1
|
Zioga E, Holdt SL, Gröndahl F, Bang-Berthelsen CH. Screening approaches and potential of isolated lactic acid bacteria for improving fermentation of Saccharina latissima. BMC Biotechnol 2025; 25:2. [PMID: 39757166 DOI: 10.1186/s12896-024-00926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND With the growing interest in applying fermentation to seaweed biomasses, there is a need for fast and efficient selection of microbial strains that have the ability to 1) acidify quickly, 2) utilize seaweed constituents and c) exhibit some proteolytic activity. The present study aims to provide a fast methodology to screen large bacterial collections for potential applications in optimized seaweed fermentations, as well as investigate and assess the performance of a selected bacterial collection of the National Food Institute Culture Collection (NFICC) in seaweed fermentation. This approach is directed toward high-throughput (HT) methodologies, employing microwell assays for different phenotypical characteristics of lactic acid bacteria isolated from different sources. The overarching aim is the deeper understanding of the selection criteria when designing starter cultures for seaweed fermentation. RESULTS By employing high-throughput analytical workflows, the screening processing time is minimized, and among the different strains from a well-characterized strain collection, it was possible to distinguish between strong acidifiers and to replicate similar results when the volumes were scaled from 96-well plates to lab-scale fermentations (40 mL) of whole seaweed. Lactiplantibacillus plantarum, Lacticaseibacillus paracasei and, to a lesser extent, Lacticaseibacillus rhamnosus were among the fastest strains to reach the lowest endpoint pH values (< 4.5) in less than 48 h. Although the results regarding proteolytic capacity were not sufficient to prove that the candidates can also provide some flavor generation by the cleavage of proteins, NFICC1746 and NFICC2041 exhibited potential in releasing free alanine, glutamate and asparate as free amino acids. CONCLUSIONS With the described methodology, a large number of terrestrial lactic acid bacteria (LAB) isolates were screened for their performance and possible application for fermentation of brown sewaeeds. With a a fast conversion of sugars to organic acids, three potential new plant-isolated strains from NFICC, specifically Lactiplantibacillus plantarum ssp. argentoratensis (NFICC983), Lacticaseibacillus paracasei (NFICC1746) and Lacticaseibacillus rhamnosus (NFICC2041), were identified as promising candidates for future synthetic consortia aimed at application in bioprocessed seaweed. The combination of such strains will be the future focus to further optimize robust seaweed fermentations.
Collapse
Affiliation(s)
- Evangelia Zioga
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
| | - Susan Løvstad Holdt
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Fredrik Gröndahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | | |
Collapse
|
2
|
Sudhakar MP, Nived SA, Dharani G. Fabrication and Characterization of Agar- and Seaweed-Derived Biomembrane Films for Biomedical and Other Applications. Biopolymers 2025; 116:e23643. [PMID: 39655893 DOI: 10.1002/bip.23643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
This study focused on seaweed-based biomembrane development. The physical, mechanical, thermal, and biological properties of the fabricated films with different combinations of materials, such as agar, chitosan, poly(vinyl) alcohol (PVA), and quercetin, were characterized. The surface morphology of the films was analyzed using SEM. The maximum tensile strength (53.11 N/mm2), elongation at break (3.42%), and Young's modulus (15.52) of the biomembrane were recorded for the agar + chitosan combination. FT-Raman analysis confirmed the functional groups shift between the biopolymer and plasticizer used in this study. TG-DSC analysis of the biomembranes revealed a Tg in the range of 92.80°C-115°C. The maximum antioxidant activity was reported for quercetin (58.62%), and the maximum antimicrobial activity was observed for the chitosan and quercetin compounds against E. coli. A minimum hemolysis of 0.95% was achieved for the combination of agar + quercetin (AQ), agar + PEG (APE), Gracilaria corticata extract + PVA + quercetin (GCPQ) and agar + chitosan (AC) biomembranes. The minimum cytotoxicity of the biomembrane was 62.51% and 63.87% for Gracilaria corticata extract + PVA + quercetin (GCPQ), and agar + PVA, respectively. The proposed biomembrane films were found to be suitable for biomedical and packaging applications.
Collapse
Affiliation(s)
- Muthiyal Prabakaran Sudhakar
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| | - Sureshkumar Ambika Nived
- School of Chemical & Biotechnology, The Shanmugha Arts Science, Technology & Research Academy (SASTRA, Deemed to be University), Thanjavur, India
| | - Gopal Dharani
- Marine Biotechnology, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, India
| |
Collapse
|
3
|
Liu C, Gao J, Jiang H, Sun J, Gao X, Mao X. Value-added utilization technologies for seaweed processing waste in a circular economy: Developing a sustainable modern seaweed industry. Compr Rev Food Sci Food Saf 2024; 23:e70027. [PMID: 39379297 DOI: 10.1111/1541-4337.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
The global seaweed industry annually consumes approximately 600,000 tons of dried algal biomass to produce algal hydrocolloids, yet only 15-30% of this biomass is utilized, with the remaining 70-85% discarded or released as scum or wastewater during the hydrocolloid extraction process. This residual biomass is often treated as waste and not considered for further commercial use, which contradicts the principles of sustainable development. In reality, the residual algal biomass could be employed to extract additional biochemical components, such as pigments, proteins, and cellulose, and these ingredients have important application prospects in the food sector. According to the biorefinery concept, recycling various products alongside the principal product enhances overall biomass utilization. Transitioning from traditional single-product processes to multi-product biorefineries, however, raises operating costs, presenting a significant challenge. Alternatively, developing value-added utilization technologies that target seaweed waste without altering existing processes is gaining traction among industry practitioners. Current advancements include methods such as separation and extraction of residual biomass, anaerobic digestion, thermochemical conversion, enzymatic treatment, functionalized modification of algal scum, and efficient utilization through metabolic engineering. These technologies hold promise for converting seaweed waste into alternative proteins, dietary supplements, and bioplastics for food packaging. Combining multiple technologies may offer the most effective strategy for future seaweed waste treatment. Nonetheless, most research on value-added waste utilization remains at the laboratory scale, necessitating further investigation at pilot and commercial scales.
