1
|
Shojaeisaadi H, Schoenrock A, Meier MJ, Williams A, Norris JM, Palmer ND, Yauk CL, Marchetti F. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Commun Biol 2024; 7:1451. [PMID: 39506086 PMCID: PMC11541588 DOI: 10.1038/s42003-024-07140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Whole-genome sequencing studies of parent-offspring trios have provided valuable insights into the potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important insight into the causes of inter-family variability in DNM rates but they are highly limited. We characterized 2479 de novo single nucleotide variants (SNVs) in 13 multi-child families of Mexican-American ethnicity. We observed a strong paternal age effect on validated de novo SNVs with extensive inter-family variability in the yearly rate of increase. Children of older fathers showed more C > T transitions at CpG sites than children from younger fathers. Validated SNVs were examined against one cancer (COSMIC) and two non-cancer (human germline and CRISPR-Cas 9 knockout of human DNA repair genes) mutational signature databases. These analyses suggest that inaccurate DNA mismatch repair during repair initiation and excision processes, along with DNA damage and replication errors, are major sources of human germline de novo SNVs. Our findings provide important information for understanding the potential sources of human germline de novo SNVs and the critical role of DNA mismatch repair in their genesis.
Collapse
Affiliation(s)
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Research Computing Services, Carleton University, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Chan ER, Benchek P, Miller G, Brustoski K, Schaffer A, Truitt B, Tag J, Freebairn L, Lewis BA, Stein CM, Iyengar SK. Importance of copy number variants in childhood apraxia of speech and other speech sound disorders. Commun Biol 2024; 7:1273. [PMID: 39369109 PMCID: PMC11455877 DOI: 10.1038/s42003-024-06968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024] Open
Abstract
Childhood apraxia of speech (CAS) is a severe and rare form of speech sound disorder (SSD). CAS is typically sporadic, but may segregate in families with broader speech and language deficits. We hypothesize that genetic changes may be involved in the etiology of CAS. We conduct whole-genome sequencing in 27 families with CAS, 101 individuals in all. We identify 17 genomic regions including 19 unique copy number variants (CNVs). Three variants are shared across families, but the rest are unique; three events are de novo. In four families, siblings with milder phenotypes co-inherited the same CNVs, demonstrating variable expressivity. We independently validate eight CNVs using microarray technology and find many of these CNVs are present in children with milder forms of SSD. Bioinformatic investigation reveal four CNVs with substantial functional consequences (cytobands 2q24.3, 6p12.3-6p12.2, 11q23.2-11q23.3, and 16p11.2). These discoveries show that CNVs are a heterogeneous, but prevalent, cause of CAS.
Collapse
Affiliation(s)
- E Ricky Chan
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Gabrielle Miller
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kim Brustoski
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ashleigh Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara Truitt
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica Tag
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Lisa Freebairn
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Barbara A Lewis
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Sudha K Iyengar
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Aitken RJ. Paternal age, de novo mutations, and offspring health? New directions for an ageing problem. Hum Reprod 2024:deae230. [PMID: 39361588 DOI: 10.1093/humrep/deae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/07/2024] [Indexed: 10/05/2024] Open
Abstract
This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line. This picture of a dynamic germ line responsive to a wide range of intrinsic and extrinsic factors contrasts with the results of trio studies indicating that the incidence of mutations in the male germ line is low and exhibits a linear, monotonic increase with paternal age (∼two new mutations per year). While the traditional explanation for this pattern of mutation has been the metronomic plod of replication errors, an alternative model pivots around the 'faulty male' hypothesis. According to this concept, the genetic integrity of the male germ line can be dynamically impacted by age and a variety of other factors, and it is the aberrant repair of such damage that drives mutagenesis. Fortunately, DNA proofreading during spermatogenesis is extremely effective and these mutant cells are either repaired or deleted by apoptosis/ferroptosis. There appear to be only two mechanisms by which mutant germ cells can escape this apoptotic fate: (i) if the germ cells acquire a mutation that by enhancing proliferation or suppressing apoptosis, permits their clonal expansion (selfish selection hypothesis) or (ii) if a genetically damaged spermatozoon manages to fertilize an oocyte, which then fixes the damage as a mutation (or epimutation) as a result of defective DNA repair (oocyte collusion hypothesis). Exploration of these proposed mechanisms should not only help us better understand the aetiology of paternal age effects but also inform potential avenues of remediation.
Collapse
Affiliation(s)
- Robert John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
4
|
Liang X, Yang S, Wang D, Knief U. Characterization and distribution of de novo mutations in the zebra finch. Commun Biol 2024; 7:1243. [PMID: 39358581 PMCID: PMC11447093 DOI: 10.1038/s42003-024-06945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Germline de novo mutations (DNMs) provide the raw material for evolution. The DNM rate varies considerably between species, sexes and chromosomes. Here, we identify DNMs in the zebra finch (Taeniopygia guttata) across 16 parent-offspring trios using two genome assemblies of different quality. Using an independent genotyping assay, we validate 82% of the 150 candidate DNMs. DNM rates are consistent between both assemblies, with estimates of 6.14 × 10-9 and 6.36 × 10-9 per site per generation. We observe a strong paternal bias in DNM rates (male-to-female ratio ɑ ≈ 4), but this bias is in transition mutations only, leading to a transition-to-transversion ratio of 3.18 and 3.57. Finally, we find that DNMs tend to be randomly distributed across chromosomes, not associated with recombination hotspots or genic regions. However, the sex chromosome chrZ shows a roughly fourfold increased DNM rate compared to autosomes, which is more than the expected increase due to chrZ spending two-thirds of its time in males. Overall, our results further enhance our understanding of DNMs in passerine songbirds.
Collapse
Affiliation(s)
- Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daiping Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ulrich Knief
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
6
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
7
|
Pappert FA, Kolbe D, Dubin A, Roth O. The effect of parental age on the quantity and quality of offspring in Syngnathus typhle, a species with male pregnancy. Evol Appl 2024; 17:e13755. [PMID: 39027687 PMCID: PMC11254578 DOI: 10.1111/eva.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Parental age impacts offspring quantity and quality. Most prior research focused on maternal age. Since in most organisms the mother produces the costly eggs plus provides all or most parental care, it is difficult to distinguish maternal effects mediated via the egg from later maternal care. Here, we addressed the effects of parental age on offspring in Syngnathus typhle, a pipefish with male pregnancy. The divide between one parent producing the eggs and the second parent being the exclusive provider of parental care facilitates a distinction between the effects of parental age on egg quality versus parental age on early development. We fully reciprocally crossed young and old mothers and young and old fathers and assessed impact of parental age combination on offspring number, offspring size, and offspring gene expression patterns. Neither parental combination significantly influenced offspring size or male gestation duration; however, they influenced the number of offspring. Paternal, but not maternal, age strongly affected the offspring gene expression. Offspring from old fathers exhibited substantial changes in the expression of genes related to cell cycle regulation, protein synthesis, DNA repair, and neurogenesis. Our findings thus highlight the importance of gestation, as opposed to gamete production, in shaping the parental contribution to offspring development.
Collapse
Affiliation(s)
- Freya Adele Pappert
- Marine Evolutionary BiologyZoological Institute, Christian‐Albrechts‐Universität KielKielGermany
- Evolutionary Ecology of Marine FishesHelmholtz‐Centre for Ocean Research Kiel (GEOMAR)KielGermany
| | - Daniel Kolbe
- Institute of Clinical Molecular Biology (IKMB)Christian‐Albrechts‐Universität KielKielGermany
| | - Arseny Dubin
- Marine Evolutionary BiologyZoological Institute, Christian‐Albrechts‐Universität KielKielGermany
| | - Olivia Roth
- Marine Evolutionary BiologyZoological Institute, Christian‐Albrechts‐Universität KielKielGermany
- Evolutionary Ecology of Marine FishesHelmholtz‐Centre for Ocean Research Kiel (GEOMAR)KielGermany
| |
Collapse
|
8
|
Wu D, Zhang K, Guan K, Khan FA, Pandupuspitasari NS, Negara W, Sun F, Huang C. Future in the past: paternal reprogramming of offspring phenotype and the epigenetic mechanisms. Arch Toxicol 2024; 98:1685-1703. [PMID: 38460001 DOI: 10.1007/s00204-024-03713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 03/11/2024]
Abstract
That certain preconceptual paternal exposures reprogram the developmental phenotypic plasticity in future generation(s) has conceptualized the "paternal programming of offspring health" hypothesis. This transgenerational effect is transmitted primarily through sperm epigenetic mechanisms-DNA methylation, non-coding RNAs (ncRNAs) and associated RNA modifications, and histone modifications-and potentially through non-sperm-specific mechanisms-seminal plasma and circulating factors-that create 'imprinted' memory of ancestral information. The epigenetic landscape in sperm is highly responsive to environmental cues, due to, in part, the soma-to-germline communication mediated by epididymosomes. While human epidemiological studies and experimental animal studies have provided solid evidences in support of transgenerational epigenetic inheritance, how ancestral information is memorized as epigenetic codes for germline transmission is poorly understood. Particular elusive is what the downstream effector pathways that decode those epigenetic codes into persistent phenotypes. In this review, we discuss the paternal reprogramming of offspring phenotype and the possible underlying epigenetic mechanisms. Cracking these epigenetic mechanisms will lead to a better appreciation of "Paternal Origins of Health and Disease" and guide innovation of intervention algorithms to achieve 'healthier' outcomes in future generations. All this will revolutionize our understanding of human disease etiology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
9
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
10
|
Shadrina M, Kalay Ö, Demirkaya-Budak S, LeDuc CA, Chung WK, Turgut D, Budak G, Arslan E, Semenyuk V, Davis-Dusenbery B, Seidman CE, Yost HJ, Jain A, Gelb BD. Automated Identification of Germline de novo Mutations in Family Trios: A Consensus-Based Informatic Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584100. [PMID: 38559260 PMCID: PMC10979888 DOI: 10.1101/2024.03.08.584100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Accurate identification of germline de novo variants (DNVs) remains a challenging problem despite rapid advances in sequencing technologies as well as methods for the analysis of the data they generate, with putative solutions often involving ad hoc filters and visual inspection of identified variants. Here, we present a purely informatic method for the identification of DNVs by analyzing short-read genome sequencing data from proband-parent trios. Our method evaluates variant calls generated by three genome sequence analysis pipelines utilizing different algorithms-GATK HaplotypeCaller, DeepTrio and Velsera GRAF-exploring the assumption that a requirement of consensus can serve as an effective filter for high-quality DNVs. We assessed the efficacy of our method by testing DNVs identified using a previously established, highly accurate classification procedure that partially relied on manual inspection and used Sanger sequencing to validate a DNV subset comprising less confident calls. The results show that our method is highly precise and that applying a force-calling procedure to putative variants further removes false-positive calls, increasing precision of the workflow to 99.6%. Our method also identified novel DNVs, 87% of which were validated, indicating it offers a higher recall rate without compromising accuracy. We have implemented this method as an automated bioinformatics workflow suitable for large-scale analyses without need for manual intervention.
