1
|
Li K, Shi Z, Meng Z. Study on the foam properties of peanut oil body (POB)-based oil-in-water-in-oil (O/W/O) foamed emulsion gel: The key role played by the interface between the water phase and the outer oil phase. Food Chem 2025; 464:141663. [PMID: 39423524 DOI: 10.1016/j.foodchem.2024.141663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
A novel POB-based O/W/O foamed emulsion gel was constructed. The mechanism by which POB strengthens the foamed emulsion gel was preliminarily explored by studying the microstructure and rheological properties, and the applications of POB in decoration and 3D printing were analyzed. The adsorption of POBs and their fragments might strengthen the interface between the water and internal oil phases, thereby increasing the yield stress of the system, which protected the O/W/O structure from being damaged during whipping, and formed a special foam structure where air-in-oil (A/O) structures and O/W/O structure coexist. Besides, adding POB promoted the overrun of the emulsion gel, and the maximum overrun rate was 68.6 %. Finally, POB-based O/W/O foamed emulsion gel exhibited good decoration and 3D printing performance and is expected to become a healthy and higher-quality foamed food in the future.
Collapse
Affiliation(s)
- Kangyu Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zhangyu Shi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Yang J, Plankensteiner L, de Groot A, Hennebelle M, Sagis LMC, Nikiforidis CV. The role of oleosins and phosphatidylcholines on the membrane mechanics of oleosomes. J Colloid Interface Sci 2025; 678:1001-1011. [PMID: 39326161 DOI: 10.1016/j.jcis.2024.09.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
HYPOTHESIS Oilseeds use triacylglycerides as main energy source, and pack them into highly stable droplets (oleosomes) to facilitate the triacylglycerides' long-term storage in the aqueous cytosol. To prevent the coalescence of oleosomes, they are stabilized by a phospholipid monolayer and unique surfactant-shaped proteins, called oleosins. In this study, we use state-of-the-art interfacial techniques to reveal the function of each component at the oleosome interface. EXPERIMENTS We created model oil-water interfaces with pure oleosins, phosphatidylcholines, or mixtures of both components (ratios of 3:1, 1:1, 1:3), and applied large oscillatory dilatational deformations (LAOD). The obtained rheological response was analyzed with general stress decomposition (GSD) to get insights into the role of phospholipids and oleosins on the mechanics of the interface. FINDINGS Oleosins formed viscoelastic solid interfacial films due to network formation via in-plane interactions. Between adsorbed phosphatidylcholines, weak interactions were observed, suggesting the surface stress response upon dilatational deformations was dominated by density changes. In mixtures with 3:1 and 1:1 oleosin-to-phosphatidylcholine ratios, oleosins dominated the interfacial mechanics and formed a network, while phosphatidylcholines contributed to interfacial tension reduction. At higher phosphatidylcholine concentrations (1:3 oleosin-to-phosphatidylcholine), phosphatidylcholine dominated the interface, and no network formation occurred. Our findings improve the understanding of both components' role for oleosomes.
Collapse
Affiliation(s)
- Jack Yang
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands; Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Lorenz Plankensteiner
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Anteun de Groot
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Marie Hennebelle
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Constantinos V Nikiforidis
- Laboratory of Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands.
| |
Collapse
|
3
|
Wang L, Liu G. Investigating viscoelastic properties and structural stability mechanisms of oil bodies emulsion gels: Role of non-intrinsic protein. Food Chem 2024; 460:140575. [PMID: 39067425 DOI: 10.1016/j.foodchem.2024.140575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
This research aims to investigate the mechanism of the effect of intrinsic and non-intrinsic protein content on the stability of oil bodies (OBs) emulsion gels. We employed small amplitude oscillation shear (SAOS) and large amplitude oscillation shear (LAOS) to measure the linear and nonlinear rheological properties of the OBs emulsion gels. The SAOS test indicated that an increase in non-intrinsic protein content weakened the interaction between OBs, decreasing their storage modulus (G'). The LAOS test demonstrated that the increase in non-intrinsic protein content affected the structural recombination and destruction behavior of OBs emulsion gels under large strains. Overall, the content of non-intrinsic protein during the extraction process is a crucial factor affecting the stability of OBs emulsion gels. These findings provide insights into the potential strategies for improving oil extraction efficiency and offer a foundation for further investigation into the functional properties of OBs.
Collapse
Affiliation(s)
- Lei Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guoqin Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Seo Y, Woo Y, Oh B, Yoo D, Kwon HK, Park C, Cho HY, Kim HS, Lee T. Microfluidic Fabrication of Oleosin-Coated Liposomes as Anticancer Drug Carriers with Enhanced Sustained Drug Release. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5550. [PMID: 39597374 PMCID: PMC11595445 DOI: 10.3390/ma17225550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Microfluid-derived liposomes (M-Lipo) exhibit great potential as drug and functional substance carriers in pharmaceutical and food science. However, the low liposome membrane stability, attributed to the liquid core, limits their application range. Oleosin, a natural surfactant protein, can improve the stability of the lipid nanoparticle membrane against various environmental stresses, such as heat, drying, and pH change; in addition, it can enable sustained drug release. Here, we proposed the fabrication of oleosin-coated M-Lipo (OM-Lipo) through self-assembly on a microfluidic chip and the evaluation of its anticancer drug (carmustine) delivery efficiency. Nanoparticle characterization revealed that the oleosin coating slightly lowered the membrane potential of M-Lipo and greatly improved their dispersibility. Additionally, the in vitro drug release profile showed that the oleosin coating improved the sustained release of the hydrophobic drug from the phospholipid bilayer in body temperature. Our results suggest that OM-Lipo has sufficient potential in various fields, based on its easy production, excellent stability, and biocompatibility.
Collapse
Affiliation(s)
- Yoseph Seo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Yeeun Woo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Byeolnim Oh
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea;
| | - Daehyeon Yoo
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Hyeok Ki Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Republic of Korea;
| | - Hyun Soo Kim
- Department of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea;
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea; (Y.S.); (Y.W.); (D.Y.); (H.K.K.); (C.P.)
| |
Collapse
|
5
|
Rao Y, Tariq M, Wang M, Yu X, Liang H, Yuan Q. Preparation and characterization of bionics Oleosomes with high loading efficiency: The enhancement of hydrophobic space and the effect of cholesterol. Food Chem 2024; 457:140181. [PMID: 38943919 DOI: 10.1016/j.foodchem.2024.140181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Liposomes (LIP) loaded with natural active ingredients have significant potential in the food industry. However, their low loading efficiency (LE) hampers the advancement of liposomal products. To improve the loading capacity of functional compounds, bionic oleosomes (BOLE) with a monolayer of phospholipid membranes and a glyceryl tricaprylate/caprate (GTCC) oil core have first been engineered by high-pressure homogenization. TEM revealed that the core of BOLE consists of GTCC instead of water, thereby extending the hydrophobic space. Steady-state fluorescence and active loading experiments confirmed that cholesterol (CH) detached from the phospholipid membrane and entered the oil core, where it repelled cannabidiol (CBD). Based on the extending hydrophobic space, CBD-BOLE was prepared and its LE was 3.13 times higher than CBD-LIP. The CBD-phospholipid ratio (CPR) of CBD-BOLE significantly improved at least 7.8 times. Meanwhile, the free radical scavenging activity of CBD was increased and cytotoxicity was reduced.
