1
|
Ledger EVK, Massey RC. PBP4 is required for serum-induced cell wall thickening and antibiotic tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2024; 68:e0096124. [PMID: 39431816 DOI: 10.1128/aac.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by synthesizing a thick peptidoglycan cell wall, which protects the bacterium from membrane-targeting antimicrobials and the immune response. However, the proteins required for this response were previously unknown. Here, we demonstrate by three independent approaches that the penicillin-binding protein PBP4 is crucial for serum-induced cell wall thickening. First, mutants lacking various non-essential cell wall synthesis enzymes were tested, revealing that a mutant lacking pbp4 was unable to generate a thick cell wall in serum. This resulted in reduced serum-induced tolerance of the pbp4 mutant toward the last resort antibiotic daptomycin relative to wild-type cells. Second, we found that serum-induced cell wall thickening occurred in each of a panel of 134 clinical bacteremia isolates, except for one strain with a naturally occurring mutation that results in an S140R substitution in the active site of PBP4. Finally, inhibition of PBP4 with cefoxitin prevented serum-induced cell wall thickening and the resulting antibiotic tolerance in the USA300 strain and clinical MRSA isolates. Together, this provides a rationale for combining daptomycin with cefoxitin, a PBP4 inhibitor, to potentially improve treatment outcomes for patients with invasive MRSA infections.
Collapse
Affiliation(s)
- Elizabeth V K Ledger
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruth C Massey
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Kumar A, Islam MR, Zughaier SM, Chen X, Zhao Y. Precision classification and quantitative analysis of bacteria biomarkers via surface-enhanced Raman spectroscopy and machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124627. [PMID: 38880073 DOI: 10.1016/j.saa.2024.124627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/19/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and β-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
| | - Md Redwan Islam
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Susu M Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, P.O. Box 2731, Qatar
| | - Xianyan Chen
- Department of Statistics, The University of Georgia, Athens, GA 30602, USA
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Sminia TJ, Aalvink S, de Jong H, Tempelaars MH, Zuilhof H, Abee T, de Vos WM, Tytgat HLP, Wennekes T. Probing Peptidoglycan Synthesis in the Gut Commensal Akkermansia Muciniphila with Bioorthogonal Chemical Reporters. Chembiochem 2024; 25:e202400037. [PMID: 38688858 DOI: 10.1002/cbic.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored. To directly study peptidoglycan in gut commensals and obtain the molecular insight required to understand their functional activities we need effective techniques like chemical probes to label peptidoglycan in live bacteria. Here we report a chemically guided approach to study peptidoglycan in a key mucin-degrading gut microbiota member of the Verrucomicrobia phylum, Akkermansia muciniphila. Two novel non-toxic tetrazine click-compatible peptidoglycan probes with either a cyclopropene or isonitrile handle allowed for the detection and imaging of peptidoglycan synthesis in this intestinal species.
Collapse
Affiliation(s)
- Tjerk J Sminia
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| | - Marcel H Tempelaars
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanne L P Tytgat
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The, Netherlands
- Current address: Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Tom Wennekes
- Laboratory of Organic Chemistry, Wageningen University and Research, Wageningen, The, Netherlands
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The, Netherlands
| |
Collapse
|
4
|
Pöhl S, Giacomelli G, Meyer FM, Kleeberg V, Cohen EJ, Biboy J, Rosum J, Glatter T, Vollmer W, van Teeseling MCF, Heider J, Bramkamp M, Thanbichler M. An outer membrane porin-lipoprotein complex modulates elongasome movement to establish cell curvature in Rhodospirillum rubrum. Nat Commun 2024; 15:7616. [PMID: 39223154 PMCID: PMC11369160 DOI: 10.1038/s41467-024-51790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Curved cell shapes are widespread among bacteria and important for cellular motility, virulence and fitness. However, the underlying morphogenetic mechanisms are still incompletely understood. Here, we identify an outer-membrane protein complex that promotes cell curvature in the photosynthetic species Rhodospirillum rubrum. We show that the R. rubrum porins Por39 and Por41 form a helical ribbon-like structure at the outer curve of the cell that recruits the peptidoglycan-binding lipoprotein PapS, with PapS inactivation, porin delocalization or disruption of the porin-PapS interface resulting in cell straightening. We further demonstrate that porin-PapS assemblies act as molecular cages that entrap the cell elongation machinery, thus biasing cell growth towards the outer curve. These findings reveal a mechanistically distinct morphogenetic module mediating bacterial cell shape. Moreover, they uncover an unprecedented role of outer-membrane protein patterning in the spatial control of intracellular processes, adding an important facet to the repertoire of regulatory mechanisms in bacterial cell biology.
Collapse
Affiliation(s)
- Sebastian Pöhl
- Department of Biology, University of Marburg, Marburg, Germany
| | | | - Fabian M Meyer
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Volker Kleeberg
- Institut für Biologie II, University of Freiburg, Freiburg, Germany
- Pädagogische Forschungsstelle Kassel, Kassel, Germany
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, UK
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Julia Rosum
- Department of Biology, University of Marburg, Marburg, Germany
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Muriel C F van Teeseling
- Department of Biology, University of Marburg, Marburg, Germany
- Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany
| | - Johann Heider
- Department of Biology, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Marc Bramkamp
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| |
Collapse
|
5
|
Lee SJ, Zheng YY, Chen WM, Hsueh YH. Nitrogen-Doped Carbon Dots: A New Powerful Fluorescent Dye with Substantial Effect on Bacterial Cell Labeling. ACS OMEGA 2024; 9:36453-36463. [PMID: 39220540 PMCID: PMC11359637 DOI: 10.1021/acsomega.4c04273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Carbon dots (CDs)-minute carbon nanoparticles with remarkable luminescent properties, photostability, and low toxicity-show potential for various applications. CDs synthesized using citric acid and urea are the least toxic to biological environments. Here, we aimed to explore the effect of CDs synthesized using citric acid and urea at 50, 33, and 25% (CDs 1/1, 1/2, and 1/3, respectively) weight ratios in a microwave on bacterial cell fluorescence sensing and labeling. The nanoscale properties of CDs were investigated via transmission electron microscopy and dynamic light scattering particle size analysis. X-ray powder diffraction confirmed the graphitic structures of CDs. X-ray photoelectron spectroscopy revealed that the nitrogen content increased gradually with increasing urea ratios, indicating functional group changes. Transient photoluminescence decay periods demonstrated superior fluorescence intensity of CDs 1/3 under blue, green, and red lights. The use of CDs was notably more efficient than traditional methods in staining bacterial cells. Fluorescence microscopy of 10 g-positive and 10 g-negative bacteria revealed enhanced staining of Gram-positive strains, with CDs 1/3 presenting the best results. The CDs exhibited excellent photostability, maintaining poststaining fluorescence for 100 min, surpassing the performance of conventional dyes. CDs could serve as potential fluorescent dyes for the rapid discrimination of Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Sin-Jen Lee
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| | - Ya-Yun Zheng
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| | - Wen-Ming Chen
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| | - Yi-Huang Hsueh
- Department of Sea Food Science, National Kaohsiung University of Science, Kaohsiung 81157, Taiwan
| |
Collapse
|
6
|
Liberini E, Fan SH, Bayer AS, Beck C, Biboy J, François P, Gray J, Hipp K, Koch I, Peschel A, Sailer B, Vollmer D, Vollmer W, Götz F. Staphylococcus aureus Stress Response to Bicarbonate Depletion. Int J Mol Sci 2024; 25:9251. [PMID: 39273203 PMCID: PMC11394868 DOI: 10.3390/ijms25179251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Bicarbonate and CO2 are essential substrates for carboxylation reactions in bacterial central metabolism. In Staphylococcus aureus, the bicarbonate transporter, MpsABC (membrane potential-generating system) is the only carbon concentrating system. An mpsABC deletion mutant can hardly grow in ambient air. In this study, we investigated the changes that occur in S. aureus when it suffers from CO2/bicarbonate deficiency. Electron microscopy revealed that ΔmpsABC has a twofold thicker cell wall thickness compared to the parent strain. The mutant was also substantially inert to cell lysis induced by lysostaphin and the non-ionic surfactant Triton X-100. Mass spectrometry analysis of muropeptides revealed the incorporation of alanine into the pentaglycine interpeptide bridge, which explains the mutant's lysostaphin resistance. Flow cytometry analysis of wall teichoic acid (WTA) glycosylation patterns revealed a significantly lower α-glycosylated and higher ß-glycosylated WTA, explaining the mutant's increased resistance towards Triton X-100. Comparative transcriptome analysis showed altered gene expression profiles. Autolysin-encoding genes such as sceD, a lytic transglycosylase encoding gene, were upregulated, like in vancomycin-intermediate S. aureus mutants (VISA). Genes related to cell wall-anchored proteins, secreted proteins, transporters, and toxins were downregulated. Overall, we demonstrate that bicarbonate deficiency is a stress response that causes changes in cell wall composition and global gene expression resulting in increased resilience to cell wall lytic enzymes and detergents.
