1
|
Sethi S, Rathod VK. Recent advancements in ultrasound-assisted biomolecule extraction from prokaryotic and eukaryotic cells: a review. Prep Biochem Biotechnol 2024:1-27. [PMID: 39718248 DOI: 10.1080/10826068.2024.2436952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
With numerous advantages over conventional techniques, ultrasound-assisted extraction (UAE) has become a viable method for the effective extraction of biomolecules from prokaryotic and eukaryotic cells. The fundamentals and workings of UAE are examined in this review, focusing on current developments, including how these impact the extraction of proteins, lipids, enzymes, and other bioactive compounds. UAE not only enhances cell disruption and mass transfer, leading to improved extraction yields, but also preserves the integrity of the extracted bioactive molecules under optimized conditions, making it a preferred choice in Biochemistry and Biotechnology. Additionally, this review explores recent innovative approaches that combine ultrasound with other techniques like enzymatic digestion, supercritical CO2, deep eutectic solvents, and Three-Phase Partitioning (UA-TPP) etc, to further enhance extraction efficiency. The differences in extraction effectiveness between prokaryotic and eukaryotic cells are attributed to cellular structure and ultrasonic conditions. Overall, this review highlights UAE's promise as a viable and efficient substitute for biomolecule extraction concerning prokaryotic and eukaryotic cells while bringing up areas that need additional research and development.
Collapse
Affiliation(s)
- Santosh Sethi
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| | - V K Rathod
- Department of Chemical Engineering, Institute of Chemical Technology (ICT), Mumbai, India
| |
Collapse
|
2
|
Deng Y, Fan L, Wang W, Lv R, Liu D. Exogenous microbubbles contribute to valorization of microalgal compounds by ultrasound-assisted extraction. BIORESOURCE TECHNOLOGY 2024; 411:131253. [PMID: 39128641 DOI: 10.1016/j.biortech.2024.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Ultrasound-assisted extraction (UAE) shows great potential in exploiting microalgal compounds. However, upgrading the extraction system lacks concerns. This study proposes a novel sono-reactor featuring a microbubble distributor for increasing bubble abundance and correspondingly improving microalgal compound extraction. Results indicate that protein concentrations increase with ultrasound powers and extraction time while an optimized gas flow rate exists. The optimal parameters by Box-Behnken design are power 646.0 W, nitrogen flow rate 25.0 mL/min, and time 40.0 min, with an optimal protein concentration of 249.1 mg/L - a substantial improvement over gas-free extraction. The strategic increase in bubble abundance enhances microalgal compound extraction efficiency and extraction kinetics. The system innovation will contribute to the advancement of bioresource utilization and sustainability.
Collapse
Affiliation(s)
- Yong Deng
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Lihua Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 310058 Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
3
|
Fan S, Yin Y, Liu Q, Yang X, Pan D, Wu Z, Du M, Tu M. Blue food proteins: Novel extraction technologies, properties, bioactivities and applications in foods. Curr Res Food Sci 2024; 9:100878. [PMID: 39498458 PMCID: PMC11533013 DOI: 10.1016/j.crfs.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
With the growing demand for healthy and sustainable food, blue food proteins have emerged as an important way to address resource-intensive production and environmental concerns. This paper systematically reviewed the extraction technologies, properties and bioactivities of blue food proteins and explored their wide range of applications. The novel extraction technologies not only improve the extraction efficiency of the proteins, shorten the production time and have environmental advantages, but also enhance the protein properties and facilitate subsequent applications. The amino acid composition of the blue food proteins is close to the FAO recommended standard and better than most of the livestock proteins, with excellent solubility and water holding capacity. Some of the proteins also have significant bioactivity and show great potential for improving health. Applications include emulsions, protein films, microcapsules, food colorants, dietary supplements, 3D printing materials, and cultured meat. This paper provides theoretical support for further research and application of blue food proteins and promotes their wider application in future food products.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Yaxin Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Xinru Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| |
Collapse
|
4
|
Kim JH, Kim M, Park G, Kim E, Song H, Jung S, Park YK, Tsang YF, Lee J, Kwon EE. Chemicals and fuels from lipid-containing biomass: A comprehensive exploration. Biotechnol Adv 2024; 75:108418. [PMID: 39067778 DOI: 10.1016/j.biotechadv.2024.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
In response to address the climate crisis, there has been a growing focus on substituting conventional refinery-derived products with those derived from biorefineries. The utilization of lipids as primary materials or intermediates for the synthesis of chemicals and fuels, which are integral to the existing chemical and petrochemical industries, is a key step in this transition. This review provides a comprehensive overview of the production of sustainable chemicals (acids and alcohols), biopolymers, and fuels (including gasoline, kerosene, biodiesel, and heavy fuel oil) from lipids derived from terrestrial and algal biomass. The production of chemicals from lipids involves diverse methods, including polymerization, epoxidation, and separation/purification. Additionally, the transformation of lipids into biofuels can be achieved through processes such as catalytic cracking, hydroprocessing, and transesterification. This review also suggests future research directions that further advance the lipid valorization processes, including enhancement of catalyst durability at harsh conditions, development of deoxygenation process with low H2 consumption, investigation of precise separation of target compounds, increase in lipid accumulation in algal biomass, and development of methods that utilize residues and byproducts generated during lipid extraction and conversion.