Collapse
Affiliation(s)
- Yuan Rao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Muhammad Tariq
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Mingxia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xin Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
6
|
Ma Z, Bitter JH, Boom RM, Nikiforidis CV. Encapsulation of cannabidiol in hemp seed oleosomes. Food Res Int 2024; 195:114948. [PMID: 39277226 DOI: 10.1016/j.foodres.2024.114948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Oleosomes are natural lipid droplets that can be extracted intact from oil seeds, forming oil/water emulsions. Their lipid cores, surrounded by a monolayer of phospholipids and proteins, make oleosomes suitable as carriers of hydrophobic bioactive compounds like cannabidiol (CBD). As CBD is crystalline at room temperature, it first has to be liquified to allow better encapsulation. This was done by heating (80 °C for 4 h) or by pre-solubilizing CBD in ethanol and then the liquified CBD was mixed with oleosome dispersions for the encapsulation. Both methods exhibit good encapsulation efficiency, but the results were significantly influenced by the ratio of CBD to lipid contents, regardless of the encapsulation method applied. At higher concentrations of CBD relative to that of the lipid in the oleosomes, the encapsulation efficiency decreased as saturation was attained. Moreover, the in vitro digestion analysis was conducted to investigate the potential of oleosomes as carriers to transport CBD. The relatively slow and steady release of CBD from oleosomes indicates that oleosomes are a slow-release carrier for hydrophobic functional ingredients. An important finding is that the encapsulation and in vitro digestive properties of the oleosomes remain unaffected by the presence of CBD, heating treatment or ethanol, which could bring more opportunities for the applications of oleosomes as carriers in various fields.
Collapse
Affiliation(s)
- Zhaoxiang Ma
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands; Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Remko M Boom
- Food Process Engineering, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
7
|
Tu J, Liu S, Bai W, Brennan C, Zhu B. Peanut de-oiling at room temperature by micro-aqueous hydration: Co-destabilization driven by oleosome coalescence and protein aggregation. Int J Biol Macromol 2024; 280:136366. [PMID: 39378919 DOI: 10.1016/j.ijbiomac.2024.136366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
The peanut de-oiling industry currently lacks efficient processing technologies for de-oiling at low or room temperatures. A novel method, micro-aqueous extraction (MAE), offers over 93 % de-oiling efficiency at room temperature and is also effective for other oilseeds like sesame, camellia, and rapeseed. Despite its effectiveness, the exact mechanism behind oleosomes destabilization at a critical hydration level or oil volume fraction (φ ∼ 0.75) is not fully understood. This study investigates how MAE affects peanut oleosome size, paste stability, and the interfacial properties of surfactant proteins. Results showed that micro-aqueous hydration and agitation caused small droplets (85.6 vol% < 10 μm) to coalesce into larger droplets (90.0 vol% > 30 μm) due to press-induced rupture of the liquid film. Simultaneously, agitation decreased water mobility and protein intrinsic fluorescence, while increasing paste viscosity, leading to protein aggregation. This aggregation further promoted oleosome coalescence. Additionally, hydration and agitation weakened the ability of membrane proteins to stabilize oleosomes by increasing interfacial tension and decreasing dilatational storage modulus. The insights into the peanut oleosome destabilization mechanism for MAE provide a foundation for scaling up the process, with the potential to replace current hot and cold pressing techniques.
Collapse
Affiliation(s)
- Juncai Tu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen 518060, China.
| | - Shenghai Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen 518060, China
| | - Weidong Bai
- College of Light Industry and Food SciencesZhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Charles Brennan
- School of Science, RMIT University, GPO Box 2474, Melbourne, VIC 3001, Australia
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
8
|
Tian Y, Zhao X, Wang Z, Zhang W, Jiang Z. Structural characteristics and stability analysis of coconut oil body and its application for loading β-carotene. Food Chem 2024; 446:138818. [PMID: 38417282 DOI: 10.1016/j.foodchem.2024.138818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
In this work, we investigated structural characteristics and stability analysis of the coconut oil body (COB) and its application for loading β-carotene (β-CA). The COB contained neutral lipids (81.1 ± 2.1 %), membrane proteins (0.6 ± 0.0 %), and moistures (18.3 ± 3.2 %), in which the molecular weights of membrane proteins ranged from 12 kDa to 40 kDa, as analyzed by the SDS-PAGE. The COB exhibited a small droplet diameter (5.1 ± 0.3 µm) with a monomodal diameter distribution, as reflected by the dynamic light scattering. The COB showed stable states at alkaline pH values (pH 8-10) and instability against ionic strengths (50-200 mmol/L) and thermal treatment (30-90℃) after analyzing the instability indexes. COB-based emulsions were favorable for the loading and retention of β-CA, as reflected by free fatty acids release rates and bioaccessibility in the simulated gastrointestinal digestion. This study will contribute to using the coconut oil bodies for loading bioactive nutraceuticals to enhance their bioaccessibility.
Collapse
Affiliation(s)
- Yan Tian
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Xinxin Zhao
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhiguo Wang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| | - Zhiguo Jiang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
9
|
Han M, Ten Voorde S, Wen X, Ni Y, Boom RM, Nikiforidis CV. Efficiency of aqueous oleosome extraction from capsicum seeds compared to classical oil extraction. BIORESOURCE TECHNOLOGY 2024; 399:130571. [PMID: 38518875 DOI: 10.1016/j.biortech.2024.130571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
The extraction of oil from oilseeds in intact oleosomes is one of the suggested processes that could replace the extraction of oil by pressing and solvent extraction, being milder, environmentally less impactful and potentially more efficient in its use of resources. This study assesses the latter using an exergy assessment of oleosome extraction for food emulsions. The contribution of each part of the process to the overall impact was investigated. Based on current lab-scale data, oleosome extraction has nearly twice the exergy loss compared to the industrial process of oil extraction and industrial assembly of emulsions. The exergy losses of the lab-scale oleosome extraction are currently dominated by the chemical exergy associated with product loss during the separation of oleosomes from the rest of the biomass. This loss is expected to significantly decrease when upscaled to industrial scale. When substituted with industrial material efficiencies, the total exergy loss decreased to nearly a quarter of the original loss, representing oleosome extraction as a potentially more effective and environment-friendly option.
