. The addition of NSADF and SADF improved the water-holding capacity (WHC) and gel strength, with the 0.4% addition showing the highest values. Moreover, the WHC of MP from the SADF-treated group was significantly higher than that from the NSADF-treated group at the same dosage, suggesting that EOs in SADF improved the WHC through antioxidation. EOs in SADF prevented the attack of hydroxyl radicals on MP, increasing the β-sheet level and decreasing the random coil level, which was supported by the results of FT-IR, carbonyl content, and sulfhydryl content. Limonene and anisaldehyde present in EOs played an antioxidant role, and anisaldehyde could scavenge free radicals through demethoxylation.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Manman Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ruishu Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huimin Yan
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chao Li
- National Key Laboratory for Meat Quality Control and New Resource Creation, Yurun Group, Nanjing 210041, China
| | - Jingmin Jia
- Suzhou Fuliji Liulaoer Roast Chicken Co., Ltd, Suzhou 234101, China
| | - Yong Hu
- Anhui Youzhi Youwei Food Co., Ltd, Ma'anshan 238253, China
| |
Collapse
|
10
|
Villacís-Chiriboga J, Zaldumbide E, Raes K, Elst K, Van Camp J, Ruales J. Comparative assessment of physicochemical, structural and functional properties of dietary fiber extracted from mango (Mangifera indica L.) and soursop (Annona muricata) peels. Int J Biol Macromol 2023; 238:124116. [PMID: 36958454 DOI: 10.1016/j.ijbiomac.2023.124116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
The potential of soursop, a less well-known tropical fruit, was assessed as a source of dietary fiber (DF) and compared to mango. After optimizing the conditions to maximize the extraction yield of soluble and insoluble DF, their structural, physicochemical, and functional properties were evaluated. The results showed that soursop excelled in total and insoluble DF content (50 % higher than mango). The antioxidant response and reducing sugar content obtained for soursop were significantly higher than in mango. Yet, the insoluble fraction in both fruits was characterized by higher antioxidant activity and phenolic content. The chemical composition of both fruits revealed that glucose and potassium were the main sugar and mineral, respectively. Lactic, formic, and acetic acids were the main short-chain fatty acids produced after in vitro colonic fermentation with Lacticaseibacillus casei and Lacticaseibacillus rhamnosus, and negligible amounts of butyric, propionic, and valeric acids were detected after 48-h-fermentation, independent of the fruit. Soursop is a promising rich source of DF that can be used together with mango to develop and enhance foods' textural and nutritional characteristics.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Ecuador; Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium; Campus Rubén Orellana, Ladrón de Guevara E11-253, P.O.BOX 17, 012759 Quito, Ecuador
| | - Edy Zaldumbide
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Ecuador; Campus Rubén Orellana, Ladrón de Guevara E11-253, P.O.BOX 17, 012759 Quito, Ecuador
| | - Katleen Raes
- Research Unit VEG-I-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Escuela Politécnica Nacional, Ecuador; Campus Rubén Orellana, Ladrón de Guevara E11-253, P.O.BOX 17, 012759 Quito, Ecuador.
| |
Collapse
|
11
|
Magalhães D, Vilas-Boas AA, Teixeira P, Pintado M. Functional Ingredients and Additives from Lemon by-Products and Their Applications in Food Preservation: A Review. Foods 2023; 12:foods12051095. [PMID: 36900612 PMCID: PMC10001058 DOI: 10.3390/foods12051095] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Citrus trees are among the most abundant fruit trees in the world, with an annual production of around 124 million tonnes. Lemons and limes are among the most significant contributors, producing nearly 16 million tonnes per year. The processing and consumption of citrus fruits generates a significant amount of waste, including peels, pulp, seeds, and pomace, which represents about 50% of the fresh fruit. Citrus limon (C. limon) by-products are composed of significant amounts of bioactive compounds, such as phenolic compounds, carotenoids, vitamins, essential oils, and fibres, which give them nutritional value and health benefits such as antimicrobial and antioxidant properties. These by-products, which are typically discarded as waste in the environment, can be explored to produce new functional ingredients, a desirable approach from a circular economy perspective. The present review systematically summarizes the potential high-biological-value components extracted from by-products to achieve a zero-waste goal, focusing on the recovery of three main fractions: essential oils, phenolic compounds, and dietary fibres, present in C. limon by-products, and their applications in food preservation.
Collapse
|
12
|
Fernandes A, Mateus N, de Freitas V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023; 12:1052. [PMID: 36900569 PMCID: PMC10000549 DOI: 10.3390/foods12051052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
In the past few years, numerous studies have investigated the correlation between polyphenol intake and the prevention of several chronic diseases. Research regarding the global biological fate and bioactivity has been directed to extractable polyphenols that can be found in aqueous-organic extracts, obtained from plant-derived foods. Nevertheless, significant amounts of non-extractable polyphenols, closely associated with the plant cell wall matrix (namely with dietary fibers), are also delivered during digestion, although they are ignored in biological, nutritional, and epidemiological studies. These conjugates have gained the spotlight because they may exert their bioactivities for much longer than extractable polyphenols. Additionally, from a technological food perspective, polyphenols combined with dietary fibers have become increasingly interesting as they could be useful for the food industry to enhance technological functionalities. Non-extractable polyphenols include low molecular weight compounds such as phenolic acids and high molecular weight polymeric compounds such as proanthocyanidins and hydrolysable tannins. Studies concerning these conjugates are scarce, and usually refer to the compositional analysis of individual components rather than to the whole fraction. In this context, the knowledge and exploitation of non-extractable polyphenol-dietary fiber conjugates will be the focus of this review, aiming to access their potential nutritional and biological effect, together with their functional properties.