Collapse
Affiliation(s)
- Jung-Hun Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Minyoung Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Gyeongnam Park
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunji Kim
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hocheol Song
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine Pollution, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Seguenka B, do Nascimento LH, Feiden T, Fernandes IA, Magro JD, Junges A, Valduga E, Steffens J. Ultrasound-assisted extraction and concentration of phenolic compounds from jabuticaba sabará (Plinia peruviana (Poir.) Govaerts) peel by nanofiltration membrane. Food Chem 2024; 453:139690. [PMID: 38781903 DOI: 10.1016/j.foodchem.2024.139690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Jabuticaba peel, rich in antioxidants, offering health benefits. In this study, the extraction of phenolic compounds from jabuticaba peel using ultrasound-assisted (UA) and their subsequent concentration by nanofiltration (NF) employing a polyamide 200 Da membrane was evaluated. The UA extractions were conducted using the Central Composite Rotatable Design (CCRD) 22 methodology, with independent variables extraction time (11.55 to 138 min) and temperature (16.87 to 53.3 °C), and fixed variables mass to ethanol solution concentration at pH 1.0 (1:25 g/mL), granulometry (1 mm), and ultrasonic power (52.8 W). The maximum concentrations obtained were 700.94 mg CE/100 g for anthocyanins, 945.21 mg QE/100 g for flavonoids, 133.19 mg GAE/g for phenols, and an antioxidant activity IC50 of 24.36 μg/mL. Key phenolic compounds identified included cyanidin-3-glucoside, delphinidin-3-glucoside, and various acids like syringic and gallic. NF successfully concentrated these compounds, enhancing their yield by up to 45%. UA and NF integrate for sustainable extraction.
Collapse
Affiliation(s)
- Bruna Seguenka
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | | | - Thais Feiden
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | | | - Jacir Dal Magro
- Environmental Sciences Area, Community University of Chapecó Region (Unochapecó), Servidão Anjo da Guarda, 295-D, Bairro Efapi, Chapecó, SC 89809-900, Brazil.
| | - Alexander Junges
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Eunice Valduga
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| | - Juliana Steffens
- Food Engineering Department, URI Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil.
| |
Collapse
|
6
|
Tian J, Zhang Z, Shang Y, Zheng Y. Extraction, structure and antioxidant activity of the polysaccharides from morels (Morchella spp.): A review. Int J Biol Macromol 2024; 264:130656. [PMID: 38453116 DOI: 10.1016/j.ijbiomac.2024.130656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Morels (Morchella spp.), which are cultivated only in a few regions of the world, are edible mushrooms known for their various properties including antioxidation, immune regulation, antiinflammation, and antitumor effects. Polysaccharides from Morchella are principally responsible for its antioxidant activity. This paper reviews the extraction, purification, structural analysis and antioxidant activity of Morchella polysaccharides (MPs), providing updated research progress. Meanwhile, the structural-property relationships of MPs were further discussed. In addition, based on in vitro and in vivo studies, the major factors responsible for the antioxidant activity of MPs were summarized including scavenging free radicals, reduction capacity, inhibitory lipid peroxidation activity, regulating the signal transduction pathway, reducing the production of ROS and NO, etc. Finally, we hope that our research can provide a reference for further research and development of MPs.
Collapse
Affiliation(s)
- Jinfeng Tian
- College of Basic Medicine, Panzhihua University, Panzhihua 617000, PR China
| | - Zhe Zhang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Yuanhong Shang
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China.
| | - Yi Zheng
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| |
Collapse
|
7
|
Li J, Wang W, Xu W, Deng Y, Lv R, Zhou J, Liu D. Evaluation of multiscale mechanisms of ultrasound-assisted extraction from porous plant materials: Experiment and modeling on this intensified process. Food Res Int 2024; 182:114034. [PMID: 38519197 DOI: 10.1016/j.foodres.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 03/24/2024]
Abstract
Ultrasound-assisted extraction (UAE) is an intensified mass transfer process, which can utilize natural resources effectively, but still lacks detailed mechanisms for multiscale effects. This study investigates the mass transfer mechanisms of UAE combined with material's pore structure at multiscale. Porous material was prepared by roasting green coffee beans (GCB) at 120 °C (RCB120) and 180 °C (RCB180), and their UAE efficiency for phytochemicals (caffeine, trigonelline, chlorogenic acid, caffeic acid) were evaluated by experiment and modeling. Besides, the physicochemical properties, mass transfer kinetics, and multi-physical field simulation were studied. Results indicated that positive synergy effects on extraction existed between ultrasound and material's pore structure. Higher mass transfer coefficients of UAE (GCB 0.16 min-1, RCB120 0.38 min-1, RCB180 0.46 min-1) was achieved with higher total porosity (4.47 %, 9.17 %, 13.52 %) and connected porosity (0 %, 3.79 %, 5.98 %). Moreover, simulation results revealed that micro acoustic streaming and pressure difference around particles were the main driving force for enhancing mass transfer, and the velocity (0.29-0.36 m/s) increased with power density (0.64-1.01 W/mL). The microscale model proved that increased yield from UAE-RCB was attributed to internal convection diffusion within particles. This study exploited a novel benefit of ultrasound on extraction and inspired its future application in non-thermal food processing.
Collapse
Affiliation(s)
- Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianwei Zhou
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; School of Mechatronics and Energy Engineering, NingboTech University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China; Food Laboratory of Zhongyuan, Luohe 462044, China; The Collaborative Innovation Center for Intelligent Production Equipment of Characteristic Forest Fruits in Hilly and Mountainous Areas of Zhejiang Province, Hangzhou 311300, China.