Collapse
Affiliation(s)
- Mariya Shadrina
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Özem Kalay
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | | | - Charles A. LeDuc
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Deniz Turgut
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | - Gungor Budak
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | - Elif Arslan
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | | | | | - Christine E. Seidman
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - H. Joseph Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Amit Jain
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Lopes-Marques M, Mort M, Carneiro J, Azevedo A, Amaro AP, Cooper DN, Azevedo L. Meta-analysis of 46,000 germline de novo mutations linked to human inherited disease. Hum Genomics 2024; 18:20. [PMID: 38395944 PMCID: PMC10885371 DOI: 10.1186/s40246-024-00587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND De novo mutations (DNMs) are variants that occur anew in the offspring of noncarrier parents. They are not inherited from either parent but rather result from endogenous mutational processes involving errors of DNA repair/replication. These spontaneous errors play a significant role in the causation of genetic disorders, and their importance in the context of molecular diagnostic medicine has become steadily more apparent as more DNMs have been reported in the literature. In this study, we examined 46,489 disease-associated DNMs annotated by the Human Gene Mutation Database (HGMD) to ascertain their distribution across gene and disease categories. RESULTS Most disease-associated DNMs reported to date are found to be associated with developmental and psychiatric disorders, a reflection of the focus of sequencing efforts over the last decade. Of the 13,277 human genes in which DNMs have so far been found, the top-10 genes with the highest proportions of DNM relative to gene size were H3-3 A, DDX3X, CSNK2B, PURA, ZC4H2, STXBP1, SCN1A, SATB2, H3-3B and TUBA1A. The distribution of CADD and REVEL scores for both disease-associated DNMs and those mutations not reported to be de novo revealed a trend towards higher deleteriousness for DNMs, consistent with the likely lower selection pressure impacting them. This contrasts with the non-DNMs, which are presumed to have been subject to continuous negative selection over multiple generations. CONCLUSION This meta-analysis provides important information on the occurrence and distribution of disease-associated DNMs in association with heritable disease and should make a significant contribution to our understanding of this major type of mutation.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - João Carneiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - António Azevedo
- CHUdSA-Centro Hospitalar Universitário de Santo António, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
12
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
13
|
Hosseini Nami A, Kabiri M, Zafarghandi Motlagh F, Shirzadeh T, Bagherian H, Zeinali R, Karimi A, Zeinali S. Identification and in silico structural analysis for the first de novo mutation in the cystic fibrosis transmembrane conductance regulator protein in Iran: case report and developmental insight using microsatellite markers. Ther Adv Respir Dis 2024; 18:17534666241253990. [PMID: 38904297 PMCID: PMC11193346 DOI: 10.1177/17534666241253990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by the inheritance of two mutant cystic fibrosis transmembrane conductance regulator (CFTR) alleles, one from each parent. Autosomal recessive disorders are rarely associated with germline mutations or mosaicism. Here, we propose a case of paternal germline mutation causing CF. The subject also had an identifiable maternal mutant allele. We identified the compound heterozygous variants in the proband through Sanger sequencing, and in silico studies predicted functional effects on the protein. Also, short tandem repeat markers revealed the de novo nature of the mutation. The maternal mutation in the CFTR gene was c.1000C > T. The de novo mutation was c.178G > A, p.Glu60Lys. This mutation is located in the lasso motif of the CFTR protein and, according to in silico structural analysis, disrupts the interaction of the lasso motif and R-domain, thus influencing protein function. This first reported case of de novo mutation in Asia has notable implications for molecular diagnostics, genetic counseling, and understanding the genetic etiology of recessive disorders in the Iranian population.
Collapse
Affiliation(s)
- Amin Hosseini Nami
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Tina Shirzadeh
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Hamideh Bagherian
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Razie Zeinali
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Karimi
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Sirous Zeinali
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), No. 41, Irna St., Valiasr St., Tehran, Iran
| |
Collapse
|
14
|
Santiago J, Silva JV, Santos MAS, Fardilha M. Age-Dependent Alterations in Semen Parameters and Human Sperm MicroRNA Profile. Biomedicines 2023; 11:2923. [PMID: 38001924 PMCID: PMC10669352 DOI: 10.3390/biomedicines11112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The trend to delay parenthood is increasing, impacting fertility and reproductive outcomes. Advanced paternal age (APA), defined as men's age above 40 years at conception, has been linked with testicular impairment, abnormal semen parameters, and poor reproductive and birth outcomes. Recently, the significance of sperm microRNA for fertilization and embryonic development has emerged. This work aimed to investigate the effects of men's age on semen parameters and sperm microRNA profiles. The ejaculates of 333 Portuguese men were collected between 2018 and 2022, analyzed according to WHO guidelines, and a density gradient sperm selection was performed. For microRNA expression analysis, 16 normozoospermic human sperm samples were selected and divided into four age groups: ≤30, 31-35, 36-40, and >40 years. microRNA target genes were retrieved from the miRDB and TargetScan databases and Gene Ontology analysis was performed using the DAVID tool. No significant correlation was found between male age and conventional semen parameters, except for volume. Fifteen differentially expressed microRNAs (DEMs) between groups were identified. Enrichment analysis suggested the involvement of DEMs in the sperm of men with advanced age in critical biological processes like embryonic development, morphogenesis, and male gonad development. Targets of DEMs were involved in signaling pathways previously associated with the ageing process, including cellular senescence, autophagy, insulin, and mTOR pathways. These results suggest that although conventional semen parameters were not affected by men's age, alterations in microRNA regulation may occur and be responsible for poor fertility and reproductive outcomes associated with APA.
Collapse
Affiliation(s)
- Joana Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.S.); (M.A.S.S.)
| | - Joana V. Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.S.); (M.A.S.S.)
| | - Manuel A. S. Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.S.); (M.A.S.S.)
- Multidisciplinary Institute of Ageing, MIA-Portugal, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193 Aveiro, Portugal; (J.V.S.); (M.A.S.S.)
| |
Collapse
|
15
|
Lee M, Lui ACY, Chan JCK, Doong PHL, Kwong AKY, Mak CCY, Li RHW, Kan ASY, Chung BHY. Revealing parental mosaicism: the hidden answer to the recurrence of apparent de novo variants. Hum Genomics 2023; 17:91. [PMID: 37798624 PMCID: PMC10557286 DOI: 10.1186/s40246-023-00535-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Mosaicism refers to the presence of two or more populations of genetically distinct cells within an individual, all of which originate from a single zygote. Previous literature estimated the percentage of parental mosaicism ranged from 0.33 to 25.9%. In this study, parents whose children had previously been diagnosed with developmental disorders with an apparent de novo variant were recruited. Peripheral blood, buccal and semen samples were collected from these parents if available for the detection of potential parental mosaicism using droplet digital PCR, complemented with the method of blocker displacement amplification. Among the 20 families being analyzed, we report four families with parental mosaicism (4/20, 20%). Two families have maternal gonosomal mosaicism (EYA1 and EBF3) and one family has paternal gonadal mosaicism (CHD7) with a pathogenic/ likely pathogenic variant. One family has a paternal gonosomal mosaicism with a variant of uncertain significance (FLNC) with high clinical relevance. The detectable variant allele frequency in our cohort ranged from 8.7-35.9%, limit of detection 0.08-0.16% based on our in-house EBF3 assay. Detecting parental mosaicism not only informs family with a more accurate recurrence risk, but also facilitates medical teams to create appropriate plans for pregnancy and delivery, offering the most suitable care.
Collapse
Affiliation(s)
- Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Adrian C Y Lui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Joshua C K Chan
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Phoenix H L Doong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Anna K Y Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anita S Y Kan
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Sai Wan Ho, Hong Kong SAR, China
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, Room 115, 1/F, New Clinical Building, Pok Fu Lam, Hong Kong SAR, China.
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Ngau Tau Kok, Hong Kong SAR, China.
| |
Collapse
|
16
|
Aitken RJ. Male reproductive ageing: a radical road to ruin. Hum Reprod 2023; 38:1861-1871. [PMID: 37568254 PMCID: PMC10546083 DOI: 10.1093/humrep/dead157] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
In modern post-transition societies, we are reproducing later and living longer. While the impact of age on female reproductive function has been well studied, much less is known about the intersection of age and male reproduction. Our current understanding is that advancing age brings forth a progressive decline in male fertility accompanied by a reduction in circulating testosterone levels and the appearance of age-dependent reproductive pathologies including benign prostatic hypertrophy and erectile dysfunction. Paternal ageing is also associated with a profound increase in sperm DNA damage, the appearance of multiple epigenetic changes in the germ line and an elevated mutational load in the offspring. The net result of such changes is an increase in the disease burden carried by the progeny of ageing males, including dominant genetic diseases such as Apert syndrome and achondroplasia, as well as neuropsychiatric conditions including autism and spontaneous schizophrenia. The genetic basis of these age-related effects appears to involve two fundamental mechanisms. The first is a positive selection mechanism whereby stem cells containing mutations in a mitogen-activated protein kinase pathway gain a selective advantage over their non-mutant counterparts and exhibit significant clonal expansion with the passage of time. The second is dependent on an age-dependent increase in oxidative stress which impairs the steroidogenic capacity of the Leydig cells, disrupts the ability of Sertoli cells to support the normal differentiation of germ cells, and disrupts the functional and genetic integrity of spermatozoa. Given the central importance of oxidative stress in defining the impact of chronological age on male reproduction, there may be a role for antioxidants in the clinical management of this process. While animal studies are supportive of this strategy, carefully designed clinical trials are now needed if we are to realize the therapeutic potential of this approach in a clinical context.
