1
|
Afifah A, Zuhairini Y, Ariyanto EF, Ghozali M, Fatimah SN, Pramatirta AY. The Potential Impact of Dietary Fiber Supplementation on Hemoglobin and Reticulocyte Hemoglobin Equivalent (RET-He) Levels in Pregnant Women with Anemia Receiving Oral Iron Therapy in Indonesia. J Multidiscip Healthc 2025; 18:183-193. [PMID: 39844923 PMCID: PMC11750942 DOI: 10.2147/jmdh.s497795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Anemia during pregnancy can lead to physical and cognitive impairments, fatigue, and postpartum depression. Dietary fiber, as a prebiotic, supports gut health by producing short-chain fatty acids, which enhance immunity and aid iron absorption. This study investigates the impact of fiber supplementation on hemoglobin and reticulocyte hemoglobin equivalent (RET-He) levels in anemic pregnant women receiving oral iron therapy. Patients and Methods This study used a quasi-experimental design with a control group. The subjects were anemic pregnant women between 14 and 32 weeks of gestation. Fifteen control subjects received iron tablets and skim milk (placebo), while 25 intervention subjects received iron tablets and a fiber supplement containing 7.2 grams of dietary fiber. Hemoglobin and RET-He levels were measured before and after the intervention with a Sysmex hematology analyzer. The differences in hemoglobin and RET-He changes were analyzed using the independent sample T-test. Results After 14 days of intervention, the average hemoglobin increase in the intervention group was 0.772±0.815, compared to 0.167±0.564 in the control group, with a p-value of 0.016. There was a significant decrease in the intervention group (p=0.018) and the control group (p=0.008) with normal RET-He values. The average change in RET-He values for the normal group with intervention was -1.44 ± 0.99 and control was -1.63 ± 1.19 (p=0.715), while for the low group with intervention it was 1.65 ± 3.024 and control was 0.55 ± 2.654 (p=0.402). Conclusion This study concludes that fiber supplementation for 14 days in pregnant women with anemia can significantly increase hemoglobin levels compared to the control group There was a decrease in RET-He values after the intervention in the normal group and an increase in the low group, although it was not statistically significant.
Collapse
Affiliation(s)
- Adilah Afifah
- Master Program of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, 40161, Indonesia
| | - Yenni Zuhairini
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Mohammad Ghozali
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Siti Nur Fatimah
- Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Akhmad Yogi Pramatirta
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Dr. Hasan Sadikin General Hospital, Bandung, West Java, 45363, Indonesia
| |
Collapse
|
2
|
Armah A, Jackson C, Kolba N, Gracey PR, Shukla V, Padilla-Zakour OI, Warkentin T, Tako E. Effects of Pea ( Pisum sativum) Prebiotics on Intestinal Iron-Related Proteins and Microbial Populations In Vivo ( Gallus gallus). Nutrients 2024; 16:1856. [PMID: 38931211 PMCID: PMC11206367 DOI: 10.3390/nu16121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.
Collapse
Affiliation(s)
- Abigail Armah
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Peter R. Gracey
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Viral Shukla
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| | - Tom Warkentin
- Crop Development Centre, Department of Plant Sciences, University of Saskatchewan, 51 Campus Dr., Saskatoon, SK S7N 5A8, Canada;
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (A.A.); (C.J.); (N.K.); (P.R.G.); (V.S.); (O.I.P.-Z.)
| |
Collapse
|
3
|
Sun W, Bu K, Meng H, Zhu C. Hawthorn pectin/soybean isolate protein hydrogel bead as a promising ferrous ion-embedded delivery system. Colloids Surf B Biointerfaces 2024; 237:113867. [PMID: 38522284 DOI: 10.1016/j.colsurfb.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Huangmei Meng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
4
|
Iddrisu I, Monteagudo-Mera A, Poveda C, Shahzad M, Walton GE, Andrews SC. A review of the effect of iron supplementation on the gut microbiota of children in developing countries and the impact of prebiotics. Nutr Res Rev 2024:1-9. [PMID: 38586996 DOI: 10.1017/s0954422424000118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Iron is essential for many physiological functions of the body, and it is required for normal growth and development. Iron deficiency (ID) is the most common form of micronutrient malnutrition and is particularly prevalent in infants and young children in developing countries. Iron supplementation is considered the most effective strategy to combat the risk of ID and ID anaemia (IDA) in infants, although iron supplements cause a range of deleterious gut-related problems in malnourished children. The purpose of this review is to assess the available evidence on the effect of iron supplementation on the gut microbiota during childhood ID and to further assess whether prebiotics offer any benefits for iron supplementation. Prebiotics are well known to improve gut-microbial health in children, and recent reports indicate that prebiotics can mitigate the adverse gut-related effects of iron supplementation in children with ID and IDA. Thus, provision of prebiotics alongside iron supplements has the potential for an enhanced strategy for combatting ID and IDA among children in the developing world. However, further understanding is required before the benefit of such combined treatments of ID in nutritionally deprived children across populations can be fully confirmed. Such enhanced understanding is of high relevance in resource-poor countries where ID, poor sanitation and hygiene, alongside inadequate access to good drinking water and poor health systems, are serious public health concerns.
