1
|
Li Z, Zhang Y, Balle T, Eser BE, Fang Y, Guo Z. Preparation of Cello-Oligosaccharides by Precise-Controlled Enzymatic Depolymerization and Its Amphiphilic Functionalization for High-Oil Load Emulsification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39757467 DOI: 10.1021/acs.jafc.4c08886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Cello-oligosaccharides (COS) are gaining great attention for their prebiotic-like properties, e.g., boosting gut health by promoting beneficial bacteria and improving digestion. This study produced COS, consisting predominantly of 4-10 glucose units (>80% of total COS) through enzymatic selective hydrolysis of cellulose using Ultimase BWL 40 (endoglucanase and xylanase) and Celluclast 1.5 L (cellobiohydrolases and endoglucanase). Celluclast 1.5 L mediated hydrolysis of cellulose for 7 h, yielding 22% COS, and Ultimase BWL 40 for 24 h afforded 32% COS to a large extent governed by the patterns of composed hydrolytes associated with the components and specificity of the enzyme recipe. Moreover, a novel kind of amphiphilic COS product was developed through (2-dodecen-1-yl succinyl) alkylsuccinylation of COS, confirmed by Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (1HNMR) spectroscopy; thereby, COS was endowed with the amphiphilic property. Not surprisingly, alkylsuccinylated COS (SAC12) stabilized cosurfactant-free emulsions of high oil-load, e.g., 70 wt % fish oil-in-water emulsions, achieving remarkably homogeneous nano-/microdroplets (500-540 nm), extremely narrow polydispersity index (PDI < 0.1), and strongly negative zeta potential (-45 to -48 mV), thus demonstrating exceptional stability. Overall, alkylsuccinylated COS (SAC12) offers superior emulsifying capabilities without a cosurfactant while maintaining prebiotic benefits, thus providing a versatile sustainable solution for various nutraceutical/pharmaceutical applications.
Collapse
Affiliation(s)
- Ziqian Li
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Thomas Balle
- Novozymes A/S (Part of Novonesis Group), Biologiens Vej 2 , 2800 Kgs.Lyngby, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| | - Yong Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark
| |
Collapse
|
2
|
Chen J, Zhang Y, Liu H, Lu H, Xu X, Shen M. Sodium alginate-camellia seed cake protein active packaging film cross-linked by electrostatic interactions for fruit preservation. Int J Biol Macromol 2024; 288:138627. [PMID: 39667451 DOI: 10.1016/j.ijbiomac.2024.138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The evolution of production and lifestyle patterns has led to an increasing demand for multifunctional packaging materials that exceed the capabilities of traditional single-function options, thus driving continuous innovation in the field. In this study, a novel approach is presented, where camellia seed cake protein, derived from camellia seed oil production by-products, is incorporated into sodium alginate to create biobased active packaging films. The antioxidant and UV-shielding properties of the sodium alginate-camellia seed cake protein films are enhanced by the incorporation of camellia seed cake protein. A closely intertwined structure is created between sodium alginate and camellia seed cake protein through electrostatic interactions, resulting in effective water vapor barrier capabilities. Furthermore, the active packaging films exhibit antimicrobial activity against E. coli and S. aureus, providing significant advantages for fruit preservation. This research is essential in delaying fruit spoilage, extending shelf life, and providing new insights into the development of biobased multifunctional food packaging materials.
Collapse
Affiliation(s)
- Jing Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China
| | - Yannan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Haiqin Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, Guangxi Zhuang Autonomous Region, China.