Collapse
Affiliation(s)
- Ana Fernandes
- Laboratório Associado para a Química Verde (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
13
|
Ribeiro WO, Ozaki MM, Dos Santos M, Rodríguez AP, de Castro RJS, Sato HH, Campagnol PCB, Pollonio MAR. Improving the textural and nutritional properties in restructured meat loaf by adding fibers and papain designed for elderly. Food Res Int 2023; 165:112539. [PMID: 36869546 DOI: 10.1016/j.foodres.2023.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
This study aimed to evaluate the effects of dietary fibers (apple, oat, pea, and inulin) in meat loaves treated with papain enzyme. In the first step, dietary fibers were added to the products at the level of 6%. All dietary fibers decreased the cooking loss and improved the water retention capacity throughout the shelf life of the meat loaves. Besides, the dietary fibers increased the compression force of meat loaves treated with papain, mainly oat fiber. The dietary fibers decreased the pH, especially the treatment with apple fiber. In the same way, the color was changed mainly by the apple fiber addition, resulting in a darker color in both raw and cooked samples. TBARS index increased in meat loaves added with both pea and apple fibers, mostly for the last one. In the next step, the combination of inulin, oat, and pea fibers was evaluated in the meat loaves treated with papain, combining fibers up to 6% total content likewise decreased cooking and cooling loss and increased the texture of the papain-treated meat loaf. The addition of fibers improved the acceptability of the texture-related samples, except for the three-fiber mixture (inulin, oat, and pea), which was related to a dry, hard-to-swallow texture. The mix of pea and oat fibers conferred the best descriptive attributes, possibly related to improved texture and water retention in the meat loaf, and comparing the use of isolated oat and pea, the perception of negative sensory attributes was not mentioned, such as soy and other off-flavors. Considering these results, this study showed that dietary fibers combined with papain improved the yielding and functional properties with potential technological use and consistent nutritional claims for elderly.
Collapse
Affiliation(s)
- Wanessa Oliveira Ribeiro
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maristela Midori Ozaki
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Mirian Dos Santos
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Andrea Paola Rodríguez
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Helia Harumi Sato
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | | | | |
Collapse
|
14
|
Effects of an inulin and microcrystalline cellulose hybrid hydrogel on the short-term low temperature storage characteristics of pork sausage models. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Advantageous Effects of Sumac Usage in Meatball Preparation on Various Quality Criteria and Formation of Heterocyclic Aromatic Amines. SEPARATIONS 2023. [DOI: 10.3390/separations10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Heterocyclic aromatic amines (HAAs) are mutagenic/carcinogenic compounds that can be formed during the cooking process of proteinaceous foods such as meat. Therefore, it is needed to inhibit or reduce their formations in cooked meats. Hereby, the effects of sumac usage (0.5%, w/w) in beef meatball preparation on the formation of HAAs and some quality parameters (water, pH, cooking loss, and lipid oxidation values) of meatballs cooked at 150 and 250 °C were investigated. The sumac usage caused a reduction in pH (p < 0.01), cooking loss (p < 0.05), lipid oxidation level (TBARS, p < 0.01), and total HAA amount (p < 0.05) of the samples. In addition, increasing the cooking temperature significantly decreased the pH value (p < 0.01) and increased the cooking loss (p < 0.05) of the samples. Only one compound, 2-amino-3,8-dimethylimidazo [4,5-ƒ]quinoxaline (MeIQx), from nine different HAAs studied in this study, could be determined, and the levels of the other HAAs studied were lower than their detection limits. On the other hand, MeIQx was not detected in the samples cooked at 150 °C, it was only determined in the control group samples cooked at 250 °C. The sumac usage completely inhibited MeIQx formation in the samples. Due to its positive effect on cooking loss value, lipid oxidation level, and MeIQx formation, it can be suggested to use sumac powder in meatball preparation.
Collapse
|
16
|
Effect of Bamboo Essential Oil on the Oxidative Stability, Microbial Attributes and Sensory Quality of Chicken Meatballs. Foods 2023; 12:foods12010218. [PMID: 36613438 PMCID: PMC9819116 DOI: 10.3390/foods12010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
This study explores the efficacy of bamboo essential oil (BEO) incorporated at 15 ppm (T1, BEO-I) and 30 ppm (T2, BEO-II) on the overall physicochemical and oxidative stability, microbial deterioration, and sensory acceptability of meatballs stored for 20 days under refrigerated conditions. Analysis of various parameters, including physicochemical quality, color (CIE L*, CIE a* and CIE b*), generation of oxidative products (TBARS), microbial growth, and sensory acceptability of meatballs were evaluated at 5-day intervals. In addition, the total phenolics and flavonoid content of BEO were estimated, and fatty acids were determined by Gas chromatography (GC.) To gain insights into the biological activities of the BEO, antioxidant assays were determined in vitro using various methods. The antibacterial activity of BEO was also evaluated against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Vibrio cholera, Salmonella Typhimurium, Shigella flexneri, Proteus vulgaris, Escherichia coli and Klebsiella pneumoniae) bacterial strains. The BEO contained a good quantity of total phenolics and flavonoids. In addition, the oil exhibited very potent antioxidant activity scavenging reactive oxygen and other such species, effectively showing IC50 at a very minimal concentration. Further, the BEO exhibited a strong antibacterial effect with MICs within 2 µL and MBCs from 5 to 7 µL for Gram-positive as well as Gram-negative bacteria, respectively. At both the concentrations used, BEO did not show any negative effect on the color of cooked meatballs but rather increased the microbiological and oxidative stability during the overall storage period. Meatballs treated with BEO had considerably reduced oxidative changes in terms of TBARS levels compared to the control. The total viable microbial count was lowest in BEO-treated meatballs and the highest in control. Both control and treated meatballs had a desirable flavor and good acceptability. The sensory attributes and aroma of treated meatballs were better and acceptable during the storage study, whereas the control samples were disliked by the panelists on 15th day. From this study, it can be concluded that bamboo essential oil could be used as a benign and non-toxic preservative to improve the quality and shelf life of cooked meatballs stored under refrigerated conditions.