| |
Collapse
|
8
|
Chaudhary P, Meena M, Janmeda P. Microscopic characterization, TLC fingerprinting and optimization of total lipid content from Euphorbia neriifolia (L.) using response surface methodology. Microsc Res Tech 2024; 87:565-590. [PMID: 37971145 DOI: 10.1002/jemt.24456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/08/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Euphorbia neriifolia (EN) is a medicinal plant used to treat a variety of ailments in traditional systems. Despite numerous studies on pharmacological activities, no information was available on the microscopic study of this plant. This is the first study that has been attempted to fill this need by performing the light and field emission scanning electron microscopy (FESEM) of leaf, stem, and latex. The powder microscopy of several organs (leaves, stem, and bark) and exudate (latex) of EN was carried out using safranine, fast green, phloroglucinol, and other standard solutions at different magnifications. The chemical fingerprinting of petroleum ether extract was accomplished by using thin layer chromatography. The optimization of total lipid content from the EN leaf under ultrasound-assisted extraction (UAE) and soxhlet extraction (SE) procedure was determined using response surface methodology (RSM). The studied factors that affect the lipid content were: solvent ratio, extraction temperature, and extraction time. Several notable characteristics observed in the leaf of EN are amphistomatic leaves with anticlinical cell walls, anomocytic stomata, spongy mesophyll cells, elongated palisade cells, angular collenchyma, and U-shaped vascular bundle. The plano-convex midrib is covered by polygonal to oval-shaped cuticles and contains anomocytic stomata. The circular petiole has no trichomes and contains laticifers, crystals, and idioblasts. The circular stem was observed with trichomes, hypodermis, collenchyma, parenchymatous cells, central pith, pentagonal stellar region, cambium, and 2-4 times more xylem that of phloem. All of the powdered plant parts and exudate under study contained trichomes, xylem vessels, wood fibers, cork cells, starch grains, calcium oxalate crystals, idioblasts, lignified cork, tannin content, stone cells, and oil globules. The blackish-green colored petroleum ether extract with semi-solid consistency showed the greatest percent (%) yield of 4% in the latex of EN. The thin layer chromatography (TLC) examination of petroleum ether extract of EN leaf produced a maximum 6 spots with Rf values of 0.16, 0.58, 0.62, 0.73, and 0.96 in the mobile phase of petroleum ether-acetone (8:2). In terms of optimization, the dark green colored UAE extract with semi-sticky consistency showed highest % yield of 4.5% whereas the yellowish green colored SE extract of sticky consistency showed the highest % yield of 4.9%. The findings showed that there were not many differences in the total lipid content between UAE (0.16%) and SE (0.11%). However, the best optimum condition for lipid content extraction analysis was obtained as follows: solvent ratio (PE:HE) 50:50, extraction temperature 50°C, extraction time 45 min for UAE, and solvent ratio (PE:HE) 60:40, extraction temperature 45°C, and extraction time of 24 h for SE. Hence, this study signifies the various noteworthy microscopic features along with the presence of different phytocompounds through TLC and best optimized condition for the extraction of lipids from different parts of EN. As no previous study has been reported, the outcomes obtained from the current study prove to be beneficial in the identification of species, quality control, and detection of any adulteration from the laboratory and commercial samples of EN. RESEARCH HIGHLIGHTS: The percent yield was found to be maximum in latex extract (4%). The leaf pet ether extract was separated into 6 bands with different Rf values. The extracted compounds from Euphorbia neriifolia leaves were categorized into non-polar heat tolerant. The highest total lipid yield (0.1119) was obtained at solvent ratios 60:40 of PE:HE (petroleum ether: petroleum hexane).
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Tonk, Rajasthan, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, P.O. Banasthali Vidyapith, Tonk, Rajasthan, India
| |
Collapse
|
9
|
Cui J, Yang Z, Xu Y, Tan CP, Zhang W. Lipidomics insight on differences in lipid profiles and phytosterol compositions of coconut oils extracted by classical and green solvents. Food Res Int 2023; 174:113653. [PMID: 37981374 DOI: 10.1016/j.foodres.2023.113653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Searching for green and ecofriendly solvents to replace classical solvents for industrial scale extraction of coconut oil is of great interest. To explore these possibilities, this study performed comprehensive comparative analyses of lipid profiles and phytosterol compositions in coconut oils obtained by extraction with n-hexane, absolute ethyl alcohol, deep eutectic solvent/n-hexane, dimethyl carbonate (DME) and cyclopentyl methyl ether (CPME) using a foodomics approach. Results indicated that CPME (64.23 g/100 g dry matter) and DME (65.64 g/100 g dry matter) showed comparable capacity for total lipid extraction of total lipids to classical solvents (63.5-65.66 g/100 g dry matter). Considering the phytosterol yield, CPME (644.26 mg/kg) exhibited higher selectivity than other solvents (535.64-622.13 mg/kg). No significant difference was observed in the fatty acid composition of coconut oil by the different solvents assayed. Additionally, total 468 lipid molecules were identified in the samples. For glycerolipid and sphingolipid, the five solvents showed comparable extraction capabilities. However, CPME exhibited higher extraction efficiency of polar lipids (glycerophospholipid and saccharolipid) than other solvents. Overall, these results may be a useful guide for the application of green solvents in industrial production of coconut oil.
Collapse
Affiliation(s)
- Jingtao Cui
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zihan Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yongjiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chin-Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
10
|
Aishah Baharuddin S, Nadiah Abd Karim Shah N, Saiful Yazan L, Abd Rashed A, Kadota K, Al-Awaadh AM, Aniza Yusof Y. Optimization of Pluchea indica (L.) leaf extract using ultrasound-assisted extraction and its cytotoxicity on the HT-29 colorectal cancer cell line. ULTRASONICS SONOCHEMISTRY 2023; 101:106702. [PMID: 38041881 PMCID: PMC10701412 DOI: 10.1016/j.ultsonch.2023.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Colorectal cancer (CRC) is the most common malignancy and the third primary cause of cancer-related mortalities caused by unhealthy diet, hectic lifestyle, and genetic damage. People aged ≥ 50 are more at risk for CRC. Nowadays, bioactive compounds from plants have been widely studied in preventing CRC because of their anticancer and antioxidant properties. Herein, ultrasound-assisted extraction (UAE) was used to extract the bioactive compounds of Pluchea indica (L.) leaves. The resultant total phenolic content (TPC) and total flavonoid content (TFC) of P. indica (L.) leaves were analyzed using a response surface methodology (RSM). The central composite design was implemented to evaluate the amplitude (10 %-70 %) and treatment time (2-10 min) on both responses, i.e., TPC and TFC of P. indica (L.) leaves. The optimum UAE conditions were observed 40 % amplitude and 6 min of treatment, where the TPC and TFC were 3.26 ± 0.00 mg GAE/g d.w. and 67.58 ± 1.46 mg QE/g d.w., respectively. The optimum P. indica (L.) leaf extract was then screened for its cytotoxicity on the HT-29 colorectal cancer cell line. This extract had strong cytotoxicity with a half-maximal inhibitory concentration value (IC50) of 12 µg/mL. The phytochemical screening of bioactive compounds revealed that the optimal P. indica (L.) leaf extract contains flavonoids, namely, kaempferol 3-[2''',3''',5'''-triacetyl]-alpha-L-arabinofuranosyl-(1->6)-glucoside, myricetin 3-glucoside-7-galactoside, quercetin 3-(3''-sulfatoglucoside), and kaempferol 7,4'-dimethyl ether 3-O-sulfate, which could be good sources for promising anticancer agents. This study employs the RSM approach to utilize UAE for bioactive compounds extraction of P. indica (L.) leaves, identified the specific compounds present in the optimized extract and revealed its potential in preventing CRC.