Collapse
Affiliation(s)
- Chunhui Liu
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Jiale Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
| | - Hong Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Jianan Sun
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xin Gao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
| | - Xiangzhao Mao
- State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
- Qingdao Key Laboratory of Food Biotechnology, Qingdao, PR China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, PR China
- Sanya Ocean Research Institute, Ocean University of China, Sanya, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, PR China
| |
Collapse
|
4
|
Sun XH, Zhang XD, Zhang XR, Wang XF, Zhang XY, Zhang YZ, Zhang YQ, Xu F. Direct Preparation of Alginate Oligosaccharides from Brown Algae by an Algae-Decomposing Alginate Lyase AlyP18 from the Marine Bacterium Pseudoalteromonas agarivorans A3. Mar Drugs 2024; 22:483. [PMID: 39590763 PMCID: PMC11595925 DOI: 10.3390/md22110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Alginate oligosaccharides (AOs), derived from alginate degradation, exhibit diverse biological activities and hold significant promise in various fields. The enzymatic preparation of AOs relies on alginate lyases, which offers distinct advantages. In contrast to the conventional use of sodium alginate derived from brown algae as the substrate for the enzymatic preparation of AOs, AO preparation directly from brown algae is more appealing due to its time and energy efficiency. Thus, the identification of potent alginate lyases and cost-effective brown algae substrates is crucial for optimizing AO production. Herein, we identified and characterized an alginate lyase, AlyP18, capable of efficiently decomposing algae, from a marine bacterium Pseudoalteromonas agarivorans A3 based on secretome analysis. AlyP18 is a mesothermal, endo-type and bifunctional alginate lyase with high enzymatic activity. Two brown algae substrates, Laminaria japonica roots and Macrocystis pyrifera, were used for the AO preparation by AlyP18. Upon optimization of AlyP18 hydrolysis parameters, the substrate degradation efficiency and AO production reached 53% and ~32% for L. japonica roots, respectively, and 77% and ~46.5% for M. pyrifera. The generated AOs primarily consisted of dimers to pentamers, with trimers and tetramers being dominant. This study provides an efficient alginate lyase and alternative brown algal feedstock for the bioconversion of high-value AOs from brown algae.
Collapse
Affiliation(s)
- Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250199, China
| | - Xiao-Dong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xin-Ru Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xiao-Fei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266237, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.S.); (X.-D.Z.); (X.-R.Z.); (X.-F.W.); (X.-Y.Z.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| |
Collapse
|
5
|
Alam M, Dar BN, Nanda V. Hydrocolloid-based fruit fillings: A comprehensive review on formulation, techno-functional properties, synergistic mechanisms, and applications. J Texture Stud 2024; 55:e12861. [PMID: 39138121 DOI: 10.1111/jtxs.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
This study offers a comprehensive review of current developments regarding the utilization of diverse hydrocolloids in formulating fruit fillings across different fruit types, their impact on textural attributes, rheological properties, thermal stability, syneresis, and nutritional advantages of fillings and optimization of its characteristics to align with consumer preferences. The review also focuses on the various factors influencing fruit fillings, including the selection of fruits, processing methodologies, the inherent nature and concentration of hydrocolloids, and their synergistic interactions. In depth, scientific work on the impact of the parameters such as pH, total soluble solids, and sugar content within the fruit fillings was also discussed. Additionally, this article focuses on the utilization of the diverse fruit fillings developed by using hydrocolloids in bakery products including pastry, tartlet, muffins, cookies, and so forth. The review establishes that hydrocolloids offer a spectrum of techno-functional attributes conducive to strengthening both the structural and thermal stability of fruit fillings, consequently extending their shelf life. It further establishes that incorporating of hydrocolloids facilitates the development of healthier food products by mitigating the necessity of excessive sugar or various other less favorable ingredients. The incorporation of fruit fillings in bakery products significantly increases the value proposition of these baked goods, contributing to their overall enhancement of quality and sensory value.
Collapse
Affiliation(s)
- Masud Alam
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Basharat Nabi Dar
- Department of Food Technology, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Vikas Nanda
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| |
Collapse
|
6
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Zhou T, Li X. Chemically modified seaweed polysaccharides: Improved functional and biological properties and prospective in food applications. Compr Rev Food Sci Food Saf 2024; 23:e13396. [PMID: 38925601 DOI: 10.1111/1541-4337.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Seaweed polysaccharides are natural biomacromolecules with unique physicochemical properties (e.g., good gelling, emulsifying, and film-forming properties) and diverse biological activities (e.g., anticoagulant, antioxidant, immunoregulatory, and antitumor effects). Furthermore, they are nontoxic, biocompatible and biodegradable, and abundant in resources. Therefore, they have been widely utilized in food, cosmetics, and pharmaceutical industries. However, their properties and bioactivities sometimes are not satisfactory for some purposes. Modification of polysaccharides can impart the amphiphilicity and new functions to the biopolymers and change the structure and conformation, thus effectively improving their functional properties and biological activities so as to meet the requirement for targeted applications. This review outlined the modification methods of representative red algae polysaccharides (carrageenan and agar), brown algae polysaccharides (fucoidan, alginate, and laminaran), and green algae polysaccharides (ulvan) that have potential food applications, including etherification, esterification, degradation, sulfation, phosphorylation, selenylation, and so on. The improved functional properties and bioactivities of the modified seaweed polysaccharides and their potential food applications are also summarized.