Collapse
Affiliation(s)
- Ishawu Iddrisu
- Rose Ward, Prospect Park Hospital, Berkshire Healthcare NHS Foundation Trust, Reading, RG30 4EJ, UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| | - Andrea Monteagudo-Mera
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Muhammed Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
- Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Simon C Andrews
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6EX, UK
| |
Collapse
|
5
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
6
|
Tan C, Karaca AC, Assadpour E, Jafari SM. Influence of different nano/micro-carriers on the bioavailability of iron: Focus on in vitro-in vivo studies. Adv Colloid Interface Sci 2023; 318:102949. [PMID: 37348384 DOI: 10.1016/j.cis.2023.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Anemia resulting from iron (Fe) deficiency is a global public health problem. The deficiency of Fe is usually due to insufficient dietary intake of iron, interaction of Fe with other food components, and thus low bioaccessibility/bioavailability. Fe encapsulation has the potential to tackle some major challenges in iron fortification of foods. Various nano/micro-carriers have been developed for encapsulation of Fe, including emulsions, liposomes, hydrogels, and spray-dried microcapsules. They could reduce the interactions of Fe with food components, increase iron tolerance and intestinal uptake, and decrease adverse effects. This article review covers the factors affecting the bioavailability of Fe along with emerging carriers that can be used as a solution of this issue. The application of Fe-loaded carriers in food supplements and products is also described. The advantages and limitations associated with the delivery efficiency of each carrier for Fe are highlighted.
Collapse
Affiliation(s)
- Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
7
|
Feng Y, Wassie T, Wu Y, Wu X. Advances on novel iron saccharide-iron (III) complexes as nutritional supplements. Crit Rev Food Sci Nutr 2023; 64:10239-10255. [PMID: 37366165 DOI: 10.1080/10408398.2023.2222175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Iron deficiency is prevalent worldwide, and iron supplementation is a promising strategy to address iron needs of the body. However, traditional oral supplements such as ferrous sulfate, ferrous succinate, and ferrous gluconate are absorbed in the form of ferrous ions, leading to lipid peroxidation and side effects due to other reasons. In recent years, saccharide-iron (III) complexes (SICs) as novel iron supplements have aroused attention for the high iron absorption rate and no gastrointestinal irritation at oral doses. In addition, research on the biological activities of SICs revealed that they also exhibited good abilities in treating anemia, eliminating free radicals, and regulating the immune response. This review focused on the preparation, structural characterization, and bioactivities of these new iron supplements, as promising candidates for the prevention and treatment of iron deficiency.
Collapse
Affiliation(s)
- Yingying Feng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Teketay Wassie
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| | - Yuying Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
| |
Collapse
|
8
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
9
|
Yin N, Chang X, Xiao P, Zhou Y, Liu X, Xiong S, Wang P, Cai X, Sun G, Cui Y, Hu Z. Role of microbial iron reduction in arsenic metabolism from soil particle size fractions in simulated human gastrointestinal tract. ENVIRONMENT INTERNATIONAL 2023; 174:107911. [PMID: 37030286 DOI: 10.1016/j.envint.2023.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Gut microbiota provides protection against arsenic (As) induced toxicity, and As metabolism is considered an important part of risk assessment associated with soil As exposures. However, little is known about microbial iron(III) reduction and its role in metabolism of soil-bound As in the human gut. Here, we determined the dissolution and transformation of As and Fe from incidental ingestion of contaminated soils as a function of particle size (<250 μm, 100-250 μm, 50-100 μm and < 50 μm). Colon incubation with human gut microbiota yielded a high degree of As reduction and methylation of up to 53.4 and 0.074 μg/(log CFU/mL)/hr, respectively; methylation percentage increased with increasing soil organic matter and decreasing soil pore size. We also found significant microbial Fe(III) reduction and high levels of Fe(II) (48 %-100 % of total soluble Fe) may promote the capacity of As methylation. Although no statistical change in Fe phases was observed with low Fe dissolution and high molar Fe/As ratios, higher As bioaccessibility of colon phase (avg. 29.4 %) was mainly contributed from reductive dissolution of As(V)-bearing Fe(III) (oxy)hydroxides. Our results suggest that As mobility and biotransformation by human gut microbiota (carrying arrA and arsC genes) are strongly controlled by microbial Fe(III) reduction coupled with soil particle size. This will expand our knowledge on oral bioavailability of soil As and health risks from exposure to contaminated soils.
