1
|
Shi Y, Wu Y, Li M, Luo N, Li F, Zeng S, Wang Y, Yang C. Genome-wide identification and analysis of autophagy-related (ATG) genes in Lycium ruthenicum Murray reveals their crucial roles in salt stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 352:112371. [PMID: 39725166 DOI: 10.1016/j.plantsci.2024.112371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Autophagy is a highly conserved intracellular degradation system that is crucial for nutrient recycling, thus regulating plant growth and development as well as in response to various stresses. Halophytic plant Lycium ruthenicum Murray (L. ruthenicum) is considered as a potential model plant for studying the physiological mechanisms of salt stress tolerance in plants. Although the genome sequence of L. ruthenicum is available, the characteristics and functions of the salt stress-related genes remain largely unknown. In the present study, a total of 36 AuTophaGy-related (ATG) genes were identified in L. ruthenicum and detailed characteristics of them were given. Quantitative real-time polymerase chain reaction analysis revealed that the expression of 25 LrATGs was significantly upregulated after salt stress treatments. Furthermore, the autophagic marker line pSuper:GFP-LrATG8g was generated and used to demonstrate the salt stress-induced autophagy, as revealed by measuring autophagic flux and observing autophagosome formation. The pSuper:LrATG5-GFP overexpression (OE) lines were also generated and further phenotypic analysis showed that OE-LrATG8g and OE-LrATG5 plants exhibited better salt tolerance than that of WT plants. To the best of our knowledge, this study firstly reports a detailed overview of LrATGs-mediated autophagy in L. ruthenicum response to salt stress. These findings contribute to a global understanding of the characteristics of ATG genes in L. ruthenicum and lay a foundation for future functional study.
Collapse
Affiliation(s)
- Yi Shi
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengling Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Na Luo
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China.
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li Q, Wang X, Teng Y, Yu X, Zhao Y. Gamma-aminobutyric acid as a regulator of astaxanthin production in Haematococcus lacustris under salinity: Exploring physiology, signaling, autophagy, and multi-omics landscape. BIORESOURCE TECHNOLOGY 2024; 413:131466. [PMID: 39260731 DOI: 10.1016/j.biortech.2024.131466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Haematococcus lacustris-derived natural astaxanthin has significant commercial value, but stressful conditions alone impair cell growth and reduce the total productivity of astaxanthin in industrial settings. This study used gamma-aminobutyric acid (GABA) to increase biomass, astaxanthin productivity, and tolerance to salinity. GABA under NaCl stress enhanced the biomass to 1.76 g/L, astaxanthin content to 30.37 mg g-1, and productivity to 4.10 mg/L d-1, outperforming the control. Further analysis showed GABA enhanced nitrogen assimilation, Ca2+ level, and cellular GABA content, boosting substrate synthesis, energy metabolism, osmoregulation, autophagy, and antioxidant defenses. GABA also activated signaling pathways involving phytohormones, cAMP, cGMP, and MAPK, aiding astaxanthin synthesis. The application of biomarkers (ethylene, salicylic acid, trans-zeatin) and an autophagy inhibitor cooperated with GABA to further enhance the total astaxanthin productivity under NaCl stress. Combining GABA with 25 μM salicylic acid maximized astaxanthin yield at 4.79 mg/L d-1, offering new strategies for industrial astaxanthin production.