Collapse
Affiliation(s)
- Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| | - Xinyue Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
8
|
Torres FG, Troncoso OP, Urtecho A, Soto P, Pachas B. Recent Progress in Polysaccharide-Based Materials for Energy Applications: A Review. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38865700 DOI: 10.1021/acsami.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In recent years, polysaccharides have emerged as a promising alternative for the development of environmentally friendly materials. Polysaccharide-based materials have been mainly studied for applications in the food, packaging, and biomedical industries. However, many investigations report processing routes and treatments that enable the modification of the inherent properties of polysaccharides, making them useful as materials for energy applications. The control of the ionic and electronic conductivities of polysaccharide-based materials allows for the development of solid electrolytes and electrodes. The incorporation of conductive and semiconductive phases can modify the permittivities of polysaccharides, increasing their capacity for charge storage, making them useful as active surfaces of energy harvesting devices such as triboelectric nanogenerators. Polysaccharides are inexpensive and abundant and could be considered as a suitable option for the development and improvement of energy devices. This review provides an overview of the main research work related to the use of both common commercially available polysaccharides and local native polysaccharides, including starch, chitosan, carrageenan, ulvan, agar, and bacterial cellulose. Solid and gel electrolytes derived from polysaccharides show a wide range of ionic conductivities from 0.0173 × 10-3 to 80.9 × 10-3 S cm-1. Electrodes made from polysaccharides show good specific capacitances ranging from 8 to 753 F g-1 and current densities from 0.05 to 5 A g-1. Active surfaces based on polysaccharides show promising results with power densities ranging from 0.15 to 16 100 mW m-2. These investigations suggest that in the future polysaccharides could become suitable materials to replace some synthetic polymers used in the fabrication of energy storage devices, including batteries, supercapacitors, and energy harvesting devices.
Collapse
Affiliation(s)
- Fernando G Torres
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Omar P Troncoso
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Adrián Urtecho
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Percy Soto
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| | - Bruce Pachas
- Department of Mechanical Engineering, Pontificia Universidad Católica del Perú, Avenida Universitaria 1801, 15088 Lima, Peru
| |
Collapse
|
9
|
Naseem S, Rizwan M, Durrani AI, Munawar A, Gillani SR. Innovations in cell lysis strategies and efficient protein extraction from blue food (Seaweed). SUSTAINABLE CHEMISTRY AND PHARMACY 2024; 39:101586. [DOI: 10.1016/j.scp.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
|
10
|
Li X, Yang M, Mo K, Hu Y, Gu H, Sun D, Bao S, Huang H. Genome Analysis of Multiple Polysaccharide-Degrading Bacterium Microbulbifer thermotolerans HB226069: Determination of Alginate Lyase Activity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:488-499. [PMID: 38668917 DOI: 10.1007/s10126-024-10311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/05/2024] [Indexed: 06/15/2024]
Abstract
Polysaccharide-degrading bacteria are key participants in the global carbon cycle and algal biomass recycling. Herein, a polysaccharide lyase-producing strain HB226069 was isolated from Sargassum sp. from Qingge Port, Hainan, China. Results of the phylogenetic of the 16S rRNA gene and genotypic analysis indicated that the isolate should be classified as Microbulbifer thermotolerans. The whole genome is a 4,021,337 bp circular chromosome with a G+C content of 56.5%. Analysis of the predicted genes indicated that strain HB226069 encoded 161 carbohydrate-active enzymes (CAZymes), and abundant putative enzymes involved in polysaccharide degradation were predicted, including alginate lyase, fucosidase, agarase, xylanase, cellulase, pectate lyase, amylase, and chitinase. Three of the putative polysaccharide lyases from PL7 and PL17 families were involved in alginate degradation. The alginate lyases of strain HB226069 showed the maximum activity of 117.4 U/mL at 50 °C, pH 7.0, and 0.05 M FeCl3, while exhibiting the best stability at 30 °C and pH 7.0. The Thin Layer Chromatography (TLC) and Electrospray Ionization Mass Spectrometry (ESI-MS) analyses indicated that the alginate oligosaccharides (AOSs) degraded by the partially purified alginate lyases contained oligosaccharides of DP2-DP5 and monosaccharide while reacting for 36 h. The complete genome of M. thermotolerans HB226069 enriches our understanding of the mechanism of polysaccharide lyase production and supports its potential application in polysaccharide degradation.
Collapse
Affiliation(s)
- Xue Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163000, Heilongjiang, China
| | - Miao Yang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, 571101, Hainan, China
- College of Life Science and Technology, Huazhong Agricultural University, CATAS, Wuhan, 430070, Hubei, China
| | - Kunlian Mo
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, 571101, Hainan, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, 524013, Guangdong, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, Hainan, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, 571101, Hainan, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, 524013, Guangdong, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, Hainan, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, 571101, Hainan, China
- Zhanjiang Experimental Station, CATAS, Zhanjiang, 524013, Guangdong, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, Hainan, China
| | - Dongmei Sun
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163000, Heilongjiang, China.
| | - Shixiang Bao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, 571101, Hainan, China.
- Zhanjiang Experimental Station, CATAS, Zhanjiang, 524013, Guangdong, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, Hainan, China.
| | - Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, 571101, Hainan, China.
- Zhanjiang Experimental Station, CATAS, Zhanjiang, 524013, Guangdong, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, Hainan, China.