Collapse
Affiliation(s)
- Siti Aishah Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Engineering and Built Environment, Tunku Abdul Rahman University of Management and Technology, Penang Branch, 11200 Tanjong Bungah, Penang, Malaysia
| | - Nor Nadiah Abd Karim Shah
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Aswir Abd Rashed
- Nutrition Unit, Institute for Medical Research, National Institutes of Health, Seksyen U13 Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Alhussein M Al-Awaadh
- Department of Agricultural Engineering, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Venugopal V, Sasidharan A, Rustad T. Green Chemistry to Valorize Seafood Side Streams: An Ecofriendly Roadmap toward Sustainability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17494-17509. [PMID: 37938980 DOI: 10.1021/acs.jafc.3c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
A major challenge facing sustainable seafood production is the voluminous amounts of nutrient-rich seafood side streams consisting of by-catch, processing discards, and process effluents. There is a lack of a comprehensive model for optimal valorization of the side streams. Upcoming green chemistry-based processing has the potential to recover diverse valuable compounds from seafood side streams in an ecofriendly manner. Microbial and enzymatic bioconversions form major green processes capable of releasing biomolecules from seafood matrices under mild conditions. Novel green solvents, because of their low toxicity and recyclable nature, can extract bioactive compounds. Nonthermal technologies such as ultrasound, supercritical fluid, and membrane filtration can complement green extractions. The extracted proteins, peptides, polyunsaturated fatty acids, chitin, chitosan, and others function as nutraceuticals, food supplements, additives, etc. Green processing can address environmental, economic, and technological challenges of valorization of seafood side streams, thereby supporting sustainable seafood production. Green processing can also encourage bioenergy production. Multiple green processes, integrated in a marine biorefinery, can optimize valorization on a zero-waste trade-off, for a circular blue economy. A green chemistry-based valorization framework has the potential to meet the Sustainable Development Goals (SDGs) of the United Nations.
Collapse
Affiliation(s)
- Vazhiyil Venugopal
- Formerly of Food Technology Division, Bhabha Atomic Research Center, Mumbai, India 400085
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kerala, India 682506
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 7491
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway 7491
| |
Collapse
|
12
|
Islam M, Malakar S, Rao MV, Kumar N, Sahu JK. Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: a review. Food Sci Biotechnol 2023; 32:1763-1782. [PMID: 37781053 PMCID: PMC10541372 DOI: 10.1007/s10068-023-01346-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
Herbal plants comprise potent bioactives, and they have a potential for the development of functional foods. Ultrasonication technology can be used to enhance the efficiency and quality of these bioactivities. The present review discussed the ultrasound-assisted novel extraction technologies (supercritical carbon dioxide (CO2) and high pressurized liquid), including mechanistic understanding, influencing factors, extract process efficiency, and the recovery of bioactives with an industrial perspective. The strong observations of this study are the novel ultrasound-induced extraction process variables, such as ultrasound amplitude, sonication time, temperature, solid-solvent ratio, and pressure, are significantly influenced and must be optimized for maximum recovery of bioactives. The novel green technologies (ultrasound and assisted) could remarkably improve the extraction efficiency and enhance the quality of green extract. This review will support technological understanding about the impact on process parameters for the extraction of bioactives for the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Makdud Islam
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Madaraboina Venkateswara Rao
- Department of Food Technology, Vignan’s Foundation for Science Technology and Research, Vadlamudi, Andhra Pradesh India 522213
| | - Nitin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Haryana, 131028 India
| | - Jatindra K. Sahu
- Food Customization Research Lab, Centre for Rural Development and Technology, Indian Institute of Technology, Delhi New Delhi, India
| |
Collapse
|
13
|
Sabaruddin FA, Megashah LN, Shazleen SS, Ariffin H. Emerging trends in the appliance of ultrasonic technology for valorization of agricultural residue into versatile products. ULTRASONICS SONOCHEMISTRY 2023; 99:106572. [PMID: 37696213 PMCID: PMC10498174 DOI: 10.1016/j.ultsonch.2023.106572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The utilization of agricultural residues to obtain biocompounds of high-added value has significantly increased in the past decades. The conversion of agro-based residues into valuable products appears to be an economically efficient, environment-friendly, and protracted waste management practice. The implementation of ultrasonic technologies in the conversion of value-added goods from agricultural waste materials through pre-treatment and valorization processes has imparted many advantageous effects including rapid processing, effective process performance, minimization of processing steps, minimal dependency on harmful chemicals, and an increased yield and properties of bio-products. To further enliven the literature and inspire new research investigations, this review covers the comprehensive work including theoretical principles, processes, and potential benefits of ultrasonic treatment technologies to assist the production of bio-products which emphasize the extraction yield and the characteristic of the end-product extracted from agriculture residues. A detailed evaluation of these methods and key aspects impacting their performance as well as the features and shortcomings of each ultrasound-assisted approach is also discussed. This review also addressed some of the challenges associated with using ultrasonic irradiation and proposed several potential techniques to maximize productivity. Understanding the concept of ultrasonication technique allow the academician and industrial practitioners to explore the possibility of applying a greener and sustainable approach of biomass extraction to be translated into higher scale production of commercial products.