Collapse
Affiliation(s)
- R John Aitken
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, School of Environmental and Life Sciences, College of Engineering Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
17
|
Cimadomo D, Rienzi L, Conforti A, Forman E, Canosa S, Innocenti F, Poli M, Hynes J, Gemmell L, Vaiarelli A, Alviggi C, Ubaldi FM, Capalbo A. Opening the black box: why do euploid blastocysts fail to implant? A systematic review and meta-analysis. Hum Reprod Update 2023; 29:570-633. [PMID: 37192834 DOI: 10.1093/humupd/dmad010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 03/22/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND A normal chromosomal constitution defined through PGT-A assessing all chromosomes on trophectoderm (TE) biopsies represents the strongest predictor of embryo implantation. Yet, its positive predictive value is not higher than 50-60%. This gap of knowledge on the causes of euploid blastocysts' reproductive failure is known as 'the black box of implantation'. OBJECTIVE AND RATIONALE Several embryonic, maternal, paternal, clinical, and IVF laboratory features were scrutinized for their putative association with reproductive success or implantation failure of euploid blastocysts. SEARCH METHODS A systematic bibliographical search was conducted without temporal limits up to August 2021. The keywords were '(blastocyst OR day5 embryo OR day6 embryo OR day7 embryo) AND (euploid OR chromosomally normal OR preimplantation genetic testing) AND (implantation OR implantation failure OR miscarriage OR abortion OR live birth OR biochemical pregnancy OR recurrent implantation failure)'. Overall, 1608 items were identified and screened. We included all prospective or retrospective clinical studies and randomized-controlled-trials (RCTs) that assessed any feature associated with live-birth rates (LBR) and/or miscarriage rates (MR) among non-mosaic euploid blastocyst transfer after TE biopsy and PGT-A. In total, 41 reviews and 372 papers were selected, clustered according to a common focus, and thoroughly reviewed. The PRISMA guideline was followed, the PICO model was adopted, and ROBINS-I and ROB 2.0 scoring were used to assess putative bias. Bias across studies regarding the LBR was also assessed using visual inspection of funnel plots and the trim and fill method. Categorical data were combined with a pooled-OR. The random-effect model was used to conduct the meta-analysis. Between-study heterogeneity was addressed using I2. Whenever not suitable for the meta-analysis, the included studies were simply described for their results. The study protocol was registered at http://www.crd.york.ac.uk/PROSPERO/ (registration number CRD42021275329). OUTCOMES We included 372 original papers (335 retrospective studies, 30 prospective studies and 7 RCTs) and 41 reviews. However, most of the studies were retrospective, or characterized by small sample sizes, thus prone to bias, which reduces the quality of the evidence to low or very low. Reduced inner cell mass (7 studies, OR: 0.37, 95% CI: 0.27-0.52, I2 = 53%), or TE quality (9 studies, OR: 0.53, 95% CI: 0.43-0.67, I2 = 70%), overall blastocyst quality worse than Gardner's BB-grade (8 studies, OR: 0.40, 95% CI: 0.24-0.67, I2 = 83%), developmental delay (18 studies, OR: 0.56, 95% CI: 0.49-0.63, I2 = 47%), and (by qualitative analysis) some morphodynamic abnormalities pinpointed through time-lapse microscopy (abnormal cleavage patterns, spontaneous blastocyst collapse, longer time of morula formation I, time of blastulation (tB), and duration of blastulation) were all associated with poorer reproductive outcomes. Slightly lower LBR, even in the context of PGT-A, was reported among women ≥38 years (7 studies, OR: 0.87, 95% CI: 0.75-1.00, I2 = 31%), while obesity was associated with both lower LBR (2 studies, OR: 0.66, 95% CI: 0.55-0.79, I2 = 0%) and higher MR (2 studies, OR: 1.8, 95% CI: 1.08-2.99, I2 = 52%). The experience of previous repeated implantation failures (RIF) was also associated with lower LBR (3 studies, OR: 0.72, 95% CI: 0.55-0.93, I2 = 0%). By qualitative analysis, among hormonal assessments, only abnormal progesterone levels prior to transfer were associated with LBR and MR after PGT-A. Among the clinical protocols used, vitrified-warmed embryo transfer was more effective than fresh transfer (2 studies, OR: 1.56, 95% CI: 1.05-2.33, I2 = 23%) after PGT-A. Lastly, multiple vitrification-warming cycles (2 studies, OR: 0.41, 95% CI: 0.22-0.77, I2 = 50%) or (by qualitative analysis) a high number of cells biopsied may slightly reduce the LBR, while simultaneous zona-pellucida opening and TE biopsy allowed better results than the Day 3 hatching-based protocol (3 studies, OR: 1.41, 95% CI: 1.18-1.69, I2 = 0%). WIDER IMPLICATIONS Embryo selection aims at shortening the time-to-pregnancy, while minimizing the reproductive risks. Knowing which features are associated with the reproductive competence of euploid blastocysts is therefore critical to define, implement, and validate safer and more efficient clinical workflows. Future research should be directed towards: (i) systematic investigations of the mechanisms involved in reproductive aging beyond de novo chromosomal abnormalities, and how lifestyle and nutrition may accelerate or exacerbate their consequences; (ii) improved evaluation of the uterine and blastocyst-endometrial dialogue, both of which represent black boxes themselves; (iii) standardization/automation of embryo assessment and IVF protocols; (iv) additional invasive or preferably non-invasive tools for embryo selection. Only by filling these gaps we may finally crack the riddle behind 'the black box of implantation'.
Collapse
Affiliation(s)
- Danilo Cimadomo
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Alessandro Conforti
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy
| | - Eric Forman
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | | | - Federica Innocenti
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Maurizio Poli
- Centrum voor Kinderwens, Dijklander Hospital, Purmerend, The Netherlands
- Juno Genetics, Rome, Italy
| | - Jenna Hynes
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Laura Gemmell
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University Irving Medical Centre, New York, NY, USA
| | - Alberto Vaiarelli
- IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy
| | - Carlo Alviggi
- Department of Public Health, Federico II University, Naples, Italy
| | | | | |
Collapse
|
18
|
Lin Y, Darolti I, van der Bijl W, Morris J, Mank JE. Extensive variation in germline de novo mutations in Poecilia reticulata. Genome Res 2023; 33:1317-1324. [PMID: 37442578 PMCID: PMC10547258 DOI: 10.1101/gr.277936.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The rate of germline mutation is fundamental to evolutionary processes, as it generates the variation upon which selection acts. The guppy, Poecilia reticulata, is a model of rapid adaptation, however the relative contribution of standing genetic variation versus de novo mutation (DNM) to evolution in this species remains unclear. Here, we use pedigree-based approaches to quantify and characterize germline DNMs in three large guppy families. Our results suggest germline mutation rate in the guppy varies substantially across individuals and families. Most DNMs are shared across multiple siblings, suggesting they arose during early embryonic development. DNMs are randomly distributed throughout the genome, and male-biased mutation rate is low, as would be expected from the short guppy generation time. Overall, our study shows remarkable variation in germline mutation rate and provides insights into rapid evolution of guppies.
Collapse
Affiliation(s)
- Yuying Lin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada;
| | - Iulia Darolti
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Wouter van der Bijl
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jake Morris
- School of Biological Science, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
19
|
Du H, Pan B, Alund AW, Yan J, Chen Y, Robison TW, Chen T. Evaluation of mutagenic susceptibility of different stages in germ cell development of Caenorhabditis elegans using whole genome sequencing. Arch Toxicol 2023; 97:2261-2272. [PMID: 37209179 DOI: 10.1007/s00204-023-03526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
In contrast to somatic mutations, mutations in germ cells affect every cell of any organism derived from the germ cell and therefore are related to numerous genetic diseases. However, there is no suitable assay to evaluate the mutagenic sensitivities of both male and female germ cells. The main type of Caenorhabditis elegans (C. elegans) is hermaphroditic, where spermatogenesis and oogenesis occur chronologically at specific stages, allowing induction of mutations in either sperm or eggs exclusively. In this study, we used the alkylating agent ethyl methanesulfonate and N-ethyl-N-nitrosourea to induce germline mutations in C. elegans at different developmental stages and analyzed mutation frequency and mutational spectrum from data gathered using next-generation sequencing (NGS) technology. Our results revealed low spontaneous mutation rates of C. elegans, along with distinct mutagenic effects elicited by the two mutagens. Our data show that the parental worms treated during germ cell mitosis, spermatogenesis, and oogenesis resulted in different mutation frequencies in their offspring, and female germ cells could be very susceptible to mutagen exposure during oogenesis. In summary, our study indicates that the use of C. elegans and its specific chronological hermaphroditism would be a promising way to explore the sensitivities of both male and female germ cells to mutagens.
Collapse
Affiliation(s)
- Hua Du
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Alexander W Alund
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
- Discovery Sciences | Medicine Design, Pfizer Inc., 280 Shennecossett Rd, Groton, CT, 06340, USA
| | - Jian Yan
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Ying Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Timothy W Robison
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| |
Collapse
|
20
|
Zhou L, Meng Q, von Ehrenstein OS, Xiao J, Gao Y, Wu YW, Ritz B, Liew Z. Parental Age and Childhood Risk for Cerebral Palsy in California. J Pediatr 2023; 255:147-153.e6. [PMID: 36372095 PMCID: PMC10121738 DOI: 10.1016/j.jpeds.2022.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate the associations between maternal or paternal age at the time of delivery and offspring's risk for cerebral palsy (CP) in California. STUDY DESIGN We conducted a population-based, case-control study that included 8736 singleton CP cases and 90 250 singleton controls, matched by sex and birth year, selected from California birth certificate records from 1994 to 2010. We estimated OR and 95% CIs for CP diagnosis according to maternal and paternal age recorded on the birth certificates. Causal mediation analysis was performed to estimate direct and indirect effects of parental ages on CP with preterm delivery as a potential mediator. RESULTS Children born to younger mothers (≤19 years) or older mothers (35-39 years; ≥40 years) had a greater risk of CP compared with children of mothers aged 25-29 years (ORs ranging from 1.13 to 1.59). Compared with paternal age 25-29 years, older paternal age (40-44 years; ≥45 years) also was associated with an increased risk for CP independent of maternal age. When analyzing jointly using both parents of ages 20-34 years as the reference, the greatest risk was estimated for older parents (≥35 years). Preterm birth was estimated to mediate 19%-34% of the total effects between maternal or paternal age and offspring CP risk. CONCLUSIONS Young maternal age and an older age in either or both parents were associated with a greater risk of CP in their children. Although preterm birth was a mediator, additional factors related to parental age need further exploration to explain risk of CP.