Collapse
Affiliation(s)
- Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xuhui Chang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Peng Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xiaotong Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Shimao Xiong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guoxin Sun
- Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China
| |
Collapse
|
10
|
Husmann FMD, Zimmermann MB, Herter-Aeberli I. The Effect of Prebiotics on Human Iron Absorption: A Review. Adv Nutr 2022; 13:2296-2304. [PMID: 35816457 PMCID: PMC9776726 DOI: 10.1093/advances/nmac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/22/2022] [Accepted: 07/06/2022] [Indexed: 01/29/2023] Open
Abstract
Iron deficiency remains the most common nutritional deficiency. Oral iron supplementation is the recommended first-line treatment and used as a preventive measure as well. Enhancers of iron absorption are highly sought after to improve supplementation outcomes. Evidence from animal and human studies exists that prebiotics can enhance iron absorption. The purpose of this present narrative review of the literature is to summarize the existing evidence on the effects of prebiotics on human iron absorption. Relevant articles were identified from PUBMED, Scopus, and Web of Science from inception to November 2021. Only human trials investigating the effect of prebiotics on iron absorption were included. Eleven articles were identified and included for review. There are promising findings supporting an enhancing effect of certain prebiotics, but inconsistencies between the studies and results exist. The most convincing evidence exists for the prebiotics galacto-oligosaccharides and fructo-oligosaccharides combined with the commonly used iron compound ferrous fumarate, from studies in adult women with low iron stores and in anemic infants. Many factors seem to play a role in the enhancing effect of prebiotics on iron absorption such as type of prebiotic, dose, acute (single-dose) or chronic (long-term) prebiotic consumption, iron compound, iron status, inflammatory status, and age of the population studied. More research investigating the optimal combination of prebiotic, iron compound, and dose as well as the effect of long-term application on iron status outcomes is needed.
Collapse
Affiliation(s)
- Frederike M D Husmann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| | - Michael B Zimmermann
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| | - Isabelle Herter-Aeberli
- Laboratory of Human Nutrition, Institute of Food, Nutrition and
Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Iqbal S, Ahmed W, Zafar S, Farooq U, Abid J, Shah HBU, Akram S, Ghazanfar M, Ahmad AMR. Effect of inulin, galacto oligosaccharides and iron fortification on iron deficiency anemia among women of reproductive age; a randomized controlled trial. Front Nutr 2022; 9:1028956. [DOI: 10.3389/fnut.2022.1028956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Iron supplementation and fortification are the well-known approaches to treat iron deficiency anemia (IDA) in women of reproductive age. The objective of the current randomized controlled trial (RCT) was to evaluate the cumulative effects of prebiotics and iron fortification among women of reproductive age. For this purpose, a total of 75 iron deficient women of childbearing age were recruited and randomly divided into 5 groups (4 treatment groups and 1 control group). Four different types of fortified wheat flour were prepared using two iron fortificants (NaFeEDTA and FeSO4) and two prebiotics [inulin and galacto oligosaccharides (GOS)], while control group was treated with iron fortified flour without any prebiotics. Blood samples were collected from overnight fasted women on monthly basis up to 90 days. Hematological indices such as Hemoglobin (Hb), Hematocrit, Red Blood Cell (RBC) Count and Mean Corpuscular Volume (MCV), as well as iron biomarkers including serum iron, ferritin, transferrin, and Total Iron Binding Capacity (TIBC) were evaluated for analyses. The results showed a considerable positive improvement in all iron biomarkers as well as hematological indices among the treatment groups (P-value < 0.05), as compared to the control group. A maximum Hb (11.86 ± 0.24 mg/dL) and hematocrit value (35.06 ± 1.32%), was reported in group G3 which was treated with fortified wheat flour at a dose of 963 mg/kg GOS + 15 ppm FeSO4. On the other hand, highest mean values for RBC Count (4.73 ± 0.41 mil/mm3), MCV (81.41 ± 3.21 fL), serum iron (75.62 ± 2.79 μg/dL), serum transferrin (16.82 ± 0.30 mg/dL), and TIBC (403.68 ± 7.27 μg/dL) were observed in G4 group receiving the fortified wheat flour at a dose of 963 mg/kg GOS + 30 ppm FeSO4 level. The study concluded that prebiotic fortification along with iron salts helps to enhance iron absorption among iron deficiency anemic women of reproductive age.