| |
Collapse
|
11
|
McClements DJ. Novel animal product substitutes: A new category of plant-based alternatives to meat, seafood, egg, and dairy products. Compr Rev Food Sci Food Saf 2024; 23:e313330. [PMID: 38551190 DOI: 10.1111/1541-4337.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Many consumers are adopting plant-centric diets to address the adverse effects of livestock production on the environment, health, and animal welfare. Processed plant-based foods, including animal product analogs (such as meat, seafood, egg, or dairy analogs) and traditional animal product substitutes (such as tofu, seitan, or tempeh), may not be desirable to a broad spectrum of consumers. This article introduces a new category of plant-based foods specifically designed to overcome the limitations of current animal product analogs and substitutes: novel animal product substitutes (NAPS). NAPS are designed to contain high levels of nutrients to be encouraged (such as proteins, omega-3 fatty acids, dietary fibers, vitamins, and minerals) and low levels of nutrients to be discouraged (such as salt, sugar, and saturated fat). Moreover, they may be designed to have a wide range of appearances, textures, mouthfeels, and flavors. For instance, they could be red, orange, green, yellow, blue, or beige; they could be spheres, ovals, cubes, or pyramids; they could be hard/soft or brittle/pliable; and they could be lemon, thyme, curry, or chili flavored. Consequently, there is great flexibility in creating NAPS that could be eaten in situations where animal products are normally consumed, for example, with pasta, rice, potatoes, bread, soups, or salads. This article reviews the science behind the formulation of NAPS, highlights factors impacting their appearance, texture, flavor, and nutritional profile, and discusses methods that can be used to formulate, produce, and characterize them. Finally, it stresses the need for further studies on this new category of foods, especially on their sensory and consumer aspects.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
12
|
Olubi O, Obilana A, Tshilumbu N, Fester V, Jideani V. Physicochemical and Functional Properties of Citrullus mucosospermus, Citroides, and Moringa oleifera Seeds' Hydrocolloids. Foods 2024; 13:1131. [PMID: 38611435 PMCID: PMC11011541 DOI: 10.3390/foods13071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrocolloids form gel-like structures when dispersed in water and have garnered significant attention for their diverse applications in food, pharmaceuticals, and other industries. The extraction of hydrocolloids from natural sources, such as seeds, presents an intriguing avenue due to the potential diversity in composition and functionality. Utilising seeds from Citrullus lanatus mucosospermus, lanatus citroides, and Moringa aligns with the growing demand for natural and sustainable ingredients in various industries. This research investigated hydrocolloids extracted from Citrullus mucosospermus (CMS), lanatus citroides, and Moringa oleifera seeds, highlighting their versatile physicochemical and functional attributes. Hydrocolloids were extracted from the seeds and subjected to analysis of their proximate composition, particle size distribution, and interfacial tension using the hot water extraction method. Protein content variation was observed among the raw oilseed (CMS, Citroides, and Moringa oleifera) flours. The protein content of the hydrocolloids surpassed that of raw oilseeds, significantly enhancing the amino acid profile. Furthermore, the hydrocolloid ash contents ranged from 4.09% to 6.52% w/w dry weight, coupled with low fat levels. The particle size distribution revealed predominantly fine particles with a narrow size distribution. All three hydrocolloids demonstrated remarkable oil- and water-holding capacities, highlighting their suitability for efficient stabilisation and emulsification in food formulations. These findings suggest the potential utilisation of these hydrocolloids as valuable ingredients across a spectrum of applications, encompassing food, pharmaceuticals, and industry, thus contributing to the development of sustainable and functional products. The unique attributes presented herein mark a noteworthy advancement in the understanding and application of novel hydrocolloids from CMS, Citroides, and Moringa oleifera.
Collapse
Affiliation(s)
- Olakunbi Olubi
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| | - Anthony Obilana
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| | - Nsenda Tshilumbu
- Flow Process & Rheology Centre, Faculty of Engineering & the Built Environment, Cape Peninsula University of Technology, Cape Town 8000, South Africa; (N.T.); (V.F.)
| | - Veruscha Fester
- Flow Process & Rheology Centre, Faculty of Engineering & the Built Environment, Cape Peninsula University of Technology, Cape Town 8000, South Africa; (N.T.); (V.F.)
| | - Victoria Jideani
- Department of Food Science and Technology, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town 7535, South Africa; (O.O.); (A.O.)
| |
Collapse
|
13
|
Gomes-Dias JS, Teixeira-Guedes CI, Teixeira JA, Rocha CMR. Red seaweed biorefinery: The influence of sequential extractions on the functional properties of extracted agars and porphyrans. Int J Biol Macromol 2024; 257:128479. [PMID: 38040161 DOI: 10.1016/j.ijbiomac.2023.128479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Red seaweeds are exploited for their hydrocolloids, but other fractions are usually overlooked. In a novel approach, this study aimed to evaluate cold-water (CWE), ethanolic (EE), and alkaline (SE) extractions, alone and in sequence, to simultaneously: i) decrease the hydrocolloid extraction waste (valorizing bioactive side-streams and/or increasing extraction yield); and ii) increase the hydrocolloids' texturizing properties. It is the first time these extractions' synergetic and/or antagonistic effects will be accessed. For Porphyra dioica, a combination of CWE and EE was optimal: a positive influence on the melting temperature (increasing 5 °C to 74 °C) and sulphate content (a 3-fold reduction to 5 %) was observed, compared to a direct porphyran extraction. The same was observed for Gracilaria vermiculophyla, recovering two additional bioactive fractions without impacting the hydrocolloid's extraction (agar with 220 g/cm2 gelling strength and 14 % yield was obtained). The sequential use of CWE, EE, and SE was the most beneficial in Gelidium corneum processing: it enhanced agar's texturizing capacity (reaching 1150 g/cm2, a 1.5-fold increase when compared to a direct extraction), without affecting its 22 % yield or over 88 % purity. Ultimately, these findings clarified the effects of cascading biorefinery approaches from red seaweeds and their pertinence.
Collapse
Affiliation(s)
- Joana S Gomes-Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal
| | - Cristina M R Rocha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga, Portugal.
| |
Collapse
|
14
|
Shu Z, Wang G, Liu F, Xu Y, Sun J, Hu Y, Dong H, Zhang J. Genome Sequencing-Based Mining and Characterization of a Novel Alginate Lyase from Vibrio alginolyticus S10 for Specific Production of Disaccharides. Mar Drugs 2023; 21:564. [PMID: 37999388 PMCID: PMC10672080 DOI: 10.3390/md21110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Alginate oligosaccharides prepared by alginate lyases attracted great attention because of their desirable biological activities. However, the hydrolysis products are always a mixture of oligosaccharides with different degrees of polymerization, which increases the production cost because of the following purification procedures. In this study, an alginate lyase, Alg4755, with high product specificity was identified, heterologously expressed, and characterized from Vibrio alginolyticus S10, which was isolated from the intestine of sea cucumber. Alg4755 belonged to the PL7 family with two catalytic domains, which was composed of 583 amino acids. Enzymatic characterization results show that the optimal reaction temperature and pH of Alg4755 were 35 °C and 8.0, respectively. Furthermore, Alg4755 was identified to have high thermal and pH stability. Moreover, the final hydrolysis products of sodium alginate catalyzed by Alg4755 were mainly alginate disaccharides with a small amount of alginate trisaccharides. The results demonstrate that alginate lyase Alg4755 could have a broad application prospect because of its high product specificity and desirable catalytic properties.
Collapse
Affiliation(s)
- Zhiqiang Shu
- Department of Food Science and Technology, Shanghai Ocean University, Shanghai 200120, China;
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
| | - Gongming Wang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Fang Liu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yingjiang Xu
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.S.)
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Yang Hu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.S.)
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Hao Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.S.)