Collapse
Affiliation(s)
- Lifang Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT
| | - Qi Meng
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA; Department of Community Health Sciences, Fielding School of Public Health, UCLA, Los Angeles, CA
| | - Jingyuan Xiao
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yvonne W Wu
- Departments of Neurology and Pediatrics, UCSF, San Francisco, CA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA; Department of Neurology, School of Medicine, UCLA, Los Angeles, CA
| | - Zeyan Liew
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT.
| |
Collapse
|
21
|
Preconception paternal mental disorders and child health: Mechanisms and interventions. Neurosci Biobehav Rev 2023; 144:104976. [PMID: 36435393 DOI: 10.1016/j.neubiorev.2022.104976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Mental illness is a significant global health issue with a steady prevalence. High heritability is suspected, but genome-wide association studies only identified a small number of risk genes associated with mental disorders. This 'missing inheritance' can be partially explained by epigenetic heredity. Evidence from numerous animal models and human studies supports the possibility that preconception paternal mental health influences their offspring's mental health via nongenetic means. Here, we review two potential pathways, including sperm epigenetics and seminal plasma components. The current review highlights the role of sperm epigenetics and explores epigenetic message origination and susceptibility to chronic stress. Meanwhile, possible spatiotemporal windows and events that induce sexually dimorphic modes and effects of paternal stress transmission are inferred in this review. Additionally, we discuss emerging interventions that could potentially block the intergenerational transmission of paternal psychiatric disorders and reduce the incidence of mental illness. Understanding the underlying mechanisms by which preconception paternal stress impacts offspring health is critical for identifying strategies supporting healthy development and successfully controlling the prevalence of mental illness.
Collapse
|
22
|
Alecu JE, Saffari A, Jordan C, Srivastava S, Blackstone C, Ebrahimi-Fakhari D. De novo variants cause complex symptoms in HSP-ATL1 (SPG3A) and uncover genotype-phenotype correlations. Hum Mol Genet 2023; 32:93-103. [PMID: 35925862 PMCID: PMC9838092 DOI: 10.1093/hmg/ddac182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/16/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023] Open
Abstract
Pathogenic variants in ATL1 are a known cause of autosomal-dominantly inherited hereditary spastic paraplegia (HSP-ATL1, SPG3A) with a predominantly 'pure' HSP phenotype. Although a relatively large number of patients have been reported, no genotype-phenotype correlations have been established for specific ATL1 variants. Confronted with five children carrying de novo ATL1 variants showing early, complex and severe symptoms, we systematically investigated the molecular and phenotypic spectrum of HSP-ATL1. Through a cross-sectional analysis of 537 published and novel cases, we delineate a distinct phenotype observed in patients with de novo variants. Guided by this systematic phenotyping approach and structural modelling of disease-associated variants in atlastin-1, we demonstrate that this distinct phenotypic signature is also prevalent in a subgroup of patients with inherited ATL1 variants and is largely explained by variant localization within a three-dimensional mutational cluster. Establishing genotype-phenotype correlations, we find that symptoms that extend well beyond the typical pure HSP phenotype (i.e. neurodevelopmental abnormalities, upper limb spasticity, bulbar symptoms, peripheral neuropathy and brain imaging abnormalities) are prevalent in patients with variants located within this mutational cluster.
Collapse
Affiliation(s)
- Julian E Alecu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, 91054, Germany
| | - Afshin Saffari
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Jordan
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Siddharth Srivastava
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Blackstone
- Movement Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Intellectual and Developmental Disabilities Research Center, Boston Children's Hospital, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
23
|
Shvets LS, Frych NI, Dovganych NV, Kovalchuk LY, Popadynets OH, Kotyk TL, Tokaruk NS. EVALUATION OF THE COMPLEX USE OF PLANT TEST-SYSTEMS TO DETERMINE THE NATURE AND INTENSITY OF THE MUTAGENIC BACKGROUND OF THE ENVIRONMENT. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:221-227. [PMID: 37589106 DOI: 10.36740/merkur202303106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Aim: A comprehensive evaluation of the effectiveness of the use of plant test-systems as biological objects for the identification of the specifitown of the effect of mutagens on the hereditary apparatus. PATIENTS AND METHODS Materials and methods: With the use of test-systems (determination of the gonadotoxitown of plant pollen grains, the Allium cepa-test and the use of celandine greater Chelidonium majus as an accumulative phytoindicator) was analyzed the ecological situation of the areas in Ivano-Frankivsk region. The samples of soil, water, generative and vegetative organs of plants were taken in the territories of the Carpathian region and tested in the following areas: ecologically safe, conditionally ecologically safe and ecologically dangerous areas. RESULTS Results: Inhibition of mitotic activity in cells of the primary meristem of Allium cepa roots grown in water samples taken in chemically polluted Kalush and Burshtyn and stimulation of mitosis in water samples from Stetseva, was determined. The town Kosiv is considered conditionally ecologically clean, a control district. The indices of chromosomal aberrations frequency were high in plants from the chemically polluted Burshtyn (3.98±0.31) %, Kalush (2.95±0.25) % and village Stetseva (3.36±0.39) %, and dominated by controls 4.57-fold; 2.92-fold and 3.86-fold, respectively. CONCLUSION Conclusions: With the help of a comprehensive study of two test-systems (determination of the fertility of plant reproductive structures and the Allium cepa test), we have proven an increased level of xenobiotics in the water, soil and air of the chemically polluted territoties of Precarpathian region. The use of Chelidonium majus as a test-object with metal-accumulating properties is a promising index for the detection of substances of a chemical nature (heavy metals) in ecological areas of the Ivano-Frankivsk region.
Collapse
Affiliation(s)
- Liubov S Shvets
- IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE
| | - Nataliia I Frych
- IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE
| | | | | | | | - Taras L Kotyk
- IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE
| | - Nadiya S Tokaruk
- IVANO-FRANKIVSK NATIONAL MEDICAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE
| |
Collapse
|
24
|
Wood KA, Goriely A. The impact of paternal age on new mutations and disease in the next generation. Fertil Steril 2022; 118:1001-1012. [PMID: 36351856 PMCID: PMC10909733 DOI: 10.1016/j.fertnstert.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis. We discuss the recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions, the so-called "paternal age effect" disorders that show a strong association between paternal age and disease prevalence, and discuss the underlying mechanism ("selfish selection") and implications of this process in more detail. More broadly, understanding the causes and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice given that the average age of fatherhood is steadily increasing in many developed nations.
Collapse
Affiliation(s)
- Katherine A Wood
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom.
| |
Collapse
|
25
|
Caporali L, Fiorini C, Palombo F, Romagnoli M, Baccari F, Zenesini C, Visconti P, Posar A, Scaduto MC, Ormanbekova D, Battaglia A, Tancredi R, Cameli C, Viggiano M, Olivieri A, Torroni A, Maestrini E, Rochat MJ, Bacchelli E, Carelli V, Maresca A. Dissecting the multifaceted contribution of the mitochondrial genome to autism spectrum disorder. Front Genet 2022; 13:953762. [PMID: 36419830 PMCID: PMC9676943 DOI: 10.3389/fgene.2022.953762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2023] Open
Abstract
Autism spectrum disorder (ASD) is a clinically heterogeneous class of neurodevelopmental conditions with a strong, albeit complex, genetic basis. The genetic architecture of ASD includes different genetic models, from monogenic transmission at one end, to polygenic risk given by thousands of common variants with small effects at the other end. The mitochondrial DNA (mtDNA) was also proposed as a genetic modifier for ASD, mostly focusing on maternal mtDNA, since the paternal mitogenome is not transmitted to offspring. We extensively studied the potential contribution of mtDNA in ASD pathogenesis and risk through deep next generation sequencing and quantitative PCR in a cohort of 98 families. While the maternally-inherited mtDNA did not seem to predispose to ASD, neither for haplogroups nor for the presence of pathogenic mutations, an unexpected influence of paternal mtDNA, apparently centered on haplogroup U, came from the Italian families extrapolated from the test cohort (n = 74) when compared to the control population. However, this result was not replicated in an independent Italian cohort of 127 families and it is likely due to the elevated paternal age at time of conception. In addition, ASD probands showed a reduced mtDNA content when compared to their unaffected siblings. Multivariable regression analyses indicated that variants with 15%-5% heteroplasmy in probands are associated to a greater severity of ASD based on ADOS-2 criteria, whereas paternal super-haplogroups H and JT were associated with milder phenotypes. In conclusion, our results suggest that the mtDNA impacts on ASD, significantly modifying the phenotypic expression in the Italian population. The unexpected finding of protection induced by paternal mitogenome in term of severity may derive from a role of mtDNA in influencing the accumulation of nuclear de novo mutations or epigenetic alterations in fathers' germinal cells, affecting the neurodevelopment in the offspring. This result remains preliminary and needs further confirmation in independent cohorts of larger size. If confirmed, it potentially opens a different perspective on how paternal non-inherited mtDNA may predispose or modulate other complex diseases.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Flavia Baccari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Epidemiologia e Statistica, Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Epidemiologia e Statistica, Bologna, Italy
| | - Paola Visconti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Annio Posar
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Cristina Scaduto
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOSI Disturbi dello Spettro Autistico, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Agatino Battaglia
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Raffaella Tancredi
- IRCCS Stella Maris Foundation, Department of Developmental Neuroscience, Pisa, Italy
| | - Cinzia Cameli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marta Viggiano
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Elena Maestrini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Magali Jane Rochat
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma Diagnostica Funzionale Neuroradiologica, Bologna, Italy
| | - Elena Bacchelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| |
Collapse
|
26
|
In vitro germ cell induction from fertile and infertile monozygotic twin research participants. Cell Rep Med 2022; 3:100782. [PMID: 36260988 PMCID: PMC9589117 DOI: 10.1016/j.xcrm.2022.100782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/23/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) enable reproductive diseases to be studied when the reproductive health of the participant is known. In this study, monozygotic (MZ) monoamniotic (MA) twins discordant for primary ovarian insufficiency (POI) consent to research to address the hypothesis that discordant POI is due to a shared primordial germ cell (PGC) progenitor pool. If this is the case, reprogramming the twin's skin cells to hiPSCs is expected to restore equivalent germ cell competency to the twins hiPSCs. Following reprogramming, the infertile MA twin's cells are capable of generating human PGC-like cells (hPGCLCs) and amniotic sac-like structures equivalent to her fertile twin sister. Using these hiPSCs together with genome sequencing, our data suggest that POI in the infertile twin is not due to a genetic barrier to amnion or germ cell formation and support the hypothesis that during gestation, amniotic PGCs are likely disproportionately allocated to the fertile twin with embryo splitting.