Collapse
Affiliation(s)
- Elisa Liberini
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Sook-Ha Fan
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- The Lundquist Institute, Torrance, CA 90502, USA
| | - Arnold S Bayer
- The Lundquist Institute, Torrance, CA 90502, USA
- David Geffen School of Medicine at UCLA-University of California, Los Angeles, CA 90095, USA
| | - Christian Beck
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Jacob Biboy
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Patrice François
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Joe Gray
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Katharina Hipp
- Electron Microscopy Facility, Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Iris Koch
- Electron Microscopy Facility, Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- Excellence Cluster 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, 72076 Tübingen, Germany
| | - Brigitte Sailer
- Electron Microscopy Facility, Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Daniela Vollmer
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Waldemar Vollmer
- Biosciences Institute, Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
- Excellence Cluster 2124 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Huang L, Tong Q, Chen L, Zhao W, Zhang Z, Chai Z, Yang J, Li C, Liu M, Jiang L. An efficient method for detecting membrane protein oligomerization and complex using 05SAR-PAGE. Electrophoresis 2024; 45:1450-1454. [PMID: 38332570 DOI: 10.1002/elps.202300243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Oligomerization is an important feature of proteins, which gives a defined quaternary structure to complete the biological functions. Although frequently observed in membrane proteins, characterizing the oligomerization state remains complicated and time-consuming. In this study, 0.05% (w/v) sarkosyl-polyacrylamide gel electrophoresis (05SAR-PAGE) was used to identify the oligomer states of the membrane proteins CpxA, EnvZ, and Ma-Mscl with high sensitivity. Furthermore, two-dimensional electrophoresis (05SAR/sodium dodecyl sulfate-PAGE) combined with western blotting and liquid chromatography-tandem mass spectrometry was successfully applied to study the complex of CpxA/OmpA in cell lysate. The results indicated that 05SAR-PAGE is an efficient, economical, and practical gel method that can be widely used for the identification of membrane protein oligomerization and the analysis of weak protein interactions.
Collapse
Affiliation(s)
- Liqun Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiong Tong
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Lang Chen
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Weijing Zhao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jun Yang
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Conggang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Maili Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Ling Jiang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
- Key Laboratory of Magnetic Resonance in Biological System, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
8
|
Bon CG, Grigg JC, Lee J, Robb CS, Caveney NA, Eltis LD, Strynadka NCJ. Structural and kinetic analysis of the monofunctional Staphylococcus aureus PBP1. J Struct Biol 2024; 216:108086. [PMID: 38527711 DOI: 10.1016/j.jsb.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used β-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of β-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of β-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing β-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.
Collapse
Affiliation(s)
- Christopher G Bon
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jaeyong Lee
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Craig S Robb
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nathanael A Caveney
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lindsay D Eltis
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
9
|
Chen Y, Gu J, Yang B, Yang L, Pang J, Luo Q, Li Y, Li D, Deng Z, Dong C, Dong H, Zhang Z. Structure and activity of the septal peptidoglycan hydrolysis machinery crucial for bacterial cell division. PLoS Biol 2024; 22:e3002628. [PMID: 38814940 PMCID: PMC11139282 DOI: 10.1371/journal.pbio.3002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.
Collapse
Affiliation(s)
- Yatian Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiayue Gu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Biao Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lili Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Pang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Miguel-Ruano V, Feltzer R, Batuecas MT, Ramachandran B, El-Araby AM, Avila-Cobian LF, De Benedetti S, Mobashery S, Hermoso JA. Structural characterization of lytic transglycosylase MltD of Pseudomonas aeruginosa, a target for the natural product bulgecin A. Int J Biol Macromol 2024; 267:131420. [PMID: 38583835 PMCID: PMC11327851 DOI: 10.1016/j.ijbiomac.2024.131420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Natural product bulgecin A potentiates the activity of β-lactam antibiotics by inhibition of three lytic transglycosylases in Pseudomonas aeruginosa, of which MltD is one. MltD exhibits both endolytic and exolytic reactions in the turnover of the cell-wall peptidoglycan and tolerates the presence or absence of stem peptides in its substrates. The present study reveals structural features of the multimodular MltD, presenting a catalytic module and four cell-wall-binding LysM modules that account for these attributes. Three X-ray structures are reported herein for MltD that disclose one unpredicted LysM module tightly attached to the catalytic domain, whereas the other LysM modules are mobile, and connected to the catalytic domain through long flexible linkers. The formation of crystals depended on the presence of bulgecin A. The expansive active-site cleft is highlighted by the insertion of a helical region, a hallmark of the family 1D of lytic transglycosylases, which was mapped out in a ternary complex of MltD:bulgecinA:chitotetraose, revealing at the minimum the presence of eight subsites (from -4 to +4, with the seat of reaction at subsites -1 and + 1) for binding of sugars of the substrate for the endolytic reaction. The mechanism of the exolytic reaction is revealed in one of the structures, showing how the substrate's terminal anhydro-NAM moiety could be sequestered at subsite +2. Our results provide the structural insight for both the endolytic and exolytic activities of MltD during cell-wall-turnover events.
Collapse
Affiliation(s)
- Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rhona Feltzer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Balajee Ramachandran
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amr M El-Araby
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Luis F Avila-Cobian
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stefania De Benedetti
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Blas Cabrera", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
11
|
Zheng Y, Zhu X, Jiang M, Cao F, You Q, Chen X. Development and Applications of D-Amino Acid Derivatives-based Metabolic Labeling of Bacterial Peptidoglycan. Angew Chem Int Ed Engl 2024; 63:e202319400. [PMID: 38284300 DOI: 10.1002/anie.202319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Peptidoglycan, an essential component within the cell walls of virtually all bacteria, is composed of glycan strands linked by stem peptides that contain D-amino acids. The peptidoglycan biosynthesis machinery exhibits high tolerance to various D-amino acid derivatives. D-amino acid derivatives with different functionalities can thus be specifically incorporated into and label the peptidoglycan of bacteria, but not the host mammalian cells. This metabolic labeling strategy is highly selective, highly biocompatible, and broadly applicable, which has been utilized in various fields. This review introduces the metabolic labeling strategies of peptidoglycan by using D-amino acid derivatives, including one-step and two-step strategies. In addition, we emphasize the various applications of D-amino acid derivative-based metabolic labeling, including bacterial peptidoglycan visualization (existence, biosynthesis, and dynamics, etc.), bacterial visualization (including bacterial imaging and visualization of growth and division, metabolic activity, antibiotic susceptibility, etc.), pathogenic bacteria-targeted diagnostics and treatment (positron emission tomography (PET) imaging, photodynamic therapy, photothermal therapy, gas therapy, immunotherapy, etc.), and live bacteria-based therapy. Finally, a summary of this metabolic labeling and an outlook is provided.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
12
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
13
|
Alodaini D, Hernandez-Rocamora V, Boelter G, Ma X, Alao MB, Doherty HM, Bryant JA, Moynihan P, Moradigaravand D, Glinkowska M, Vollmer W, Banzhaf M. Reduced peptidoglycan synthesis capacity impairs growth of E. coli at high salt concentration. mBio 2024; 15:e0032524. [PMID: 38426748 PMCID: PMC11005333 DOI: 10.1128/mbio.00325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.