Collapse
Affiliation(s)
- Mingzhao Han
- Food Process Engineering Group, Wageningen University and Research, the Netherlands; College of Food Science and Nutritional Engineering, China Agriculture University, China; Biobased Chemistry and Technology Group, Wageningen University and Research, the Netherlands; National Engineering Research Center for Fruits and Vegetables Processing, China
| | - Stefan Ten Voorde
- Food Process Engineering Group, Wageningen University and Research, the Netherlands
| | - Xin Wen
- College of Food Science and Nutritional Engineering, China Agriculture University, China; National Engineering Research Center for Fruits and Vegetables Processing, China
| | - Yuanying Ni
- College of Food Science and Nutritional Engineering, China Agriculture University, China; National Engineering Research Center for Fruits and Vegetables Processing, China
| | - Remko M Boom
- Food Process Engineering Group, Wageningen University and Research, the Netherlands
| | | |
Collapse
|
10
|
Liao Y, Wang Z, Pei Y, Yan S, Chen T, Qi B, Li Y. Unveiling the applications of membrane proteins from oil bodies: leading the way in artificial oil body technology and other biotechnological advancements. Crit Rev Food Sci Nutr 2024:1-28. [PMID: 38594966 DOI: 10.1080/10408398.2024.2331566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.
Collapse
Affiliation(s)
- Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenxiao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yukun Pei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyao Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Intelligent Equipment Research Center for the Development of Special Medicinal and Food Resources, Harbin Institute of Technology Chongqing Research Institute, Chongqing, China
| |
Collapse
|
11
|
Yuan R, Liu J, Ukwatta RH, Xue F, Xiong X, Li C. Artificial oil bodies: A review on composition, properties, biotechnological applications, and improvement methods. Food Chem X 2024; 21:101109. [PMID: 38268842 PMCID: PMC10806269 DOI: 10.1016/j.fochx.2023.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
In order to simulate the structure of natural oil body, artificial oil bodies (AOBs) are fabricated by the integration of oleosins, triacylglycerols (TAGs) and phospholipids (PLs) in vitro. Recently, AOBs have gained great research interest both in the food and biological fields due to its ability to act as a novel delivery system for bioactive compounds and as a carrier for target proteins. This review aims to summarize the composition and the preparation methods of AOBs, examine the factors influencing their stability. Moreover, this contribution focusses on exploring the application of AOBs to encapsulate functional ingredients that are prone to oxidation as well as improve efficiency involved in protein purification, renaturation and immobilization by reducing the complex steps. In addition, the improvement measures to further enhance the stability and efficacy of AOBs are also discussed. The application of AOBs is expected to be a big step towards replacing existing bioreactors and delivery systems.
Collapse
Affiliation(s)
- Ruhuan Yuan
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Jianying Liu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Ruchika Hansanie Ukwatta
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Feng Xue
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| |
Collapse
|
12
|
Kara HH, Araiza-Calahorra A, Rigby NM, Sarkar A. Flaxseed oleosomes: Responsiveness to physicochemical stresses, tribological shear and storage. Food Chem 2024; 431:137160. [PMID: 37604004 DOI: 10.1016/j.foodchem.2023.137160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Abstract
This study aimed to extract oleosomes (OLs) from flaxseeds and assess their response to environmental conditions during storage (pH and ionic strengths), shear and tribological stresses. Our hypothesis was that a shear-induced instability will enable OLs to exhibit favourable lubrication performance. During storage, OLs exhibited resistance to droplet aggregation for up to 6 weeks owing to the proteins (3.5-152.8 kDa molecular weights) stabilizing the OL droplets. However, presence of divalent (Ca2+) ions induced destabilization with marked increase in droplet size (p < 0.05). OLs demonstrated shear thinning behaviour, displaying an order of magnitude higher viscosity than flaxseed oil (FSO) at low shear rates (<10 s-1). Strikingly, OLs mirrored the frictional profile of FSO regardless of entrainment speeds, due to droplet coalescence, validating the hypothesis. Such kinetic stability with shear-induced coalescing feature of OLs hold strong potential for future plant-based food development, particularly in achieving desired mouthfeel characteristics.
Collapse
Affiliation(s)
- Hasan H Kara
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK; Nutrition and Dietetics Department, Faculty of Health Sciences, Necmettin Erbakan University, 42090 Meram, Konya, Turkiye
| | - Andrea Araiza-Calahorra
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Neil M Rigby
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
13
|
Bleibach Alpiger S, Corredig M. Pectin polysaccharide contribution to oleosome extraction after wet milling of rapeseed. Food Res Int 2024; 175:113736. [PMID: 38129046 DOI: 10.1016/j.foodres.2023.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Oleosomes are lipid composites providing energy storage in oilseeds. They possess a unique structure, comprised of a triglyceride core stabilized by a phospholipid-protein membrane, and they have shown potential to be used as ingredients in several food applications. Intact oleosomes are extracted by an aqueous process which includes soaking, milling, and gravitational separation. However, the details of the complexes formed between oleosomes, proteins and pectin polysaccharides during this extraction are not known. It was hypothesized that pectins play an important role during the oleosome separation, and different proteins will be complexed on the surface of the oleosomes, depending on the pH of extraction. Rapeseed extracts were treated with and without pectinase (Pectinex Ultra SP-L) and extracted at pH 5.7 or 8.5, as this will affect electrostatic complexation. Acidic conditions led to co-extraction of storage proteins, structured as dense oleosome emulsions, stabilized by a network of proteins and polysaccharides. Pectinase intensified this effect, highlighting pectic polysaccharides' role in bridging interactions among proteins and oleosomes under acidic conditions. The presence of this dense interstitial layer around the oleosomes protected them from coalescence during extraction. Conversely, under alkaline conditions, the extraction process yielded more purified oleosomes characterized by a larger particle size, most likely due to coalescence. Nevertheless, pectinase addition at pH 8.5 mitigated coalescence tendencies. These results contribute to a better understanding of the details of the colloidal complexes formed during extraction and can be used to modulate the composition of the extracted fractions, with significant consequences not only for yields and purity but also for the functional properties of the ingredients produced.