Collapse
Affiliation(s)
- Qingqing Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yajun Teng
- Kunming Customs Technology Center, Kunming 650228, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| |
Collapse
|
3
|
Aghdam MS, Razavi F, Jia H. TOR and SnRK1 signaling pathways manipulation for improving postharvest fruits and vegetables marketability. Food Chem 2024; 456:139987. [PMID: 38852461 DOI: 10.1016/j.foodchem.2024.139987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
During postharvest life, intracellular sugar insufficiency accompanied by insufficient intracellular ATP and NADPH supply, intracellular ROS overaccumulation along with intracellular ABA accumulation arising from water shortage could be responsible for accelerating fruits and vegetables deterioration through promoting SnRK1 and SnRK2 signaling pathways while preventing TOR signaling pathway. By TOR and SnRK1 signaling pathways manipulation, sufficient intracellular ATP and NADPH providing, supporting phenols, flavonoids and anthocyanins accumulation accompanied by improving DPPH, FRAP, and ABTS scavenging capacity by enhancing phenylpropanoid pathway activity, stimulating endogenous salicylic acid accumulation and NPR1-TGA-PRs signaling pathway, enhancing fatty acids biosynthesis, elongation and unsaturation, suppressing intracellular ROS overaccumulation, and promoting endogenous sucrose accumulation could be responsible for chilling injury palliating, fungal decay alleviating, senescence delaying and sensory and nutritional quality preservation in fruits and vegetables. Therefore, TOR and SnRK1 signaling pathways manipulation during postharvest shelf life by employing eco-friendly approaches such as exogenous trehalose and ATP application or engaging biotechnological approaches such as genome editing CRISPR-Cas9 or sprayable double-stranded RNA-based RNA interference would be applicable for improving fruits and vegetables marketability.
Collapse
Affiliation(s)
| | - Farhang Razavi
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Haifeng Jia
- College of Agriculture, Guangxi University, No. 100, Daxue Road, Nanning, Guangxi 530004, China.
| |
Collapse
|
4
|
Aghdam MS, Arnao MB. Phytomelatonin: From Intracellular Signaling to Global Horticulture Market. J Pineal Res 2024; 76:e12990. [PMID: 39030989 DOI: 10.1111/jpi.12990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/22/2024]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a well-known mammalian hormone, has been having a great relevance in the Plant World in recent years. Many of its physiological actions in plants are leading to possible features of agronomic interest, especially those related to improvements in tolerance to stressors and in the postharvest life of fruits and vegetables. Thus, through the exogenous application of melatonin or by modifying the endogenous biosynthesis of phytomelatonin, some change can be made in the functional levels of melatonin in tissues and their responses. Also, acting in the respective phytomelatonin biosynthesis enzymes, regulating the expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and caffeic acid O-methyltransferase (COMT), and recently the possible action of deacetylases on some intermediates offers promising opportunities for improving fruits and vegetables in postharvest and its marketability. Other regulators/effectors such as different transcription factors, protein kinases, phosphatases, miRNAs, protein-protein interactions, and some gasotransmitters such as nitric oxide or hydrogen sulfide were also considered in an exhaustive vision. Other interesting aspects such as the role of phytomelatonin in autophagic responses, the posttranslational reprogramming by protein-phosphorylation, ubiquitylation, SUMOylation, PARylation, persulfidation, and nitrosylation described in the phytomelatonin-mediated responses were also discussed, including the relationship of phytomelatonin and several plant hormones, for chilling injury and fungal decay alleviating. The current data about the phytomelatonin receptor in plants (CAND2/PMTR1), the effect of UV-B light and cold storage on the postharvest damage are presented and discussed. All this on the focus of a possible new action in the preservation of the quality of fruits and vegetables.