Collapse
Affiliation(s)
- Dema Alodaini
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Victor Hernandez-Rocamora
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gabriela Boelter
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xuyu Ma
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Micheal B. Alao
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Hannah M. Doherty
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Patrick Moynihan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Danesh Moradigaravand
- KAUST Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
- Laboratory for Infectious Disease Epidemiology, KAUST Smart-Health Initiative and Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - Monika Glinkowska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Waldemar Vollmer
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
14
|
Modi M, Thambiraja M, Cherukat A, Yennamalli RM, Priyadarshini R. Structure predictions and functional insights into Amidase_3 domain containing N-acetylmuramyl-L-alanine amidases from Deinococcus indicus DR1. BMC Microbiol 2024; 24:101. [PMID: 38532329 DOI: 10.1186/s12866-024-03225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND N-acetylmuramyl-L-alanine amidases are cell wall modifying enzymes that cleave the amide bond between the sugar residues and stem peptide in peptidoglycan. Amidases play a vital role in septal cell wall cleavage and help separate daughter cells during cell division. Most amidases are zinc metalloenzymes, and E. coli cells lacking amidases grow as chains with daughter cells attached to each other. In this study, we have characterized two amidase enzymes from Deinococcus indicus DR1. D. indicus DR1 is known for its high arsenic tolerance and unique cell envelope. However, details of their cell wall biogenesis remain largely unexplored. RESULTS We have characterized two amidases Ami1Di and Ami2Di from D. indicus DR1. Both Ami1Di and Ami2Di suppress cell separation defects in E. coli amidase mutants, suggesting that these enzymes are able to cleave septal cell wall. Ami1Di and Ami2Di proteins possess the Amidase_3 catalytic domain with conserved -GHGG- motif and Zn2+ binding sites. Zn2+- binding in Ami1Di is crucial for amidase activity. AlphaFold2 structures of both Ami1Di and Ami2Di were predicted, and Ami1Di was a closer homolog to AmiA of E. coli. CONCLUSION Our results indicate that Ami1Di and Ami2Di enzymes can cleave peptidoglycan, and structural prediction studies revealed insights into the activity and regulation of these enzymes in D. indicus DR1.
Collapse
Affiliation(s)
- Malvika Modi
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Menaka Thambiraja
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Archana Cherukat
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
- Department of Biology, Graduate School of Arts and Sciences, Wake Forest University, 1834 Wake Forest Rd, Winston-Salem, USA
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
15
|
Hillman A, Hyland SN, Wodzanowski KA, Moore DL, Ratna S, Jemas A, Sandles LMD, Chaya T, Ghosh A, Fox JM, Grimes CL. Minimalist Tetrazine N-Acetyl Muramic Acid Probes for Rapid and Efficient Labeling of Commensal and Pathogenic Peptidoglycans in Living Bacterial Culture and During Macrophage Invasion. J Am Chem Soc 2024; 146:6817-6829. [PMID: 38427023 PMCID: PMC10941766 DOI: 10.1021/jacs.3c13644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.
Collapse
Affiliation(s)
- Ashlyn
S. Hillman
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - DeVonte L. Moore
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Sushanta Ratna
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Andrew Jemas
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Liam-Michael D. Sandles
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Timothy Chaya
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware
Biotechnology Institute, UDEL Flow Cytometry Core, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M. Fox
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
16
|
Tran BM, Punter CM, Linnik D, Iyer A, Poolman B. Single-protein Diffusion in the Periplasm of Escherichia coli. J Mol Biol 2024; 436:168420. [PMID: 38143021 DOI: 10.1016/j.jmb.2023.168420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The width of the periplasmic space of Gram-negative bacteria is only about 25-30 nm along the long axis of the cell, which affects free diffusion of (macro)molecules. We have performed single-particle displacement measurements and diffusion simulation studies to determine the impact of confinement on the apparent mobility of proteins in the periplasm of Escherichia coli. The diffusion of a reporter protein and of OsmY, an osmotically regulated periplasmic protein, is characterized by a fast and slow component regardless of the osmotic conditions. The diffusion coefficient of the fast fraction increases upon osmotic upshift, in agreement with a decrease in macromolecular crowding of the periplasm, but the mobility of the slow (immobile) fraction is not affected by the osmotic stress. We observe that the confinement created by the inner and outer membranes results in a lower apparent diffusion coefficient, but this can only partially explain the slow component of diffusion in the particle displacement measurements, suggesting that a fraction of the proteins is hindered in its mobility by large periplasmic structures. Using particle-based simulations, we have determined the confinement effect on the apparent diffusion coefficient of the particles for geometries akin the periplasmic space of Gram-negative bacteria.
Collapse
Affiliation(s)
- Buu Minh Tran
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Christiaan Michiel Punter
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Dmitrii Linnik
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Aditya Iyer
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
17
|
Guo T, Sperber AM, Krieger IV, Duan Y, Chemelewski VR, Sacchettini JC, Herman JK. Bacillus subtilis YisK possesses oxaloacetate decarboxylase activity and exhibits Mbl-dependent localization. J Bacteriol 2024; 206:e0020223. [PMID: 38047707 PMCID: PMC10810218 DOI: 10.1128/jb.00202-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
YisK is an uncharacterized protein in Bacillus subtilis previously shown to interact genetically with the elongasome protein Mbl. YisK overexpression leads to cell widening and lysis, phenotypes that are dependent on mbl and suppressed by mbl mutations. In the present work, we characterize YisK's localization, structure, and enzymatic activity. We show that YisK localizes as puncta that depend on Mbl. YisK belongs to the fumarylacetoacetate hydrolase (FAH) superfamily, and crystal structures revealed close structural similarity to two oxaloacetate (OAA) decarboxylases: human mitochondrial FAHD1 and Corynebacterium glutamicum Cg1458. We demonstrate that YisK can also catalyze the decarboxylation of OAA (K m = 134 µM, K cat = 31 min-1). A catalytic dead variant (YisK E148A, E150A) retains wild-type localization and still widens cells following overexpression, indicating these activities are not dependent on YisK catalysis. Conversely, a non-localizing variant (YisK E30A) retains wild-type enzymatic activity in vitro but localizes diffusely and no longer widens cells following overexpression. Together, these results suggest that YisK may be subject to spatial regulation that depends on the cell envelope synthesis machinery. IMPORTANCE The elongasome is a multiprotein complex that guides lengthwise growth in some bacteria. We previously showed that, in B. subtilis, overexpression of an uncharacterized putative enzyme (YisK) perturbed function of the actin-like elongasome protein Mbl. Here, we show that YisK exhibits Mbl-dependent localization. Through biochemical and structural characterization, we demonstrate that, like its mitochondrial homolog FAHD1, YisK can catalyze the decarboxylation of the oxaloacetate to pyruvate and CO2. YisK is the first example of an enzyme implicated in central carbon metabolism with subcellular localization that depends on Mbl.
Collapse
Affiliation(s)
- Tingfeng Guo
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Anthony M. Sperber
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Yi Duan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Veronica R. Chemelewski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Jennifer K. Herman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. Angew Chem Int Ed Engl 2024; 63:e202313870. [PMID: 38051128 PMCID: PMC10799677 DOI: 10.1002/anie.202313870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Staphylococcus aureus (S. aureus) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus, thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
Affiliation(s)
| | | | - Zichen Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
19
|
Orsini Delgado ML, Gamelas Magalhaes J, Morra R, Cultrone A. Muropeptides and muropeptide transporters impact on host immune response. Gut Microbes 2024; 16:2418412. [PMID: 39439228 PMCID: PMC11509177 DOI: 10.1080/19490976.2024.2418412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
In bacteria, the cell envelope is the key element surrounding and protecting the bacterial content from mechanical or osmotic damages. It allows the selective interchanges of solutes, ions, cellular debris, and drugs between the cellular compartments and the external environment, thanks to the presence of transmembrane proteins called transporters. The major component of the cell envelope is the peptidoglycan, consisting of long linear glycan strands cross-linked by short peptide stems. During cell growth or under stress conditions, peptidoglycan fragments, the muropeptides, are released by bacteria and recognized by the host Pattern Recognition Receptor, promoting the activation of their innate defense mechanisms. The review sums up the salient aspects of microbiota-host interaction with a focus on the NOD-dependent immune response to bacterial peptidoglycan and on the accountability of muropeptide transporters in the crosstalk with the host and in antibiotic resistance. Furthermore, it retraces the discoveries and applications of microorganisms-derived components such as vaccines or vaccine adjuvants.
Collapse
|
20
|
Razew A, Laguri C, Vallet A, Bougault C, Kaus-Drobek M, Sabala I, Simorre JP. Staphylococcus aureus sacculus mediates activities of M23 hydrolases. Nat Commun 2023; 14:6706. [PMID: 37872144 PMCID: PMC10593780 DOI: 10.1038/s41467-023-42506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.
Collapse
Affiliation(s)
- Alicja Razew
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Cedric Laguri
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Alicia Vallet
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Catherine Bougault
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Izabela Sabala
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| | - Jean-Pierre Simorre
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France.
| |
Collapse
|
21
|
Kelly JJ, Dalesandro BE, Liu Z, Chordia MD, Ongwae GM, Pires MM. Measurement of Accumulation of Antibiotics to Staphylococcus aureus in Phagosomes of Live Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528196. [PMID: 36824967 PMCID: PMC9949086 DOI: 10.1101/2023.02.13.528196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Staphylococcus aureus ( S. aureus ) has evolved the ability to persist after uptake into host immune cells. This intracellular niche enables S. aureus to potentially escape host immune responses and survive the lethal actions of antibiotics. While the elevated tolerance of S. aureus to small-molecule antibiotics is likely to be multifactorial, we pose that there may be contributions related to permeation of antibiotics into phagocytic vacuoles, which would require translocation across two mammalian bilayers. To empirically test this, we adapted our recently developed permeability assay to determine the accumulation of FDA-approved antibiotics into phagocytic vacuoles of live macrophages. Bioorthogonal reactive handles were metabolically anchored within the surface of S. aureus, and complementary tags were chemically added to antibiotics. Following phagocytosis of tagged S. aureus cells, we were able to specifically analyze the arrival of antibiotics within the phagosomes of infected macrophages. Our findings enabled the determination of permeability differences between extra- and intracellular S. aureus , thus providing a roadmap to dissect the contribution of antibiotic permeability to intracellular pathogens.