Collapse
|
27
|
Mohiuddin M, Kooy RF, Pearson CE. De novo mutations, genetic mosaicism and human disease. Front Genet 2022; 13:983668. [PMID: 36226191 PMCID: PMC9550265 DOI: 10.3389/fgene.2022.983668] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mosaicism—the existence of genetically distinct populations of cells in a particular organism—is an important cause of genetic disease. Mosaicism can appear as de novo DNA mutations, epigenetic alterations of DNA, and chromosomal abnormalities. Neurodevelopmental or neuropsychiatric diseases, including autism—often arise by de novo mutations that usually not present in either of the parents. De novo mutations might occur as early as in the parental germline, during embryonic, fetal development, and/or post-natally, through ageing and life. Mutation timing could lead to mutation burden of less than heterozygosity to approaching homozygosity. Developmental timing of somatic mutation attainment will affect the mutation load and distribution throughout the body. In this review, we discuss the timing of de novo mutations, spanning from mutations in the germ lineage (all ages), to post-zygotic, embryonic, fetal, and post-natal events, through aging to death. These factors can determine the tissue specific distribution and load of de novo mutations, which can affect disease. The disease threshold burden of somatic de novo mutations of a particular gene in any tissue will be important to define.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Edegem, Belgium
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Mohiuddin Mohiuddin, ; Christopher E. Pearson,
| |
Collapse
|
28
|
Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update 2022; 29:24-44. [PMID: 36066418 PMCID: PMC9825272 DOI: 10.1093/humupd/dmac033] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern reproductive behavior in most developed countries is characterized by delayed parenthood. Older gametes are generally less fertile, accumulating and compounding the effects of varied environmental exposures that are modified by lifestyle factors. Clinicians are primarily concerned with advanced maternal age, while the influence of paternal age on fertility, early development and offspring health remains underappreciated. There is a growing trend to use assisted reproductive technologies for couples of advanced reproductive age. Thus, the number of children born from older gametes is increasing. OBJECTIVE AND RATIONALE We review studies reporting age-associated epigenetic changes in mammals and humans in sperm, including DNA methylation, histone modifications and non-coding RNAs. The interplay between environment, fertility, ART and age-related epigenetic signatures is explored. We focus on the association of sperm epigenetics on epigenetic and phenotype events in embryos and offspring. SEARCH METHODS Peer-reviewed original and review articles over the last two decades were selected using PubMed and the Web of Science for this narrative review. Searches were performed by adopting the two groups of main terms. The first group included 'advanced paternal age', 'paternal age', 'postponed fatherhood', 'late fatherhood', 'old fatherhood' and the second group included 'sperm epigenetics', 'sperm', 'semen', 'epigenetic', 'inheritance', 'DNA methylation', 'chromatin', 'non-coding RNA', 'assisted reproduction', 'epigenetic clock'. OUTCOMES Age is a powerful factor in humans and rodent models associated with increased de novo mutations and a modified sperm epigenome. Age affects all known epigenetic mechanisms, including DNA methylation, histone modifications and profiles of small non-coding (snc)RNA. While DNA methylation is the most investigated, there is a controversy about the direction of age-dependent changes in differentially hypo- or hypermethylated regions with advanced age. Successful development of the human sperm epigenetic clock based on cross-sectional data and four different methods for DNA methylation analysis indicates that at least some CpG exhibit a linear relationship between methylation levels and age. Rodent studies show a significant overlap between genes regulated through age-dependent differentially methylated regions and genes targeted by age-dependent sncRNA. Both age-dependent epigenetic mechanisms target gene networks enriched for embryo developmental, neurodevelopmental, growth and metabolic pathways. Thus, age-dependent changes in the sperm epigenome cannot be described as a stochastic accumulation of random epimutations and may be linked with autism spectrum disorders. Chemical and lifestyle exposures and ART techniques may affect the epigenetic aging of sperm. Although most epigenetic modifications are erased in the early mammalian embryo, there is growing evidence that an altered offspring epigenome and phenotype is linked with advanced paternal age due to the father's sperm accumulating epigenetic changes with time. It has been hypothesized that age-induced changes in the sperm epigenome are profound, physiological and dynamic over years, yet stable over days and months, and likely irreversible. WIDER IMPLICATIONS This review raises a concern about delayed fatherhood and age-associated changes in the sperm epigenome that may compromise reproductive health of fathers and transfer altered epigenetic information to subsequent generations. Prospective studies using healthy males that consider confounders are recommended. We suggest a broader discussion focused on regulation of the father's age in natural and ART conceptions is needed. The professional community should be informed and should raise awareness in the population and when counseling older men.
Collapse
Affiliation(s)
| | | | - J Richard Pilsner
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Oleg Sergeyev
- Correspondence address. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, Moscow 119992, Russia. E-mail: https://orcid.org/0000-0002-5745-3348
| |
Collapse
|
29
|
Zheng S, Huang H, Ma L, Zhu T. RASopathies due to de novo pathogenic variants: clinical features, genetic findings and outcomes in nine neonates born with congenital heart defects. BMC Med Genomics 2022; 15:184. [PMID: 36002837 PMCID: PMC9400306 DOI: 10.1186/s12920-022-01336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background There are limited information available related to neonatal characteristics of RASopathies, a group of autosomal dominant syndromes with considerable phenotypic overlap. Methods The retrospective review revealed 9 neonates born with congenital heart defects (CHDs) and diagnosed as RASopathies due to de novo mutations (DNMs) by trio-based exome sequencing (ES) between January 2017 and December 2020. We report in details of the neonatal course, molecular analysis and 180-days of age follow-up in affected individuals. Results The early clinical spectrum included various types of CHDs, less noticeable multiple extracardiac anomalies and unspecific symptoms like poor feeding. Of the 8 variants identified from 6 genes, 2 in RASA1 were novel: (NM_002890.2: c.2828 T > C (p.Leu943Pro)) and (NM_002890.2: c.2001del (p.Pro668Leufs*10)), which functionally impaired the protein structure. There was a relatively high mortality rate of 33.33% (3/9) for all the defects combined. A RAF1-deficient male and a RASA1-deficient male survived from severe heart failure by surgical interventions in early life. Conclusions Our results revealed that family-based ES was useful in identifying DNMs and causal genes for sporadic diseases and screening Rasopathies shortly after birth. We recommended a family-based ES and a full phenotypic evaluation including echocardiogram, magnetic resonance imaging, ultrasonography and coagulation screening in neonates with CHDs and a suspected genetic etiology.
Collapse
Affiliation(s)
- Simin Zheng
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanyang Huang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Ma
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwen Zhu
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
30
|
de Manuel M, Wu FL, Przeworski M. A paternal bias in germline mutation is widespread in amniotes and can arise independently of cell division numbers. eLife 2022; 11:e80008. [PMID: 35916372 PMCID: PMC9439683 DOI: 10.7554/elife.80008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
In humans and other mammals, germline mutations are more likely to arise in fathers than in mothers. Although this sex bias has long been attributed to DNA replication errors in spermatogenesis, recent evidence from humans points to the importance of mutagenic processes that do not depend on cell division, calling into question our understanding of this basic phenomenon. Here, we infer the ratio of paternal-to-maternal mutations, α, in 42 species of amniotes, from putatively neutral substitution rates of sex chromosomes and autosomes. Despite marked differences in gametogenesis, physiologies and environments across species, fathers consistently contribute more mutations than mothers in all the species examined, including mammals, birds, and reptiles. In mammals, α is as high as 4 and correlates with generation times; in birds and snakes, α appears more stable around 2. These observations are consistent with a simple model, in which mutations accrue at equal rates in both sexes during early development and at a higher rate in the male germline after sexual differentiation, with a conserved paternal-to-maternal ratio across species. Thus, α may reflect the relative contributions of two or more developmental phases to total germline mutations, and is expected to depend on generation time even if mutations do not track cell divisions.
Collapse
Affiliation(s)
- Marc de Manuel
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Felix L Wu
- Department of Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Molly Przeworski
- Department of Systems Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
31
|
Yu L, Yang C, Shang N, Ding H, Zhu J, Zhu Y, Tan H, Zhang Y. Paternal De Novo Variant of TAOK1 in a Fetus With Structural Brain Abnormalities. Front Genet 2022; 13:836853. [PMID: 35928450 PMCID: PMC9343781 DOI: 10.3389/fgene.2022.836853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
A dilated lateral ventricle is a relatively common finding on prenatal ultrasound, and the causes are complex. We aimed to explore the etiology of a fetus with a dilated lateral ventricle. Trio whole-exome sequencing was performed to detect causative variants. A de novo variant of TAOK1 (NM_020791.2: c.227A>G) was detected in the proband and evaluated for potential functional impacts using a variety of prediction tools. Droplet digital polymerase chain reaction was used to exclude the parental mosaicism and to verify the phasing of the de novo variant. Based on peripheral blood analysis, the parents did not exhibit mosaicism at this site, and the de novo variant was paternally derived. Here, we describe a fetus with a de novo likely pathogenic variant of TAOK1 who had a dilated lateral ventricle and a series of particular phenotypes. This case expands the clinical spectrum of TAOK1-associated disorders. We propose a method for solving genetic disorders in which the responsible genes have not yet gone through ClinGen curation, particularly for prenatal cases.
Collapse
Affiliation(s)
- Lihua Yu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ning Shang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hongke Ding
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Juan Zhu
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuanyuan Zhu
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Haowen Tan
- Aegicare (Shenzhen) Technology Co., Ltd., Shenzhen, China
| | - Yan Zhang
- Medical Genetics Centre, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
32
|
Moorhouse AJ, Scholze M, Sylvius N, Gillham C, Rake C, Peto J, Anderson R, Dubrova YE. No evidence of increased mutations in the germline of a group of British nuclear test veterans. Sci Rep 2022; 12:10830. [PMID: 35790751 PMCID: PMC9256629 DOI: 10.1038/s41598-022-14999-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 01/05/2023] Open
Abstract
The potential germline effects of radiation exposure to military veterans present at British nuclear tests in Australia and the South Pacific is of considerable interest. We analyzed germline mutations in 60 families of UK military personnel comprising 30 control and 30 nuclear test veterans (NTV). Using whole-genome sequencing we studied the frequency and spectra of de novo mutations to investigate the transgenerational effect of veterans' (potential) exposure to radiation at nuclear bomb test sites. We find no elevation in total de novo single nucleotide variants, small insertion-deletions, structural variants or clustered mutations among the offspring of nuclear test veterans compared to those of control personnel. We did observe an elevated occurrence of single base substitution mutations within mutation signature SBS16, due to a subset of NTV offspring. The relevance of this elevation to potential exposure of veteran fathers and, future health risks, require further investigation. Overall, we find no evidence of increased mutations in the germline of a group of British nuclear test veterans. ISRCTN Registry 17461668.