Collapse
Affiliation(s)
- Fatimah Athiyah Sabaruddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Liana Noor Megashah
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Siti Shazra Shazleen
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Rojas-Orduña E, Hernández-Carrión M, Gómez-Franco JD, Narváez-Cuenca CE, Sánchez-Camargo ADP. Utilization of red and yellow Coffea arabica var. Caturra pulp: macronutrient analysis, carotenoid extraction, and encapsulation for dairy product enrichment. Front Nutr 2023; 10:1231049. [PMID: 37720375 PMCID: PMC10501141 DOI: 10.3389/fnut.2023.1231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
This study aimed to investigate the macronutrient and carotenoid content of red and yellow Coffea arabica var. Caturra pulp, a by-product of coffee processing in Colombia. The study employed ultra-sound-assisted extraction (UAE) to extract carotenoids, and a 23 factorial design was used to evaluate the effects of pulp color, biomass-solvent ratio, and solvent mixture composition on carotenoid content and extraction yield. The condition that provided the highest carotenoid extraction was further encapsulated by spray drying and added to a dairy product. The results showed that coffee pulp has significant dietary fiber content and high levels of carotenoids, with yellow pulp having a higher content than red pulp. Lutein isomers and lutein esters were the most abundant carotenoids found in both red and yellow coffee pulp. The highest carotenoid extraction was achieved using a 1:40 (g/mL) biomass:solvent ratio and a 20:80% v/v Ethanol:Ethyl Acetate solvent mixture for the yellow pulp. The carotenoid extract also demonstrated high encapsulation efficiency (46.57 ± 4.03%) and was found to be stable when added to a fermented milk product. This study presents an alternative solution for utilizing coffee by-products in Colombia, which could positively impact the families of over half a million Colombian coffee producers.
Collapse
Affiliation(s)
- Elkin Rojas-Orduña
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - María Hernández-Carrión
- Group of Product and Process Design, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan David Gómez-Franco
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Eduardo Narváez-Cuenca
- Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
15
|
Dippong T, Cadar O, Kovacs MH, Dan M, Senila L. Chemical Analysis of Various Tea Samples Concerning Volatile Compounds, Fatty Acids, Minerals and Assessment of Their Thermal Behavior. Foods 2023; 12:3063. [PMID: 37628061 PMCID: PMC10453188 DOI: 10.3390/foods12163063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Tea is the most consumed drink worldwide due to its pleasant taste and various beneficial effects on human health. This paper assesses the physicochemical analysis of different varieties of tea (leaves, flowers, and instant) after prior drying and fine grinding. The thermal decomposition behavior of the tea components shows that the tea has three stages of decomposition, depending on temperature. The first stage was attributed to the volatilization of water, while the second stage involved the degradation of volatiles, polyphenols, and fatty acids. The degradation of cellulose, hemicellulose, and lignin content occurs at the highest temperature of 400 °C in the third stage. A total of 66 volatile compounds, divided into eight classes, were identified in the tea samples. The volatile compounds were classified into nine odor classes: floral, fruity, green, sweet, chemical, woody, citrus, roasted, and alcohol. In all flower and leaf tea samples, monounsaturated (MUFAs), polyunsaturated (PUFAs), and saturated fatty acids (SFAs) were identified. A high content of omega-6 was quantified in acacia, Saint John's Wort, rose, and yarrow, while omega-3 was found in mint, Saint John's Wort, green, blueberry, and lavender samples. The flower and leaf tea samples studied could be a good dietary source of polyphenolic compounds, essential elements. In instant tea samples, a low quantity of polyphenols and major elements were identified. The physicochemical analysis demonstrated that both flower and leaf teas have high-quality properties when compared to instant tea.
Collapse
Affiliation(s)
- Thomas Dippong
- Department of Chemistry and Biology, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania;
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Melinda Haydee Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Lacrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| |
Collapse
|
16
|
Tang J, Zhu X, Jambrak AR, Sun DW, Tiwari BK. Mechanistic and synergistic aspects of ultrasonics and hydrodynamic cavitation for food processing. Crit Rev Food Sci Nutr 2023; 64:8587-8608. [PMID: 37194650 DOI: 10.1080/10408398.2023.2201834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Compared with traditional methods, cavitation-based processing technology has received extensive attention for its low energy consumption and high processing efficiency. The cavitation phenomenon releases high energy due to the generation and collapse of bubbles, which improves the efficiency of various food processing. This review details the cavitation mechanism of ultrasonic cavitation (UC) and hydrodynamic cavitation (HC), factors affecting cavitation, the application of cavitation technology in food processing, and the application of cavitation technology in the extraction of various natural ingredients. The safety and nutrition of food processed by cavitation technology and future research directions are also discussed. The mechanism of UC refers to longitudinal displacement of the particles of the medium induced by ultrasonic waves causing a series of alternating compression and rarefaction of particles, whereas HC occurs when liquid enters a narrow section and undergoes large pressure differentials, both of which can trigger the generation, growth, and collapse of microbubbles. Cavitation could be applied in microbial inactivation, and drying and freezing processing. In addition, cavitation bubbles can have mechanical and thermal effects on plant cells. In general, cavitation technology is a new sustainable, green, and innovative technology with broad application prospects and capabilities.
Collapse
Affiliation(s)
- Jiafei Tang
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Xianglu Zhu
- Teagasc Food Research Centre, Dublin, Ireland
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | - Anet Rezek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Da-Wen Sun
- Food Refrigeration and Computerised Food Technology (FRCFT), School of Biosystems and Food Engineering, University College Dublin, National University of Ireland, Dublin 4, Ireland
| | | |
Collapse
|
17
|
Mahrous E, Chen R, Zhao C, Farag MA. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit Rev Food Sci Nutr 2023; 64:9058-9081. [PMID: 37165484 DOI: 10.1080/10408398.2023.2207659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Lipid analysis is an integral part of food authentication and quality control which provides consumers with the necessary information to make an informed decision about their lipid intake. Recent advancement in lipid analysis and lipidome scope represents great opportunities for food science. In this review we provide a comprehensive overview of available tools for extraction, analysis and interpretation of data related to dietary fats analyses. Different analytical platforms are discussed including GC, MS, NMR, IR and UV with emphasis on their merits and limitations alongside complementary tools such as chemometric models and lipid-targeted online databases. Applications presented here include quality control, authentication of organic and delicacy food, tracing dietary fat source and investigating the effect of heat/storage on lipids. A multitude of analytical methods with different sensitivity, affordability, reproducibility and ease of operation are now available to comprehensively analyze dietary fats. Application of these methods range from studies which favor the use of large data generating platforms such as MS-based methods, to routine quality control which demands easy to use affordable equipment as TLC and IR. Hence, this review provides a navigation tool for food scientists to help develop an optimal protocol for their future lipid analysis quest.