Collapse
Affiliation(s)
| | - Marino B Arnao
- Phytohormones and Plant Development Laboratory, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| |
Collapse
|
5
|
Wang S, Shi Y, Zhou Y, Hu W, Liu F. Full-length transcriptome sequencing of Arabidopsis plants provided new insights into the autophagic regulation of photosynthesis. Sci Rep 2024; 14:14588. [PMID: 38918488 PMCID: PMC11199623 DOI: 10.1038/s41598-024-65555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024] Open
Abstract
Autophagy is a highly conserved eukaryotic pathway and plays a crucial role in cell survival under stress conditions. Here, we applied a full-length transcriptome approach to study an Arabidopsis autophagy mutant (atg5-1) subjected to nitrogen-starvation, using Oxford Nanopore Technologies. A total of 39,033 transcripts were identified, including 11,356 new transcripts. In addition, alternative splicing (AS) events and lncRNAs were also detected between Col-0 (WT) and atg5-1. Differentially expressed transcript enrichment showed that autophagy upregulates the expression of many stress-responsive genes and inhibits the transcription of photosynthesis-associated genes. The qRT-PCR results showed that the expression patterns of photosynthesis-related genes in the atg5-1 differed under the conditions of nitrogen starvation and carbon starvation. Under nitrogen starvation treatment, many genes related to photosynthesis also exhibited AS. Chlorophyll fluorescence images revealed that the Fv/Fm and ΦPSII of old atg5-1 leaves were significantly reduced after nitrogen starvation treatment, but the Y(NPQ) indices were significantly increased compared to those of the WT plants. The results of qRT-PCR suggest that autophagy appears to be involved in the degradation of genes related to photodamage repair in PSII. Taken together, the full-length transcriptiome sequencing provide new insights into how new transcripts, lncRNAs and alternative splicing (AS) are involved in plant autophagy through full-length transcriptome sequencing and suggest a new potential link between autophagy and photosynthesis.
Collapse
Affiliation(s)
- Song Wang
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
| | - Yunfeng Shi
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
| | - Yanhui Zhou
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China
- College of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Weiming Hu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China.
| | - Fen Liu
- Lushan Botanical Garden, Jiangxi Province and Chinese Academy of Sciences, Jiujiang, 332900, Jiangxi, China.
| |
Collapse
|
6
|
Ma G, Yan F, Ren B, Lu Z, Xu H, Wu F, Li S, Wang D, Zhou X, Zhou H. LbCas12a-nuclease-mediated tiling deletion for large-scale targeted editing of non-coding regions in rice. PLANT COMMUNICATIONS 2024; 5:100815. [PMID: 38217286 PMCID: PMC11009151 DOI: 10.1016/j.xplc.2024.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Affiliation(s)
- Guigen Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya 572024, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China
| | - Zhenwan Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China
| | - Hao Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya 572024, China
| | - Fangxi Wu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China
| | - Shaofang Li
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450046, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs, Sanya 572024, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China.
| |
Collapse
|
7
|
Yang C, Li X, Yang L, Chen S, Liao J, Li K, Zhou J, Shen W, Zhuang X, Bai M, Bassham DC, Gao C. A positive feedback regulation of SnRK1 signaling by autophagy in plants. MOLECULAR PLANT 2023; 16:1192-1211. [PMID: 37408307 DOI: 10.1016/j.molp.2023.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/02/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
SnRK1, an evolutionarily conserved heterotrimeric kinase complex that acts as a key metabolic sensor in maintaining energy homeostasis in plants, is an important upstream activator of autophagy that serves as a cellular degradation mechanism for the healthy growth of plants. However, whether and how the autophagy pathway is involved in regulating SnRK1 activity remains unknown. In this study, we identified a clade of plant-specific and mitochondria-localized FCS-like zinc finger (FLZ) proteins as currently unknown ATG8-interacting partners that actively inhibit SnRK1 signaling by repressing the T-loop phosphorylation of the catalytic α subunits of SnRK1, thereby negatively modulating autophagy and plant tolerance to energy deprivation caused by long-term carbon starvation. Interestingly, these AtFLZs are transcriptionally repressed by low-energy stress, and AtFLZ proteins undergo a selective autophagy-dependent pathway to be delivered to the vacuole for degradation, thereby constituting a positive feedback regulation to relieve their repression of SnRK1 signaling. Bioinformatic analyses show that the ATG8-FLZ-SnRK1 regulatory axis first appears in gymnosperms and seems to be highly conserved during the evolution of seed plants. Consistent with this, depletion of ATG8-interacting ZmFLZ14 confers enhanced tolerance, whereas overexpression of ZmFLZ14 leads to reduced tolerance to energy deprivation in maize. Collectively, our study reveals a previously unknown mechanism by which autophagy contributes to the positive feedback regulation of SnRK1 signaling, thereby enabling plants to better adapt to stressful environments.