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Minggui Shen
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Laboratory of Biomass Energy and Material, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Laboratory for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
3
|
Lv X, Huang Y, Hu M, Wang Y, Dai D, Ma L, Zhang Y, Dai H. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Int J Biol Macromol 2024; 277:134015. [PMID: 39038566 DOI: 10.1016/j.ijbiomac.2024.134015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Nanocellulose has been favored as one of the most promising sustainable nanomaterials, due to its competitive advantages and superior performances such as hydrophilicity, renewability, biodegradability, biocompatibility, tunable surface features, excellent mechanical strength, and high specific surface area. Based on the above properties of nanocellulose and the advantages of hydrogels such as high water absorption, adsorption, porosity and structural adjustability, nanocellulose based hydrogels integrating the benefits of both have attracted extensive attention as promising materials in various fields. In this review, the main fabrication strategies of nanocellulose based hydrogels are initially discussed in terms of different crosslinking methods. Then, the typical properties of nanocellulose based hydrogels are comprehensively summarized, including porous structure, swelling ability, adsorption, mechanical, self-healing, smart response performances. Especially, relying on these properties, the general application of nanocellulose based hydrogels in food field is also discussed, mainly including food packaging, food detection, nutrient embedding delivery, 3D food printing, and enzyme immobilization. Finally, the safety of nanocellulose based hydrogel is summarized, and the current challenges and future perspectives of nanocellulose based hydrogels are put forward.
Collapse
Affiliation(s)
- Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Difei Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China.
| |
Collapse
|
4
|
Rodrigues DM, da Silva MF, de Mélo AHF, Carvalho PH, Baudel HM, Goldbeck R. Sustainable synthesis pathways: Bacterial nanocellulose from lignocellulosic biomass for circular economy initiatives. Food Res Int 2024; 192:114843. [PMID: 39147474 DOI: 10.1016/j.foodres.2024.114843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The hydrothermal pretreatment process stands out as a pivotal step in breaking down the hemicellulosic fraction of lignocellulosic biomasses, such as sugarcane bagasse and eucalyptus sawdust. This pretreatment step is crucial for preparing these materials for subsequent processes, particularly in food applications. This technique aims to disintegrate plant wall components like cellulose, hemicellulose, and lignin, and facilitating access in later phases such as enzymatic hydrolysis, and ultimately making fermentable sugars available. In this study, sugarcane bagasse and eucalyptus sawdust biomass underwent hydrothermal pretreatment at specific conditions, yielding two key components: dry biomass and hemicellulose liquor. The primary focus was to assess the impact of hydrothermal pretreatment followed by enzymatic hydrolysis, using the Celic Ctec III enzyme cocktail, to obtain fermentable sugars. These sugars were then transformed into membranes via strain Gluconacetobacter xylinus bacterial biosynthesis. Notably, the addition of a nitrogen source significantly boosted production to 14.76 g/ in hydrolyzed sugarcane bagasse, underscoring its vital role in bacterial metabolism. Conversely, in hydrolyzed eucalyptus, nitrogen source inclusion unexpectedly decreased yield, highlighting the intricate interactions in fermentation media and the pivotal influence of nitrogen supplementation. Characterization of membranes obtained in synthetic and hydrolyzed media through techniques such as FEG-SEM, FTIR, and TGA, followed by mass balance assessment, gauged their viability on an industrial scale. This comprehensive study aimed not only to understand the effects of pretreatment and enzymatic hydrolysis but to also evaluate the applicability and sustainability of the process on a large scale, providing crucial insights into its feasibility and efficiency in practical food-related scenarios, utilizing nanocellulose bacterial (BNC) as a key component.
Collapse
Affiliation(s)
- Danielle Matias Rodrigues
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Marcos Fellipe da Silva
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Allan Henrique Félix de Mélo
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Priscila Hoffmann Carvalho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil
| | - Henrique Macedo Baudel
- Department of Chemical Engineering, Federal University of Pernambuco, Zip Code: 50100-100, Recife, Pernambuco, Brazil
| | - Rosana Goldbeck
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato Street, 80, Zip Code: 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Thipchai P, Sringarm K, Punyodom W, Jantanasakulwong K, Thanakkasaranee S, Panyathip R, Arjin C, Rachtanapun P. Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption. Polymers (Basel) 2024; 16:1881. [PMID: 39000736 PMCID: PMC11244476 DOI: 10.3390/polym16131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The present study aimed to extract nanocellulose (NC) from sugarcane bagasse agricultural waste through a chemical method (sulfuric acid hydrolysis and ultrasonication). Subsequently, the nanocellulose product was conjugated with polylysine (NC-PL) and assessed for its efficacy in reducing the toxicity of Fumonisin B1 (FB1), a mycotoxin produced by fungi commonly found in corn, wheat, and other grains. Experimental results confirmed the successful conjugation of NC and PL, as evidenced by FTIR peaks at 1635 and 1625 cm-1 indicating amide I and amide II vibrations in polylysine (PL). SEM analysis revealed a larger size due to PL coating, consistent with DLS results showing the increased size and positive charge (38.0 mV) on the NC-PL surface. Moreover, the effect of FB1 adsorption by NC and NC-PL was evaluated at various concentrations (0-200,000 μg/mL). NC-PL demonstrated the ability to adsorb FB1 at concentrations of 2000, 20,000, and 200,000 μg/mL, with adsorption efficiencies of 94.4-100%. Human hepatocellular carcinoma (HepG2) cells were utilized to assess NC and NC-PL cytotoxic effects. This result is a preliminary step towards standardizing results for future studies on their application as novel FB1 binders in food, food packaging, and functional feeds.