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, China
| | - Jian Zhang
- Shandong Marine Resource and Environment Research Institute, Yantai 264006, China; (G.W.)
- Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| |
Collapse
|
15
|
Su CY, Xia T, Li D, Wang LJ, Wang Y. Hybrid biodegradable materials from starch and hydrocolloid: fabrication, properties and applications of starch-hydrocolloid film, gel and bead. Crit Rev Food Sci Nutr 2023; 64:12841-12859. [PMID: 37707437 DOI: 10.1080/10408398.2023.2257786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The potential for utilizing starch and hydrocolloids as sustainable biomaterials has garnered significant attention among researchers. The biodegradability and functional properties of composite films, gels, and beads, as well as their environmental friendliness, make them attractive options for a variety of applications. However, the hydrophilicity, brittleness, and regeneration limitations of starch materials can be addressed through the incorporation of non-starch hydrocolloids. This article summarizes the formation mechanisms and interactions of starch-hydrocolloid films, gels, and gel beads, evaluates the factors that affect their structural and functional properties, and presents an overview of the progress made in their physicochemical and functional applications. The structure of starch-hydrocolloid composites is primarily formed through hydrogen bond interactions, and the source, proportion, and preparation conditions of the components are critical factors that affect the properties of the biomaterials. Starch-hydrocolloid films are primarily used for extending the shelf life of food products and detecting food freshness. Starch-hydrocolloid gels are utilized as adsorption materials, wound dressings, and flexible sensors, and starch-hydrocolloid beads are primarily employed for the controlled release of bioactive substances. It is clear that starch-hydrocolloid composites have the potential to develop novel advanced materials for various applications in the food, biological, and materials industries.
Collapse
Affiliation(s)
- Chun-Yan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Tong Xia
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, Beijing, China
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
16
|
Labade D, Sevamani S, Tabassum H, Madhyastha H, Wani M. Statistical optimization of process variables for agarase production using Microbacterium sp. SS5 strain from non-marine sources. Prep Biochem Biotechnol 2023; 54:393-406. [PMID: 37671950 DOI: 10.1080/10826068.2023.2245866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Agar oligosaccharides are thought to be valuable biomolecules with high bioactivity potential, along with a wide range of applications and advantages. The current study aimed to optimize the culture parameters required to produce agarase enzyme and agar oligosaccharides from industrial waste agar. Microbacterium spp. strain SS5 was isolated from a non-marine source and could synthesize oligo derivatives for use in a variety of industries ranging from food to pharmaceuticals. In addition, the strain and culture conditions were optimized to maximize extracellular agarase production. The bacterium grew best at pH 5.0 - 9.0, with an optimal pH of 7.5 - 8.0; temperatures ranging from 25 to 45 °C, with an optimal of 35 °C; and carbon and nitrogen concentrations of 0.5% each. Plackett-Burman experimental design and response surface methods were used to optimize various process parameters for agarase production by Microbacterium spp. strain SS5. Using the Plackett-Burman experimental design, eleven process factors were screened, and agar, beef extract, CaCl2, and beginning pH were found as the most significant independent variables affecting agarase production with confidence levels above 90%. To determine the optimal concentrations of the identified process factors on agarase production, the Box- Behnken design was used. Agarase production by Microbacterium spp. strain SS5 after optimization was 0.272 U/mL, which was determined to be greater than the result obtained from the basal medium (0.132 U/mL) before screening using Plackett-Burman and BBD with a fold increase of 2.06.
Collapse
Affiliation(s)
- Dinesh Labade
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Rise N' Shine Biotech Pvt. Ltd., Pune, Maharashtra, India
| | - Selvaraju Sevamani
- Chemical Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Salalah, Oman
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Harishkumar Madhyastha
- Department of Medical Sciences, Division of Cardio-Vascular Physiology, Miyazaki University, Miyazaki, Japan
| | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Rise N' Shine Biotech Pvt. Ltd., Pune, Maharashtra, India
| |
Collapse
|
17
|
Thaarup IC, Lichtenberg M, Nørgaard KTH, Xu Y, Lorenzen J, Thomsen TR, Bjarnsholt T. A collagen-based layered chronic wound biofilm model for testing antimicrobial wound products. Wound Repair Regen 2023; 31:500-515. [PMID: 37183189 DOI: 10.1111/wrr.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/10/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023]
Abstract
A new in vitro chronic wound biofilm model was recently published, which provided a layered scaffold simulating mammalian tissue composition on which topical wound care products could be tested. In this paper, we updated the model even further to mimic the dynamic influx of nutrients from below as is the case in a chronic wound. The modified in vitro model was created using collagen instead of agar as the main matrix component and contained both Staphylococcus aureus and Pseudomonas aeruginosa. The model was cast in transwell inserts and then placed in wound simulating media, which allowed for an exchange of nutrients and waste products across a filter. Three potential wound care products and chlorhexidine digluconate 2% solution as a positive control were used to evaluate the model. The tested products were composed of hydrogels made from completely biodegradable starch microspheres carrying different active compounds. The compounds were applied topically and left for 2-4 days. Profiles of oxygen concentration and pH were measured to assess the effect of treatments on bacterial activity. Confocal microscope images were obtained of the models to visualise the existence of microcolonies. Results showed that the modified in vitro model maintained a stable number of the two bacterial species over 6 days. In untreated models, steep oxygen gradients developed and pH increased to >8.0. Hydrogels containing active compounds alleviated the high oxygen consumption and decreased pH drastically. Moreover, all three hydrogels reduced the colony forming units significantly and to a larger extent than the chlorhexidine control treatment. Overall, the modified model expressed several characteristics similar to in vivo chronic wounds.