Collapse
Affiliation(s)
- Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shunquan Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Mingyi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Ministry of Education & Guangdong Provincial Key Laboratory of Laser Life Science, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
8
|
Liu S, Chen M, Wang Y, Lei Y, Huang T, Zhang Y, Lam SM, Li H, Qi S, Geng J, Lu K. The ER calcium channel Csg2 integrates sphingolipid metabolism with autophagy. Nat Commun 2023; 14:3725. [PMID: 37349354 PMCID: PMC10287731 DOI: 10.1038/s41467-023-39482-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Sphingolipids are ubiquitous components of membranes and function as bioactive lipid signaling molecules. Here, through genetic screening and lipidomics analyses, we find that the endoplasmic reticulum (ER) calcium channel Csg2 integrates sphingolipid metabolism with autophagy by regulating ER calcium homeostasis in the yeast Saccharomyces cerevisiae. Csg2 functions as a calcium release channel and maintains calcium homeostasis in the ER, which enables normal functioning of the essential sphingolipid synthase Aur1. Under starvation conditions, deletion of Csg2 causes increases in calcium levels in the ER and then disturbs Aur1 stability, leading to accumulation of the bioactive sphingolipid phytosphingosine, which specifically and completely blocks autophagy and induces loss of starvation resistance in cells. Our findings indicate that calcium homeostasis in the ER mediated by the channel Csg2 translates sphingolipid metabolism into autophagy regulation, further supporting the role of the ER as a signaling hub for calcium homeostasis, sphingolipid metabolism and autophagy.
Collapse
Affiliation(s)
- Shiyan Liu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China
| | - Yichang Wang
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuqing Lei
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Huang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yabin Zhang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- LipidALL Technologies Company Limited, Changzhou, 213022, China
| | - Huihui Li
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Shiqian Qi
- Department of Urology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu, 641400, China.
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Song Y, Wang Y, Yu Q, Sun Y, Zhang J, Zhan J, Ren M. Regulatory network of GSK3-like kinases and their role in plant stress response. FRONTIERS IN PLANT SCIENCE 2023; 14:1123436. [PMID: 36938027 PMCID: PMC10014926 DOI: 10.3389/fpls.2023.1123436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) family members are evolutionally conserved Ser/Thr protein kinases in mammals and plants. In plants, the GSK3s function as signaling hubs to integrate the perception and transduction of diverse signals required for plant development. Despite their role in the regulation of plant growth and development, emerging research has shed light on their multilayer function in plant stress responses. Here we review recent advances in the regulatory network of GSK3s and the involvement of GSK3s in plant adaptation to various abiotic and biotic stresses. We also discuss the molecular mechanisms underlying how plants cope with environmental stresses through GSK3s-hormones crosstalk, a pivotal biochemical pathway in plant stress responses. We believe that our overview of the versatile physiological functions of GSK3s and underlined molecular mechanism of GSK3s in plant stress response will not only opens further research on this important topic but also provide opportunities for developing stress-resilient crops through the use of genetic engineering technology.
Collapse
Affiliation(s)
- Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Ying Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Qianqian Yu
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yueying Sun
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jianling Zhang
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
10
|
Luo N, Shang D, Tang Z, Mai J, Huang X, Tao LZ, Liu L, Gao C, Qian Y, Xie Q, Li F. Engineered ATG8-binding motif-based selective autophagy to degrade proteins and organelles in planta. THE NEW PHYTOLOGIST 2023; 237:684-697. [PMID: 36263708 DOI: 10.1111/nph.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Protein-targeting technologies represent essential approaches in biological research. Protein knockdown tools developed recently in mammalian cells by exploiting natural degradation mechanisms allow for precise determination of protein function and discovery of degrader-type drugs. However, no method to directly target endogenous proteins for degradation is currently available in plants. Here, we describe a novel method for targeted protein clearance by engineering an autophagy receptor with a binder to provide target specificity and an ATG8-binding motif (AIM) to link the targets to nascent autophagosomes, thus harnessing the autophagy machinery for degradation. We demonstrate its specificity and broad potentials by degrading various fluorescence-tagged proteins, including cytosolic mCherry, the nucleus-localized bZIP transcription factor TGA5, and the plasma membrane-anchored brassinosteroid receptor BRI1, as well as fluorescence-coated peroxisomes, using a tobacco-based transient expression system. Stable expression of AIM-based autophagy receptors in Arabidopsis further confirms the feasibility of this approach in selective autophagy of endogenous proteins. With its wide substrate scope and its specificity, our concept of engineered AIM-based selective autophagy could provide a convenient and robust research tool for manipulating endogenous proteins in plants and may open an avenue toward degradation of cytoplasmic components other than proteins in plant research.