Collapse
Affiliation(s)
- Engy Mahrous
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ruoxin Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
18
|
Deng Y, Yang X, Yan T, Xu W, Li J, Niu R, Zhao R, Wang H, Wang H, Chen T, Guo M, Wang W, Liu D. Ultrasound-induced cell disintegration and its ultrastructure characterization for the valorisation of Chlorella pyrenoidosa protein. BIORESOURCE TECHNOLOGY 2023; 381:129046. [PMID: 37044154 DOI: 10.1016/j.biortech.2023.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
Chlorella pyrenoidosa (CP) has great potential for feeding future demands in food, environment, energy, and pharmaceuticals. To achieve this goal, the exploitation of emerging efficient technique such as ultrasound-assisted extraction (UAE) for CP nutrient enrichment is crucial. Here, UAE is deployed for high-efficient CP protein (CPP) valorisation. Compared to conventional solvent extraction (CSE), remarkable mass transfer enhancements with 9-time protein yields and 3-time extraction rate are achieved by ultrasonic cavitation in UAE, indicating UAE can drastically shift intracellular nutrients including proteins and pigments to solvent. Cell morphology and ultrastructure show the different responses of cell wall and membrane, indicating that the cell membrane may play a role in the extraction process, based on which the extremely-low efficiency of CSE and high efficiency of UAE are highlighted. This study provides a solution for future food crisis by extracting CPP and may open a new discussion field in ultrasonic extraction.
Collapse
Affiliation(s)
- Yong Deng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tianyi Yan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Han Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
19
|
Zhang L, Yang J, Wu B, Liu J, Xu X, Wu W, Zhuang J, Li H, Huang T. Enhanced VFAs production from microalgal hydrolytic acidification with ultrasonic-alkali pretreatment. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
20
|
Liu M, Lu S, Liu H, Yan H, Bai L. Determination and isolation of purpurin and mollugin from Rubiae Radix ET Rhizoma based on a monolithic adsorbent prepared by bio-monomer. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
21
|
Jadhav HB, Raina I, Gogate PR, Annapure US, Casanova F. Sonication as a Promising Technology for the Extraction of Triacylglycerols from Fruit Seeds—A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Sharma P, Kashyap P, Dhakane A. Exploring the antioxidant potential of fermented turmeric pulp: effect of extraction methods and microencapsulation. Prep Biochem Biotechnol 2023; 53:968-977. [PMID: 36592954 DOI: 10.1080/10826068.2022.2163256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Curcumin is one of the major constituents of turmeric which possess multifarious therapeutic properties. However, owing of its limited solubility in water its bioavailability is poor. Thus, attempts have been made to increase the solubility of curcumin by fermenting turmeric followed by extraction and encapsulation. Lactobacillus fermentum was used for the fermentation of raw turmeric pulp. The influence of Lactobacillus fermentation and different extraction methods (conventional solvent extraction (CSE), ultrasound (UAE) and microwave-assisted extraction (MAE)) on total phenolic content (TPC), flavonoid content, antioxidant activity and curcumin content were analyzed. Further, to increase the stability of extract, different concentrations of maltodextrin were used to microencapsulate the curcumin extract. The results showed that, Lactobacillus fermentation increased the TPC and antioxidant activity from 5.59 ± 0.20 to 6.27 ± 0.28 mg GAE/g and 67.49 ± 1.51 to 79.00 ± 2.20%, respectively. MAE showed highest TPC (7.88 ± 0.08 mg GAE/g), antioxidant activity (94 ± 1.57%) and curcumin content (0.866 ± 0.05 mg/g) followed by UAE and CSE. Maximum yield of curcumin extract was observed in MAE, UAE and CSE as 59.93, 47.09 and 29.44% respectively, higher than non-fermented turmeric pulp. Maltodextrin percentage showed a significant influence on bio-functional properties of encapsulated powder. However, 20% maltodextrin exhibited better bio-functional properties as compared to other concentrations.
Collapse
Affiliation(s)
- Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Akshay Dhakane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
23
|
Kumar G, Upadhyay S, Yadav DK, Malakar S, Dhurve P, Suri S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Srishti Upadhyay
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Department of Food Technology Rajiv Gandhi University Doimukh India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh Noida India
| |
Collapse
|
24
|
Li H, Bai X, Li Y, Du X, Wang B, Li F, Shi S, Pan N, Zhang Q, Xia X, Kong B. The positive contribution of ultrasound technology in muscle food key processing and its mechanism-a review. Crit Rev Food Sci Nutr 2022; 64:5220-5241. [PMID: 36469643 DOI: 10.1080/10408398.2022.2153239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Traditional processing methods can no longer meet the demands of consumers for high-quality muscle food. As a green and non-thermal processing technology, ultrasound has the advantage of improving processing efficiency and reducing processing costs. Of these, the positive effect of power ultrasound in the processing of muscle foods is noticeable. Based on the action mechanism of ultrasound, the factors affecting the action of ultrasound are analyzed. On this basis, the effect of ultrasound technology on muscle food quality and its action mechanism and application status in processing operations (freezing-thawing, tenderization, marination, sterilization, drying, and extraction) is discussed. The transient and steady-state effects, mechanical effects, thermal effects, and chemical effects can have an impact on processing operations through complex correlations, such as improving the efficiency of mass and heat transfer. Ultrasound technology has been proven to be valuable in muscle food processing, but inappropriate ultrasound treatment can also have adverse effects on muscle foods. In the future, kinetic models are expected to be an effective tool for investigating the application effects of ultrasound in food processing. Additionally, the combination with other processing technologies can facilitate their intensive application on an industrial level to overcome the disadvantages of using ultrasound technology alone.