Collapse
|
17
|
Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2022; 12:foods12010159. [PMID: 36613377 PMCID: PMC9818228 DOI: 10.3390/foods12010159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022] Open
Abstract
Agroindustrial activities generate various residues or byproducts which are inefficiently utilized, impacting the environment and increasing production costs. These byproducts contain significant amounts of bioactive compounds, including dietary fiber with associated phenolic compounds, known as antioxidant dietary fiber (ADF). Phenolic compounds are related to the prevention of diseases related to oxidative stress, such as neurodegenerative and cardiovascular diseases. The mechanism of ADF depends on its chemical structure and the interactions between the dietary fiber and associated phenolic compounds. This work describes ADF, the main byproducts considered sources of ADF, its mechanisms of action, and its potential use in the formulation of foods destined for human consumption. ADF responds to the demand for low-cost, functional ingredients with great health benefits. A higher intake of antioxidant dietary fiber contributes to reducing the risk of diseases such as type II diabetes, colon cancer, obesity, and kidney stones, and has bile-acid retention-excretion, gastrointestinal laxative, hypoglycemic, hypocholesterolemic, prebiotic, and cardioprotective effects. ADF is a functional, sustainable, and profitable ingredient with different applications in agroindustry; its use can improve the technofunctional and nutritional properties of food, helping to close the cycle following the premise of the circular economy.
Collapse
|
18
|
Amaranth Seeds and Sprouts as Functional Ingredients for the Development of Dietary Fiber, Betalains, and Polyphenol-Enriched Minced Tilapia Meat Gels. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010117. [PMID: 36615309 PMCID: PMC9822371 DOI: 10.3390/molecules28010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022]
Abstract
There is an increasing interest in the development of meat processed products enriched with antioxidant dietary fiber to augment the consumption of these health beneficial compounds. This study aimed to evaluate the nutritional, nutraceutical, and antioxidant potential, as well as the physicochemical properties of minced tilapia fillets (meat) gels with added amaranth seed or sprout flours (0%, 2%, 4%, 8%, and 10% w/w). Dietary fiber content was significantly increased with the addition of amaranth seed (1.25-1.75-fold) and sprout flours (1.99-3.21-fold). Tilapia gels with added 10% amaranth seed flour showed a high content of extractable dihydroxybenzoic acid and cinnamic acid, whereas the addition of 10% amaranth sprout flour provided a high and wide variety of bioactive compounds, mainly amaranthine and bound ferulic acid. The addition of amaranth seed and sprout flours increased hardness (1.01-1.73-fold) without affecting springiness, decreased luminosity (1.05-1.15-fold), and increased redness and yellowness. Therefore, amaranth seed and sprout flours could be used as functional ingredients for the development of fish products rich in bioactive compounds.
Collapse
|
19
|
Talens C, Ibargüen M, Murgui X, García-Muñoz S, Peral I. Texture‐modified meat for senior consumers varying meat type and mincing speed: effect of gender, age and nutritional information on sensory perception and preferences. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
20
|
de Alencar MG, de Quadros CP, Luna ALLP, Neto AF, da Costa MM, Queiroz MAÁ, de Carvalho FAL, da Silva Araújo DH, Gois GC, Dos Anjos Santos VL, da Silva Filho JRV, de Souza Rodrigues RT. Grape skin flour obtained from wine processing as an antioxidant in beef burgers. Meat Sci 2022; 194:108963. [PMID: 36084488 DOI: 10.1016/j.meatsci.2022.108963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
The objective of this study was to determine the best level of wine making by-product meal (WBM) as a natural antioxidant to replace butylhydroxytoluene (BHT) in beef burger stored at -20 °C for up to 120 days. The treatments consisted of control (basic formulation - BF, without antioxidant); BF with BHT; and BF with WBM0.5, WBM1.0, WBM1.5, and WBM2.0, with 0.5, 1.0, 1.5 and 2.0 g WBM/100 g BF, respectively. Up to 60 days of storage, the lipid oxidation value between BHT and WBM0.5 treatments did not differ and were lower than the values presented by the other treatments. On day 90 and 120, the lipid oxidation values of treatments BHT, WBM0.5, and WBM1.0 did not differ and were lower than the values presented by WBM1.5 and WBM2.0 treatments. Burgers from all treatments with WBM inclusion had crude fiber values above 3 g/100 g. WBM1.5 and WBM2.0 treatments had the worst scores for appearance, aroma, juiciness and tenderness, in addition to the highest cooking losses. WBM can be used at up to 1 g/100 g to replace BHT in frozen beef burgers. Higher levels of WBM inclusion increased lipid oxidation and negatively affected the sensory quality of burgers.