Collapse
Affiliation(s)
- Parichat Thipchai
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (C.A.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sarinthip Thanakkasaranee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Rangsan Panyathip
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (C.A.)
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| |
Collapse
|
6
|
Qin Q, Gao B, Zhang X, Han L, Sing SL, Liu X. Effects of capsaicin loads on the properties of capsicum leaf protein-based nanocellulose composite films. Int J Biol Macromol 2024; 265:130904. [PMID: 38553392 DOI: 10.1016/j.ijbiomac.2024.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/18/2024]
Abstract
This study aims to enhance the functionality of conventional protein-based nanocellulose composite films (PNCF) to meet the high demand for natural antimicrobial packaging films. Capsicum leaf protein (CLP) and cellulose nanocrystals (CNCs) extracted from capsicum leaves were used as raw materials. Capsaicin, an essential antibacterial active ingredient in the capsicum plant, was used as an additive. The influence of different capsaicin loads on PNCF physicochemical and material properties was investigated under alkaline conditions. The results show that all film-forming liquids (FFLs) are non-Newtonian fluids with shear thinning behavior. When the capsaicin loading exceeds 20 %, the surface microstructure of PNCF changes from dense lamellar to rod-like. Capsaicin did not alter the PNCF crystal structure, thermal stability or chemical bonding. Capsaicin can be loaded onto the PNCF surface by intermolecular hydrogen bonding reactions with CLP and CNC, preserving capsaicin's biological activity. With increasing capsaicin loads from 0 % to 50 %, the mechanical and hydrophobic properties of PNCF decreased, whereas the diameter of the inhibition zone increased. All PNCFs have UV-blocking properties with potential applications in developing biodegradable food packaging materials. The results of this study provide a theoretical basis for the high-value utilization of capsicum cultivation waste and the preparation of novel PNCF.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Swee Leong Sing
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
7
|
Qin Q, Zhang X, Gao B, Liu W, Han L, Sing SL, Liu X. Insight into the effect of different nanocellulose types on protein-based bionanocomposite film properties. Int J Biol Macromol 2024; 257:127944. [PMID: 37951448 DOI: 10.1016/j.ijbiomac.2023.127944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
This paper investigates the effect of five different types of nanocellulose on the properties of protein-based bionanocomposite films (PBBFs) and the mechanism of action. The results show that TEMPO-oxidized nanocellulose (TNC) PBBFs have the smoothest surface structure. This is because some hydroxyl groups in TNC are converted to carboxyl groups, increasing hydrogen bonding and cross-linking with proteins. Bacterial nanocellulose (BNC) PBBFs have the highest crystallinity. Filamentous BNC can form an interlocking network with protein, promoting effective stress transfer in the PBBFs with maximum tensile strength. The PBBFs of lignin nanocellulose (LNC) have superior elasticity due to the presence of lignin, which gives them the greatest creep properties. The PBBFs of cellulose nanocrystals (CNCs) have the largest water contact angle. This is because the small particle size of CNC can be uniformly distributed in the protein matrix. The different types of nanocellulose differ in their microscopic morphology and the number of hydroxyl groups and hydrogen bonding sites on their surfaces. Therefore, there are differences in the spatial distribution and the degree of intermolecular cross-linking of different types of nanocellulose in the protein matrix. This is the main reason for the differences in the material properties of PBBFs.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenying Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Swee Leong Sing
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