Collapse
|
22
|
Abstract
The metabolism of a bacterial cell stretches beyond its boundaries, often connecting with the metabolism of other cells to form extended metabolic networks that stretch across communities, and even the globe. Among the least intuitive metabolic connections are those involving cross-feeding of canonically intracellular metabolites. How and why are these intracellular metabolites externalized? Are bacteria simply leaky? Here I consider what it means for a bacterium to be leaky, and I review mechanisms of metabolite externalization from the context of cross-feeding. Despite common claims, diffusion of most intracellular metabolites across a membrane is unlikely. Instead, passive and active transporters are likely involved, possibly purging excess metabolites as part of homeostasis. Re-acquisition of metabolites by a producer limits the opportunities for cross-feeding. However, a competitive recipient can stimulate metabolite externalization and initiate a positive-feedback loop of reciprocal cross-feeding.
Collapse
Affiliation(s)
- James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA;
| |
Collapse
|
23
|
Pismennõi D, Kattel A, Belouah I, Nahku R, Vilu R, Kobrin EG. The Quantitative Measurement of Peptidoglycan Components Obtained from Acidic Hydrolysis in Gram-Positive and Gram-Negative Bacteria via Hydrophilic Interaction Liquid Chromatography Coupled with Mass Spectrometry. Microorganisms 2023; 11:2134. [PMID: 37763978 PMCID: PMC10534856 DOI: 10.3390/microorganisms11092134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The high throughput in genome sequencing and metabolic model (MM) reconstruction has democratised bioinformatics approaches such as flux balance analysis. Fluxes' prediction accuracy greatly relates to the deepness of the MM curation for a specific organism starting from the cell composition. One component is the cell wall, which is a functional barrier (cell shape, exchanges) with the environment. The bacterial cell wall (BCW), including its thickness, structure, and composition, has been extensively studied in Escherichia coli but poorly described for other organisms. The peptidoglycan (PG) layer composing the BCW is usually thinner in Gram- bacteria than in Gram+ bacteria. In both bacteria groups, PG is a polymeric mesh-like structure of amino acids and sugars, including N-acetylglucosamine, N-acetylmuramic acid, and amino acids. In this study, we propose a high-throughput method to characterise and quantify PG in Gram-positive and Gram-negative bacteria using acidic hydrolysis and hydrophilic interaction liquid chromatography coupled with mass spectrometry (HILIC-MS). The method showed a relatively short time frame (11 min analytical run), low inter- and intraday variability (3.2% and 4%, respectively), and high sensitivity and selectivity (limits of quantification in the sub mg/L range). The method was successfully applied on two Gram-negative bacteria (Escherichia coli K12 MG1655, Bacteroides thetaiotaomicron DSM 2079) and one Gram-positive bacterium (Streptococcus salivarius ssp. thermophilus DSM20259). The PG concentration ranged from 1.6% w/w to 14% w/w of the dry cell weight. The results were in good correlation with previously published results. With further development, the PG concentration provided by this newly developed method could reinforce the curation of MM.
Collapse
Affiliation(s)
- Dmitri Pismennõi
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia; (D.P.); (A.K.); (I.B.); (R.N.); (R.V.)
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anna Kattel
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia; (D.P.); (A.K.); (I.B.); (R.N.); (R.V.)
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Isma Belouah
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia; (D.P.); (A.K.); (I.B.); (R.N.); (R.V.)
| | - Ranno Nahku
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia; (D.P.); (A.K.); (I.B.); (R.N.); (R.V.)
| | - Raivo Vilu
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia; (D.P.); (A.K.); (I.B.); (R.N.); (R.V.)
| | - Eeva-Gerda Kobrin
- Center of Food and Fermentation Technologies (TFTAK), Mäealuse 2/4, 12618 Tallinn, Estonia; (D.P.); (A.K.); (I.B.); (R.N.); (R.V.)
| |
Collapse
|
24
|
Wei H, Yang L, Pang C, Lian L, Hong L. Bacteria-targeted photothermal therapy for combating drug-resistant bacterial infections. Biomater Sci 2023; 11:5634-5640. [PMID: 37404189 DOI: 10.1039/d3bm00841j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Photothermal therapy is an ideal non-invasive treatment for bacterial infections. However, if photothermal agents are unable to target bacteria, they can also cause thermal damage to healthy tissue. This study describes the fabrication of a Ti3C2Tx MXene-based photothermal nanobactericide (denoted as MPP) that targets bacteria by modifying MXene nanosheets with polydopamine and the bacterial recognition peptide CAEKA. The polydopamine layer blunts the sharp edges of MXene nanosheets, preventing their damage to normal tissue cells. Furthermore, as a constituent of peptidoglycan, CAEKA can recognize and penetrate the bacterial cell membrane based on similar compatibility. The obtained MPP exhibits superior antibacterial activity and high cytocompatibility compared to the pristine MXene nanosheets. In vivo studies showed that MPP colloidal solution under 808 nm NIR light can effectively treat a subcutaneous abscess caused by multi-drug resistant bacterial infection without adverse effects.
Collapse
Affiliation(s)
- Hongxin Wei
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liu Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuming Pang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liqin Lian
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Liangzhi Hong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
25
|
Jati S, Mahata S, Das S, Chatterjee S, Mahata SK. Catestatin: Antimicrobial Functions and Potential Therapeutics. Pharmaceutics 2023; 15:1550. [PMID: 37242791 PMCID: PMC10220906 DOI: 10.3390/pharmaceutics15051550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The rapid increase in drug-resistant and multidrug-resistant infections poses a serious challenge to antimicrobial therapies, and has created a global health crisis. Since antimicrobial peptides (AMPs) have escaped bacterial resistance throughout evolution, AMPs are a category of potential alternatives for antibiotic-resistant "superbugs". The Chromogranin A (CgA)-derived peptide Catestatin (CST: hCgA352-372; bCgA344-364) was initially identified in 1997 as an acute nicotinic-cholinergic antagonist. Subsequently, CST was established as a pleiotropic hormone. In 2005, it was reported that N-terminal 15 amino acids of bovine CST (bCST1-15 aka cateslytin) exert antibacterial, antifungal, and antiyeast effects without showing any hemolytic effects. In 2017, D-bCST1-15 (where L-amino acids were changed to D-amino acids) was shown to exert very effective antimicrobial effects against various bacterial strains. Beyond antimicrobial effects, D-bCST1-15 potentiated (additive/synergistic) antibacterial effects of cefotaxime, amoxicillin, and methicillin. Furthermore, D-bCST1-15 neither triggered bacterial resistance nor elicited cytokine release. The present review will highlight the antimicrobial effects of CST, bCST1-15 (aka cateslytin), D-bCST1-15, and human variants of CST (Gly364Ser-CST and Pro370Leu-CST); evolutionary conservation of CST in mammals; and their potential as a therapy for antibiotic-resistant "superbugs".
Collapse
Affiliation(s)
- Suborno Jati
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA;
| | - Sumana Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
| | - Soumita Das
- Department of Biomedical and Nutritional Science, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Saurabh Chatterjee
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA;
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
26
|
McDonnell RT, Patel N, Wehrspan ZJ, Elcock AH. Atomic Models of All Major Trans-Envelope Complexes Involved in Lipid Trafficking in Escherichia Coli Constructed Using a Combination of AlphaFold2, AF2Complex, and Membrane Morphing Simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538765. [PMID: 37162969 PMCID: PMC10168319 DOI: 10.1101/2023.04.28.538765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In Gram-negative bacteria, several trans-envelope complexes (TECs) have been identified that span the periplasmic space in order to facilitate lipid transport between the inner- and outer- membranes. While partial or near-complete structures of some of these TECs have been solved by conventional experimental techniques, most remain incomplete. Here we describe how a combination of computational approaches, constrained by experimental data, can be used to build complete atomic models for four TECs implicated in lipid transport in Escherichia coli . We use DeepMind's protein structure prediction algorithm, AlphaFold2, and a variant of it designed to predict protein complexes, AF2Complex, to predict the oligomeric states of key components of TECs and their likely interfaces with other components. After obtaining initial models of the complete TECs by superimposing predicted structures of subcomplexes, we use the membrane orientation prediction algorithm OPM to predict the likely orientations of the inner- and outer- membrane components in each TEC. Since, in all cases, the predicted membrane orientations in these initial models are tilted relative to each other, we devise a novel molecular mechanics-based strategy that we call "membrane morphing" that adjusts each TEC model until the two membranes are properly aligned with each other and separated by a distance consistent with estimates of the periplasmic width in E. coli . The study highlights the potential power of combining computational methods, operating within limits set by both experimental data and by cell physiology, for producing useable atomic structures of very large protein complexes.