Collapse
Affiliation(s)
- Maria Gracileide de Alencar
- Department of Animal Science, Universidade Federal do Vale do São Franscisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | - Cedenir Perreira de Quadros
- Department of Pharmaceutical Sciences, Universidade Federal do Vale do São Francisco - Univasf, 56304-917 Petrolina, PE, Brazil
| | - Aridson Luiz Lima Pedrosa Luna
- Department of Veterinary Sciences in Semiarid, Universidade Federal do Vale do São Francisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | - Acácio Figueirêdo Neto
- Department of Agricultural Engineering, Universidade Federal do Vale do São Francisco - Univasf, 48902-300 Juazeiro, BA, Brazil
| | - Mateus Matiuzzi da Costa
- Department of Animal Science, Universidade Federal do Vale do São Franscisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | - Mário Adriano Ávila Queiroz
- Department of Animal Science, Universidade Federal do Vale do São Franscisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | | | - David Hans da Silva Araújo
- Department of Veterinary Sciences in Semiarid, Universidade Federal do Vale do São Francisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | - Glayciane Costa Gois
- Department of Animal Science, Universidade Federal do Vale do São Franscisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | | | - José Renaldo Vilar da Silva Filho
- Department of Veterinary Sciences in Semiarid, Universidade Federal do Vale do São Francisco - Univasf, 56300-000 Petrolina, PE, Brazil
| | | |
Collapse
|
21
|
Akram T, Mustafa S, Ilyas K, Tariq MR, Ali SW, Ali S, Shafiq M, Rao M, Safdar W, Iftikhar M, Hameed A, Manzoor M, Akhtar M, Umer Z, Basharat Z. Supplementation of banana peel powder for the development of functional broiler nuggets. PeerJ 2022; 10:e14364. [PMID: 36518284 PMCID: PMC9744146 DOI: 10.7717/peerj.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022] Open
Abstract
Banana peel powder is considered one of the most nutritive and effective waste product to be utilized as a functional additive in the food industry. This study aimed to determine the impact of banana peel powder at concentrations of 2%, 4%, and 6% on the nutritional composition, physicochemical parameters, antioxidant potential, cooking properties, microbial count, and organoleptic properties of functional nuggets during storage at refrigeration temperature for 21 days. Results showed a significant increase in nutritional content including ash and crude fiber ranging from 2.52 ± 0.017% to 6.45 ± 0.01% and 0.51 ± 0.01% to 2.13 ± 0.01%, respectively, whereas a significant decrease was observed in crude protein and crude fat ranging from 13.71 ± 0.02% to 8.92 ± 0.02% and 9.25 ± 0.02% to 4.51 ± 0.01%, respectively. The incorporation of banana peel powder significantly improved the Water Holding Capacity from 5.17% to 8.37%, cooking yield from 83.20 ± 0.20% to 87.73 ± 0.16% and cooking loss from 20.19 ± 0.290% to 13.98 ± 0.15%. Antioxidant potential was significantly improved as TPC of functional nuggets increased ranging from 3.73 ± 0.02 mg GAE/g to 8.53 ± 0.02 mg GAE/g while a decrease in TBARS (0.18 ± 0.02 mg malonaldehyde/kg to 0.14 ± 0.02 mg malonaldehyde/kg) was observed. Furthermore, functional broiler nuggets depicted a significantly reduced total plate count (3.06-4.20 × 105 CFU/g) than control, which is likely due to high amounts of phenolic compounds in BPP. Broiler nuggets supplemented with 2% BPP (T1) received the greatest sensory scores in terms of flavour, tenderness, and juiciness. Results of current study revealed the potential of BPP to be utilized as an effective natural source of fibre supplementation in food products along with enhanced antioxidant and anti-microbial properties.
Collapse
Affiliation(s)
- Tasleem Akram
- Faisalabad Medical University, Faisalabad, Punjab, Pakistan
| | | | - Khola Ilyas
- Faisalabad Medical University, Faisalabad, Punjab, Pakistan
| | | | - Shinawar Waseem Ali
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Sajid Ali
- Department of Agronomy, University of the Punjab, Lahore, Punjab, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, University of the Punjab, Lahore, Punjab, Pakistan
| | - Maryam Rao
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Waseem Safdar
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Madiha Iftikhar
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Amna Hameed
- Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad, Pakistan
| | - Mujahid Manzoor
- Department of Entomology, University of the Punjab, Lahore, Punjab, Pakistan
| | | | - Zujaja Umer
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Zunaira Basharat
- Department of Food Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| |
Collapse
|
22
|
Premanath R, James JP, Karunasagar I, Vaňková E, Scholtz V. Tropical plant products as biopreservatives and their application in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Hadidi M, Orellana-Palacios JC, Aghababaei F, Gonzalez-Serrano DJ, Moreno A, Lorenzo JM. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Talens C, Llorente R, Simó-Boyle L, Odriozola-Serrano I, Tueros I, Ibargüen M. Hybrid Sausages: Modelling the Effect of Partial Meat Replacement with Broccoli, Upcycled Brewer's Spent Grain and Insect Flours. Foods 2022; 11:foods11213396. [PMID: 36360010 PMCID: PMC9655082 DOI: 10.3390/foods11213396] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The social, environmental and health concerns associated with the massive consumption of meat products has resulted in calls for a reduction in meat consumption. A simplex lattice design was used for studying the effect of combining broccoli, upcycled brewer’s spent grain (BSG) and insect flours from Tenebrio molitor (IF) as alternative sources of protein and micronutrients, in hybrid sausages formulation. The techno-functional properties of the ingredients and the nutritional and textural properties of nine hybrid sausages were analysed. The effect of adding these ingredients (constituting 35% of a turkey-based sausage) on protein, fat, fibre, iron and zinc content, and textural properties (Texture Profile Analysis (TPA) and Warner−Bratzler parameters) were modelled employing linear regression (0.72 < R2 < 1). The “desirability” function was used for multi-response optimisation of the samples for the highest protein content, optimum chewiness and a* value (closeness to red). The analysis of sensory data for the three optimised samples showed no significant differences in juiciness and odour between the hybrid meat sausage with 22% broccoli, 3% BSG, and 10% IF and the commercial Bratwurst sausage elaborated exclusively with animal protein. Colour, appearance, chewiness and pastiness were rated higher than for the reference. The instrumental chewiness highly correlated with sensorial chewiness (R2 = 0.98). Thus, a strategy introducing less refined and more sustainable sources of protein and micronutrients was successfully employed to model and statistically optimise a meat product formulation with reduced animal protein content.
Collapse
Affiliation(s)
- Clara Talens
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
- Correspondence:
| | - Raquel Llorente
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Laura Simó-Boyle
- Department of Food Technology, University of Lleida—Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Lleida, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology, University of Lleida—Agrotecnio Center, Rovira Roure 191, 25198 Lleida, Lleida, Spain
| | - Itziar Tueros
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| | - Mónica Ibargüen
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160 Derio, Bizkaia, Spain
| |
Collapse
|
25
|
Bhattacharya D, Nanda PK, Pateiro M, Lorenzo JM, Dhar P, Das AK. Lactic Acid Bacteria and Bacteriocins: Novel Biotechnological Approach for Biopreservation of Meat and Meat Products. Microorganisms 2022; 10:2058. [PMID: 36296334 PMCID: PMC9611938 DOI: 10.3390/microorganisms10102058] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 07/30/2023] Open
Abstract
Meat and meat products are perishable in nature, and easily susceptible to microbial contamination and chemical deterioration. This not only results in an increased risk to health of consumers, but also causes economic loss to the meat industry. Some microorganisms of the lactic acid bacteria (LAB) group and their ribosomal-synthesized antimicrobial peptides-especially bacteriocins-can be used as a natural preservative, and an alternative to chemical preservatives in meat industry. Purified or partially purified bacteriocins can be used as a food additive or incorporated in active packaging, while bacteriocin-producing cells could be added as starter or protective cultures for fermented meats. Large-scale applications of bacteriocins are limited, however, mainly due to the narrow antimicrobial spectrum and varying stability in different food matrixes. To overcome these limitations, bioengineering and biotechnological techniques are being employed to combine two or more classes of bacteriocins and develop novel bacteriocins with high efficacy. These approaches, in combination with hurdle concepts (active packaging), provide adequate safety by reducing the pathogenicity of spoilage microorganisms, improving sensory characteristics (e.g., desirable flavor, texture, aroma) and enhancing the shelf life of meat-based products. In this review, the biosynthesis of different classes of LAB bacteriocins, their mechanism of action and their role in the preservation of meats and meat products are reviewed.