Collapse
|
12
|
Souza AFCE, Gabardo S, Coelho RDJS. Galactooligosaccharides: Physiological benefits, production strategies, and industrial application. J Biotechnol 2022; 359:116-129. [DOI: 10.1016/j.jbiotec.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
|
13
|
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Pawlos M. Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions. Nutrients 2022; 14:nu14214454. [PMID: 36364717 PMCID: PMC9655080 DOI: 10.3390/nu14214454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
We conducted a study to determine the survival of bacterial cells under in vitro digestion. For this purpose, ice cream mixes were prepared: control, with 4% inulin, 2.5% inulin and 1.5% apple fiber and 4% apple fiber. Each inoculum (pH = 4.60 ± 0.05), containing 9 log cfu g-1 bacteria, at 5% (w/w) was added to the ice cream mixes (Lacticaseibacilluscasei 431, Lactobacillus acidophilus LA-5, Lacticaseibacillus paracasei L-26, Lacticaseibacillusrhamnosus, Bifidobacterium animalis ssp. lactis BB-12) and fermentation was carried out to pH 4.60 ± 0.05. The in vitro digestion method simulated the stages of digestion that occur in the mouth, stomach and small intestine under optimal controlled conditions (pH value, time and temperature). At each stage of digestion, the survival rate of probiotic bacteria was determined using the plate-deep method. As expected, in the oral stage, there was no significant reduction in the viability of the probiotic bacteria in any ice cream group compared to their content before digestion. In the stomach stage, Bifidobacterium animalis ssp. lactis BB-12 strain had the highest viable counts (8.48 log cfu g-1) among the control samples. Furthermore, a 4% addition of inulin to ice cream with Bifidobacterium BB-12 increased gastric juice tolerance and limited strain reduction by only 16.7% compared to the number of bacterial cells before digestion. Regarding ice cream samples with Bifidobacterium BB-12, replacing part of the inulin with apple fiber resulted in increased survival at the stomach stage and a low reduction in the bacterial population of only 15.6% compared to samples before digestion. At the stomach stage, the positive effect of the addition of inulin and apple fiber was also demonstrated for ice cream samples with Lacticaseibacilluscasei 431 (9.47 log cfu g-1), Lactobacillus acidophilus LA-5 (8.06 log cfu g-1) and Lacticaseibacillus paracasei L-26 (5.79 log cfu g-1). This study showed the highest sensitivity to simulated gastric stress for ice cream samples with Lacticaseibacillusrhamnosus (4.54 log cfu g-1). Our study confirmed that the 4% addition of inulin to ice cream increases the survival rate of L. casei and Bifidobacterium BB-12 in simulated intestinal juice with bile by 0.87 and 2.26 log cfu g-1, respectively. The highest viable count in the small intestine stage was observed in ice cream with L. acidophilus. The addition of inulin increased the survival of L. rhamnosus by 10.8% and Bifidobacterium BB-12 by about 22% under conditions of simulated in vitro digestion compared to their control samples. The survival rates of L. casei and L. paracasei were also highly affected by the 4% addition of apple fiber, where the increase under gastrointestinal passage conditions was determined to range from 7.86-11.26% compared to their control counterparts. In comparison, the lowest survival rate was found in the control ice cream with L. rhamnosus (47.40%). In our study at the intestinal stage, only five ice cream groups: a sample with 4% inulin and L. acidophilus, a control sample with Bifidobacterium BB12, a sample with 2.5% inulin and 1.5% apple fiber with Bifidobacterium BB12, a control sample with L. rhamnosus, a sample with 4% fiber and L. rhamnosus reported bacterial cell counts below 6 log cfu g-1 but higher than 5 log cfu g-1. However, in the remaining ice cream groups, viable counts of bacterial cells ranged from 6.11 to 8.88 log cfu g-1, ensuring a therapeutic effect. Studies have clearly indicated that sheep milk ice cream could provide a suitable matrix for the delivery of probiotics and prebiotics and contribute to intestinal homeostasis. The obtained results have an applicative character and may play an essential role in developing new functional sheep milk ice cream.