Collapse
|
27
|
Snee M, Wever J, Guyton J, Beehler-Evans R, Yokoyama CC, Micchelli CA. Peptidoglycan recognition in Drosophila is mediated by LysMD3/4. J Biol Chem 2023; 299:104758. [PMID: 37116706 DOI: 10.1016/j.jbc.2023.104758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
Microbial recognition is a key step in regulating the immune signaling pathways of multicellular organisms. Peptidoglycan, a component of the bacterial cell wall, exhibits immune stimulating activity in both plants and animals. Lysin motif domain (LysMD) family proteins are ancient peptidoglycan receptors that function in bacteriophage and plants. This report focuses on defining the role of LysMD-containing proteins in animals. Here, we characterize a novel transmembrane LysMD family protein. Loss-of-function mutations at the lysMD3/4 locus in Drosophila are associated with systemic innate immune activation following challenge, so we refer to this gene as immune active (ima). We show that Ima selectively binds peptidoglycan, is enriched in cell membranes, and is necessary to regulate terminal innate immune effectors through an NF-kB-dependent pathway. Hence, Ima fulfills the key criteria of a peptidoglycan pattern recognition receptor. The human Ima ortholog, hLysMD3, exhibits similar biochemical properties. Together, these findings establish LysMD3/4 as the founding member of a novel family of animal peptidoglycan recognition proteins.
Collapse
Affiliation(s)
- Mark Snee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason Wever
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Guyton
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryan Beehler-Evans
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christine C Yokoyama
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Craig A Micchelli
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Zare F, Ghasemi N, Bansal N, Hosano H. Advances in pulsed electric stimuli as a physical method for treating liquid foods. Phys Life Rev 2023; 44:207-266. [PMID: 36791571 DOI: 10.1016/j.plrev.2023.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
There is a need for alternative technologies that can deliver safe and nutritious foods at lower costs as compared to conventional processes. Pulsed electric field (PEF) technology has been utilised for a plethora of different applications in the life and physical sciences, such as gene/drug delivery in medicine and extraction of bioactive compounds in food science and technology. PEF technology for treating liquid foods involves engineering principles to develop the equipment, and quantitative biochemistry and microbiology techniques to validate the process. There are numerous challenges to address for its application in liquid foods such as the 5-log pathogen reduction target in food safety, maintaining the food quality, and scale up of this physical approach for industrial integration. Here, we present the engineering principles associated with pulsed electric fields, related inactivation models of microorganisms, electroporation and electropermeabilization theory, to increase the quality and safety of liquid foods; including water, milk, beer, wine, fruit juices, cider, and liquid eggs. Ultimately, we discuss the outlook of the field and emphasise research gaps.
Collapse
Affiliation(s)
- Farzan Zare
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia; School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Negareh Ghasemi
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia
| | - Nidhi Bansal
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia QLD 4072, Australia
| | - Hamid Hosano
- Biomaterials and Bioelectrics Department, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan.
| |
Collapse
|
29
|
Zaidi S, Ali K, Chawla YM, Khan AU. mltG gene deletion mitigated virulence potential of Streptococcus mutans: An in-vitro, ex-situ and in-vivo study. AMB Express 2023; 13:19. [PMID: 36806997 PMCID: PMC9941400 DOI: 10.1186/s13568-023-01526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bacterial cells are surrounded by a peptidoglycan (PG) cell wall, which is essential for cell integrity and intrinsic biogenesis pathways; hence, the cell wall is a potential target for several antibiotics. Among several lytic transglycosylases (LTs), the mltG gene plays a crucial role in the synthesis of peripheral PG. It localises the re-modelled PGs for septum formation and cleavage across the bacterial cell wall during daughter cells separation. However, the role of mltG gene in bacterial virulence, particularly in Gram-positive bacteria during dentine biofilm and caries development, has remained unexplored. Hence, we exploited Gram-positive Streptococcus mutans cells for the very first time to construct a mltG knock-out bacterial strain, e.g., ΔmltG S. mutans. Systematic comparative investigations revealed that doubling time (Td), survival, enzymatic efficiencies, pH tolerance, bio-synthesise of lipid, proteins and DNA, biofilm formation and dentine lesions were significantly (p < 0.001) compromised in case of ΔmltG S. mutans than wild type strain. The qRT-PCR based gene expression profiling revealed that transcriptional expression of critically important genes involved in biofilm, metabolism, and stress response were dysregulated in the mutant. Besides, an incredible reduction in dentine caries development was found in the molar teeth of Wistar rats and also in human extracted teeth. Concisely, these trends obtained evidently advocated the fact that the deletion of mltG gene can be a potential target to impair the S. mutans virulence through severe growth retardation, thereby reducing the virulence potential of S. mutans.
Collapse
Affiliation(s)
- Sahar Zaidi
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Khursheed Ali
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Yadya M. Chawla
- grid.425195.e0000 0004 0498 7682ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asad U. Khan
- grid.411340.30000 0004 1937 0765Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
30
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
31
|
Xue K, Wang L, Liu J. Surface Modification of Bacteria to Optimize Immunomodulation for Advanced Immunotherapy. ChemMedChem 2023; 18:e202200574. [PMID: 36376260 DOI: 10.1002/cmdc.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Bacteria have been widely exploited as therapeutic agents for immunotherapy due to their native immunogenicity, living characteristic, and genetic manipulability. However, conventional bacteria-based immunotherapy often suffers from dose-dependent safety issues and poor treatment efficacy. Harnessing surface modification of bacteria to carry additional immune modulators has emerged as a promising strategy to reduce bacterial dose and synergistically enhance the activation of immune responses. In this paper, bacteria-mediated immunomodulation and the underlying mechanisms are introduced, followed by a summarization on the concept of using surface-modification approaches including physical encapsulation, chemical conjugation, and metabolic labelling to combine diverse immune functions. The applications of modified bacteria as therapeutics for immunotherapy toward cancer and inflammatory bowel disease have been expounded further. Both challenges and future perspectives regarding the utilization of surface-modified bacteria for immunomodulation are also proposed. This work offers unique insights into developing safe yet potent bacteria-based therapeutics for advanced immunotherapy.
Collapse
Affiliation(s)
- Kaikai Xue
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
32
|
de Melo MIA, da Silva Cunha P, Ferreira IM, de Andrade ASR. DNA aptamers selection for Staphylococcus aureus cells by SELEX and Cell-SELEX. Mol Biol Rep 2023; 50:157-165. [PMID: 36315328 DOI: 10.1007/s11033-022-07991-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Staphylococcus aureus is the most common bacteria found in skin, soft tissues, bone, and bone prostheses infections. The aim of this study was to select DNA aptamers for S. aureus to be applied in the diagnosis of bacteria. METHODS AND RESULTS We used SELEX (Systematic Evolution of Ligands by EXponencial Enrichment) for peptidoglycan followed by cell-SELEX with S. aureus cells as target. Four sequences showed significantly higher binding to S. aureus distinguishing it from the control cells of other significant microbial species: Escherichia coli, Candida albicans, Streptococcus pyogenes and Streptococcus pneumoniae. In particular, ApSA1 (Kd = 62.7 ± 5.6 nM) and ApSA3 (Kd = 43.3 ± 3.0 nM) sequences combined high affinity and specificity for S. aureus, considering all microorganisms tested. CONCLUSIONS Our results demonstrated that these aptamers were able to identify peptidoglycan in the S. aureus surface and have great potential for use in the development of radiopharmaceuticals capable to identify S. aureus infectious foci, as well as in other aptamer-based methodologies for bacteria diagnosis.