Collapse
Affiliation(s)
- Dipanwita Bhattacharya
- Department of Livestock Products Technology, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B, Judges Court Road, Alipore, Kolkata 700027, India
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata 700037, India
| |
Collapse
|
26
|
Biswas O, Kandasamy P, Das SK. Effect of dragon fruit peel powder on quality and acceptability of fish nuggets stored in a solar cooler (5 ± 1 °C). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3647-3658. [PMID: 35875232 PMCID: PMC9304461 DOI: 10.1007/s13197-022-05377-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 06/15/2023]
Abstract
Fish nuggets were prepared with dragon fruit peel powder (1.0, 1.5 and 2.0% w/w) to evaluate its quality and improvement in shelf-life during 15 days storage in a prefabricated solar cooler (5 ± 1 °C). Antioxidative and antimicrobial effects of dragon fruit peel powder in fish model system were also evaluated during storage. Results showed that dragon fruit peel is a good source of dietary fibre (59.8%) and phenolic compounds [65.7 mg Gallic Acid Equivalent (GAE)/100 g of sample] and contained 6.03% protein, 6.14% fat and 4.34% ash. Use of dragon fruit peel powder significantly (p < 0.05) improved the emulsion stability and cooking yield and nuggets with peel powder had lower pH value than control. Fish nuggets with peel powder showed gradual decrease (p < 0.05) in hardness, springiness, cohesiveness, gumminess and chewiness with advancement of storage period. Nuggets with 1.5% dragon fruit peel showed better sensory attributes compared to the others. Dragon fruit peel powder significantly inhibited (p < 0.05) the lipid oxidation and microbial load in fish nuggets during the storage period. So, it can be concluded that dragon fruit peel powder may be used as antioxidant dietary fibre for improved quality and acceptability of fish nuggets in prefabricated solar cooler. 1.5% level of incorporation showed better results in terms of antioxidant activity and better shelf-life of the fish nuggets.
Collapse
Affiliation(s)
- Olipriya Biswas
- Department of Fishery Engineering, Faculty of Fishery Science, W. B. University of Animal and Fishery Sciences, Kolkata, 700037 India
| | - P. Kandasamy
- Department of Agricultural Engineering, Pally Shiksha Bhawan, Visva Bharati University, Santiniketan, WB 731235 India
| | - Sudip Kumar Das
- W. B. University of Animal and Fishery Sciences, Kolkata, 700037 India
| |
Collapse
|
27
|
Hou D, Feng Q, Tang J, Shen Q, Zhou S. An update on nutritional profile, phytochemical compounds, health benefits, and potential applications in the food industry of pulses seed coats: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:1960-1982. [PMID: 35930027 DOI: 10.1080/10408398.2022.2105303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pulses, as a sustainable source of nutrients, are an important choice for human diets, but vast quantities of seed coats generated in pulses processing are usually discarded or used as low-value ruminant feed. It has been demonstrated that pulses seed coats are excellent sources of dietary nutrients and phytochemicals with potential health benefits. With growing interest in the sustainable use of resources and the circular economy, utilization of pulses seed coats to recover these valuable components is a core objective for their valorization and an important step toward agricultural sustainability. This review comprehensively provides a comprehensive insight on the nutritional and phytochemical profiles presented in pulses seed coats and their health benefits obtained from the findings of in vitro and in vivo studies. Furthermore, in the food industry, pulses seed coats can be acted as potential food ingredients with nutritional, antioxidant and antimicrobial characteristics or as the matrix or active components of films for food packaging and edible coatings. A better understanding of pulses seed coats may provide a reference for increasing the overall added value and realizing the pulses' sustainable diets.