Sherman IM, Mounika A, Srikanth D, Shanmugam A, Ashokkumar M. Leveraging new opportunities and advances in high-pressure homogenization to design non-dairy foods. Compr Rev Food Sci Food Saf 2024; 23:e13282. [PMID: 38284573 DOI: 10.1111/1541-4337.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/15/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2024]
Abstract
High-pressure homogenization (HPH) and ultrahigh-pressure homogenization (UHPH) are emerging food processing techniques for stabilizing emulsions and food components under the pressure range from 60 to 400 MPa. Apart from this, they also support increasing nutritional profile, food preservation, and functionality enhancement. Even though the food undergoes the shortest processing operation, the treatment leads to modification of physical, chemical, and techno-functional properties, in addition to the formation of micro-sized particles. This study focuses on recent advances in using HPH/UHPH on plant-based milk sources such as soybeans, almonds, hazelnuts, and peanuts. Overall, this systematic review provides an in-depth analysis of the principles of HPH/UHPH, the mechanism of action, and their applications in other nondairy areas such as fruits and vegetables, meat, fish, and marine species. This work also deciphers the role of HPH/UHPH in modifying food components, their functional quality enhancement, and their provision of oxidative resistance to many foods. HPH is not only perceived as a technique for size reduction and homogenization; however, it does various functions like microbial inactivation, improvement of rheologies like texture and consistency, decreasing of lipid oxidation, and making positive modifications to proteins such as changes to the secondary structure and tertiary structure thereby enhancing the emulsifying properties, hydrophobicity of proteins, and other associated functional properties in many nondairy sources at pressures of 100-300 MPa. Thus, HPH is an emerging technique with a high throughput and commercialization value in food industries.
Collapse
Affiliation(s)
- Irene Mary Sherman
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Addanki Mounika
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Davanam Srikanth
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
- Centre of Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, India
| | - Muthupandian Ashokkumar
- Sonochemistry Group, School of Chemistry, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Dong Y, Xie Y, Ma X, Yan L, Yu HY, Yang M, Abdalkarim SYH, Jia B. Multi-functional nanocellulose based nanocomposites for biodegradable food packaging: Hybridization, fabrication, key properties and application. Carbohydr Polym 2023; 321:121325. [PMID: 37739512 DOI: 10.1016/j.carbpol.2023.121325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/24/2023]
Abstract
Nowadays, non-degradable plastic packaging materials have caused serious environmental pollution, posing a threat to human health and development. Renewable eco-friendly nanocellulose hybrid (NCs-hybrid) composites as an ideal alternative to petroleum-based plastic food packaging have been extensively reported in recent years. NCs-hybrids include metal, metal oxides, organic frameworks (MOFs), plants, and active compounds. However, no review systematically summarizes the preparation, processing, and multi-functional applications of NCs-hybrid composites. In this review, the design and hybridization of various NCs-hybrids, the processing of multi-scale nanocomposites, and their key properties in food packaging applications were systematically explored for the first time. Moreover, the synergistic effects of various NCs-hybrids on several properties of composites, including mechanical, thermal, UV shielding, waterproofing, barrier, antimicrobial, antioxidant, biodegradation and sensing were reviewed in detailed. Then, the problems and advances in research on renewable NCs-hybrid composites are suggested for biodegradable food packaging applications. Finally, a future packaging material is proposed by using NCs-hybrids as nanofillers and endowing them with various properties, which are denoted as "PACKAGE" and characterized by "Property, Application, Cellulose, Keen, Antipollution, Green, Easy."