Collapse
Affiliation(s)
- Ida C Thaarup
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim T H Nørgaard
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
| | - Yijuan Xu
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Jan Lorenzen
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Trine R Thomsen
- Center for Microbial Communities, Aalborg University, Aalborg East, Denmark
- Environmental Technology, Danish Technology Institute, Aarhus, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
18
|
Santinon C, Beppu MM, Vieira MGA. Optimization of kappa-carrageenan cationization using experimental design for model-drug release and investigation of biological properties. Carbohydr Polym 2023; 308:120645. [PMID: 36813338 DOI: 10.1016/j.carbpol.2023.120645] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Cationization is a promising chemical modification technique that improves properties by attaching permanent positive charges to the backbone of biopolymers. Carrageenan is a widely available and non-toxic polysaccharide, commonly used in food industry but with low solubility in cold water. We performed a central composite design experiment to check the parameters that most influence the degree of cationic substitution and the film solubility. Hydrophilic quaternary ammonium groups on the carrageenan backbone enhance interaction in drug delivery systems and create active surfaces. Statistical analysis indicated that within the studied range, only the molar ratio between the cationizing reagent and the repeating disaccharide unit of carrageenan had a significant effect. Optimized parameters using 0.086 g of sodium hydroxide and glycidyltrimethylammonium/disaccharide repeating unit of 6.83 achieved 65.47 % degree of substitution and 4.03 % solubility. Characterizations confirmed the effective incorporation of cationic groups into the commercial structure of carrageenan and thermal stability improvement of the derivatives.
Collapse
Affiliation(s)
- Caroline Santinon
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Marisa Masumi Beppu
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Melissa Gurgel Adeodato Vieira
- School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
19
|
Rhein-Knudsen N, Reyes-Weiss D, Horn SJ. Extraction of high purity fucoidans from brown seaweeds using cellulases and alginate lyases. Int J Biol Macromol 2023; 229:199-209. [PMID: 36584780 DOI: 10.1016/j.ijbiomac.2022.12.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/30/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Fucoidans are fucose rich sulfated polysaccharides that are found in the cell wall of brown seaweeds and have been shown to have several beneficial bioactivities. In the present study, we report a new enzymatic extraction technique for the production of pure and intact fucoidans from the two brown seaweeds Saccharina latissima and Alaria esculenta. This new extraction protocol uses the commercial cellulase blend Cellic® CTec2 in combination with endo- and exo-acting thermophilic alginate lyases. The fucoidans obtained by this extraction technique are compared to traditionally extracted fucoidans in terms of chemical compositions and molecular weights and are shown to contain significantly higher amounts of fucose and sulfate, the main components of fucoidans, while cellulose, laminarin, and alginate contamination is low. Thus, by using this combination of enzymes, the extracted fucoidans do not undergo depolymerization during extraction and additional purification steps are not needed. The high purity fucoidans isolated by this new enzymatic extraction technique can be used to provide insight into the different fucoidan structures and biological activities.
Collapse
Affiliation(s)
- Nanna Rhein-Knudsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Diego Reyes-Weiss
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway.
| |
Collapse
|
20
|
Zhang F, Zhang K, Xian XY, Chen HQ, Chen XW, Zhang Z, Wu YR. Elimination of carbon catabolite repression through gene-modifying a solventogenic Clostridium sp. strain WK to enhance butanol production from the galactose-rich red seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160559. [PMID: 36574546 DOI: 10.1016/j.scitotenv.2022.160559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
With the determination of the Leloir pathway in a solventogenic wild-type strain WK through the transcriptional analysis, two pivotal genes (galK and galT) were systematically co-expressed to demonstrate a significantly enhanced galactose utilization for butanol production with the elimination of carbon catabolite repression (CCR). The gene-modified strain WK-Gal-4 could effectively co-utilize galactose and glucose by directly using an ultrasonication-assisted butyric acid-pretreated Gelidium amansii hydrolysate (BAU) as the substrate, exhibiting the optimal sugar consumption and butanol production from BAU of 20.31 g/L and 7.8 g/L with an increment by 62.35 % and 61.49 % over that by strain WK, respectively. This work for the first time develops a feasible approach to utilizing red algal biomass for butanol fermentation through exploring the metabolic regulation of carbohydrate catabolism, also offering a novel route to develop the future biorefinery using the cost-effective and sustainable marine feedstocks.
Collapse
Affiliation(s)
- Feifei Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China; Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Kan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xing-You Xian
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Hai-Qi Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiao-Wei Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China.
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong 510000, China.
| |
Collapse
|
21
|
Li F, Liu K. Research progress in the preparation, structural characterization, bioactivities, and potential applications of sulfated agarans from the genus Gracilaria. J Food Biochem 2022; 46:e14401. [PMID: 36136060 DOI: 10.1111/jfbc.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 07/25/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
The genus Gracilaria produces 80% of the world's industrial agar. Agar of this genus is a promising biologically active polymer, which has been used in the human diet and folk medicine, alternative for weight loss, treatment of diarrhea, etc. With more attention paid to the genus Gracilaria-sulfated agarans (GSAs), they exhibited multitudinous health benefits in antioxidant, antiviral, antibacterial, prebiotics, anti-tumor, anticoagulant, and antidiabetic. Various preparation procedures of GSAs making the diversities of structure and biological activity. Therefore, this review summarized the isolation, identification, bioactivity potentials, and applications of GSAs, providing a reference to the development of GSAs in functional food and pharmaceutical industry. PRACTICAL APPLICATIONS: The genus Gracilaria is known as a raw material for agar extraction. GSAs are food-grade agaran with the properties of thermoreversible gels at low concentrations, which are commonly used as an additive for making candies as well as raw material for making soup and snacks. They are used in folk medicine to treat diarrhea and other diseases. As an important bioactive macromolecule, GSAs have various biological activities (such as antioxidant, antiviral, antibacterial, probiotic, anti-tumor, anticoagulant, and antidiabetic activities), and have the potential to be developed as functional food and medicine. They could also be used to create innovative agar-based products such as antibacterial films and drug carriers.
Collapse
Affiliation(s)
- Feifei Li
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
22
|
Manat G, Fanuel M, Jouanneau D, Jam M, Mac-Bear J, Rogniaux H, Mora T, Larocque R, Lipinska A, Czjzek M, Ropartz D, Ficko-Blean E. Specificity of a β-porphyranase produced by the carrageenophyte red alga Chondrus crispus and implications of this unexpected activity on red algal biology. J Biol Chem 2022; 298:102707. [PMID: 36402445 PMCID: PMC9771727 DOI: 10.1016/j.jbc.2022.102707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial β-carrageenase and β-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected β-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 μM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 μM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This β-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.