Collapse
|
14
|
Characteristics and bioactive properties of agro-waste and yeast derived manno-oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Prebiotics, Probiotics, and Postbiotics in the Prevention and Treatment of Anemia. Microorganisms 2022; 10:microorganisms10071330. [PMID: 35889049 PMCID: PMC9317605 DOI: 10.3390/microorganisms10071330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
Iron deficiency anemia (IDA) is very common and affects approximately 1/3 of the world’s human population. There are strong research data that some probiotics, such as Lactobacillus acidophilus and Bifidobacterium longum improve iron absorption and influence the course of anemia. Furthermore, prebiotics, including galactooligosaccharides (GOS) and fructooligosaccharides (FOS), increase iron bioavailability and decrease its destructive effect on the intestinal microbiota. In addition, multiple postbiotics, which are probiotic metabolites, including vitamins, short-chain fatty acids (SCFA), and tryptophan, are involved in the regulation of intestinal absorption and may influence iron status in humans. This review presents the actual data from research studies on the influence of probiotics, prebiotics, and postbiotics on the prevention and therapy of IDA and the latest findings regarding their mechanisms of action. A comparison of the latest research data and theories regarding the role of pre-, post-, and probiotics and the mechanism of their action in anemias is also presented and discussed.
Collapse
|
16
|
Ojwach J, Adetunji AI, Mutanda T, Mukaratirwa S. Oligosaccharides production from coprophilous fungi: An emerging functional food with potential health-promoting properties. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2022; 33:e00702. [PMID: 35127459 PMCID: PMC8803601 DOI: 10.1016/j.btre.2022.e00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Functional foods are essential food products that possess health-promoting properties for the treatment of infectious diseases. In addition, they provide energy and nutrients, which are required for growth and survival. They occur as prebiotics or dietary supplements, including oligosaccharides, processed foods, and herbal products. However, oligosaccharides are more efficiently recognized and utilized, as they play a fundamental role as functional ingredients with great potential to improve health in comparison to other dietary supplements. They are low molecular weight carbohydrates with a low degree of polymerization. They occur as fructooligosaccharide (FOS), inulooligosaccharadie (IOS), and xylooligosaccahride (XOS), depending on their monosaccharide units. Oligosaccharides are produced by acid or chemical hydrolysis. However, this technique is liable to several drawbacks, including inulin precipitation, high processing temperature, low yields, and high production costs. As a consequence, the application of microbial enzymes for oligosaccharide production is recognized as a promising strategy. Microbial enzymatic production of FOS and IOS occurs by submerged or solid-state fermentation in the presence of suitable substrates (sucrose, inulin) and catalyzed by fructosyltransferases and inulinases. Incorporation of FOS and IOS enriches the rheological and physiological characteristics of foods. They are used as low cariogenic sugar substitutes, suitable for diabetics, and as prebiotics, probiotics and nutraceutical compounds. In addition, these oligosaccharides are employed as anticancer, antioxidant agents and aid in mineral absorption, lipid metabolism, immune regulation etc. This review, therefore, focuses on the occurrence, physico-chemical characteristics, and microbial enzymatic synthesis of FOS and IOS from coprophilous fungi. In addition, the potential health benefits of these oligosaccharides were discussed in detail.
Collapse
Affiliation(s)
- Jeff Ojwach
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Department of Biodiversity and Conservation Biology, Faculty of Natural Science, University of the Western Cape, Private Bag X17 Bellville 7530, South Africa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Adegoke Isiaka Adetunji
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Taurai Mutanda
- Centre for Algal Biotechnology, Department of Nature Conservation, Faculty of Natural Sciences, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, Durban, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, College of Agriculture Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University, School of Veterinary Medicine, P.O. Box 334, Basseterre, St. Kitts, West Indies
| |
Collapse
|
17
|
Zhai L, Wu J, Lam YY, Kwan HY, Bian ZX, Wong HLX. Gut-Microbial Metabolites, Probiotics and Their Roles in Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms222312846. [PMID: 34884651 PMCID: PMC8658018 DOI: 10.3390/ijms222312846] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a worldwide prevalent metabolic disorder defined by high blood glucose levels due to insulin resistance (IR) and impaired insulin secretion. Understanding the mechanism of insulin action is of great importance to the continuing development of novel therapeutic strategies for the treatment of T2D. Disturbances of gut microbiota have been widely found in T2D patients and contribute to the development of IR. In the present article, we reviewed the pathological role of gut microbial metabolites including gaseous products, branched-chain amino acids (BCAAs) products, aromatic amino acids (AAAs) products, bile acids (BA) products, choline products and bacterial toxins in regulating insulin sensitivity in T2D. Following that, we summarized probiotics-based therapeutic strategy for the treatment of T2D with a focus on modulating gut microbiota in both animal and human studies. These results indicate that gut-microbial metabolites are involved in the pathogenesis of T2D and supplementation of probiotics could be beneficial to alleviate IR in T2D via modulation of gut microbiota.