Collapse
Affiliation(s)
- Yanjuan Dong
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Yao Xie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Xue Ma
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Ling Yan
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China; Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | - Mingchen Yang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China.
| | - Bowen Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Xiasha Higher Education Park Avenue 2 No.928, Hangzhou 310018, China
| |
Collapse
|
10
|
Yan S, Regenstein JM, Zhang S, Huang Y, Qi B, Li Y. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
11
|
Li Z, Zhang G, Charalampopoulos D, Guo Z. Ionic liquid-mediated regeneration of cellulose dramatically improves decrystallization, TEMPO-mediated oxidation and alkyl/alkenyl succinylation. Int J Biol Macromol 2023; 236:123983. [PMID: 36907307 DOI: 10.1016/j.ijbiomac.2023.123983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/21/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
This work demonstrated a successful strategy that simple ionic liquids (ILs) mediated pretreatment could effectively reduce crystallinity of cellulose from 71 % to 46 % (by C2MIM.Cl) and 53 % (by C4MIM.Cl). The IL-mediated regeneration of cellulose greatly promoted its reactivity for TEMPO-catalyzed oxidation, which the resulting COO- density (mmol/g) increased from 2.00 for non-IL-treated cellulose to 3.23 (by C2MIM.Cl) and 3.42 (C4MIM.Cl); and degree of oxidation enhanced from 35 % to 59 % and 62 %, respectively. More significantly, the yield of oxidized cellulose increased from 4 % to 45-46 %, by 11-fold. IL-regenerated cellulose can also be directly subjected to alkyl/alkenyl succinylation without TEMPO-mediated oxidation, producing nanoparticles with properties similar to oxidized celluloses (55-74 nm in size, -70-79 mV zeta-potential and 0.23-0.26 PDI); but in a much higher overall yield (87-95 %) than IL-regeneration-coupling-TEMPO-oxidation (34-45 %). Alkyl/alkenyl succinylated TEMPO-oxidized cellulose showed 2-2.5 times higher ABTS* scavenging ability than non-oxidized cellulose; however, alkyl/alkenyl succinylation also resulted in a significant decline in Fe2+ chelating property.
Collapse
Affiliation(s)
- Ziqian Li
- Department of Biological and Chemical Engineering, Gustav weids vej 10A, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark
| | - Guoqiang Zhang
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Dimitris Charalampopoulos
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, United Kingdom
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Gustav weids vej 10A, Faculty of Technical Science, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
12
|
Dai H, Luo Y, Huang Y, Ma L, Chen H, Fu Y, Yu Y, Zhu H, Wang H, Zhang Y. Recent advances in protein-based emulsions: The key role of cellulose. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Qin RC, Ma YY, Wang D, Bao NZ, Liu CG. Preparation of Cellulose Nanofibers from Corn Stalks by Fenton Reaction: A New Insight into the Mechanism by an Experimental and Theoretical Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1907-1920. [PMID: 36652295 DOI: 10.1021/acs.jafc.2c08475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Agricultural biomass wastes are an abundant feedstock for biorefineries. However, most of these wastes are not treated in the right way. Here, corn stalks (CSs) were assigned as the raw material to produce cellulose nanofibers (CNFs) via in situ Fenton oxidation treatment. In order to probe the formation mechanism of an in situ Fenton reactor, the bonding interaction of hydrated Fe2+ ions and fiber has been systemically studied based on adsorption experiments, IR spectroscopy, density functional theory (DFT) calculations, and Raman spectroscopy. The results indicate that the coordination of the hydrated Fe2+ ion to the fiber generates a quasi-octahedral-coordinated sphere around the Fe center. The Jahn-Teller distortion effect of the Fe center promotes the Fe-O2H2 bonding interaction via reduction of the energy gap of the dz2 orbital of the Fe center and π2py/π2pz orbitals of the H2O2 molecule. The oxidation treatment of the pretreated CS by the in situ Fenton process shows the formation of a new carboxyl group on the fiber surface. The scanning electron microscopy image shows that the Fenton-treated fiber was scattered into the nanosized CNFs with a diameter of up to 50 nm. Both experimental and theoretical studies show that the pseudo-first-order kinetic reaction could describe the in situ Fenton kinetics well. Moreover, the proposed catalytic cycle shows that the large thermodynamic barrier is the cleavage of the O-O bond of H2O2 to generate the •OH radical, and the whole catalytic cycle is found to be spontaneous at room temperature.