Collapse
Affiliation(s)
- Simone Bleibach Alpiger
- Department of Food Science, CiFood Center, Aarhus University, Agro Food Park 48, Skejby 8200, Denmark.
| | - Milena Corredig
- Department of Food Science, CiFood Center, Aarhus University, Agro Food Park 48, Skejby 8200, Denmark.
| |
Collapse
|
14
|
Sheikh F, Hasani M, Kiani H, Asadollahzadeh MJ, Sabbagh F. Enhancing Rheological and Textural Properties of Gelatin-Based Composite Gels through Incorporation of Sesame Seed Oleosome-Protein Fillers. Gels 2023; 9:774. [PMID: 37888348 PMCID: PMC10606002 DOI: 10.3390/gels9100774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, the protein and oleosomes of sesame seeds were extracted individually and used to prepare a gel composed of gelatin, protein, and oleosomes. Mixtures of gelatin and sesame seeds protein were prepared, and oleosomes with different percentages (0, 10, 20 and 30% of their weight) were used. Different amounts of oleosomes in the composite gel samples were examined for their morphological, rheological, and textural properties. The results of the viscoelastic properties of different composite gel samples indicated that a higher percentage of oleosomes would increase the storage modulus (G'), loss modulus (G″), and complex viscosity (η*). The storage modulus of all gel samples was greater than the loss modulus, suggesting a solid behavior. So, in the sample with 30% oleosome, the storage modulus and the loss modulus reached 143,440 Pascals and 44,530 Pascals. The hardness and breaking force in samples containing 30% oleosome reached 1.29 ± 0.02 and 0.17 ± 0.02, respectively. In general, it can be said that composite gels based on gelatin-sesame seed protein modified with oleosome can be used as a part of food components in various dairy products, gelatin desserts, lean meat products and the production of useful products.
Collapse
Affiliation(s)
- Fatemeh Sheikh
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Maryam Hasani
- Department of Food Science and Technology, Shahrood Branch, Islamic Azad University, Shahrood 3619943189, Iran;
| | - Hossein Kiani
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran;
| | | | - Farzaneh Sabbagh
- Department of Botany and Plant Science, Faculty of Biological Science, Alzahra University, Tehran 1993891176, Iran
| |
Collapse
|
15
|
Ntone E, Yang J, Meinders MBJ, Bitter JH, Sagis LMC, Nikiforidis CV. The emulsifying ability of oleosomes and their interfacial molecules. Colloids Surf B Biointerfaces 2023; 229:113476. [PMID: 37499547 DOI: 10.1016/j.colsurfb.2023.113476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Oleosomes are natural oil droplets, present in all organisms and abundant in oilseeds. After their aqueous extraction from oilseeds, they can be directly utilized as oil droplets in food, cosmetics and all types of oil-in-water emulsion systems. However, to expand the potential uses of oleosomes as green ingredients and to valorize oilseeds as efficient as possible, we explored their emulsifying ability. Oleosomes were extracted from rapeseeds, and 10.0 wt% oil-in-water emulsions were created after homogenization with 0.5-6.0 wt% oleosomes, and the droplet size of the emulsions and their structure was measured by laser diffraction and confocal laser scanning microscopy (CLSM), respectively. The emulsion with an oleosome concentration lower than 1.0 wt% gave unstable emulsions with visible free oil. At oleosome concentrations at 1.5 wt% or higher, we obtained stable emulsions with droplet sizes between 2.0 and 12.0 µm. To investigate the role of the oleosome interfacial molecules in stabilizing emulsions we also studied their emulsifying and interfacial properties (using drop tensiometry) after isolating them from the oleosome structure. Both oleosomes and their isolated interfacial molecules exhibited a similar behavior on the oil-water interfaces, forming predominantly elastic interfacial films, and also showed a similar emulsifying ability. Our results show that oleosomes are not stabilizing the oil-in-water emulsions as intact particles, but they provide their interfacial molecules, which are enough to stabilize an oil-water surface up to about 2 times bigger than the initial oleosome surface. The understanding of the behavior of oleosomes as emulsifiers, opens many possibilities to use oleosomes as alternative to synthetic emulsifiers in food and pharma applications.
Collapse
Affiliation(s)
- Eleni Ntone
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands; TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands
| | - Jack Yang
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands; TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands
| | - Marcel B J Meinders
- TiFN, PO Box 557, 6700 AN, Wageningen, the Netherlands; Agrotechnology and Food Sciences Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands
| | - Leonard M C Sagis
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Constantinos V Nikiforidis
- Biobased Chemistry and Technology, Wageningen University and Research, Bornse Weilanden 9, PO Box 17, 6708 WG, Wageningen, the Netherlands.
| |
Collapse
|
16
|
Plankensteiner L, Yang J, Bitter JH, Vincken JP, Hennebelle M, Nikiforidis CV. High yield extraction of oleosins, the proteins that plants developed to stabilize oil droplets. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Lie-Piang A, Yang J, Schutyser MAI, Nikiforidis CV, Boom RM. Mild Fractionation for More Sustainable Food Ingredients. Annu Rev Food Sci Technol 2023; 14:473-493. [PMID: 36972157 DOI: 10.1146/annurev-food-060721-024052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
With the rising problems of food shortages, energy costs, and raw materials, the food industry must reduce its environmental impact. We present an overview of more resource-efficient processes to produce food ingredients, describing their environmental impact and the functional properties obtained. Extensive wet processing yields high purities but also has the highest environmental impact, mainly due to heating for protein precipitation and dehydration. Milder wet alternatives exclude, for example, low pH-driven separation and are based on salt precipitation or water only. Drying steps are omitted during dry fractionation using air classification or electrostatic separation. Benefits of milder methods are enhanced functional properties. Therefore, fractionation and formulation should be focused on the desired functionality instead of purity. Environmental impact is also strongly reduced by milder refining. Antinutritional factors and off-flavors remain challenges in more mildly produced ingredients. The benefits of less refining motivate the increasing trend toward mildly refined ingredients.
Collapse
Affiliation(s)
- A Lie-Piang
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - J Yang
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - M A I Schutyser
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| | - C V Nikiforidis
- Laboratory for Biobased Chemistry and Technology, Wageningen University, Wageningen, The Netherlands
| | - R M Boom
- Laboratory of Food Process Engineering, Wageningen University, Wageningen, The Netherlands;
| |
Collapse
|
18
|
Jin F, Zhou Y, Zhang P, Huang R, Fan W, Li B, Li G, Song X, Pei D. Identification of Key Lipogenesis Stages and Proteins Involved in Walnut Kernel Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4306-4318. [PMID: 36854654 DOI: 10.1021/acs.jafc.2c08680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Walnuts are abundant in oil content, especially for polyunsaturated fatty acids, but the understanding of their formation is limited. We collected walnut (Juglans regia L.) kernels at 60, 74, 88, 102, 116, 130, and 144 days after pollination (designated S1-S7). The ultrastructure and accumulation of oil bodies (OBs) were observed using transmission electron microscopy (TEM), and the oil content, fatty acid composition, and proteomic changes in walnut kernels were determined. The oil content and OB accumulation increased during the development and rose sharply from S1 to S3 stages, which are considered the key lipogenesis stage. A total of 5442 proteins were identified and determined as differentially expressed proteins (DEPs) using label-free proteomic analysis. Fatty acid desaturases (FAD) 2, FAD3, oleosin, and caleosin were essential and upregulated from the S1 to S3 stages. Furthermore, the highly expressed oleosin gene JrOLE14.7 from walnuts was cloned and overexpressed in transgenic Brassica napus. The overexpression of JrOLE14.7 increased the oil content, diameter, hundred weight of seeds and changed the fatty acid composition and OB size of Brassica napus seeds. These findings provide insights into the molecular mechanism of oil biosynthesis and the basis for the genetic improvement of walnuts.