Collapse
Affiliation(s)
- Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China.,College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jian Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, Key Laboratory of Plant Protein and Grain processing, China Agricultural University, Beijing, China
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
28
|
Bhardwaj K, Najda A, Sharma R, Nurzyńska-Wierdak R, Dhanjal DS, Sharma R, Manickam S, Kabra A, Kuča K, Bhardwaj P. Fruit and Vegetable Peel-Enriched Functional Foods: Potential Avenues and Health Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8543881. [PMID: 35832524 PMCID: PMC9273365 DOI: 10.1155/2022/8543881] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 12/29/2022]
Abstract
Fresh fruit and vegetables are highly utilized commodities by health-conscious consumers and represent a prominent segment in the functional and nutritional food sector. However, food processing is causing significant loss of nutritional components, and the generation of waste is creating serious economic and environmental problems. Fruit and vegetables encompass husk, peels, pods, pomace, seeds, and stems, which are usually discarded, despite being known to contain potentially beneficial compounds, such as carotenoids, dietary fibers, enzymes, and polyphenols. The emerging interest in the food industry in the nutritional and biofunctional constituents of polyphenols has prompted the utilization of fruit and vegetable waste for developing enriched and functional foods, with applications in the pharmaceutical industry. Moreover, the utilization of waste for developing diverse and crucial bioactive commodities is a fundamental step in sustainable development. Furthermore, it provides evidence regarding the applicability of fruit and vegetable waste in different food formulations especially bakery, jam, and meat based products.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Ruchi Sharma
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Renata Nurzyńska-Wierdak
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| |
Collapse
|
29
|
Echegaray N, Yegin S, Kumar M, Hassoun A, Bastianello Campagnol PC, Lorenzo JM. Application of oligosaccharides in meat processing and preservation. Crit Rev Food Sci Nutr 2022; 63:10947-10958. [PMID: 35648076 DOI: 10.1080/10408398.2022.2081963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In recent decades, consumer preference and attention to foodstuff presented as healthy and with desirable nutritional information, has increased significantly. In this field, the meat industry has a challenging task since meat and meat products have been related to various chronic diseases. Functional ingredients have emerged in response to the increasing demand for healthier and more nutritious foods. On this matter, oligosaccharides such as fructooligosaccharides (FOS), xylooligosaccharides (XOS), galactooligosaccharides (GOS), and chitooligosaccharides (COS) have been presented as suitable ingredients for the meat industry with the aim of obtaining healthier meat derivatives (e.g. with low fat or sugar content, reduced amount of additives, and desirable functional properties, etc.). However, studies considering application of such oligomers in the meat sector are scarce. In addition, a large number of issues remain to be solved related both to obtaining and characterizing the oligosaccharides available in the industry and to the effect that these ingredients have on the features of meat products (mainly physicochemical and sensory). The study of new oligosaccharides, the methodologies for obtaining them, and their application to new meat products should be promoted, as well as improving knowledge about their effects on the properties of functional meat foods.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Sirma Yegin
- Department of Food Engineering, Ege University, Izmir, Bornova, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | | | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| |
Collapse
|
30
|
Pomegranate ( Punica granatum L.) Peel Flour as Functional Ingredient for Chorizo: Effect Physicochemical and Sensory Characteristics of Functional Meat Products. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Functional meat products are necessary to improve the health of consumers without detrimental effects on high biological value protein consumption. The incorporation of natural antioxidants and dietary fibre from agro-industrial coproducts is a good alternative to improve the nutritional characteristics of meat products. Pomegranate peel flour was employed as a functional ingredient to replace part of the fat, in a raw meat product like chorizo, determining changes in instrumental colour and texture, sensory acceptation, and neophobia. Pomegranate peel flour presented high content of polyphenols with considerable antioxidant activity, and high content of dietary fibre as well. Fibre retained moisture, decreasing water activity of the chorizos, decreasing pH during storage. Pomegranate peel flour increased the colour tone of the chorizos and decreased colour intensity, with a tough but easy to crumble texture. Sensory acceptation of chorizos with pomegranate peel flour was higher than control, although taste and texture were scored lower than the control sample. Results show that incorporation of pomegranate peel flour decreased Aw and pH, besides increased the samples luminosity and tone. Chorizo with pomegranate peel flour were harder than control. Nonetheless, as a functional ingredient improved health benefits with a positive consumers’ acceptance, non-neophobic, particularly in older consumers (40-50 years old). Pomegranate peel flour is a viable ingredient in the formulation of functional meat products.
Collapse
|
31
|
Delgado‐Ospina J, Lucas‐González R, Viuda‐Martos M, Fernández‐López J, Pérez‐Álvarez JÁ, Martuscelli M, Chaves‐López C. Potential of the cocoa shell to improve the quality properties of a burger‐like meat product. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Johannes Delgado‐Ospina
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo Italy
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6‐65, 76001 Cali Colombia
| | - Raquel Lucas‐González
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO) Miguel Hernández University, Orihuela, 03312 CYTED‐ Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables” Alicante Spain
| | - Manuel Viuda‐Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO) Miguel Hernández University, Orihuela, 03312 CYTED‐ Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables” Alicante Spain
| | - Juana Fernández‐López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO) Miguel Hernández University, Orihuela, 03312 CYTED‐ Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables” Alicante Spain
| | - José Ángel Pérez‐Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO) Miguel Hernández University, Orihuela, 03312 CYTED‐ Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables” Alicante Spain
- Faculty of Science King Abdelaziz University 21589 Jedda Saudi Arabia
| | - Maria Martuscelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo Italy
| | - Clemencia Chaves‐López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment University of Teramo Via R. Balzarini 1 Teramo Italy
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental de la UMH (CIAGRO) Miguel Hernández University, Orihuela, 03312 CYTED‐ Healthy Meat. 119RT0568 “Productos Cárnicos más Saludables” Alicante Spain
| |
Collapse
|
32
|
A comprehensive study on the characterisation properties of power ultrasound-treated apple pomace powder and coffee silverskin powder. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
The effect of water-insoluble dietary fiber from star anise on water retention of minced meat gels. Food Res Int 2022; 157:111425. [DOI: 10.1016/j.foodres.2022.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
|
34
|
Siddiqui SA, Bahmid NA, Taha A, Khalifa I, Khan S, Rostamabadi H, Jafari SM. Recent advances in food applications of phenolic-loaded micro/nanodelivery systems. Crit Rev Food Sci Nutr 2022; 63:8939-8959. [PMID: 35426751 DOI: 10.1080/10408398.2022.2056870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Nur Alim Bahmid
- National Research and Innovation Agency, Jakarta, Indonesia
- Agricultural Product Technology Department, Sulawesi Barat University, Majene, Indonesia
| | - Ahmed Taha
- Center for Physical Sciences and Technology, State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Hadis Rostamabadi
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mahdi Jafari
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
35
|
Mumyapan M, Aktaş N, Gerçekaslan KE. Seed Pumpkin Flour as a Dietary Fiber Source in
Bologna‐Type