Collapse
Affiliation(s)
| | - Pricila da Silva Cunha
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, 36884-036, Muriaé, MG, Brazil
| | - Iêda Mendes Ferreira
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, 31270-901, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
33
|
Choo PY, Wang CY, VanNieuwenhze MS, Kline KA. Spatial and temporal localization of cell wall associated pili in Enterococcus faecalis. Mol Microbiol 2023; 119:1-18. [PMID: 36420961 PMCID: PMC10107303 DOI: 10.1111/mmi.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Enterococcus faecalis virulence requires cell wall-associated proteins, including the sortase-assembled endocarditis and biofilm associated pilus (Ebp), important for biofilm formation in vitro and in vivo. The current paradigm for sortase-assembled pilus biogenesis in Gram-positive bacteria is that sortases attach substrates to lipid II peptidoglycan (PG) precursors, prior to their incorporation into the growing cell wall. Contrary to prevailing dogma, by following the distribution of Ebp and PG throughout the E. faecalis cell cycle, we found that cell surface Ebp do not co-localize with newly synthesized PG. Instead, surface-exposed Ebp are localized to the older cell hemisphere and excluded from sites of new PG synthesis at the septum. Moreover, Ebp deposition on the younger hemisphere of the E. faecalis diplococcus appear as foci adjacent to the nascent septum. We propose a new model whereby sortase substrate deposition can occur on older PG rather than at sites of new cell wall synthesis. Consistent with this model, we demonstrate that sequestering lipid II to block PG synthesis via ramoplanin, does not impact new Ebp deposition at the cell surface. These data support an alternative paradigm for sortase substrate deposition in E. faecalis, in which Ebp are anchored directly onto uncrosslinked cell wall, independent of new PG synthesis.
Collapse
Affiliation(s)
- Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Charles Y Wang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Liu ZL, Chen X. Water-Content-Dependent Morphologies and Mechanical Properties of Bacillus subtilis Spores' Cortex Peptidoglycan. ACS Biomater Sci Eng 2022; 8:5094-5100. [PMID: 36442506 DOI: 10.1021/acsbiomaterials.2c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Peptidoglycan (PG), bacterial spores' major structural component in their cortex layers, was recently found to regulate the spore's water content and deform in response to relative humidity (RH) changes. Here, we report that the cortex PG dominates the Bacillus subtilis spores' water-content-dependent morphological and mechanical properties. When exposed to an environment having RH varied between 10% and 90%, the spores and their cortex PG reversibly expand and contract by 30.7% and 43.2% in volume, which indicates that the cortex PG contributes to 67.3% of a spore's volume change. The spores' and cortex PG's significant volumetric changes also lead to changes in their Young's moduli from 5.7 and 9.0 GPa at 10% RH to 0.62 and 1.2 GPa at 90% RH, respectively. Interestingly, these significant changes in the spores' and cortex PG's morphological and mechanical properties are only caused by a minute amount of the cortex PG's water exchange that occupies 28.0% of the cortex PG's volume. The cortex PG's capability in sensing and responding to environmental RH and effectively changing its structures and properties could provide insight into spores' high desiccation resistance and dormancy mechanisms.
Collapse
Affiliation(s)
- Zhi-Lun Liu
- Advanced Science Research Center (ASRC), The City University of New York, 85 St. Nicholas Terrace, New York, New York10031, United States.,Department of Chemical Engineering, The City College of New York, 275 Convent Ave., New York, New York10031, United States
| | - Xi Chen
- Advanced Science Research Center (ASRC), The City University of New York, 85 St. Nicholas Terrace, New York, New York10031, United States.,Department of Chemical Engineering, The City College of New York, 275 Convent Ave., New York, New York10031, United States.,Ph.D. Program in Physics, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Ave., New York, New York10016, United States
| |
Collapse
|
35
|
Differentiating interactions of antimicrobials with Gram-negative and Gram-positive bacterial cell walls using molecular dynamics simulations. Biointerphases 2022; 17:061008. [PMID: 36511523 DOI: 10.1116/6.0002087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developing molecular models to capture the complex physicochemical architecture of the bacterial cell wall and to study the interaction with antibacterial molecules is an important aspect of assessing and developing novel antimicrobial molecules. We carried out molecular dynamics simulations using an atomistic model of peptidoglycan to represent the architecture for Gram-positive S. aureus. The model is developed to capture various structural features of the Staphylococcal cell wall, such as the peptide orientation, area per disaccharide, glycan length distribution, cross-linking, and pore size. A comparison of the cell wall density and electrostatic potentials is made with a previously developed cell wall model of Gram-negative bacteria, E. coli, and properties for both single and multilayered structures of the Staphylococcal cell wall are studied. We investigated the interactions of the antimicrobial peptide melittin with peptidoglycan structures. The depth of melittin binding to peptidoglycan is more pronounced in E. coli than in S. aureus, and consequently, melittin has greater contacts with glycan units of E. coli. Contacts of melittin with the amino acids of peptidoglycan are comparable across both the strains, and the D-Ala residues, which are sites for transpeptidation, show enhanced interactions with melittin. A low energetic barrier is observed for translocation of a naturally occurring antimicrobial thymol with the four-layered peptidoglycan model. The molecular model developed for Gram-positive peptidoglycan allows us to compare and contrast the cell wall penetrating properties with Gram-negative strains and assess for the first time binding and translocation of antimicrobial molecules for Gram-positive cell walls.
Collapse
|
36
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
37
|
Luo D, Zhang K, Song T, Xie J. Improving cell permeability and stimulating biofilm to release extracellular polymeric substances with lysozyme for enhanced acetate production in microbial electrosynthesis. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
39
|
Zhang C, Reymond L, Rutschmann O, Meyer MA, Denereaz J, Qiao J, Ryckebusch F, Griffié J, Stepp WL, Manley S. Fluorescent d-Amino Acids for Super-resolution Microscopy of the Bacterial Cell Wall. ACS Chem Biol 2022; 17:2418-2424. [PMID: 35994360 DOI: 10.1021/acschembio.2c00496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent d-amino acids (FDAAs) have previously been developed to enable in situ highlighting of locations of bacterial cell wall growth. Most bacterial cells lie at the edge of the diffraction limit of visible light; thus, resolving the precise details of peptidoglycan (PG) biosynthesis requires super-resolution microscopy after probe incorporation. Single molecule localization microscopy (SMLM) has stringent requirements on the fluorophore photophysical properties and therefore has remained challenging in this context. Here, we report the synthesis and characterization of new FDAAs compatible with one-step labeling and SMLM imaging. We demonstrate the incorporation of our probes and their utility for visualizing PG at the nanoscale in Gram-negative, Gram-positive, and mycobacteria species. This improved FDAA toolkit will endow researchers with a nanoscale perspective on the spatial distribution of PG biosynthesis for a broad range of bacterial species.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Luc Reymond
- Biomolecular Screening Core Facility, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ophélie Rutschmann
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mischa A Meyer
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland.,Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julien Denereaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1015, Switzerland
| | - Jiangtao Qiao
- Environmental Engineering Institute, School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Faustine Ryckebusch
- Global Health Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Juliette Griffié
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Willi L Stepp
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Suliana Manley
- Institute of Physics, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
40
|
Radkov A, Sapiro AL, Flores S, Henderson C, Saunders H, Kim R, Massa S, Thompson S, Mateusiak C, Biboy J, Zhao Z, Starita LM, Hatleberg WL, Vollmer W, Russell AB, Simorre JP, Anthony-Cahill S, Brzovic P, Hayes B, Chou S. Antibacterial potency of Type VI amidase effector toxins is dependent on substrate topology and cellular context. eLife 2022; 11:79796. [PMID: 35762582 PMCID: PMC9270033 DOI: 10.7554/elife.79796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.