Collapse
Affiliation(s)
- Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Quanyu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
25
|
Xu H, Fei Q, Manickam S, Li D, Xiao H, Han Y, Show PL, Zhang G, Tao Y. Mechanistic study of the solid-liquid extraction of phenolics from walnut pellicle fibers enhanced by ultrasound, microwave and mechanical agitation forces. CHEMOSPHERE 2022; 309:136451. [PMID: 36155014 DOI: 10.1016/j.chemosphere.2022.136451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/21/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
The molecular diffusion of phenolics inside walnut pellicle fiber particles under solid-liquid extraction enhanced by ultrasound (US), orbital agitation (OA), impeller agitation (IA), and the combined microwave and impeller agitation (MW-IA) were explored. Numerical modeling considering the temperature-dependent diffusivity revealed that the internal diffusivity of phenolics was the highest under MW-IA and the lowest under OA. At 35 °C, IA (126.246 mg/g, t = 10 min) was more effective to strengthen the phenolic diffusivity than the US-39W (95.538 mg/g, t = 10 min). Due to the simultaneous enhancement of internal diffusivity and external dissolution, the MW-IA extraction reached equilibrium within 16 min, reaching the highest yield among all the treatments (176.944 mg/g). The extraction was then divided into the increasing and falling driving force periods. The comparison of phenolic diffusivity among MW-IA and IA roughly indicated that the proportion of non-thermal effect of microwave at 315 W was 889% higher than 189 W at the extraction equilibrium. Moreover, some soluble polyphenols, i.e. quercitrin and syringic acid, could be adsorbed by the cell wall after equilibrium. The correlations between any two soluble phenolics varied with the phenolic type, deducing that soluble phenolics may interact with each other either positively or negatively. Besides, the mining of phenolic data also indicated that intensive impeller agitation is a good substitution for ultrasonication to extract phenolics effectively.
Collapse
Affiliation(s)
- Hebin Xu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Qianwen Fei
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hongmei Xiao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Guohua Zhang
- Wukangxuan Agriculture and Forestry Development Limited Company, Jining, Shandong, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
26
|
Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022; 11:foods11192973. [PMID: 36230050 PMCID: PMC9564298 DOI: 10.3390/foods11192973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Various potential sources of bioactive components exist in nature which are fairly underutilized due to the lack of a scientific approach that can be sustainable as well as practically feasible. The recovery of bioactive compounds is a big challenge and its use in food industry to develop functional foods is a promising area of research. Various techniques are available for the extraction of these bioactives but due to their thermolabile nature, there is demand for nonthermal or green technologies which can lower the cost of operation and decrease operational time and energy consumption as compared to conventional methods. Ultrasound-assisted extraction (UAE) is gaining popularity due to its relative advantages over solvent extraction. Thereafter, ultrasonication as an encapsulating tool helps in protecting the core components against adverse food environmental conditions during processing and storage. The review mainly aims to discuss ultrasound technology, its applications, the fundamental principles of ultrasonic-assisted extraction and encapsulation, the parameters affecting them, and applications of ultrasound-assisted extraction and encapsulation in food systems. Additionally, future research areas are highlighted with an emphasis on the energy sustainability of the whole process.
Collapse
|
27
|
Hu D, Gao T, Kong X, Ma N, Fu J, Meng L, Duan X, Hu CY, Chen W, Feng Z, Latif S. Ginger (Zingiber officinale) extract mediated green synthesis of silver nanoparticles and evaluation of their antioxidant activity and potential catalytic reduction activities with Direct Blue 15 or Direct Orange 26. PLoS One 2022; 17:e0271408. [PMID: 36006900 PMCID: PMC9409512 DOI: 10.1371/journal.pone.0271408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) using a water extract of Ginger (Zingiber officinale) root by microwave irradiation and its antibacterial activities have been reported. However, AgNPs prepared from different parts of ginger root water or ethanol extract by ultrasound synthesis and their antioxidant activity and whether the biogenic could be used to catalyze the reduction of hazardous dye are unknown. This study concentrated on the facile green synthesis of AgNPs prepared from different parts (unpeeled ginger, peeled ginger, and ginger peel) of ginger root water or ethanol extract by the ultrasound-assisted method. We studied their antioxidant activity and catalytic degradation of hazardous dye Direct Orange 26 (DO26) and Direct Blue 15 (DB15). The surface plasmon resonance (SPR) peak of AgNPs was at 428-443 nm. The biogenic AgNPs were approximately 2 nm in size with a regular spherical shape identified from TEM analysis. The ethanol extracts of dried unpeeled ginger and peeled ginger, fresh peeled ginger and ginger peel. The Z. officinale AgNPs synthesized by dried unpeeled ginger ethanol extract showed the best antioxidant activity. Their scavenging activities were significantly better than BHT (p <0.05). The different parts of ginger extracts showed no catalytic degradation activities of DB15 and DO26. Still, the synthesized Z. officinale AgNPs exhibited good catalytic degradation activities, while their ability to catalytic degradation to DB15 was better than DO26. In the additive ratio of 3 mL DB15, 0.1 mL NaBH4 and 0.1 mL AgNPs, the degradation rates of DB15 (or DO26) at 15 min, 30 min and 60 min were only 1.8% (0.9%), 2.8% (1.4%) and 3.5% (1.6%) in the absence of AgNPs. When adding Z. officinale AgNPs prepared from dried ginger peel ethanol extract or fresh ginger peel water extract, the degradation rates of DB15 sharply increased to 97% and 93% after 30 min, respectively. In conclusion, ginger extract has good antioxidant properties. Z. officinale AgNPs biosynthesis from ginger extract exhibit excellent catalytic degradation activities, especially for the ginger peel extract. They have application value in the treatment of textile effluents and provide a new idea and method for the comprehensive development and utilization of ginger resources.