Collapse
Affiliation(s)
- Na Luo
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Shang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiwei Tang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinyan Mai
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yangwen Qian
- WIMI Biotechnology Co. Ltd, Changzhou, 213000, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Li X, Liao J, Bai H, Bei J, Li K, Luo M, Shen W, Yang C, Gao C. Arabidopsis flowering integrator SOC1 transcriptionally regulates autophagy in response to long-term carbon starvation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6589-6599. [PMID: 35852462 DOI: 10.1093/jxb/erac298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is a highly conserved, self-digestion process that is essential for plant adaptations to various environmental stresses. Although the core components of autophagy in plants have been well established, the molecular basis for its transcriptional regulation remains to be fully characterized. In this study, we demonstrate that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), a MADS-box family transcription factor that determines flowering transition in Arabidopsis, functions as a transcriptional repressor of autophagy. EMSAs, ChIP-qPCR assays, and dual-luciferase receptor assays showed that SOC1 can bind to the promoters of ATG4b, ATG7, and ATG18c via the conserved CArG box. qRT-PCR analysis showed that the three ATG genes ATG4b, ATG7, and ATG18c were up-regulated in the soc1-2 mutant. In line with this, the mutant also displayed enhanced autophagy activity, as revealed by increased autophagosome formation and elevated autophagic flux compared with the wild type. More importantly, SOC1 negatively affected the tolerance of plants to long-term carbon starvation, and this process requires a functional autophagy pathway. Finally, we found that SOC1 was repressed upon carbon starvation at both the transcriptional and protein levels. Overall, our study not only uncovers an important transcriptional mechanism that contributes to the regulation of plant autophagy in response to nutrient starvation, but also highlights novel cellular functions of the flowering integrator SOC1.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Haiyan Bai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jieying Bei
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Kailin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming Luo
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Yang MK, Zhu XJ, Chen CM, Guo X, Xu SX, Xu YR, Du SX, Xiao S, Mueller-Roeber B, Huang W, Chen L. The plant circadian clock regulates autophagy rhythm through transcription factor LUX ARRHYTHMO. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2135-2149. [PMID: 35962716 DOI: 10.1111/jipb.13343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Autophagy is an evolutionarily conserved degradation pathway in eukaryotes; it plays a critical role in nutritional stress tolerance. The circadian clock is an endogenous timekeeping system that generates biological rhythms to adapt to daily changes in the environment. Accumulating evidence indicates that the circadian clock and autophagy are intimately interwoven in animals. However, the role of the circadian clock in regulating autophagy has been poorly elucidated in plants. Here, we show that autophagy exhibits a robust circadian rhythm in both light/dark cycle (LD) and in constant light (LL) in Arabidopsis. However, autophagy rhythm showed a different pattern with a phase-advance shift and a lower amplitude in LL compared to LD. Moreover, mutation of the transcription factor LUX ARRHYTHMO (LUX) removed autophagy rhythm in LL and led to an enhanced amplitude in LD. LUX represses expression of the core autophagy genes ATG2, ATG8a, and ATG11 by directly binding to their promoters. Phenotypic analysis revealed that LUX is responsible for improved resistance of plants to carbon starvation, which is dependent on moderate autophagy activity. Comprehensive transcriptomic analysis revealed that the autophagy rhythm is ubiquitous in plants. Taken together, our findings demonstrate that the LUX-mediated circadian clock regulates plant autophagy rhythms.