Collapse
Affiliation(s)
- Guillaume Manat
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - Mathieu Fanuel
- INRAE, UR BIA, Nantes, France,INRAE, BIBS Facility, Nantes, France
| | - Diane Jouanneau
- CNRS, FR 2424, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Murielle Jam
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | | | - Hélène Rogniaux
- INRAE, UR BIA, Nantes, France,INRAE, BIBS Facility, Nantes, France
| | - Théo Mora
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - Robert Larocque
- CNRS, FR 2424, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Agnieszka Lipinska
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - Mirjam Czjzek
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France
| | - David Ropartz
- INRAE, UR BIA, Nantes, France,INRAE, BIBS Facility, Nantes, France
| | - Elizabeth Ficko-Blean
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, France,For correspondence: Elizabeth Ficko-Blean
| |
Collapse
|
23
|
Uji T, Mizuta H. The role of plant hormones on the reproductive success of red and brown algae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019334. [PMID: 36340345 PMCID: PMC9627609 DOI: 10.3389/fpls.2022.1019334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Seaweeds or macroalgae are important primary producers that serve as a habitat for functioning ecosystems. A sustainable production of macroalgae has been maintained by a diverse range of life cycles. Reproduction is the most dynamic change to occur during its life cycle, and it is a key developmental event to ensure the species' survival. There is gradually accumulating evidence that plant hormones, such as abscisic acid and auxin, have a role on the sporogenesis of brown alga (Saccharina japonica). Recent studies reported that 1-aminocylopropane-1-carboxylic acid, an ethylene precursor, regulates sexual reproduction in red alga (Neopyropia yezoensis) independently from ethylene. In addition, these macroalgae have an enhanced tolerance against abiotic and biotic stresses during reproduction to protect their gametes and spores. Herein, we reviewed the current understanding on the regulatory mechanisms of red and brown algae on their transition from vegetative to reproductive phase.
Collapse
|
24
|
Huang H, Zheng Z, Zou X, Wang Z, Gao R, Zhu J, Hu Y, Bao S. Genome Analysis of a Novel Polysaccharide-Degrading Bacterium Paenibacillus algicola and Determination of Alginate Lyases. Mar Drugs 2022; 20:md20060388. [PMID: 35736191 PMCID: PMC9227215 DOI: 10.3390/md20060388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are an important characteristic of bacteria in marine systems. We herein describe the CAZymes of Paenibacillus algicola HB172198T, a novel type species isolated from brown algae in Qishui Bay, Hainan, China. The genome of strain HB172198T is a 4,475,055 bp circular chromosome with an average GC content of 51.2%. Analysis of the nucleotide sequences of the predicted genes shows that strain HB172198T encodes 191 CAZymes. Abundant putative enzymes involved in the degradation of polysaccharides were identified, such as alginate lyase, agarase, carrageenase, xanthanase, xylanase, amylases, cellulase, chitinase, fucosidase and glucanase. Four of the putative polysaccharide lyases from families 7, 15 and 38 were involved in alginate degradation. The alginate lyases of strain HB172198T exhibited the maximum activity 152 U/mL at 50 °C and pH 8.0, and were relatively stable at pH 7.0 and temperatures lower than 40 °C. The average degree of polymerization (DP) of the sodium alginate oligosaccharide (AOS) degraded by the partially purified alginate lyases remained around 14.2, and the thin layer chromatography (TCL) analysis indicated that it contained DP2-DP8 oligosaccharides. The complete genome sequence of P. algicola HB172198T will enrich our knowledge of the mechanism of polysaccharide lyase production and provide insights into its potential applications in the degradation of polysaccharides such as alginate.
Collapse
Affiliation(s)
- Huiqin Huang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zhiguo Zheng
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Xiaoxiao Zou
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Zixu Wang
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Rong Gao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- College of Oceanography, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Jun Zhu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| | - Shixiang Bao
- Institute of Tropical Bioscience and Biotechnology, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (H.H.); (Z.Z.); (X.Z.); (Z.W.); (R.G.); (J.Z.)
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou 571101, China
- Correspondence: (Y.H.); (S.B.); Tel.: +86-898-66890671 (Y.H.); +86-898-66895379 (S.B.)
| |
Collapse
|
25
|
Shao Z, Duan D. The Cell Wall Polysaccharides Biosynthesis in Seaweeds: A Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:902823. [PMID: 35620682 PMCID: PMC9127767 DOI: 10.3389/fpls.2022.902823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 05/16/2023]
Abstract
Cell wall polysaccharides (CWPS) of seaweeds play crucial roles in mechanical shear resistance, cell-cell adhesion and the interactions with changeable marine environments. They have diverse applications in food, cosmetics, agriculture, pharmaceuticals and therapeutics. The recent boost of multi-omics sequence analysis has rapidly progressed the mining of presumed genes encoding enzymes involved in CWPS biosynthesis pathways. In this review, we summarize the biosynthetic pathways of alginate, fucoidan, agar, carrageenan and ulvan in seaweeds referred to the literatures on published genomes and biochemical characterization of encoded enzymes. Some transcriptomic data were briefly reported to discuss the correlation between gene expression levels and CWPS contents. Mannuronan C-5 epimerase (MC5E) and carbohydrate sulfotransferase (CST) are crucial enzymes for alginate and sulfated CWPS, respectively. Nonetheless, most CWPS-relevant genes were merely investigated by gene mining and phylogenetic analysis. We offer an integrative view of CWPS biosynthesis from a molecular perspective and discuss about the underlying regulation mechanism. However, a clear understanding of the relationship between chemical structure and bioactivities of CWPS is limited, and reverse genetic manipulation and effective gene editing tools need to be developed in future.