Sausages. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mübeccel Mumyapan
- University of Nevşehir Hacı Bektaş Veli Faculty of Engineering Architecture, Department of Food Engineering Nevşehir Turkey
| | - Nesimi Aktaş
- University of Nevşehir Hacı Bektaş Veli Faculty of Engineering Architecture, Department of Food Engineering Nevşehir Turkey
| | - Kamil Emre Gerçekaslan
- University of Nevşehir Hacı Bektaş Veli Faculty of Engineering Architecture, Department of Food Engineering Nevşehir Turkey
| |
Collapse
|
36
|
Manassi CF, de Souza SS, Hassemer GDS, Sartor S, Lima CMG, Miotto M, De Dea Lindner J, Rezzadori K, Pimentel TC, Ramos GLDPA, Esmerino E, Holanda Duarte MCK, Marsico ET, Verruck S. Functional meat products: Trends in pro-, pre-, syn-, para- and post-biotic use. Food Res Int 2022; 154:111035. [DOI: 10.1016/j.foodres.2022.111035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
37
|
Recent advances in the study of modified cellulose in meat products: Modification method of cellulose, meat quality improvement and safety concern. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Chaturvedi I, Dutta TK, Singh PK, Chatterjee A, Mandal DK, Bhakat C, Mohammad A, Das AK. Effect of supplementation of phytogenic feed additives on intake, in vitro fermentation, growth performance and carcass traits in weaned Barbari kids reared under intensive feeding. Trop Anim Health Prod 2022; 54:150. [DOI: 10.1007/s11250-022-03142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
39
|
The Effect of Marinating on Fatty Acid Composition of Sous-Vide Semimembranosus Muscle from Holstein-Friesian Bulls. Foods 2022; 11:foods11060797. [PMID: 35327220 PMCID: PMC8949574 DOI: 10.3390/foods11060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of the study was to evaluate the effect of two commercial oil marinades on marinated bovine semimembranosus muscles’ (n = 12) fatty acid composition. Fatty acids were determined in unmarinated raw and sous-vide beef and marinated muscles with two different marinades. The application of marinating changed the fatty acid composition in sous-vide beef. The sum of saturated fatty acids (SFA) and n-6/n-3 ratio decreased. However, the sum of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), including n-6 and n-3, increased in marinated sous-vide beef, while a proportion of conjugated linoleic acid (CLA) and arachidonic acid (AA) decreased. The concentration (mg/100 g) of the sum of SFA and CLA in sous-vide beef was unaffected by marinating; however, the treatment significantly increased the sum of MUFA, PUFA, n-6 fatty and n-3 fatty acid concentrations. Using marinades containing canola oil and spices prior to the sous-vide treatment of beef was effective in improving its fatty acid composition.
Collapse
|
40
|
Guo Q, Xiao X, Lu L, Ai L, Xu M, Liu Y, Goff HD. Polyphenol-Polysaccharide Complex: Preparation, Characterization and Potential Utilization in Food and Health. Annu Rev Food Sci Technol 2022; 13:59-87. [PMID: 35041793 DOI: 10.1146/annurev-food-052720-010354] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Polysaccharides and polyphenols coexist in many plant-based food products. Polyphenol-polysaccharide interactions may affect the physicochemical, functional, and physiological properties, such as digestibility, bioavailability, and stability, of plant-based foods. In this review, the interactions (physically or covalently linked) between the selected polysaccharides and polyphenols are summarized. The preparation and structural characterization of the polyphenol-polysaccharide conjugates, their structural-interaction relationships, and the effects of the interactions on functional and physiological properties of the polyphenol and polysaccharide molecules are reviewed. Moreover, potential applications of polyphenol-polysaccharide conjugates are discussed. This review aids in a comprehensive understanding of the synthetic strategy, beneficial bioactivity, and potential application of polyphenol-polysaccharide complexes. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Xingyue Xiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Laifeng Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China;
| | - Meigui Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, China
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
41
|
Li Y, Liang W, Huang M, Huang W, Feng J. Green preparation of holocellulose nanocrystals from burdock and their inhibitory effects against α-amylase and α-glucosidase. Food Funct 2022; 13:170-185. [PMID: 34874372 DOI: 10.1039/d1fo02012a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this work, holocellulose nanocrystals (hCNCs) were isolated from burdock insoluble dietary fiber (IDF) by enzymatic hydrolysis and ultrasonic treatment and their inhibitory effects against α-amylase and α-glucosidase were investigated. The hydrodynamic diameter of hCNCs decreased from about 600 to 200 nm with increasing sonication time, accompanied by an improvement in cellulose and glucose contents. Steady-state fluorescence studies suggested that static complexes were formed between hCNCs and α-amylase or α-glucosidase via a spontaneous and endothermic approach, which was driven by both hydrophobic interactions and hydrogen bonding. The median inhibitory concentration (IC50) values of hCNCs against the tested enzymes were positively correlated with their size, and non-competitive and mixed types of inhibition were detected using the Lineweaver-Burk plots. During the simulated digestion, the inclusion of burdock hCNCs obviously retarded the starch hydrolysis in both dose- and size-dependent manners, suggesting their potential in blocking the postprandial serum glucose upsurge.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of food science and engineering, College of light industry and food engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
42
|
LIMA TLS, Costa GFD, ALVES RDN, ARAÚJO CDLD, SILVA GFGD, RIBEIRO NL, FIGUEIREDO CFVD, ANDRADE ROD. Vegetable oils in emulsified meat products: a new strategy to replace animal fat. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Ren QS, Fang K, Yang XT, Han JW. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Strack K, Dini C, García M, Viña S. Effect of thermal and ultrasonic treatments on technological and physicochemical characteristics of fibrous residues from ahipa and cassava starch extraction. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
45
|
|
46
|
Mantihal S, Azmi Hamsah A, Mohd Zaini H, Mantanjun P, Pindi W. Quality characteristics of functional chicken patties incorporated with round cabbage powder. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sylvester Mantihal
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Malaysia
| | - Ahmad Azmi Hamsah
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Malaysia
| | - Hana Mohd Zaini
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Malaysia
| | - Patricia Mantanjun
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Malaysia
| | - Wolyna Pindi
- Faculty of Food Science and Nutrition Universiti Malaysia Sabah Jalan UMS Kota Kinabalu Malaysia
| |
Collapse
|
47
|
Singh S, Kola P, Kaur D, Singla G, Mishra V, Panesar PS, Mallikarjunan K, Krishania M. Therapeutic Potential of Nutraceuticals and Dietary Supplements in the Prevention of Viral Diseases: A Review. Front Nutr 2021; 8:679312. [PMID: 34604272 PMCID: PMC8484310 DOI: 10.3389/fnut.2021.679312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nowadays, despite enormous scientific advances, viral diseases remain the leading cause of morbidity worldwide, and their potential to spread is escalating, eventually turning into pandemics. Nutrition can play a major role in supporting the immune system of the body and for the optimal functioning of the cells of the immune system. A healthy diet encompassing vitamins, multi-nutrient supplements, functional foods, nutraceuticals, and probiotics can play a pivotal role in combating several viral invasions in addition to strengthening the immune system. This review provides comprehensive information on diet-based scientific recommendations, evidence, and worldwide case studies in light of the current pandemic and also with a particular focus on virus-induced respiratory tract infections. After reviewing the immune potential of nutraceuticals based on the lab studies and on human studies, it was concluded that bioactive compounds such as nutraceuticals, vitamins, and functional foods (honey, berries, etc.) with proven antiviral efficacy, in addition to pharmaceutical medication or alone as dietary supplements, can prove instrumental in treating a range of virus-induced infections in addition to strengthening the immune system. Milk proteins and peptides can also act as adjuvants for the design of more potent novel antiviral drugs.