Collapse
Affiliation(s)
- Ming-Kang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Jie Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chu-Min Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xu Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya-Rou Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shen-Xiu Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam-Golm, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
13
|
Degradation Mechanism of Autophagy-Related Proteins and Research Progress. Int J Mol Sci 2022; 23:ijms23137301. [PMID: 35806307 PMCID: PMC9266641 DOI: 10.3390/ijms23137301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
In all eukaryotes, autophagy is the main pathway for nutrient recycling, which encapsulates parts of the cytoplasm and organelles in double-membrane vesicles, and then fuses with lysosomes/vacuoles to degrade them. Autophagy is a highly dynamic and relatively complex process influenced by multiple factors. Under normal growth conditions, it is maintained at basal levels. However, when plants are subjected to biotic and abiotic stresses, such as pathogens, drought, waterlogging, nutrient deficiencies, etc., autophagy is activated to help cells to survive under stress conditions. At present, the regulation of autophagy is mainly reflected in hormones, second messengers, post-transcriptional regulation, and protein post-translational modification. In recent years, the degradation mechanism of autophagy-related proteins has attracted much attention. In this review, we have summarized how autophagy-related proteins are degraded in yeast, animals, and plants, which will help us to have a more comprehensive and systematic understanding of the regulation mechanisms of autophagy. Moreover, research progress on the degradation of autophagy-related proteins in plants has been discussed.
Collapse
|
14
|
Tang J, Bassham DC. Autophagy during drought: function, regulation, and potential application. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:390-401. [PMID: 34469611 DOI: 10.1111/tpj.15481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Drought is a major challenge for agricultural production since it causes substantial yield reduction and economic loss. Autophagy is a subcellular degradation and recycling pathway that functions in plant development and responses to many stresses, including drought. In this review, we summarize the current understanding of the function of autophagy and how autophagy is upregulated during drought stress. Autophagy helps plants to survive drought stress, and the mechanistic basis for this is beginning to be elucidated. Autophagy can selectively degrade aquaporins to adjust water permeability, and also degrades excess heme and damaged proteins to reduce their toxicity. In addition, autophagy can degrade regulators or components of hormone signaling pathways to promote stress responses. During drought recovery, autophagy degrades drought-induced proteins to reset the cell status. Autophagy is activated by multiple mechanisms during drought stress. Several transcription factors are induced by drought to upregulate autophagy-related gene expression, and autophagy is also regulated post-translationally through protein modification and stability. Based on these observations, manipulation of autophagy activity may be a promising approach for conferring drought tolerance in plants.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
15
|
Yang Y, Xiang Y, Niu Y. An Overview of the Molecular Mechanisms and Functions of Autophagic Pathways in Plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1977527. [PMID: 34617497 PMCID: PMC9208794 DOI: 10.1080/15592324.2021.1977527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for the degradation of damaged or toxic components. Under normal conditions, autophagy maintains cellular homeostasis. It can be triggered by senescence and various stresses. In the process of autophagy, autophagy-related (ATG) proteins not only function as central signal regulators but also participate in the development of complex survival mechanisms when plants suffer from adverse environments. Therefore, ATGs play significant roles in metabolism, development and stress tolerance. In the past decade, both the molecular mechanisms of autophagy and a large number of components involved in the assembly of autophagic vesicles have been identified. In recent studies, an increasing number of components, mechanisms, and receptors have appeared in the autophagy pathway. In this paper, we mainly review the recent progress of research on the molecular mechanisms of plant autophagy, as well as its function under biotic stress and abiotic stress.