Collapse
Affiliation(s)
- Daihua Hu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong, Shaanxi, China
| | - Tingting Gao
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi, China
| | - Na Ma
- School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Jinhong Fu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Lina Meng
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Xiaolong Duan
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ching Yuan Hu
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Wang Chen
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Zili Feng
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Salman Latif
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
28
|
AlYammahi J, Hai A, Krishnamoorthy R, Arumugham T, Hasan SW, Banat F. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. ULTRASONICS SONOCHEMISTRY 2022; 88:106107. [PMID: 35926278 PMCID: PMC9356216 DOI: 10.1016/j.ultsonch.2022.106107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
29
|
Cruz Reina LJ, Durán-Aranguren DD, Forero-Rojas LF, Tarapuez-Viveros LF, Durán-Sequeda D, Carazzone C, Sierra R. Chemical composition and bioactive compounds of cashew (Anacardium occidentale) apple juice and bagasse from Colombian varieties. Heliyon 2022; 8:e09528. [PMID: 35663750 PMCID: PMC9156865 DOI: 10.1016/j.heliyon.2022.e09528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cashew nut production generates large amounts of cashew apple as residue. In Colombia, cashew cultivation is increasing together with the concerns on residue management. The objective of this study was to provide the first chemical, physical and thermal decomposition characterization of cashew apple from Colombian varieties harvested in Vichada, Colombia. This characterization was focused to identify the important bioactive and natural compounds that can be further valorized in the formulation of food, nutraceuticals, and pharmacological products. The results obtained in this study are helpful to portray the cashew apple as a potential by-product due to its renewable nature and valuable composition, instead of seeing it just as an agricultural residue. For that, cashew apples of Regional 8315 and Mapiria varieties were studied. The natural juice (cashew apple juice) that was extracted from the cashew apples and the remanent solids (cashew apple bagasse) were separately analyzed. The HPLC analytical technique was used to determine the concentration of bioactive compounds, structural carbohydrates, and soluble sugars that constitute this biomass. Spectrophotometric techniques were used to determine the concentration of tannins, carotenoids, and total polyphenols. Mineral content and antioxidant activity (DPPH and ABTS assays) were determined in the biomass. Also, the thermal decomposition under an inert atmosphere or pyrolysis was performed on cashew apple bagasse. The varieties of cashew apple studied in this work showed similar content of bioactive compounds, total phenolic content, and structural carbohydrates. However, the Mapiria variety showed values slightly higher than the Regional 8315. Regarding cashew apple juice, it is rich in tannins and ascorbic acid with values of 191 mg/100 mL and 70 mg/100 mL, respectively, for Mapiria variety. Additionally, the principal reservoir of bioactive compounds and constitutive carbohydrates was the cashew apple bagasse. About 50 wt.% of it was composed of cellulose and hemicellulose. Also, in the bagasse, the ascorbic acid content was in a range of 180–200 mg/100 g, which is higher than other fruits and vegetables. Moreover, alkaloids were identified in cashew apples. The maximum value of antioxidant activity (DPPH assay: 405 TEs/g) was observed in the bagasse of Mapiria variety. The bagasse thermal decomposition started around 150 °C when the structural carbohydrates and other constitutive substances started to degrade. After thermogravimetric analysis, a remanent of 20% of the initial weight suggested the formation of a rich-carbon solid, which could correspond to biochar. Therefore, the cashew apple harvested in Vichada is a valuable reservoir of a wide range of biomolecules that potentially could be valorized into energy, foods, and pharmacologic applications. Nevertheless, future work is necessary to describe the complex compounds of this residual biomass that are still unknown.
Collapse
Affiliation(s)
- Luis J. Cruz Reina
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
- Corresponding author.
| | - Daniel David Durán-Aranguren
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Laura Fernanda Forero-Rojas
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Luisa Fernanda Tarapuez-Viveros
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Dinary Durán-Sequeda
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products, Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Rocío Sierra
- Product and Processes Design Group, Department of Chemical and Food Engineering, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| |
Collapse
|
30
|
Yang ZW, Hu MX. Effect of Ultrasonic Pretreatment on Flavor Characteristics of Brewer's
Yeast‐Peanut
Meal Hydrolysate/Xylose Maillard Reaction Products. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zhi Wei Yang
- College of Light Industry and Food Engineering Nanning China
| | - Mei Xin Hu
- College of Light Industry and Food Engineering Nanning China
| |
Collapse
|
31
|
Silva AM, Pinto D, Moreira MM, Costa PC, Delerue-Matos C, Rodrigues F. Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology Approach. Antioxidants (Basel) 2022; 11:antiox11040763. [PMID: 35453448 PMCID: PMC9027652 DOI: 10.3390/antiox11040763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
This study aims to evaluate the optimal ultrasound-assisted extraction (UAE) conditions of antioxidants polyphenols from Actinidia arguta (Siebold & Zucc.) Planch. Ex Miq. (kiwiberry) leaves using a response surface methodology (RSM). The effects of solid:liquid ratio (2.5–10.0% w/v), time (20–60 min), and intensity (30–70 W/m2) on the total phenolic content (TPC) and antioxidant/antiradical activities were investigated. The optimal UAE conditions were achieved using a solid:liquid ratio of 10% (w/v) and an ultrasonic intensity of 30 W/m2 for 31.11 min. The results demonstrated that the optimal extract showed a high TPC (97.50 mg of gallic acid equivalents (GAE)/g dw) and antioxidant/antiradical activity (IC50 = 249.46 µg/mL for ABTS assay; IC50 = 547.34 µg/mL for DPPH assay; 1440.13 µmol of ferrous sulfate equivalents (FSE)/g dw for ferric reducing antioxidant power (FRAP)) as well as a good capacity to scavenge superoxide and hypochlorous acid (respectively, IC50 = 220.13 μg/mL and IC50 =10.26 μg/mL), which may be related with the 28 phenolic compounds quantified. The in vitro cell assay demonstrated that the optimal extract did not decrease the keratinocytes’ (HaCaT) viability, while the fibroblasts’ (HFF-1) viability was greater than 70.63% (1000 µg/mL). This study emphasizes the great potential of kiwiberry leaves extracted by UAE for skin application.
Collapse
Affiliation(s)
- Ana Margarida Silva
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (A.M.S.); (D.P.); (M.M.M.); (C.D.-M.)
| | - Diana Pinto
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (A.M.S.); (D.P.); (M.M.M.); (C.D.-M.)
| | - Manuela M. Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (A.M.S.); (D.P.); (M.M.M.); (C.D.-M.)
| | - Paulo C. Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (A.M.S.); (D.P.); (M.M.M.); (C.D.-M.)
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (A.M.S.); (D.P.); (M.M.M.); (C.D.-M.)
- Correspondence: ; Tel.: +351-22-83-40-500
| |
Collapse
|