Collapse
Affiliation(s)
- Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Pu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Guangzhu Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaobo Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
19
|
Wang Y, Zhou X, Wei S, Wang G, Xi J. Current status and future challenges in extraction, purification and identification of Cepharanthine (a potential drug against COVID-19). Sep Purif Technol 2023; 309:123038. [PMID: 36593875 PMCID: PMC9797411 DOI: 10.1016/j.seppur.2022.123038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
With the outbreak of the new coronavirus disease 2019 (COVID-19), the rapid spread of the virus has brought huge economic losses and life threats to the world. So far, we have entered the third year of the epidemic and there is an urgent need to provide more anti-viral treatment along with vaccination. Recent studies have confirmed that Cepharanthine (CEP) has strong antiviral efficacy, which is a potential drug against COVID-19. As a natural active alkaloid, the development of CEP-incorporated products is dependent on the extraction, purification and identification of CEP. This review gives a brief introduction of CEP, including its origin and classification, and its conventional and novel extraction techniques. In addition, the purification and identification techniques are summarized. In the last, the future research directions are proposed. It can be found from this review that the extraction from plants is still the main way to obtain CEP, and it is necessary to use innovative techniques and their hybrid extractions to extract CEP. More efficient extraction and purification techniques should be used to extract CEP in the future. This review provides a basis for the development of novel extraction and purification techniques and industrial utilization of CEP.
Collapse
|
20
|
Shi Z, Xu W, Geng M, Chen Z, Meng Z. Oil body-based one-step multiple phases and hybrid emulsion gels stabilized by sunflower wax and CMC: Application and optimization in 3D printing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Study on oil body emulsion gels stabilized by composited polysaccharides through microgel particles compaction and natural gelation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Hao J, Wang Q, Li X, Xu D. Extraction of structurally intact and well-stabilized rice bran oil bodies as natural pre-emulsified O/W emulsions and investigation of their rheological properties and components interaction. Food Res Int 2023; 164:112457. [PMID: 36738012 DOI: 10.1016/j.foodres.2023.112457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The isolated plant oil bodies (OBs) have shown promising applications as natural pre-emulsified O/W emulsions. Rice bran OBs can be used as a new type plant-based resource with superior fatty acids composition and abundant γ-oryzanol. This paper investigated the method of extracting structurally intact and stable rice bran OBs. Due to the adequate steric hindrance and electrostatic repulsion effects, rice bran OBs extracted by NaHCO3 medium had smaller particle size, better physical stability, and natural structure. The protein profile of NaHCO3-extracted rice bran OBs showed oleosin-L and oleosin-H, while exogenous proteins in PBS and enzyme-assisted- extracted rice bran OBs could interact with interfacial proteins through hydrophobic forces to aggregate adjacent OBs, further remodeling the OBs interface. It was also found that the small-sized rice bran OBs could adsorb on the interface of the larger-sized rice bran OBs like Pickering stabilizers. Rice bran OBs exhibited pseudoplastic fluids characteristic, but underwent a transition from solid-like to liquid-like behavior depending on the extraction method. The disorder of NaHCO3-extracted rice bran OBs protein molecules increased their surface hydrophobicity. The random coil structure favored more proteins adsorption at the interface of rice bran OBs extracted by PBS. Enzyme-assisted extraction of rice bran OBs had the highest content of β-sheet structure, which facilitated the stretching and aggregation of protein spatial structure. It was also confirmed the hydrogen bonding and hydrophobic interaction between the triacylglycerol or phospholipid and proteins molecules, and the membrane compositions of rice bran OBs differed between extraction methods.
Collapse
Affiliation(s)
- Jia Hao
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Qiuyu Wang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Xiaoyu Li
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China
| | - Duoxia Xu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
23
|
Chen C, Pan Y, Niu Y, Peng D, Huang W, Shen W, Jin W, Huang Q. Modulating interfacial structure and lipid digestion of natural Camellia oil body by roasting and boiling processes. Food Chem 2023; 402:134198. [DOI: 10.1016/j.foodchem.2022.134198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
|
24
|
Liao Y, Sun Y, Peng X, Qi B, Li Y. Effects of tannic acid on the physical stability, interfacial properties, and protein/lipid co-oxidation characteristics of oil body emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Effects of FeII, tannic acid, and pH on the physicochemical stability of oil body emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
26
|
Decker EA, Villeneuve P. Impact of processing on the oxidative stability of oil bodies. Crit Rev Food Sci Nutr 2023; 64:6001-6015. [PMID: 36600584 DOI: 10.1080/10408398.2022.2160963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
27
|
Sun F, Wang Q, Gao C, Xiao H, Yang N. Effect of extraction pH and post-extraction heat treatment on the composition and interfacial properties of peanut oil bodies. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Sun Y, Zhong M, Kang M, Liao Y, Wang Z, Li Y, Qi B. Novel core-shell nanoparticles: Encapsulation and delivery of curcumin using guanidine hydrochloride-induced oleosome protein self-assembly. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Gao Y, Zheng Y, Yao F, Chen F. Effects of pH and temperature on the stability of peanut oil bodies: New insights for embedding active ingredients. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Sun Y, Zhong M, Liao Y, Kang M, Qi B, Li Y. Pickering emulsions stabilized by reassembled oleosome protein nanoparticles for co-encapsulating hydrophobic nutrients. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Tian T, zaaboul F, Yin S, Ye Z, Sun Y, Zhao J, Xu Y, Liu Y. Studies on the lipid oxidation and oleosomes behavior in raw pecan kernels during storage. Food Chem 2022; 405:134867. [DOI: 10.1016/j.foodchem.2022.134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
32
|
Sheikh F, Hasani M, Kiani H, JavadAsadollahzadeh M, Seyfi J. Investigation of textural, rheological and sensory properties of white cheese analog containing sesame seeds oleosome. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Reassessment of adipocyte technology for cellular agriculture of alternative fat. Compr Rev Food Sci Food Saf 2022; 21:4146-4163. [PMID: 36018497 DOI: 10.1111/1541-4337.13021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/28/2023]
Abstract
Alternative proteins, such as cultivated meat, have recently attracted significant attention as novel and sustainable food. Fat tissue/cell is an important component of meat that makes organoleptic and nutritional contributions. Although adipocyte biology is relatively well investigated, there is limited focus on the specific techniques and strategies to produce cultivated fat from agricultural animals. In the assumed standard workflow, stem/progenitor cell lines are derived from tissues of animals, cultured for expansion, and differentiated into mature adipocytes. Here, we compile information from literature related to cell isolation, growth, differentiation, and analysis from bovine, porcine, chicken, other livestock, and seafood species. A diverse range of tissue sources, cell isolation methods, cell types, growth media, differentiation cocktails, and analytical methods for measuring adipogenic levels were used across species. Based on our analysis, we identify opportunities and challenges in advancing new technology era toward producing "alternative fat" that is suitable for human consumption.