Collapse
Affiliation(s)
- Saumya Singh
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Prithwish Kola
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Dalveer Kaur
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Gisha Singla
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India.,Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Vibhu Mishra
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| | - Parmjit S Panesar
- Food Biotechnology Research Laboratory, Department of Food Engineering & Technology, Sant Longowal Institute of Engineering & Technology Longowal, Longowal, India
| | - Kumar Mallikarjunan
- Food Science and Nutrition Department, University of Minnesota, Minneapolis, MN, United States
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali, India
| |
Collapse
|
48
|
CHATURVEDI INDU, DUTTA TK, SINGH PK, CHATTERJEE A, MANDAL DK, DAS ARUNK. Effect of herbal feed additives on intake, rumen fermentation, availability of nutrients and energetic efficiency of feeds in Barbari kids reared under confined condition. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i8.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weaned male Barbari kids (24) were divided equally into three groups (T1, T2 and T3) to investigate the effect of supplementation of herbal feed additives in the complete pelleted feed on intake of nutrients, rumen fermentation, availability of nutrients and energetic efficiency under stall-fed condition during an eight months feeding trial. Treatments were T1, Concentrate mixture (40%) plus arhar (Cajanus cajan) straw (60%) in Total Mixed Ration (TMR) form fed ad lib.; T2, Concentrate mixture (40%) plus arhar straw (60%) in Complete Feed Pellets form fed ad lib.; T3, Concentrate mixture (40%) plus arhar straw (60%) in Complete Feed Pellets form supplemented with herbal mixture (four herbs; Tulsi: Haldi: Amla: Arni, ratio 1:1:1:1 on DM basis) @ 0.5% in complete feed fed ad lib. Rumen fermentation pattern was studied at 3rd and 25th weeks of experimental feeding. A metabolism trial was conducted at the last phase of the experiment. During metabolism trial, DMI (g)/kg W0.75 and CPI (g)/kg W0.75 was greater in kids under T3 and T2 than T1. Pelleted complete feed supplemented with phytogenic feed additives resulted greater total VFA (mmol/dl SRL) concentration in rumen liquor of kids under T3 than TMR fed kids (T1) at three weeks of experimental feeding. The concentration of NH3-N (mg/dl SRL) was depressed significantly in T3 at 3rd and 25th weeks of feeding; T1 showed highest values during both periods. TDN intake (g)/kg W0.75 and Digestible Energy intake (MJ)/kg W0.75 were increased significantly in T3 and T2 than T1. DCP intake (g)/kg W0.75 was also higher in T2 and T3 than T1. Similarly, N-balance (g)/kg W0.75 increased significantly in T3 and T2 than T1. Therefore, it may be concluded that densification of feeds in the form of complete pelleted feed (T2) and further supplementation (@ 0.5% in the complete feed) with herbal mixture (Amla, Haldi, Arni and Tulsi=1:1:1:1 on DM basis) (T3) increased the intakes of DM, TDN, digestible energy and protein; enhanced rumen fermentation pattern, and increased N-balance in finisher Barbari kids.
Collapse
|
49
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
50
|
Amoli PI, Hadidi M, Hasiri Z, Rouhafza A, Jelyani AZ, Hadian Z, Khaneghah AM, Lorenzo JM. Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability. Foods 2021; 10:foods10081959. [PMID: 34441736 PMCID: PMC8391418 DOI: 10.3390/foods10081959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
In the present work, incorporating low molecular weight chitosan (LMWCH) (0, 0.5, 1, and 2%) as a fat replacer into low-fat beef burgers and technological, textural, and oxidative stability were investigated. The weight loss and shrinkage of samples decreased with the increase of LMWCH concentration. In contrast, the water-holding capacity and color of burgers were enhanced by the addition of LMWCH. The instrumental TPA results indicated an increase in the LMWCH levels, significantly increasing the hardness, springiness, and gumminess but decreasing the cohesiveness of low-fat beef burgers. The TBARS and peroxide values and free fatty acid content in the burgers supplemented with LMWCH increase slower than the control sample during refrigerated storage.
Collapse
Affiliation(s)
- Pourya Izadi Amoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (M.H.); or (A.M.K.); (J.M.L.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran; (Z.H.); (A.R.)
| | - Arman Rouhafza
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran; (Z.H.); (A.R.)
| | - Aniseh Zarei Jelyani
- Food Control Laboratory, Department of Food and Drug, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
| | - Zahra Hadian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 19816-19573, Iran;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-852, Brazil
- Correspondence: (M.H.); or (A.M.K.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnologia de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (M.H.); or (A.M.K.); (J.M.L.)
| |
Collapse
|