Collapse
Affiliation(s)
- Rui-Cheng Qin
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Yi-Ying Ma
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Dan Wang
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Nan-Zhu Bao
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University, Jilin City132013, P. R. China
| |
Collapse
|
14
|
Zhang X, Wang D, Liu S, Tang J. Bacterial Cellulose Nanofibril-Based Pickering Emulsions: Recent Trends and Applications in the Food Industry. Foods 2022; 11:foods11244064. [PMID: 36553806 PMCID: PMC9778365 DOI: 10.3390/foods11244064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The Pickering emulsion stabilized by food-grade colloidal particles has developed rapidly in recent decades and attracts extensive attention for potential applications in the food industry. Bacterial cellulose nanofibrils (BCNFs), as green and sustainable colloidal nanoparticles derived from bacterial cellulose, have various advantages for Pickering emulsion stabilization and applications due to their unique properties, such as good amphiphilicity, a nanoscale fibrous network, a high aspect ratio, low toxicity, excellent biocompatibility, and sustainability. This review provides a comprehensive overview of the recent advances in the Pickering emulsion stabilized by BCNF particles, including the classification, preparation method, and physicochemical properties of diverse BCNF-based particles as Pickering stabilizers, as well as surface modifications with other substances to improve their emulsifying performance and functionality. Additionally, this paper highlights the stabilization mechanisms and provides potential food applications of BCNF-based Pickering emulsions, such as nutrient encapsulation and delivery, edible coatings and films, fat substitutes, etc. Furthermore, the safety issues and future challenges for the development and food-related applications of BCNFs-based Pickering emulsions are also outlined. This work will provide new insights and more ideas on the development and application of nanofibril-based Pickering emulsions for researchers.
Collapse
Affiliation(s)
- Xingzhong Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Dan Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (S.L.); (J.T.)
| | - Jie Tang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Correspondence: (S.L.); (J.T.)
| |
Collapse
|
15
|
Fabrication of Superhydrophobic/Superoleophilic Bamboo Cellulose Foam for Oil/Water Separation. Polymers (Basel) 2022; 14:polym14235162. [PMID: 36501555 PMCID: PMC9739291 DOI: 10.3390/polym14235162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Water is an indispensable strategic resource for biological and social development. The problem of oily wastewater pollution originating from oil spillages, industrial discharge and domestic oil pollution has become an extremely serious international challenge. At present, numerous superwetting materials have been applied to effectively separate oil and water. However, most of these materials are difficult to scale and their large-scale application is limited by cost and environmental protection. Herein, a simple, environmentally friendly strategy including sol-gel, freeze-drying and surface hydrophobic modification is presented to fabricate a bamboo cellulose foam with special wetting characteristics. The bamboo cellulose foam is superhydrophobic, with a water contact angle of 160°, and it has the superoleophilic property of instantaneous oil absorption. Owing to the synergistic effect of the three-dimensional network structure of the superhydrophobic bamboo cellulose foam and its hydrophobic composition, it has an excellent oil-absorption performance of 11.5 g/g~37.5 g/g for various types of oil, as well as good recyclability, with an oil (1,2-dichloroethane) absorption capacity of up to 31.5 g/g after 10 cycles. In addition, the prepared cellulose-based foam exhibits an outstanding performance in terms of acid and alkali corrosion resistance. Importantly, owing to bamboo cellulose being a biodegradable, low-cost, natural polymer material that can be easily modified, superhydrophobic/superoleophilic bamboo cellulose foam has great application potential in the field of oily wastewater treatment.