Collapse
Affiliation(s)
- Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, New Territories, Hong Kong, China;
| | - Jiayan Wu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
| | - Yan Y. Lam
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, New Territories, Hong Kong, China;
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
| | - Zhao-Xiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
- Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, New Territories, Hong Kong, China;
- Correspondence: (Z.-X.B.); (H.L.X.W.)
| | - Hoi Leong Xavier Wong
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China; (L.Z.); (J.W.); (H.Y.K.)
- Correspondence: (Z.-X.B.); (H.L.X.W.)
| |
Collapse
|
18
|
Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Mollakhalili-Meybodi N, Arab M, Nematollahi A, Mousavi Khaneghah A. Prebiotic wheat bread: Technological, sensorial and nutritional perspectives and challenges. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Sakara VS, Melnyk AY, Sakhniuk VV, Vovkotrub NV, Fedorchenko MM, Balatskiy YО, Bondarenko LV. Efficacy of manganese pantothenate and lysinate chelates for prevention of perosis in broiler chickens. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Perosis is a common metabolic disease of industrial birds, especially broiler chickens. It leads to a violation of the balance of biotic substances in the body of chickens, which is clinically manifested by the curvature of the limbs, reduced mobility, and, consequently, reduced profitability of meat production. Prevention of perosis is possible provided that chickens receive a sufficient amount of manganese in a biologically available form. Studies were conducted to determine the efficiency of use of manganese chelates (pantothenate and lysinate) for prevention of perosis in broiler chickens. Efficacy was confirmed by examining changes in the clinical state, indicators of protein and mineral metabolism, as well as meat productivity of birds. For the experiment, broiler chickens of the Cobb-500 cross were taken at the age of 14 days. The birds of the control group received a standard diet, and the chickens from two experimental groups additionally received manganese pantothenate and lysinate with water during the critical period for the development of perosis – 14–28 days old. After 14 days of administration of manganese pantothenate and lysinate, the weight of the experimental birds at the age of 28 days was greater by 133.6 g (+11.0%) and 142.2 g (+11.7%), respectively, in comparison with poultry of the control group. Additional provision of manganese pantothenate and lysinate to chickens of the experimental groups contributed to an increase in the blood serum total protein concentration by 11.0% and 12.8 %, albumin – by 10.1% and 8.2%, magnesium – by 8.1% and 9.0% and manganese – by 29.6% and 26.9%, respectively, compared with indicies of the control group birds. The use of manganese chelates in the form of pantothenate (0.2 mL/L of water) and a lysinate (0.5 mL/L) during the 14–28th days of broiler chickens’ rearing provides 100% prevention of perosis. This reduces the death of broiler chickens, increases body weight, and, as a result, significantly increases the profitability of meat production.
Collapse
|
21
|
Rajagukguk YV, Arnold M, Gramza-Michałowska A. Pulse Probiotic Superfood as Iron Status Improvement Agent in Active Women-A Review. Molecules 2021; 26:molecules26082121. [PMID: 33917113 PMCID: PMC8067853 DOI: 10.3390/molecules26082121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022] Open
Abstract
Active women or women of reproductive age (15–49 years old) have a high risk of suffering from anaemia. Anaemia is not solely caused by iron deficiency, however, the approaches to improve iron status in both cases are greatly related. Improving the iron status of active women can be done by dietary intervention with functional food. This review aims to provide insights about the functional food role to increase iron absorption in active women and the potency of pulse probiotic superfood development in dry matrices. Results showed that the beneficial effect of iron status is significantly improved by the synergic work between probiotic and prebiotic. Furthermore, chickpeas and lentils are good sources of prebiotic and the consumption of pulses are related with 21st century people’s intention to eat healthy food. There are wide possibilities to develop functional food products incorporated with probiotics to improve iron status in active woman.
Collapse
|