Collapse
Affiliation(s)
- Alexander J Moorhouse
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Martin Scholze
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Nicolas Sylvius
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Clare Gillham
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Christine Rake
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Julian Peto
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Rhona Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Yuri E Dubrova
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
33
|
Wang RJ, Raveendran M, Harris RA, Murphy WJ, Lyons LA, Rogers J, Hahn MW. De novo Mutations in Domestic Cat are Consistent with an Effect of Reproductive Longevity on Both the Rate and Spectrum of Mutations. Mol Biol Evol 2022; 39:msac147. [PMID: 35771663 PMCID: PMC9290555 DOI: 10.1093/molbev/msac147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mutation rate is a fundamental evolutionary parameter with direct and appreciable effects on the health and function of individuals. Here, we examine this important parameter in the domestic cat, a beloved companion animal as well as a valuable biomedical model. We estimate a mutation rate of 0.86 × 10-8 per bp per generation for the domestic cat (at an average parental age of 3.8 years). We find evidence for a significant paternal age effect, with more mutations transmitted by older sires. Our analyses suggest that the cat and the human have accrued similar numbers of mutations in the germline before reaching sexual maturity. The per-generation mutation rate in the cat is 28% lower than what has been observed in humans, but is consistent with the shorter generation time in the cat. Using a model of reproductive longevity, which takes into account differences in the reproductive age and time to sexual maturity, we are able to explain much of the difference in per-generation rates between species. We further apply our reproductive longevity model in a novel analysis of mutation spectra and find that the spectrum for the cat resembles the human mutation spectrum at a younger age of reproduction. Together, these results implicate changes in life-history as a driver of mutation rate evolution between species. As the first direct observation of the paternal age effect outside of rodents and primates, our results also suggest a phenomenon that may be universal among mammals.
Collapse
Affiliation(s)
- Richard J Wang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| |
Collapse
|
34
|
Rashed WM, Marcotte EL, Spector LG. Germline De Novo Mutations as a Cause of Childhood Cancer. JCO Precis Oncol 2022; 6:e2100505. [PMID: 35820085 DOI: 10.1200/po.21.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germline de novo mutations (DNMs) represent one of the important topics that need extensive attention from epidemiologists, geneticists, and other relevant stakeholders. Advances in next-generation sequencing technologies allowed examination of parent-offspring trios to ascertain the frequency of germline DNMs. Many epidemiological risk factors for childhood cancer are indicative of DNMs as a mechanism. The aim of this review was to give an overview of germline DNMs, their causes in general, and to discuss their relation to childhood cancer risk. In addition, we highlighted existing gaps in knowledge in many topics of germline DNMs in childhood cancer that need exploration and collaborative efforts.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital-Egypt 57357 (CCHE-57357), Cairo, Egypt
| | - Erin L Marcotte
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Logan G Spector
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
35
|
Winkler EA, Pacult MA, Catapano JS, Scherschinski L, Srinivasan VM, Graffeo CS, Oh SP, Lawton MT. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era. Neurosurg Focus 2022; 53:E2. [DOI: 10.3171/2022.4.focus2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022]
Abstract
A variety of pathogenic mechanisms have been described in the formation, maturation, and rupture of brain arteriovenous malformations (bAVMs). While the understanding of bAVMs has largely been formulated based on animal models of rare hereditary diseases in which AVMs form, a new era of “omics” has permitted large-scale examinations of contributory genetic variations in human sporadic bAVMs. New findings regarding the pathogenesis of bAVMs implicate changes to endothelial and mural cells that result in increased angiogenesis, proinflammatory recruitment, and breakdown of vascular barrier properties that may result in hemorrhage; a greater diversity of cell populations that compose the bAVM microenvironment may also be implicated and complicate traditional models. Genomic sequencing of human bAVMs has uncovered inherited, de novo, and somatic activating mutations, such as KRAS, which contribute to the pathogenesis of bAVMs. New droplet-based, single-cell sequencing technologies have generated atlases of cell-specific molecular derangements. Herein, the authors review emerging genomic and transcriptomic findings underlying pathologic cell transformations in bAVMs derived from human tissues. The application of multiple sequencing modalities to bAVM tissues is a natural next step for researchers, although the potential therapeutic benefits or clinical applications remain unknown.
Collapse
Affiliation(s)
- Ethan A. Winkler
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Mark A. Pacult
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Joshua S. Catapano
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Lea Scherschinski
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Visish M. Srinivasan
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - Christopher S. Graffeo
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| | - S. Paul Oh
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
- Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
| | - Michael T. Lawton
- Department of Neurological Surgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
| |
Collapse
|
36
|
Kohailan M, Aamer W, Syed N, Padmajeya S, Hussein S, Sayed A, Janardhanan J, Palaniswamy S, El Hajj N, Al-Shabeeb Akil A, Fakhro KA. Patterns and distribution of de novo mutations in multiplex Middle Eastern families. J Hum Genet 2022; 67:579-588. [PMID: 35718832 PMCID: PMC9510050 DOI: 10.1038/s10038-022-01054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
While de novo mutations (DNMs) are key to genetic diversity, they are also responsible for a high number of rare disorders. To date, no study has systematically examined the rate and distribution of DNMs in multiplex families in highly consanguineous populations. Leveraging WGS profiles of 645 individuals in 146 families, we implemented a combinatorial approach using 3 complementary tools for DNM discovery in 353 unique trio combinations. We found a total of 27,168 DNMs (median: 70 single-nucleotide and 6 insertion-deletions per individual). Phasing revealed around 80% of DNMs were paternal in origin. Notably, using whole-genome methylation data of spermatogonial stem cells, these DNMs were significantly more likely to occur at highly methylated CpGs (OR: 2.03; p value = 6.62 × 10−11). We then examined the effects of consanguinity and ethnicity on DNMs, and found that consanguinity does not seem to correlate with DNM rate, and special attention has to be considered while measuring such a correlation. Additionally, we found that Middle-Eastern families with Arab ancestry had fewer DNMs than African families, although not significant (p value = 0.16). Finally, for families with diseased probands, we examined the difference in DNM counts and putative impact across affected and unaffected siblings, but did not find significant differences between disease groups, likely owing to the enrichment for recessive disorders in this part of the world, or the small sample size per clinical condition. This study serves as a reference for DNM discovery in multiplex families from the globally under-represented populations of the Middle-East.
Collapse
Affiliation(s)
- Muhammad Kohailan
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Najeeb Syed
- Biomedical Informatics Division, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sujitha Padmajeya
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sura Hussein
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Amira Sayed
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Jyothi Janardhanan
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | | | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | | | - Khalid A Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar. .,Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Department of Genetic Medicine, Weill-Cornell Medical College, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
37
|
Khazeeva G, Sablauskas K, van der Sanden B, Steyaert W, Kwint M, Rots D, Hinne M, van Gerven M, Yntema H, Vissers L, Gilissen C. DeNovoCNN: a deep learning approach to de novo variant calling in next generation sequencing data. Nucleic Acids Res 2022; 50:e97. [PMID: 35713566 PMCID: PMC9508836 DOI: 10.1093/nar/gkac511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/19/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
De novo mutations (DNMs) are an important cause of genetic disorders. The accurate identification of DNMs from sequencing data is therefore fundamental to rare disease research and diagnostics. Unfortunately, identifying reliable DNMs remains a major challenge due to sequence errors, uneven coverage, and mapping artifacts. Here, we developed a deep convolutional neural network (CNN) DNM caller (DeNovoCNN), that encodes the alignment of sequence reads for a trio as 160\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}$ \times$\end{document}164 resolution images. DeNovoCNN was trained on DNMs of 5616 whole exome sequencing (WES) trios achieving total 96.74% recall and 96.55% precision on the test dataset. We find that DeNovoCNN has increased recall/sensitivity and precision compared to existing DNM calling approaches (GATK, DeNovoGear, DeepTrio, Samtools) based on the Genome in a Bottle reference dataset and independent WES and WGS trios. Validations of DNMs based on Sanger and PacBio HiFi sequencing confirm that DeNovoCNN outperforms existing methods. Most importantly, our results suggest that DeNovoCNN is likely robust against different exome sequencing and analyses approaches, thereby allowing the application on other datasets. DeNovoCNN is freely available as a Docker container and can be run on existing alignment (BAM/CRAM) and variant calling (VCF) files from WES and WGS without a need for variant recalling.
Collapse
Affiliation(s)
- Gelana Khazeeva
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Karolis Sablauskas
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bart van der Sanden
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Wouter Steyaert
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Michael Kwint
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Dmitrijs Rots
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Max Hinne
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands
| | - Marcel van Gerven
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands
| | - Helger Yntema
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Lisenka Vissers
- Department of Human Genetics, Donders Centre for Neuroscience, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
38
|
Polga N, Macul Ferreira de Barros P, Farhat LC, de Almeida KM, Bloch MH, Lafer B. Parental age and the risk of bipolar disorder in the offspring: A systematic review and meta-analysis. Acta Psychiatr Scand 2022; 145:568-577. [PMID: 35188977 DOI: 10.1111/acps.13418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Whether parental age, i.e., paternal or maternal, at childbirth is associated with the risk of bipolar disorder (BD) in offspring remains unclear. We conducted a meta-analysis of observational studies to address this gap. METHODS PubMed, PsycINFO, Embase, and Web of Science were searched up to June 2021. Studies investigating the associations between parental age at childbirth (exposure) and the risk of BD in offspring (outcome) were eligible for inclusion in our study. Paternal and maternal age were examined separately. Odds ratio (OR) was used as the effect size index. Data were pooled through random-effects meta-analyses. RESULTS Seven studies involving 3,183,539 participants and 23,253 individuals with BD were included in our meta-analyses. Meta-analyses indicated an increased risk of BD in the offspring of the older paternal age groups (35-44 years old [k = 5; OR = 1.09; 95% CI 1.05, 1.14; p < 0.0001] and ≥45 years old [k = 5; OR = 1.44; 95% CI 1.19, 1.14; p = 0.0001]) in comparison with the reference category (25-34 years old). Meta-analysis also indicated an increased risk of BD in the offspring of the older maternal age group (≥40 years old [k = 3; OR = 1.20; 95% CI 1.10, 1.31; p < 0.0001]) in comparison with the reference category (20-29 years old). CONCLUSIONS Advanced paternal and maternal age were both associated with an increased risk of BD in offspring. Further studies are needed to investigate the mechanisms behind this association.