Collapse
Affiliation(s)
- Shigeki Sugii
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore.,Program of Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Cheryl Yeh Qi Wong
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Angela Khin Oo Lwin
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| | - Lamony Jian Ming Chew
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, Singapore
| |
Collapse
|
34
|
Wu L, Yue Q, Kang M, Zhong M, Qi B, Li Y. Stabilization of Soybean and Peanut Oil Bodies using Apple Pectin under Acidic Conditions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Şen A, Acevedo-Fani A, Dave A, Ye A, Husny J, Singh H. Plant oil bodies and their membrane components: new natural materials for food applications. Crit Rev Food Sci Nutr 2022; 64:256-279. [PMID: 35917117 DOI: 10.1080/10408398.2022.2105808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants store triacylglycerols in the form of oil bodies (OBs) as an energy source for germination and subsequent seedling growth. The interfacial biomaterials from these OBs are called OB membrane materials (OBMMs) and have several applications in foods, e.g., as emulsifiers. OBMMs are preferred, compared with their synthetic counterparts, in food applications as emulsifiers because they are natural, i.e., suitable for clean label, and may stabilize bioactive components during storage. This review focuses mainly on the extraction technologies for plant OBMMs, the functionality of these materials, and the interaction of OB membranes with other food components. Different sources of OBs are evaluated and the challenges during the extraction and use of these OBMMs for food applications are addressed.
Collapse
Affiliation(s)
- Aylin Şen
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
36
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
37
|
Zhou X, Liu Z, Wang W, Miao Y, Gu L, Li Y, Liu X, Jiang L, Hou J, Jiang Z. NaCl induces flocculation and lipid oxidation of soybean oil body emulsions recovered by neutral aqueous extraction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3752-3761. [PMID: 34913174 DOI: 10.1002/jsfa.11723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Soybean oil bodies (SOB) are naturally pre-emulsified lipid droplets recovered directly from soybean seeds. Almost all food emulsions contain salts. However, it was not clear how the incorporation of salts affected the physicochemical stability of SOB. RESULTS This study investigated the effect of NaCl (0-1.2%) on the physical and oxidative stability of SOB emulsions under neutral (pH 7) and acidic (pH 3) conditions. In the presence of NaCl, the SOB emulsion (pH 7) showed strong flocculation during storage due to electrostatic screening. The NaCl-induced flocculation of SOB was attenuated at pH 3, which may be due to the difference in conformation or interaction of the protein interfaces covering SOB at different pH values. The increase in ionic strength or acid conditioning treatment resulted in a remarkable increase in the stability of SOB emulsions against coalescence. The confocal laser scanning microscopy images also confirmed the NaCl-induced changes in the flocculation/coalescence properties of SOB. The oxidative behavior tests indicated that SOB emulsions containing NaCl were more susceptible to lipid oxidation but protein oxidation was inhibited due to electrostatic screening, which reduced pro-oxidant accessibility of unadsorbed proteins in the emulsion. This oxidative behavior was attenuated at pH 3. CONCLUSION The incorporation of NaCl significantly reduced the physical and oxidative stability of the SOB emulsion, and acidic pH mitigated NaCl-induced flocculation and lipid oxidation of SOB. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yusi Miao
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanan Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xin Liu
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
38
|
Fabrication, characterization and in vitro digestion of camellia oil body emulsion gels cross-linked by polyphenols. Food Chem 2022; 394:133469. [PMID: 35717921 DOI: 10.1016/j.foodchem.2022.133469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
This study was designed to investigate the formation of camellia oil body (OB) emulsion gels covalently cross-linked by oxidized polyphenols: catechin (OCT), caffeic acid (OCF), chlorogenic acid (OCA), and tannic acid (OTA). The structural characteristics, thermal stabilities, antioxidant activities, rheological properties, and lipid digestion kinetics of the cross-linked OB-polyphenol emulsion gels were studied. The results of free sulfhydryl and amino group contents, FT-IR, fluorescence spectroscopy, surface hydrophobicity and thermal stability analyses confirmed the formation of covalent interactions between polyphenols and OB emulsions. Based on the second-order structural kinetic model, OB emulsion gel cross-linked by OTA had stronger intermolecular interactions and more developed 3-D network structures than those of OCA, OCF and OCT. Furthermore, lipid digestion kinetics showed that the cross-linking of polyphenols with the OBs slowed down the disintegration of protein matrix under gastric conditions, resulting in delay the release of free fatty acid, which was confirmed by CLSM observations.