Collapse
Affiliation(s)
- Yang Yang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yun Xiang
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| | - Yue Niu
- Moe Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences,Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Zhang T, Xiao Z, Liu C, Yang C, Li J, Li H, Gao C, Shen W. Autophagy Mediates the Degradation of Plant ESCRT Component FREE1 in Response to Iron Deficiency. Int J Mol Sci 2021; 22:ijms22168779. [PMID: 34445480 PMCID: PMC8396019 DOI: 10.3390/ijms22168779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 01/06/2023] Open
Abstract
Multivesicular body (MVB)-mediated endosomal sorting and macroautophagy are the main pathways mediating the transport of cellular components to the vacuole and are essential for maintaining cellular homeostasis. The interplay of these two pathways remains poorly understood in plants. In this study, we show that FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific component of the endosomal sorting complex required for transport (ESCRT), essential for MVB biogenesis and plant growth, can be transported to the vacuole for degradation in response to iron deficiency. The vacuolar transport of ubiquitinated FREE1 protein is mediated by the autophagy pathway. As a consequence, the autophagy deficient mutants, atg5-1 and atg7-2, accumulate more endogenous FREE1 protein and display hypersensitivity to iron deficiency. Furthermore, under iron-deficient growth condition autophagy related genes are upregulated to promote the autophagic degradation of FREE1, thereby possibly relieving the repressive effect of FREE1 on iron absorption. Collectively, our findings demonstrate a unique regulatory mode of protein turnover of the ESCRT machinery through the autophagy pathway to respond to iron deficiency in plants.
Collapse
Affiliation(s)
- Tianrui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Zhidan Xiao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (T.Z.); (C.L.); (C.Y.); (J.L.); (H.L.); (C.G.)
- Correspondence:
| |
Collapse
|
17
|
Wojciechowska N, Michalak KM, Bagniewska-Zadworna A. Autophagy-an underestimated coordinator of construction and destruction during plant root ontogeny. PLANTA 2021; 254:15. [PMID: 34184131 PMCID: PMC8238727 DOI: 10.1007/s00425-021-03668-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/20/2021] [Indexed: 05/13/2023]
Abstract
MAIN CONCLUSION Autophagy is a key but undervalued process in root ontogeny, ensuring both the proper development of root tissues as well as the senescence of the entire organ. Autophagy is a process which occurs during plant adaptation to changing environmental conditions as well as during plant ontogeny. Autophagy is also engaged in plant root development, however, the limitations of belowground studies make it challenging to understand the entirety of the developmental processes. We summarize and discuss the current data pertaining to autophagy in the roots of higher plants during their formation and degradation, from the beginning of root tissue differentiation and maturation; all the way to the aging of the entire organ. During root growth, autophagy participates in the processes of central vacuole formation in cortical tissue development, as well as vascular tissue differentiation and root senescence. At present, several key issues are still not entirely understood and remain to be addressed in future studies. The major challenge lies in the portrayal of the mechanisms of autophagy on subcellular events in belowground plant organs during the programmed control of cellular degradation pathways in roots. Given the wide range of technical areas of inquiry where root-related research can be applied, including cutting-edge cell biological methods to track, sort and screen cells from different root tissues and zones of growth, the identification of several lines of evidence pertaining to autophagy during root developmental processes is the most urgent challenge. Consequently, a substantial effort must be made to ensure whether the analyzed process is autophagy-dependent or not.