Collapse
Affiliation(s)
- Natália Polga
- Health and Society Institute, Federal University of São Paulo, Santos, Brazil.,Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo Medical School, Sao Paulo, Brazil
| | - Pedro Macul Ferreira de Barros
- Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo Medical School, Sao Paulo, Brazil
| | - Luis C Farhat
- Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo Medical School, Sao Paulo, Brazil
| | - Karla Mathias de Almeida
- Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo Medical School, Sao Paulo, Brazil
| | - Michael H Bloch
- Yale Child Study Center, Yale School of Medicine, New Haven, Connecticut, USA.,Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Beny Lafer
- Department & Institute of Psychiatry, Faculdade de Medicina FMUSP, Universidade de Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
39
|
Smits RM, Xavier MJ, Oud MS, Astuti GDN, Meijerink AM, de Vries PF, Holt GS, Alobaidi BKS, Batty LE, Khazeeva G, Sablauskas K, Vissers LELM, Gilissen C, Fleischer K, Braat DDM, Ramos L, Veltman JA. De novo mutations in children born after medical assisted reproduction. Hum Reprod 2022; 37:1360-1369. [PMID: 35413117 PMCID: PMC9156847 DOI: 10.1093/humrep/deac068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Indexed: 01/23/2023] Open
Abstract
STUDY QUESTION Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children? SUMMARY ANSWER In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children. WHAT IS KNOWN ALREADY DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day. STUDY DESIGN, SIZE, DURATION This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers (<35 years of age at conception) and older fathers (>45 years of age at conception). PARTICIPANTS/MATERIALS, SETTING, METHODS Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing. MAIN RESULTS AND THE ROLE OF CHANCE No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10-7), with on average 71 DNMs in the genomes of children born to young fathers (<35 years of age) and an average of 94 DNMs in the genomes of children born to older fathers (>45 years of age). LIMITATIONS, REASONS FOR CAUTION This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results. WIDER IMPLICATIONS OF THE FINDINGS This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- R M Smits
- Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, the Netherlands
| | - M J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - M S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - G D N Astuti
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - A M Meijerink
- Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, the Netherlands
| | - P F de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - G S Holt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - B K S Alobaidi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - L E Batty
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - G Khazeeva
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - K Sablauskas
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - L E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, the Netherlands
| | - C Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - K Fleischer
- Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, the Netherlands
| | - D D M Braat
- Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, the Netherlands
| | - L Ramos
- Department of Obstetrics and Gynaecology, Radboudumc, Nijmegen, the Netherlands
| | - J A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
40
|
Isungset MA, Freese J, Andreassen OA, Lyngstad TH. Birth order differences in education originate in postnatal environments. PNAS NEXUS 2022; 1:pgac051. [PMID: 36713322 PMCID: PMC9802280 DOI: 10.1093/pnasnexus/pgac051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
Siblings share many environments and much of their genetics. Yet, siblings turn out different. Intelligence and education are influenced by birth order, with earlier-born siblings outperforming later-borns. We investigate whether birth order differences in education are caused by biological differences present at birth, that is, genetic differences or in utero differences. Using family data that spans two generations, combining registry, survey, and genotype information, this study is based on the Norwegian Mother, Father, and Child Cohort Study (MoBa). We show that there are no genetic differences by birth order as captured by polygenic scores (PGSs) for educational attainment. Earlier-born have lower birth weight than later-born, indicating worse uterine environments. Educational outcomes are still higher for earlier-born children when we adjust for PGSs and in utero variables, indicating that birth order differences arise postnatally. Finally, we consider potential environmental influences, such as differences according to maternal age, parental educational attainment, and sibling genetic nurture. We show that birth order differences are not biological in origin, but pinning down their specific causes remains elusive.
Collapse
Affiliation(s)
- Martin Arstad Isungset
- Department of Sociology and Human Geography, University of Oslo, PO Box 1096, Blindern, 0317 Oslo, Norway
| | - Jeremy Freese
- Department of Sociology, Stanford University, Stanford, CA 94305, USA
| | - Ole A Andreassen
- Institute of Clinical Medicine, University of Oslo, PO Box 4956, Nydalen, 0424 Oslo, Norway
- NORMENT,Division of Mental Health and Addiction, Oslo University Hospital, Kirkeveien 166, 0450, Oslo, Norway
| | - Torkild Hovde Lyngstad
- Department of Sociology and Human Geography, University of Oslo, PO Box 1096, Blindern, 0317 Oslo, Norway
| |
Collapse
|
41
|
Morton SU, Pereira AC, Quiat D, Richter F, Kitaygorodsky A, Hagen J, Bernstein D, Brueckner M, Goldmuntz E, Kim RW, Lifton RP, Porter GA, Tristani-Firouzi M, Chung WK, Roberts A, Gelb BD, Shen Y, Newburger JW, Seidman JG, Seidman CE. Genome-Wide De Novo Variants in Congenital Heart Disease Are Not Associated With Maternal Diabetes or Obesity. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003500. [PMID: 35130025 PMCID: PMC9295870 DOI: 10.1161/circgen.121.003500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/17/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) is the most common anomaly at birth, with a prevalence of ≈1%. While infants born to mothers with diabetes or obesity have a 2- to 3-fold increased incidence of CHD, the cause of the increase is unknown. Damaging de novo variants (DNV) in coding regions are more common among patients with CHD, but genome-wide rates of coding and noncoding DNVs associated with these prenatal exposures have not been studied in patients with CHD. METHODS DNV frequencies were determined for 1812 patients with CHD who had whole-genome sequencing and prenatal history data available from the Pediatric Cardiac Genomics Consortium's CHD GENES study (Genetic Network). The frequency of DNVs was compared between subgroups using t test or linear model. RESULTS Among 1812 patients with CHD, the number of DNVs per patient was higher with maternal diabetes (76.5 versus 72.1, t test P=3.03×10-11), but the difference was no longer significant after including parental ages in a linear model (paternal and maternal correction P=0.42). No interaction was observed between diabetes risk and parental age (paternal and maternal interaction P=0.80 and 0.68, respectively). No difference was seen in DNV count per patient based on maternal obesity (72.0 versus 72.2 for maternal body mass index <25 versus maternal body mass index >30, t test P=0.86). CONCLUSIONS After accounting for parental age, the offspring of diabetic or obese mothers have no increase in DNVs compared with other children with CHD. These results emphasize the role for other mechanisms in the cause of CHD associated with these prenatal exposures. REGISTRATION URL: https://clinicaltrials.gov; NCT01196182.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Department of Medicine (S.U.M.), Boston Children's Hospital
| | - Alexandre C Pereira
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Daniel Quiat
- Department of Cardiology (D.Q., A.R., J.W.N.), Boston Children's Hospital
| | - Felix Richter
- Graduate School of Biomedical Sciences (F.R.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Kitaygorodsky
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Jacob Hagen
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Daniel Bernstein
- Department of Pediatrics (Cardiology), Stanford University, CA (D.B.)
| | - Martina Brueckner
- Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, CT (M.B.)
| | - Elizabeth Goldmuntz
- Division of Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, Univeristy of Pennsylvania (E.G.)
| | - Richard W Kim
- Cedars-Sinai Medical Center, Los Angeles, CA (R.W.K.)
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY (R.P.L.)
| | - George A Porter
- Department of Pediatrics, University of Rochester Medical Center, The School of Medicine and Dentistry, Rochester, NY (G.A.P.)
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine (W.K.C.), Columbia University Medical Center, New York, NY
| | - Amy Roberts
- Department of Cardiology (D.Q., A.R., J.W.N.), Boston Children's Hospital
| | - Bruce D Gelb
- Department of Pediatrics, Mindich Child Health and Development Institute (B.D.G.), Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics (A.K., J.H., Y.S.), Columbia University Medical Center, New York, NY
| | - Jane W Newburger
- Department of Pediatrics (S.U.M., D.Q., A.R., J.W.N.), Harvard Medical School, Boston, MA
| | - J G Seidman
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| | - Christine E Seidman
- Department of Genetics (A.C.P., J.G.S., C.E.S.), Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Aitken RJ. Role of sperm DNA damage in creating de novo mutations in human offspring: the ‘post-meiotic oocyte collusion’ hypothesis. Reprod Biomed Online 2022; 45:109-124. [DOI: 10.1016/j.rbmo.2022.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
|
43
|
Garcia B, Catasus N, Ros A, Rosas I, Negro A, Guerrero-Murillo M, Valero AM, Duat-Rodriguez A, Becerra JL, Bonache S, Lázaro Garcia C, Comas C, Bielsa I, Serra E, Hernández-Chico C, Martin Y, Castellanos E, Blanco I. Neurofibromatosis type 1 families with first-degree relatives harbouring distinct NF1 pathogenic variants. Genetic counselling and familial diagnosis: what should be offered? J Med Genet 2022; 59:1017-1023. [PMID: 35121649 DOI: 10.1136/jmedgenet-2021-108301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/09/2022] [Indexed: 11/03/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder caused by pathogenic variants in NF1 Recently, NF1 testing has been included as a clinical criterion for NF1 diagnosis. Additionally, preconception genetic counselling in patients with NF1 focuses on a 50% risk of transmitting the familial variant as the risk of having a sporadic NF1 is considered the same as the general population. METHODS 829 individuals, 583 NF1 sporadic cases and 246 patients with NF1 with documented family history, underwent genetic testing for NF1. Genotyping and segregation analysis of NF1 familial variants was determined by microsatellite analysis and NF1 sequencing. RESULTS The mutational analysis of NF1 in 154 families with two or more affected cases studied showed the co-occurrence of two different NF1 germline pathogenic variants in four families. The estimated mutation rate in those families was 3.89×10-3, 20 times higher than the NF1 mutation rate (~2×10-4) (p=0.0008). Furthermore, the co-occurrence of two different NF1 germline pathogenic variants in these families was 1:39, 60 times the frequency of sporadic NF1 (1:2500) (p=0.003). In all cases, the de novo NF1 pathogenic variant was present in a descendant of an affected male. In two cases, variants were detected in the inherited paternal wild-type allele. CONCLUSIONS Our results, together with previous cases reported, suggest that the offspring of male patients with NF1 could have an increased risk of experiencing de novo NF1 pathogenic variants. This observation, if confirmed in additional cohorts, could have relevant implications for NF1 genetic counselling, family planning and NF1 genetic testing.