Collapse
|
16
|
Properties and stability of water-in-water emulsions stabilized by microfibrillated bacterial cellulose. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Fu Z, Liu W, Huang C, Mei T. A Review of Performance Prediction Based on Machine Learning in Materials Science. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172957. [PMID: 36079994 PMCID: PMC9457802 DOI: 10.3390/nano12172957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 05/11/2023]
Abstract
With increasing demand in many areas, materials are constantly evolving. However, they still have numerous practical constraints. The rational design and discovery of new materials can create a huge technological and social impact. However, such rational design and discovery require a holistic, multi-stage design process, including the design of the material composition, material structure, material properties as well as process design and engineering. Such a complex exploration using traditional scientific methods is not only blind but also a huge waste of time and resources. Machine learning (ML), which is used across data to find correlations in material properties and understand the chemical properties of materials, is being considered a new way to explore the materials field. This paper reviews some of the major recent advances and applications of ML in the field of properties prediction of materials and discusses the key challenges and opportunities in this cross-cutting area.
Collapse
Affiliation(s)
- Ziyang Fu
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Chen Huang
- School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
- Hubei Software Engineering Technology Research Center, Wuhan 430062, China
- Hubei Engineering Research Center for Smart Government and Artificial Intelligence Application, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| | - Tao Mei
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 430062, China
- Key Laboratory for the Green Preparation and Application of Functional Materials, Wuhan 430062, China
- Correspondence: (C.H.); (T.M.)
| |
Collapse
|
18
|
Brand W, van Kesteren PCE, Swart E, Oomen AG. Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology 2022; 16:217-246. [PMID: 35624082 DOI: 10.1080/17435390.2022.2069057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocellulose is an emerging material for which several food-related applications are foreseen, for example, novel food, functional food, food additive or in food contact materials. Nanocellulose materials can display a range of possible shapes (fibers, crystals), sizes and surface modifications. For food-related applications in the EU, information on the safety of substances must be assessed. The present review summarizes the current knowledge on (possible) adverse health effects of nanocellulose upon oral exposure, keeping EU regulatory aspects in mind. The overview indicates that toxicity data, especially from in vivo studies, are limited and outcomes are not unambiguous. The hazard assessment is further complicated by: the diversity in morphologies and surface modifications, lack of standard reference materials, limited knowledge about intestinal fate and absorption, analytical difficulties in biological matrices, dispersion issues, the possible presence of impurities and interferences within biological assays. Two subchronic in vivo toxicity studies show no indications of toxicity for two specific nanocellulose materials, even at high doses. However, these studies may have missed certain early or nano-specific toxic effects, such as inflammation potential, for which other, subacute studies provide some indications. Most in vitro studies show no cytotoxicity; however, several indicate that effects on oxidative stress and inflammatory responses depend on differences in size or surface treatments. Further, too few studies assessed genotoxicity of nanocelluloses. Therefore, immunotoxicity, oxidative stress and genotoxicity require further attention, as do absorption and effects on nutrient uptake. Recommendations for future research facilitating the safety assessment and safe-by-design of nanocellulose in food-related applications are provided.
Collapse
Affiliation(s)
- Walter Brand
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Petra C E van Kesteren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elmer Swart
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
19
|
Qin Q, Li W, Zhang X, Gao B, Han L, Liu X. Feasibility of bionanocomposite films fabricated using capsicum leaf protein and cellulose nanofibers. Food Chem 2022; 387:132769. [PMID: 35397272 DOI: 10.1016/j.foodchem.2022.132769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 02/21/2022] [Accepted: 03/21/2022] [Indexed: 01/11/2023]
Abstract
In this study, the feasibility of fabricating protein-based bionanocomposite films (PBBFs) was analysed by applying capsicum leaf protein (CLP) and cellulose nanofiber (CNF) as raw materials. The effects of different amounts of CNF (solid content 2%) on physicochemical and material properties of PBBFs were investigated. The results showed nanoscale CNFs exhibited good interfacial compatibility with CLP. The hydroxyl groups on the CNF surface promoted the association of hydrogen bonds between CLP, glycerol and CNF, which improved the crystal structure and thermal stability of PBBFs. Concurrently, the mechanical properties and hydrophobicity of PBBFs are also enhanced. PBBFs with 60% CNF content have maximum flexibility and hydrophobicity. All PBBFs exhibited ultraviolet barrier performance, indicating that PBBFs had potential application prospects in the development of degradable food packaging materials. The results of the present study can provide a theoretical basis for the efficient utilisation of capsicum planting waste while improving the ecosystem.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenhu Li
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|