Collapse
Affiliation(s)
- Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co., Ltd., Qingdao, China
| |
Collapse
|
26
|
Rodríguez Sánchez RA, Matulewicz MC, Ciancia M. NMR spectroscopy for structural elucidation of sulfated polysaccharides from red seaweeds. Int J Biol Macromol 2022; 199:386-400. [PMID: 34973978 DOI: 10.1016/j.ijbiomac.2021.12.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022]
Abstract
Some sulfated polysaccharides from red seaweeds are used as hydrocolloids. In addition, it is well known that there are sulfated galactans (carrageenans and agarans) and sulfated mannans, with remarkable biological properties, as antiviral, antitumoral, immunomodulating, antiangiogenic, antioxidant, anticoagulant, and antithrombotic activities, and so on. Knowledge of the detailed structure of the active compound is essential and difficult to acquire. The substitution patterns of the polymer chain, as degree of sulfation and position of sulfate groups, as well as other substituents of the backbone, determine their biological behavior. NMR spectroscopy is a powerful and versatile tool for structural determination. It can be used for elucidation of structures of polysaccharides from new algal sources with novel substitutions or to detect the already known structures from different algal sources, and it could even help to monitor the quality of the active compound on a productive scale. In this review, the available information about NMR spectroscopy of sulfated polysaccharides from red seaweeds is revised and rationalized, to help other researchers working in different fields to study their structures. In addition, considerations about the effects of different structural features, as well as some recording conditions on the chemical shifts of the signals are analyzed.
Collapse
Affiliation(s)
- Rodrigo A Rodríguez Sánchez
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina.
| | - María C Matulewicz
- CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina.
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos, Cátedra de Química de Biomoléculas, Av. San Martín 4453, C1417DSE Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Centro de Investigación de Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria - Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
27
|
Demarco M, Oliveira de Moraes J, Matos ÂP, Derner RB, de Farias Neves F, Tribuzi G. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Medina-López SV, Zuluaga-Domínguez CM, Fernández-Trujillo JP, Hernández-Gómez MS. Nonconventional Hydrocolloids’ Technological and Functional Potential for Food Applications. Foods 2022; 11:foods11030401. [PMID: 35159551 PMCID: PMC8834643 DOI: 10.3390/foods11030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/05/2023] Open
Abstract
This review aims to study the alternatives to conventional industrial starches, describing uncommon sources along with their technological characteristics, processing, and performance on food products. Minor components remaining after extraction play an important role in starch performance despite their low percentage, as happens with tuber starches, where minerals may affect gelatinization. This feature can be leveraged in favor of the different needs of the food industry, with diversified applications in the market being considered in the manufacture of both plant and animal-based products with different sensory attributes. Hydrocolloids, different from starch, may also modify the technological outcome of the amylaceous fraction; therefore, combinations should be considered, as advantages and disadvantages linked to biological origin, consumer perception, or technological performance may arise. Among water-based system modifiers, starches and nonstarch hydrocolloids are particularly interesting, as their use reaches millions of sales in a multiplicity of specialties, including nonfood businesses, and could promote a diversified scheme that may address current monocrop production drawbacks for the future sustainability of the food system.
Collapse
Affiliation(s)
- Sandra Viviana Medina-López
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogota 111321, Colombia; (S.V.M.-L.); (M.S.H.-G.)
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | | | | | - María Soledad Hernández-Gómez
- Instituto de Ciencia y Tecnología de Alimentos (ICTA), Universidad Nacional de Colombia, Bogota 111321, Colombia; (S.V.M.-L.); (M.S.H.-G.)
- Instituto Amazónico de Investigaciones Científicas (SINCHI), Bogota 110311, Colombia
| |
Collapse
|
29
|
Tiozon RJN, Bonto AP, Sreenivasulu N. Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review. Int J Biol Macromol 2021; 192:100-117. [PMID: 34619270 DOI: 10.1016/j.ijbiomac.2021.09.194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Rice starch has been used in various agri-food products due to its hypoallergenic properties. However, rice starch has poor solubility, lower resistant starch content with reduced retrogradation and poor functional properties. Hence, its industrial applications are rather limited. The lack of comprehensive information and a holistic understanding of the interaction between rice starch and endo/exogenous constituents to improve physico-chemical properties is a prerequisite in designing industrial products with enhanced functional attributes. In this comprehensive review, we highlight the potentials of physically mixing of biopolymers in upgrading the functional characteristics of rice starch as a raw material for industrial applications. Specifically, this review tackles rice starch modifications by adding natural/synthetic polymers and plasticizers, leading to functional blends or composites in developing sustainable packaging materials, pharma- and nutraceutical products. Moreover, a brief discussion on rice starch chemical and genetic modifications to alter starch quality for the deployment of rice starch industrial application is also highlighted.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer driven Grain Quality and Nutrition unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Aldrin P Bonto
- Chemistry Department, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines; Department of Chemistry, College of Science, University of Santo Tomas, España Blvd, Sampaloc, Manila, 1008, Metro Manila, Philippines.
| | - Nese Sreenivasulu
- Consumer driven Grain Quality and Nutrition unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| |
Collapse
|
30
|
Zhang K, Hong Y, Chen C, Wu YR. Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii through a distinct acidolytic pretreatment. BIORESOURCE TECHNOLOGY 2021; 342:125939. [PMID: 34555752 DOI: 10.1016/j.biortech.2021.125939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Exploration of the algae-derived biobutanol synthesis has become one of the hotspots due to its highly cost-effective and environment-friendly features. In this study, a solventogenic strain Clostridium sp. strain WK produced 13.96 g/L butanol with a maximal yield of 0.41 g/g from glucose in the presence of 24 g/L butyrate. Transcriptional analysis indicated that the acid re-assimilation of this strain was predominantly regulated by genes buk-ptb rather than ctfAB, explaining its special phenotypes including high butyrate tolerance and the pH-independent fermentation. In addition, a butyric acid-mediated hydrolytic system was established for the first time to release a maximal yield of 0.35 g/g reducing sugars from the red algal biomass (Gelidium amansii). Moreover, 4.48 g/L of butanol was finally achieved with a significant enhancement by 29.9 folds. This work reveals an unconventional metabolic pathway for butanol synthesis in strain WK, and demonstrates the feasibility to develop renewable biofuels from marine resources.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Ying Hong
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chaoyang Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; Beijing Tidetron Bioworks Company, Beijing 100190, China.
| |
Collapse
|
31
|
Rhein-Knudsen N, Guan C, Mathiesen G, Horn SJ. Expression and production of thermophilic alginate lyases in Bacillus and direct application of culture supernatant for seaweed saccharification. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|