Collapse
Affiliation(s)
- Atanas Radkov
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Anne L Sapiro
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | | | | | - Hayden Saunders
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Rachel Kim
- Pacific Northwest University of Health Sciences, Yakima, United States
| | - Steven Massa
- Department of Biology, Stanford University, Stanford, United States
| | - Samuel Thompson
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Chase Mateusiak
- Computer Science Department, Washington University in St. Louis, St. Louis, United States
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ziyi Zhao
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Lea M Starita
- Department of Genome Sciences, University of Washington, Seattle, United States
| | | | - Waldemar Vollmer
- Center for Bacterial Cell Biology, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, Université Grenoble Alpes, Grenoble, France
| | | | - Peter Brzovic
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Beth Hayes
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Seemay Chou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
41
|
Lakey BD, Myers KS, Alberge F, Mettert EL, Kiley PJ, Noguera DR, Donohue TJ. The essential Rhodobacter sphaeroides CenKR two-component system regulates cell division and envelope biosynthesis. PLoS Genet 2022; 18:e1010270. [PMID: 35767559 PMCID: PMC9275681 DOI: 10.1371/journal.pgen.1010270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial two-component systems (TCSs) often function through the detection of an extracytoplasmic stimulus and the transduction of a signal by a transmembrane sensory histidine kinase. This kinase then initiates a series of reversible phosphorylation modifications to regulate the activity of a cognate, cytoplasmic response regulator as a transcription factor. Several TCSs have been implicated in the regulation of cell cycle dynamics, cell envelope integrity, or cell wall development in Escherichia coli and other well-studied Gram-negative model organisms. However, many α-proteobacteria lack homologs to these regulators, so an understanding of how α-proteobacteria orchestrate extracytoplasmic events is lacking. In this work we identify an essential TCS, CenKR (Cell envelope Kinase and Regulator), in the α-proteobacterium Rhodobacter sphaeroides and show that modulation of its activity results in major morphological changes. Using genetic and biochemical approaches, we dissect the requirements for the phosphotransfer event between CenK and CenR, use this information to manipulate the activity of this TCS in vivo, and identify genes that are directly and indirectly controlled by CenKR in Rb. sphaeroides. Combining ChIP-seq and RNA-seq, we show that the CenKR TCS plays a direct role in maintenance of the cell envelope, regulates the expression of subunits of the Tol-Pal outer membrane division complex, and indirectly modulates the expression of peptidoglycan biosynthetic genes. CenKR represents the first TCS reported to directly control the expression of Tol-Pal machinery genes in Gram-negative bacteria, and we predict that homologs of this TCS serve a similar function in other closely related organisms. We propose that Rb. sphaeroides genes of unknown function that are directly regulated by CenKR play unknown roles in cell envelope biosynthesis, assembly, and/or remodeling in this and other α-proteobacteria.
Collapse
Affiliation(s)
- Bryan D. Lakey
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin S. Myers
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - François Alberge
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin L. Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel R. Noguera
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
42
|
Pseudomonas aeruginosa Alters Peptidoglycan Composition under Nutrient Conditions Resembling Cystic Fibrosis Lung Infections. mSystems 2022; 7:e0015622. [PMID: 35545925 PMCID: PMC9239049 DOI: 10.1128/msystems.00156-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa are highly virulent opportunistic pathogens with increased transmissibility and enhanced antimicrobial resistance. Understanding the cellular mechanisms behind this heightened virulence and resistance is critical. Peptidoglycan (PG) is an integral component of P. aeruginosa cells that is essential to its survival and a target for antimicrobials. Here, we examined the global PG composition of two P. aeruginosa epidemic strains, LESB58 and LESlike1, and compared them to the common laboratory strains PAO1 and PA14. We also examined changes in PG composition when the strains were cultured under nutrient conditions that resembled cystic fibrosis lung infections. We identified 448 unique muropeptides and provide the first evidence for stem peptides modified with O-methylation, meso-diaminopimelic acid (mDAP) deamination, and novel substitutions of mDAP residues within P. aeruginosa PG. Our results also present the first evidence for both d,l- and l,d-endopeptidase activity on the PG sacculus of a Gram-negative organism. The PG composition of the epidemic strains varied significantly when grown under conditions resembling cystic fibrosis (CF) lung infections, showing increases in O-methylated stem peptides and decreases in l,d-endopeptidase activity as well as an increased abundance of de-N-acetylated sugars and l,d-transpeptidase activity, which are related to bacterial virulence and antibiotic resistance, respectively. We also identified strain-specific changes where LESlike1 increased the addition of unique amino acids to the terminus of the stem peptide and LESB58 increased amidase activity. Overall, this study demonstrates that P. aeruginosa PG composition is primarily influenced by nutrient conditions that mimic the CF lung; however, inherent strain-to-strain differences also exist. IMPORTANCE Using peptidoglycomics to examine the global composition of the peptidoglycan (PG) allows insights into the enzymatic activity that functions on this important biopolymer. Changes within the PG structure have implications for numerous physiological processes, including virulence and antimicrobial resistance. The identification of highly unique PG modifications illustrates the complexity of this biopolymer in Pseudomonas aeruginosa. Analyzing the PG composition of clinical P. aeruginosa epidemic strains provides insights into the increased virulence and antimicrobial resistance of these difficult-to-eradicate infections.
Collapse
|
43
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|
44
|
Sharan D, Carlson EE. Expanded profiling of β-lactam selectivity for penicillin-binding proteins in Streptococcus pneumoniae D39. Biol Chem 2022; 403:433-443. [PMID: 35218689 PMCID: PMC9115913 DOI: 10.1515/hsz-2021-0386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
Abstract
Penicillin-binding proteins (PBPs) are integral to bacterial cell division as they mediate the final steps of cell wall maturation. Selective fluorescent probes are useful for understanding the role of individual PBPs, including their localization and activity during growth and division of bacteria. For the development of new selective probes for PBP imaging, several β-lactam antibiotics were screened, as they are known to covalently bind PBP in vivo. The PBP inhibition profiles of 16 commercially available β-lactam antibiotics were evaluated in an unencapsulated derivative of the D39 strain of Streptococcus pneumoniae, IU1945. These β-lactams have not previously been characterized for their PBP inhibition profiles in S. pneumoniae and these data augment those obtained from a library of 20 compounds that we previously reported. We investigated seven penicillins, three carbapenems, and six cephalosporins. Most of these β-lactams were found to be co-selective for PBP2x and PBP3, as was noted in our previous studies. Six out of 16 antibiotics were selective for PBP3 and one molecule was co-selective for PBP1a and PBP3. Overall, this work expands the chemical space available for development of future β-lactam-based probes for specific pneumococcal PBP labeling and these methods can be used for the development of probes for PBP labelling in other bacterial species.
Collapse
Affiliation(s)
- Deepti Sharan
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Erin E. Carlson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA; Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, MN 55454, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church St SE, Minneapolis, MN 55454, USA; and Department of Pharmacology, University of Minnesota, 321 Church St SE, Minneapolis, MN 55454, USA
| |
Collapse
|
45
|
Banahene N, Kavunja HW, Swarts BM. Chemical Reporters for Bacterial Glycans: Development and Applications. Chem Rev 2022; 122:3336-3413. [PMID: 34905344 PMCID: PMC8958928 DOI: 10.1021/acs.chemrev.1c00729] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacteria possess an extraordinary repertoire of cell envelope glycans that have critical physiological functions. Pathogenic bacteria have glycans that are essential for growth and virulence but are absent from humans, making them high-priority targets for antibiotic, vaccine, and diagnostic development. The advent of metabolic labeling with bioorthogonal chemical reporters and small-molecule fluorescent reporters has enabled the investigation and targeting of specific bacterial glycans in their native environments. These tools have opened the door to imaging glycan dynamics, assaying and inhibiting glycan biosynthesis, profiling glycoproteins and glycan-binding proteins, and targeting pathogens with diagnostic and therapeutic payload. These capabilities have been wielded in diverse commensal and pathogenic Gram-positive, Gram-negative, and mycobacterial species─including within live host organisms. Here, we review the development and applications of chemical reporters for bacterial glycans, including peptidoglycan, lipopolysaccharide, glycoproteins, teichoic acids, and capsular polysaccharides, as well as mycobacterial glycans, including trehalose glycolipids and arabinan-containing glycoconjugates. We cover in detail how bacteria-targeting chemical reporters are designed, synthesized, and evaluated, how they operate from a mechanistic standpoint, and how this information informs their judicious and innovative application. We also provide a perspective on the current state and future directions of the field, underscoring the need for interdisciplinary teams to create novel tools and extend existing tools to support fundamental and translational research on bacterial glycans.