Collapse
|
39
|
Farooq S, Abdullah, Zhang C, Xi Y, Zhang H. Physiochemical characteristics and rheological investigations of camellia oil body emulsions stabilized by gum tragacanth as a coating layer. Food Chem 2022; 377:131997. [PMID: 34999448 DOI: 10.1016/j.foodchem.2021.131997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
In this work, gum tragacanth (GT) was coated on the camellia oil body (OB) emulsions using an electrostatic deposition technique, and effects were investigated over a wide range of pH values, ionic strengths, temperatures, and freeze-thaw cycles. Special attention has been paid to the rheological features as a function of hydrocolloid concentration, thixotropy (hysteresis loop and in-shear structure recovery), temperature, and frequency. The electrostatic GT-OB surface protein interactions, confirmed by ζ-potential and confocal laser scanning microscopy measurements, led to the reduction of flocculation effects and enhancement of steric stabilization due to the adsorption of polysaccharides to OB surfaces. The activation energy values (Ea) appeared in the range of 21.92 to 8.02 kJ/mol at pH 4 as GT concentration increased from 0 to 1 wt%. The OBs are soft droplets with the degree of structure recovery (DSR) ranged from 0.451 to 0.533; however, GT coating showed synergistic effect on the DSR.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuhang Xi
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
40
|
Zhou X, Zhao J, Zhao X, Sun R, Sun C, Hou D, Zhang X, Jiang L, Hou J, Jiang Z. Oil bodies extracted from high-oil soybeans ( Glycine max) exhibited higher oxidative and physical stability than oil bodies from high-protein soybeans. Food Funct 2022; 13:3271-3282. [PMID: 35237775 DOI: 10.1039/d1fo03934b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Reports concerning the characteristics of soybean oil bodies (SOBs) isolated from high protein genotypes and high oil genotypes of soybeans available in the literature are insufficient and limiting. In this study, fatty acid compositions, total phenol and tocopherol contents, antioxidant capacity, and physicochemical stability of SOB emulsions recovered from three high-protein and three high-oil genotype soybeans were comparatively investigated. Principal component analysis showed that all six SOB samples could be easily discriminated based on the cultivar characteristics. Overall, the SOBs derived from the high-protein soybeans exhibited higher polyunsaturated fatty acid (PUFA) contents, while the SOBs derived from the high-oil soybeans had higher extraction yields and tocopherol contents; the tocopherol content was also positively correlated with the antioxidant capacity of the lipophilic fraction, but the difference in the total phenolic content between the two genotypes was not significant. The SOBs derived from the high-protein soybeans were more easily oxidized during storage, with 1.38- and 4-fold higher accumulation rates of lipid hydroperoxides (LPO) and thiobarbituric acid reactive substances (TBARS), respectively, in the high-protein-derived SOBs than in the high-oil-derived SOBs. In addition, the SOBs from the high-protein soybeans exhibited pronounced coalescence during storage, which was corroborated by focused confocal microscopy. These results confirmed that SOBs obtained from high-oil soybean genotypes are more suitable to manufacture OB-based products due to their superior physicochemical stability.
Collapse
Affiliation(s)
- Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiale Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xu Zhao
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Rongbo Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chuanqiang Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Dongdong Hou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xuewei Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
- National Research Center of Soybean Engineering and Technology, Harbin, 150030, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
41
|
Composition of flesh lipids and oleosome yield optimization of selected sea buckthorn (Hippophae rhamnoides L.) cultivars grown in Poland. Food Chem 2022; 369:130921. [PMID: 34461512 DOI: 10.1016/j.foodchem.2021.130921] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/19/2022]
Abstract
Sea buckthorn berries contain lipids rich in palmitoleic acid, carotenoids, tocols and sterols, but their composition varies greatly depending on the cultivar and region of cultivation. Therefore, the current study presents the chemical composition of fruit flesh oils of cultivars grown in Poland and compares them with plants grown worldwide. Among tested cultivars, the highest shares of palmitoleic acid were determined in Golden Rain and Luczystaja cvs. Ten grams of sea buckthorn flesh oil provides at least 28% of vitamin A, 50% of vitamin E and 5% of sterols of the recommended dietary allowance (RDA) values for adults. The final part of this study is dedicated to a preliminary study of the optimization of the oleosome yield by the centrifugation method. The maximum oleosome yield can be obtained at a relatively low centrifugal force (below 8000×g), while optimal temperature and time should be laboratory determined for each cultivar.
Collapse
|
42
|
Yu X, Nie C, Zhao P, Zhang H, Qin X, Deng Q, Huang F, Zhu Y, Geng F. Influences of microwave exposure to flaxseed on the physicochemical stability of oil bodies: Implication of interface remodeling. Food Chem 2022; 368:130802. [PMID: 34411866 DOI: 10.1016/j.foodchem.2021.130802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate the influences of microwave (MV) exposure to flaxseed on the physicochemical stability of oil bodies (OBs) focused on the interface remodeling. The results showed that the intracellular OBs subjected to absolute rupture and then partial dispersion by protein bodies visualized by TEM following MV exposure (1-5 min; 700 W). After aqueous extraction, native flax OBs manifested excellent spherical particles with completely intact surface and wide particle size distribution (0.5-3.0 μm) examined by cryo-SEM. Upon 1-5 min of MV exposure, the defective interface integrity and beaded morphology were successively observed for flax OBs, accompanied by the impaired physical stability and rheological behavior due to the newly assembled phospholipid/protein interface. Notably, the profitable migration of phenolic compounds effectively suppressed the lipid peroxidation and protein carbonylation in flax OBs. Thus, MV exposure (1-5 min; 700 W) was unfavorable for improving the physical stability of flax OBs.
Collapse
Affiliation(s)
- Xiao Yu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Chengzhen Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Peng Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Haicheng Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Xiaopeng Qin
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Qianchun Deng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Fenghong Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yingying Zhu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Collaborative Innovation Center for Food Production and Safety, Zhengzhou, Henan Province 450002, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
43
|
Cassen A, Fabre JF, Lacroux E, Cerny M, Vaca-Medina G, Mouloungui Z, Merah O, Valentin R. Aqueous Integrated Process for the Recovery of Oil Bodies or Fatty Acid Emulsions from Sunflower Seeds. Biomolecules 2022; 12:biom12020149. [PMID: 35204650 PMCID: PMC8961559 DOI: 10.3390/biom12020149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
An aqueous integrated process was developed to obtain several valuable products from sunflower seeds. With a high-shear rate crusher, high-pressure homogenization and centrifugation, it is possible to process 600× g of seeds in 1400× g of water to obtain a concentrated cream phase with a dry matter (dm) content of 46%, consisting of 74 (w/w dm) lipids in the form of an oil-body dispersion (droplet size d(0.5): 2.0 µm) rich in proteins (13% w/w dm, with membranous and extraneous proteins). The inclusion of an enzymatic step mediated by a lipase made possible the total hydrolysis of trigylcerides into fatty acids. The resulting cream had a slightly higher lipid concentration, a ratio lipid/water closer to 1, with a dry matter content of 57% consisting of 69% (w/w) lipids, a more complex structure, as observed on Cryo-SEM, with a droplet size slightly greater (d(0.5): 2.5 µm) than that of native oil bodies and a conserved protein concentration (12% w/w dm) but an almost vanished phospholipid content (17.1 ± 4.4 mg/g lipids compared to 144.6 ± 6 mg/g lipids in the oil-body dispersion and 1811.2 ± 122.2 mg/g lipids in the seed). The aqueous phases and pellets were also characterized, and their mineral, lipid and protein contents provide new possibilities for valorization in food or technical applications.