Collapse
Affiliation(s)
- Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| |
Collapse
|
18
|
Behl T, Sehgal A, Bala R, Chadha S. Understanding the molecular mechanisms and role of autophagy in obesity. Mol Biol Rep 2021; 48:2881-2895. [PMID: 33797660 DOI: 10.1007/s11033-021-06298-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Vital for growth, proliferation, subsistence, and thermogenesis, autophagy is the biological cascade, which confers defence against aging and various pathologies. Current research has demonstrated de novo activity of autophagy in stimulation of biological events. There exists a significant association between autophagy activation and obesity, encompassing expansion of adipocytes which facilitates β cell activity. The main objective of the manuscript is to enumerate intrinsic role of autophagy in obesity and associated complications. The peer review articles published till date were searched using medical databases like PubMed and MEDLINE for research, primarily in English language. Obesity is characterized by adipocytic hypertrophy and hyperplasia, which leads to imbalance of lipid absorption, free fatty acid release, and mitochondrial activity. Detailed evaluation of obesity progression is necessary for its treatment and related comorbidities. Data collected in regard to etiological sustaining of obesity, has revealed hypothesized energy misbalance and neuro-humoral dysfunction, which is stimulated by autophagy. Autophagy regulates chief salvaging events for protein clustering, excessive triglycerides, and impaired mitochondria which is accompanied by oxidative and genotoxic stress in mammals. Autophagy is a homeostatic event, which regulates biological process by eliminating lethal cells and reprocessing physiological constituents, comprising of proteins and fat. Unquestionably, autophagy impairment is involved in metabolic syndromes, like obesity. According to an individual's metabolic outline, autophagy activation is essential for metabolism and activity of the adipose tissue and to retard metabolic syndrome i.e. obesity. The manuscript summarizes the perception of current knowledge on autophagy stimulation and its effect on the obesity.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
19
|
Xiao Z, Yang C, Liu C, Yang L, Yang S, Zhou J, Li F, Jiang L, Xiao S, Gao C, Shen W. SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1399-1417. [PMID: 32786047 DOI: 10.1111/jipb.13005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 05/18/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery is an ancient, evolutionarily conserved membrane remodeling complex that is essential for multivesicular body (MVB) biogenesis in eukaryotes. FYVE DOMAIN PROTEIN REQUIRED FOR ENDOSOMAL SORTING 1 (FREE1), which was previously identified as a plant-specific ESCRT component, modulates MVB-mediated endosomal sorting and autophagic degradation. Although the basic cellular functions of FREE1 as an ESCRT component have been described, the regulators that control FREE1 turnover remain unknown. Here, we analyzed how FREE1 homeostasis is mediated by the RING-finger E3 ubiquitin ligases, SINA of Arabidopsis thaliana (SINATs), in response to iron deficiency. Under iron-deficient growth conditions, SINAT1-4 were induced and ubiquitinated FREE1, thereby promoting its degradation and relieving the repressive effect of FREE1 on iron absorption. By contrast, SINAT5, another SINAT member that lacks ubiquitin ligase activity due to the absence of the RING domain, functions as a protector protein which stabilizes FREE1. Collectively, our findings uncover a hitherto unknown mechanism of homeostatic regulation of FREE1, and demonstrate a unique regulatory SINAT-FREE1 module that subtly regulates plant response to iron deficiency stress.
Collapse
Affiliation(s)
- Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lianming Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuhong Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jun Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Faqiang Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liwen Jiang
- School of Life Sciences, Center for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
20
|
Cao JJ, Liu CX, Shao SJ, Zhou J. Molecular Mechanisms of Autophagy Regulation in Plants and Their Applications in Agriculture. FRONTIERS IN PLANT SCIENCE 2020; 11:618944. [PMID: 33664753 PMCID: PMC7921839 DOI: 10.3389/fpls.2020.618944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/28/2020] [Indexed: 05/03/2023]
Abstract
Autophagy is a highly conserved cellular process for the degradation and recycling of unnecessary cytoplasmic components in eukaryotes. Various studies have shown that autophagy plays a crucial role in plant growth, productivity, and survival. The extensive functions of plant autophagy have been revealed in numerous frontier studies, particularly those regarding growth adjustment, stress tolerance, the identification of related genes, and the involvement of metabolic pathways. However, elucidation of the molecular regulation of plant autophagy, particularly the upstream signaling elements, is still lagging. In this review, we summarize recent progress in research on the molecular mechanisms of autophagy regulation, including the roles of protein kinases, phytohormones, second messengers, and transcriptional and epigenetic control, as well as the relationship between autophagy and the 26S proteasome in model plants and crop species. We also discuss future research directions for the potential application of autophagy in agriculture.
Collapse
Affiliation(s)
- Jia-Jian Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Chen-Xu Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Jun Shao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| | - Jie Zhou
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
- *Correspondence: Jie Zhou,
| |
Collapse
|