Collapse
Affiliation(s)
- Belen Garcia
- Genetic Counseling Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain
| | - Nuria Catasus
- Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain
| | - Andrea Ros
- Genetic Counseling Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain
| | - Inma Rosas
- Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Unit-Genetics Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alejandro Negro
- Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Unit-Genetics Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Mercedes Guerrero-Murillo
- Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Unit-Genetics Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ana Maria Valero
- Servicio de Genética, Hospital Universitario Ramon y Cajal, Madrid, Spain
| | - Anna Duat-Rodriguez
- Neurology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Juan Luis Becerra
- Neurology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sandra Bonache
- Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Unit-Genetics Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Conxi Lázaro Garcia
- Hereditary Cancer Program, Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain.,Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain
| | - Carmina Comas
- Department of Obstetrics, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Isabel Bielsa
- Dermatology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Eduard Serra
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain.,Hereditary Cancer Group, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Concepción Hernández-Chico
- Servicio de Genética, IRYCIS, Hospital Universitario Ramon y Cajal, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Yolanda Martin
- Servicio de Genética, IRYCIS, Hospital Universitario Ramon y Cajal, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Valencia, Spain
| | - Elisabeth Castellanos
- Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain .,Clinical Genomics Unit-Genetics Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ignacio Blanco
- Genetic Counseling Unit, Clinical Genetics Service, Northern Metropolitan Clinical Laboratory, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Clinical Genomics Research Unit, Foundation Institute of Research in Health Sciences Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
44
|
Brozou T, Yasin L, Brandes D, Picard D, Walter C, Varghese J, Dugas M, Fischer U, Borkhardt A, Haas OA. Resolving inherited and de novo germline predisposing sequence variants by means of whole exome trio analyses in childhood hematological malignancies. Front Pediatr 2022; 10:1080347. [PMID: 36824296 PMCID: PMC9941195 DOI: 10.3389/fped.2022.1080347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023] Open
Abstract
Molecular screening tools have significantly eased the assessment of potential germline susceptibility factors that may underlie the development of pediatric malignancies. Most of the hitherto published studies utilize the comparative analyses of the respective patients' germline and tumor tissues for this purpose. Since this approach is not able to discriminate between de novo and inherited sequence variants, we performed whole exome trio analyses in a consecutive series of 131 children with various forms of hematologic malignancies and their parents. In total, we identified 458 de novo variants with a range from zero to 28 (median value = 3) per patient, although most of them (58%) had only up to three per exome. Overall, we identified bona fide cancer predisposing alterations in five of the investigated 131 (3.8%) patients. Three of them had de novo pathogenic lesions in the SOS1, PTPN11 and TP53 genes and two of them parentally inherited ones in the STK11 and PMS2 genes that are specific for a Peutz-Jeghers and a constitutional mismatch repair deficiency (CMMRD) syndrome, respectively. Notwithstanding that we did not identify a disease-specific alteration in the two cases with the highest number of de novo variants, one of them developed two almost synchronous malignancies: a myelodysplastic syndrome and successively within two months a cerebral astrocytoma. Moreover, we also found that the rate of de novo sequence variants in the offspring increased especially with the age of the father, but less so with that of the mother. We therefore conclude that trio analyses deliver an immediate overview about the inheritance pattern of the entire spectrum of sequence variants, which not only helps to securely identify the de novo or inherited nature of genuinely disease-related lesions, but also of all other less obvious variants that in one or the other way may eventually advance our understanding of the disease process.
Collapse
Affiliation(s)
- Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Danielle Brandes
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Martin Dugas
- Insititute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Oskar A Haas
- St. Anna Children's Hospital, Pediatric Clinic, Medical University, Vienna, Austria
| |
Collapse
|
45
|
Hayward BE, Usdin K. Mechanisms of Genome Instability in the Fragile X-Related Disorders. Genes (Basel) 2021; 12:genes12101633. [PMID: 34681027 PMCID: PMC8536109 DOI: 10.3390/genes12101633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
The Fragile X-related disorders (FXDs), which include the intellectual disability fragile X syndrome (FXS), are disorders caused by expansion of a CGG-repeat tract in the 5′ UTR of the X-linked FMR1 gene. These disorders are named for FRAXA, the folate-sensitive fragile site that localizes with the CGG-repeat in individuals with FXS. Two pathological FMR1 allele size classes are distinguished. Premutation (PM) alleles have 54–200 repeats and confer the risk of fragile X-associated tremor/ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI). PM alleles are prone to both somatic and germline expansion, with female PM carriers being at risk of having a child with >200+ repeats. Inheritance of such full mutation (FM) alleles causes FXS. Contractions of PM and FM alleles can also occur. As a result, many carriers are mosaic for different sized alleles, with the clinical presentation depending on the proportions of these alleles in affected tissues. Furthermore, it has become apparent that the chromosomal fragility of FXS individuals reflects an underlying problem that can lead to chromosomal numerical and structural abnormalities. Thus, large numbers of CGG-repeats in the FMR1 gene predisposes individuals to multiple forms of genome instability. This review will discuss our current understanding of these processes.
Collapse
|
46
|
Li H, Nam Y, Huo R, Fu W, Jiang B, Zhou Q, Song D, Yang Y, Jiao Y, Weng J, Yan Z, Di L, Li J, Wang J, Xu H, Wang S, Zhao J, Wen Z, Wang J, Cao Y. De Novo Germline and Somatic Variants Convergently Promote Endothelial-to-Mesenchymal Transition in Simplex Brain Arteriovenous Malformation. Circ Res 2021; 129:825-839. [PMID: 34530633 DOI: 10.1161/circresaha.121.319004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hao Li
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Yoonhee Nam
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Ran Huo
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Weilun Fu
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Biaobin Jiang
- Chemical and Biological Engineering (B.J., Y.Y., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,the Hong Kong University of Science and Technology (B.J.,Y.Y.), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Dong Song
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yingxi Yang
- Chemical and Biological Engineering (B.J., Y.Y., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,the Hong Kong University of Science and Technology (B.J.,Y.Y.), Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yuming Jiao
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Jiancong Weng
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Zihan Yan
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Lin Di
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences (L.D.), Peking University, Beijing, China.,School of Life Sciences (L.D.), Peking University, Beijing, China
| | - Jie Li
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China (J.L.)
| | - Jie Wang
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Hongyuan Xu
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Shuo Wang
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Jizong Zhao
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China (Z.W.)
| | - Jiguang Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience (Y.N., Q.Z., D.S., Z.W., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Chemical and Biological Engineering (B.J., Y.Y., Jiguang Wang), Clear Water Bay, Kowloon, Hong Kong SAR, China.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong Science Park, Hong Kong SAR, China (Jiguang Wang)
| | - Yong Cao
- Neurosurgery, Beijing Tiantan Hospital (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.), Capital Medical University, China.,Beijing Neurosurgical Institute (Y.C.), Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China (H.L., R.H., W.F., Y.J., Jiancong Weng, Z.Y., Jie Wang, H.X., S.W., J.Z., Y.C.)
| |
Collapse
|
47
|
Seplyarskiy VB, Sunyaev S. The origin of human mutation in light of genomic data. Nat Rev Genet 2021; 22:672-686. [PMID: 34163020 DOI: 10.1038/s41576-021-00376-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Despite years of active research into the role of DNA repair and replication in mutagenesis, surprisingly little is known about the origin of spontaneous human mutation in the germ line. With the advent of high-throughput sequencing, genome-scale data have revealed statistical properties of mutagenesis in humans. These properties include variation of the mutation rate and spectrum along the genome at different scales in relation to epigenomic features and dependency on parental age. Moreover, mutations originated in mothers are less frequent than mutations originated in fathers and have a distinct genomic distribution. Statistical analyses that interpret these patterns in the context of known biochemistry can provide mechanistic models of mutagenesis in humans.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Shamil Sunyaev
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
A single center experience with publicly funded clinical exome sequencing for neurodevelopmental disorders or multiple congenital anomalies. Sci Rep 2021; 11:19099. [PMID: 34580403 PMCID: PMC8476634 DOI: 10.1038/s41598-021-98646-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Exome sequencing (ES) is an important diagnostic tool for individuals with neurodevelopmental disorders (NDD) and/or multiple congenital anomalies (MCA). However, the cost of ES limits the test's accessibility for many patients. We evaluated the yield of publicly funded clinical ES, performed at a tertiary center in Israel, over a 3-year period (2018–2020). Probands presented with (1) moderate-to-profound global developmental delay (GDD)/intellectual disability (ID); or (2) mild GDD/ID with epilepsy or congenital anomaly; and/or (3) MCA. Subjects with normal chromosomal microarray analysis who met inclusion criteria were included, totaling 280 consecutive cases. Trio ES (proband and parents) was the default option. In 252 cases (90.0%), indication of NDD was noted. Most probands were males (62.9%), and their mean age at ES submission was 9.3 years (range 1 month to 51 years). Molecular diagnosis was reached in 109 probands (38.9%), mainly due to de novo variants (91/109, 83.5%). Disease-causing variants were identified in 92 genes, 15 of which were implicated in more than a single case. Male sex, families with multiple-affected members and premature birth were significantly associated with lower ES yield (p < 0.05). Other factors, including MCA and coexistence of epilepsy, autism spectrum disorder, microcephaly or abnormal brain magnetic resonance imaging findings, were not associated with the yield. To conclude, our findings support the utility of clinical ES in a real-world setting, as part of a publicly funded genetic workup for individuals with GDD/ID and/or MCA.
Collapse
|
49
|
Pode-Shakked B, Barel O, Singer A, Regev M, Poran H, Eliyahu A, Finezilber Y, Segev M, Berkenstadt M, Yonath H, Reznik-Wolf H, Gazit Y, Chorin O, Heimer G, Gabis LV, Tzadok M, Nissenkorn A, Bar-Yosef O, Zohar-Dayan E, Ben-Zeev B, Mor N, Kol N, Nayshool O, Shimshoviz N, Bar-Joseph I, Marek-Yagel D, Javasky E, Einy R, Gal M, Grinshpun-Cohen J, Shohat M, Dominissini D, Raas-Rothschild A, Rechavi G, Pras E, Greenbaum L. A single center experience with publicly funded clinical exome sequencing for neurodevelopmental disorders or multiple congenital anomalies. Sci Rep 2021. [DOI: 10.1038/s41598-021-98646-w
expr 928064569 + 818532901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractExome sequencing (ES) is an important diagnostic tool for individuals with neurodevelopmental disorders (NDD) and/or multiple congenital anomalies (MCA). However, the cost of ES limits the test's accessibility for many patients. We evaluated the yield of publicly funded clinical ES, performed at a tertiary center in Israel, over a 3-year period (2018–2020). Probands presented with (1) moderate-to-profound global developmental delay (GDD)/intellectual disability (ID); or (2) mild GDD/ID with epilepsy or congenital anomaly; and/or (3) MCA. Subjects with normal chromosomal microarray analysis who met inclusion criteria were included, totaling 280 consecutive cases. Trio ES (proband and parents) was the default option. In 252 cases (90.0%), indication of NDD was noted. Most probands were males (62.9%), and their mean age at ES submission was 9.3 years (range 1 month to 51 years). Molecular diagnosis was reached in 109 probands (38.9%), mainly due to de novo variants (91/109, 83.5%). Disease-causing variants were identified in 92 genes, 15 of which were implicated in more than a single case. Male sex, families with multiple-affected members and premature birth were significantly associated with lower ES yield (p < 0.05). Other factors, including MCA and coexistence of epilepsy, autism spectrum disorder, microcephaly or abnormal brain magnetic resonance imaging findings, were not associated with the yield. To conclude, our findings support the utility of clinical ES in a real-world setting, as part of a publicly funded genetic workup for individuals with GDD/ID and/or MCA.
Collapse
|
50
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|