Collapse
|
44
|
Bibat MAD, Ang MJ, Eun JB. Impact of replacing pork backfat with rapeseed oleosomes - Natural pre-emulsified oil - On technological properties of meat model systems. Meat Sci 2022; 186:108732. [PMID: 35026537 DOI: 10.1016/j.meatsci.2021.108732] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/25/2021] [Accepted: 12/31/2021] [Indexed: 10/19/2022]
Abstract
The application of natural oil droplets called oleosomes (OSs) as a potential fat replacer in comminuted meat products was investigated by evaluating the influence of rapeseed OS incorporation at 0, 25, 50, 75 and 100% pork fat substitution levels on the technological properties of meat model systems. The moisture content, pH, L* and b* of meat model systems increased while the fat content and a* decreased with the increasing levels of fat replacement. Treatments prepared with OSs showed improvements in emulsion and oxidative stability of meat batters. Texture profile analysis revealed the production of softer, less gummy and less chewy meat systems, whereas micrographs showed smaller-sized fat globules within compact protein matrices as OS levels were increased. Sensory evaluation results exhibited that treatments with partial replacement (≤ 50%) of pork fat by OSs were generally acceptable. The results demonstrate the possibility of maintaining or improving certain technological properties of meat systems with the use of OSs as fat replacer.
Collapse
Affiliation(s)
- Marie Anna Dominique Bibat
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju 61186, South Korea
| | - Mary Jasmin Ang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jong-Bang Eun
- Department of Integrative Food, Bioscience and Biotechnology, Graduate School of Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
45
|
Yang J, Berton-Carabin CC, Nikiforidis CV, van der Linden E, Sagis LM. Competition of rapeseed proteins and oleosomes for the air-water interface and its effect on the foaming properties of protein-oleosome mixtures. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Zhu J, Li X, Liu L, Li Y, Qi B, Jiang L. Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112874] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Zhou X, Sun R, Zhao J, Liu Z, Wang M, Wang K, Jiang L, Hou J, Jiang Z. Enzymatic activity and stability of soybean oil body emulsions recovered under neutral and alkaline conditions: Impacts of thermal treatments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Kergomard J, Carrière F, Barouh N, Villeneuve P, Vié V, Bourlieu C. Digestibility and oxidative stability of plant lipid assemblies: An underexplored source of potentially bioactive surfactants? Crit Rev Food Sci Nutr 2021:1-20. [PMID: 34839771 DOI: 10.1080/10408398.2021.2005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Most lipids in our diet come under the form of triacylglycerols that are often redispersed and stabilized by surfactants in processed foods. In plant however, lipid assemblies constitute interesting sources of natural bioactive and functional ingredients. In most photosynthetic sources, polar lipids rich in ω3 fatty acids are concentrated. The objective of this review is to summarize all the knowledge about the physico-chemical composition, digestive behavior and oxidative stability of plant polar lipid assemblies to emphasize their potential as functional ingredients in human diet and their potentialities to substitute artificial surfactants/antioxidants. The specific composition of plant membrane assemblies is detailed, including plasma membranes, oil bodies, and chloroplast; emphasizing its concentration in phospholipids, galactolipids, peculiar proteins, and phenolic compounds. These molecular species are hydrolyzed by specific digestive enzymes in the human gastrointestinal tract and reduced the hydrolysis of triacylglycerols and their subsequent absorption. Galactolipids specifically can activate ileal break and intrinsically present an antioxidant (AO) activity and metal chelating activity. In addition, their natural association with phenolic compounds and their physical state (Lα state of digalactosyldiacylglycerols) in membrane assemblies can enhance their stability to oxidation. All these elements make plant membrane molecules and assemblies very promising components with a wide range of potential applications to vectorize ω3 polyunsaturated fatty acids, and equilibrate human diet.
Collapse
Affiliation(s)
- Jeanne Kergomard
- INRAE/UM/Institut Agro, UMR 1208 IATE, Montpellier France.,IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | - Frédéric Carrière
- Aix Marseille Université, CNRS, UMR7281 Bioénergétique et lngénierie des Protéines, Marseille, France
| | | | | | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 6251, Rennes 1 University, Rennes, France
| | | |
Collapse
|
49
|
Ding J, Dong Y, Huang G, Zhang Y, Jiang L, Sui X. Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Food Funct 2021; 12:10875-10886. [PMID: 34622257 DOI: 10.1039/d1fo01462e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural soy oleosomes are known to have a remarkable stability, given the advantage of their sophisticated membrane. The aim of the present study is to examine the concept of fabricating a β-carotene emulsion stabilized by soy oleosin (OLE) and lecithin (LEC) mixtures mimicking the membrane composition of soy oleosomes while providing preferable stability and bioaccessibility. For this, the fabricated emulsion was characterized in terms of droplet size distribution, and emulsion structure, stability and digestion (release and absorption of lipophilic β-carotene). Compared to SPI/LEC (10 : 1) stabilized emulsions, the OLE/LEC (10 : 1) mixture stabilized emulsion exhibited the highest emulsifying activity index (EAI) and emulsifying stability index (ESI) values, and higher encapsulation efficiency. Results show that the β-carotene emulsion stabilized by OLE and LEC mixtures at the ratio of 10 : 1 (w/w) has the most uniform droplet distribution and highest stability. The in vitro gastrointestinal digestion test revealed that the β-carotene emulsion stabilized by OLE and LEC mixtures was digested more rapidly than the emulsion stabilized by soy protein isolate (SPI) and LEC mixtures. In turn, the bioaccessibility and cellular uptake of β-carotene were enhanced, resulting in a higher absorption, a desirable feature of nutrition delivery systems. Our results demonstrated a promising way to fabricate emulsions mimicking natural soy oleosomes.
Collapse
Affiliation(s)
- Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Yabo Dong
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Guo Huang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
50
|
Effects of pH on the Composition and Physical Stability of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J CHEM-NY 2021. [DOI: 10.1155/2021/2441385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peanut oil body (POB), which is rich in unsaturated fatty acids and bioactive substances, is widely used in cosmetics, food, and medicine. Compared with synthetic emulsifiers, peanut oil bodies have health advantages as natural emulsions. The physicochemical properties of oil bodies affect their food processing applications. To improve peanut oil body yield, cell-wall-breaking enzymes were screened for aqueous enzymatic extraction. The optimum conditions were as follows: enzymatic hydrolysis time, 2 h; material-to-liquid ratio, 1 : 5 (
); enzyme concentration, 2% (
); and temperature, 50°C. Oil body stability was closely related to pH. With increasing pH, the average particle size and zeta-potential of the oil bodies increased, indicating aggregation, as confirmed by microstructure analysis. At pH 11, exogenous proteins at the oil body interface were eluted, leaving endogenous proteins, which led to a decreased interfacial protein content and oil body aggregation. Therefore, oil body stability decreased under alkaline pH conditions, but no demulsification occurred.
Collapse
|