Collapse
Affiliation(s)
- Nicholas Banahene
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | - Herbert W. Kavunja
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
- Biochemistry, Cell, and Molecular Biology Program, Central Michigan University, Mount Pleasant, MI, United States
| | | |
Collapse
|
46
|
OUP accepted manuscript. Glycobiology 2022; 32:712-719. [DOI: 10.1093/glycob/cwac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/05/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
|
47
|
Wojciechowska M, Macyszyn J, Miszkiewicz J, Grzela R, Trylska J. Stapled Anoplin as an Antibacterial Agent. Front Microbiol 2021; 12:772038. [PMID: 34966367 PMCID: PMC8710804 DOI: 10.3389/fmicb.2021.772038] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/16/2021] [Indexed: 11/23/2022] Open
Abstract
Anoplin is a linear 10-amino acid amphipathic peptide (Gly-Leu-Leu-Lys-Arg-Ile-Lys-Thr-Leu-Leu-NH2 ) derived from the venom sac of the solitary wasp. It has broad antimicrobial activity, including an antibacterial one. However, the inhibition of bacterial growth requires several dozen micromolar concentrations of this peptide. Anoplin is positively charged and directly interacts with anionic biological membranes forming an α-helix that disrupts the lipid bilayer. To improve the bactericidal properties of anoplin by stabilizing its helical structure, we designed and synthesized its analogs with hydrocarbon staples. The staple was introduced at two locations resulting in different charges and amphipathicity of the analogs. Circular dichroism studies showed that all modified anoplins adopted an α-helical conformation, both in the buffer and in the presence of membrane mimics. As the helicity of the stapled anoplins increased, their stability in trypsin solution improved. Using the propidium iodide uptake assay in Escherichia coli and Staphylococcus aureus, we confirmed the bacterial membrane disruption by the stapled anoplins. Next, we tested the antimicrobial activity of peptides on a range of Gram-negative and Gram-positive bacteria. Finally, we evaluated peptide hemolytic activity on sheep erythrocytes and cytotoxicity on human embryonic kidney 293 cells. All analogs showed higher antimicrobial activity than unmodified anoplin. Depending on the position of the staple, the peptides were more effective either against Gram-negative or Gram-positive bacteria. Anoplin[5-9], with a lower positive charge and increased hydrophobicity, had higher activity against Gram-positive bacteria but also showed hemolytic and destructive effects on eukaryotic cells. Contrary, anoplin[2-6] with a similar charge and amphipathicity as natural anoplin effectively killed Gram-negative bacteria, also pathogenic drug-resistant strains, without being hemolytic and toxic to eukaryotic cells. Our results showed that anoplin charge, amphipathicity, and location of hydrophobic residues affect the peptide destructive activity on the cell wall, and thus, its antibacterial activity. This means that by manipulating the charge and position of the staple in the sequence, one can manipulate the antimicrobial activity.
Collapse
Affiliation(s)
| | - Julia Macyszyn
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Joanna Miszkiewicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Renata Grzela
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
48
|
Conners R, McLaren M, Łapińska U, Sanders K, Stone MRL, Blaskovich MAT, Pagliara S, Daum B, Rakonjac J, Gold VAM. CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage. Nat Commun 2021; 12:6316. [PMID: 34728631 PMCID: PMC8563730 DOI: 10.1038/s41467-021-26610-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
The Ff family of filamentous bacteriophages infect gram-negative bacteria, but do not cause lysis of their host cell. Instead, new virions are extruded via the phage-encoded pIV protein, which has homology with bacterial secretins. Here, we determine the structure of pIV from the f1 filamentous bacteriophage at 2.7 Å resolution by cryo-electron microscopy, the first near-atomic structure of a phage secretin. Fifteen f1 pIV subunits assemble to form a gated channel in the bacterial outer membrane, with associated soluble domains projecting into the periplasm. We model channel opening and propose a mechanism for phage egress. By single-cell microfluidics experiments, we demonstrate the potential for secretins such as pIV to be used as adjuvants to increase the uptake and efficacy of antibiotics in bacteria. Finally, we compare the f1 pIV structure to its homologues to reveal similarities and differences between phage and bacterial secretins.
Collapse
Affiliation(s)
- Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Kelly Sanders
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, UK
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, UK.
- College of Life and Environmental Sciences, Geoffrey Pope, University of Exeter, Exeter, UK.
| |
Collapse
|
49
|
Taufiq A, Yuliantika D, Sunaryono S, Saputro RE, Hidayat N, Mufti N, Susanto H, Soontaranon S, Nur H. Hierarchical Structure and Magnetic Behavior of Zn-Doped Magnetite Aqueous Ferrofluids Prepared from Natural Sand for Antibacterial Agents. AN ACAD BRAS CIENC 2021; 93:e20200774. [PMID: 34705939 DOI: 10.1590/0001-3765202120200774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022] Open
Abstract
This study performs natural sand-based synthesis using the sonochemical route for preparing Zn-doped magnetite nanoparticles. The nanoparticles were dispersed in water as a carrier liquid to form Zn-doped magnetite aqueous ferrofluids. Structural data analysis indicated that the Zn-doped magnetite nanoparticles formed a nanosized spinel structure. With an increase in the Zn content, the lattice parameters of the Zn-doped magnetite nanoparticles tended to increase because Zn2+ has a larger ionic radius than those of Fe3+ and Fe2+. The existence of Zn-O and Fe-O functional groups in tetrahedral and octahedral sites were observed in the wavenumber range of 400-700 cm-1. The primary particles of the Zn-doped magnetite ferrofluids tended to construct chain-like structures with fractal dimensions of 1.2-1.9. The gas-like compression (GMC) plays as a better model than the Langevin theory to fit the saturation magnetization of the ferrofluids. The ferrofluids exhibited a superparamagnetic character, with their magnetization was contributed by aggregation. The Zn-doped magnetite ferrofluids exhibited excellent antibacterial activity against gram-positive and negative bacteria. It is suggested that the presence of the negatively charged surface and the nanoparticle size may contribute to the high antibacterial activity of Zn-doped magnetite ferrofluids and making them potentially suitable for advanced biomedical.
Collapse
Affiliation(s)
- Ahmad Taufiq
- Universitas Negeri Malang, Faculty of Mathematics and Natural Sciences,Department of Physics, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Defi Yuliantika
- Universitas Negeri Malang, Faculty of Mathematics and Natural Sciences,Department of Physics, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Sunaryono Sunaryono
- Universitas Negeri Malang, Faculty of Mathematics and Natural Sciences,Department of Physics, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Rosy E Saputro
- Universitas Negeri Malang, Faculty of Mathematics and Natural Sciences,Department of Physics, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Nurul Hidayat
- Universitas Negeri Malang, Faculty of Mathematics and Natural Sciences,Department of Physics, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Nandang Mufti
- Universitas Negeri Malang, Faculty of Mathematics and Natural Sciences,Department of Physics, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Hendra Susanto
- Universitas Negeri Malan, Faculty of Mathematics and Natural Sciences, Department of Biology, Jl. Semarang, No. 5, Malang 65145, Indonesia
| | - Siriwat Soontaranon
- Synchrotron Light Research Institute, Nakhon Ratchasima, 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
| | - Hadi Nur
- Universiti Teknologi Malaysia, Ibnu Sina Institute for Scientific and Industrial Research, Centre for Sustainable Nanomaterials, 81310 Johor Bahru, Johor, Malaysia
| |
Collapse
|
50
|
Martínez-Caballero S, Mahasenan KV, Kim C, Molina R, Feltzer R, Lee M, Bouley R, Hesek D, Fisher JF, Muñoz IG, Chang M, Mobashery S, Hermoso JA. Integrative structural biology of the penicillin-binding protein-1 from Staphylococcus aureus, an essential component of the divisome machinery. Comput Struct Biotechnol J 2021; 19:5392-5405. [PMID: 34667534 PMCID: PMC8493512 DOI: 10.1016/j.csbj.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022] Open
Abstract
The penicillin-binding proteins are the enzyme catalysts of the critical transpeptidation crosslinking polymerization reaction of bacterial peptidoglycan synthesis and the molecular targets of the penicillin antibiotics. Here, we report a combined crystallographic, small-angle X-ray scattering (SAXS) in-solution structure, computational and biophysical analysis of PBP1 of Staphylococcus aureus (saPBP1), providing mechanistic clues about its function and regulation during cell division. The structure reveals the pedestal domain, the transpeptidase domain, and most of the linker connecting to the "penicillin-binding protein and serine/threonine kinase associated" (PASTA) domains, but not its two PASTA domains, despite their presence in the construct. To address this absence, the structure of the PASTA domains was determined at 1.5 Å resolution. Extensive molecular-dynamics simulations interpret the PASTA domains of saPBP1 as conformationally mobile and separated from the transpeptidase domain. This conclusion was confirmed by SAXS experiments on the full-length protein in solution. A series of crystallographic complexes with β-lactam antibiotics (as inhibitors) and penta-Gly (as a substrate mimetic) allowed the molecular characterization of both inhibition by antibiotics and binding for the donor and acceptor peptidoglycan strands. Mass-spectrometry experiments with synthetic peptidoglycan fragments revealed binding by PASTA domains in coordination with the remaining domains. The observed mobility of the PASTA domain in saPBP1 could play a crucial role for in vivo interaction with its glycosyltransferase partner in the membrane or with other components of the divisome machinery, as well as for coordination of transpeptidation and polymerization processes in the bacterial divisome.
Collapse
Affiliation(s)
- Siseth Martínez-Caballero
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Kiran V Mahasenan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Choon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rafael Molina
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| | - Rhona Feltzer
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Renee Bouley
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Inés G Muñoz
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry "Rocasolano", CSIC, 28006 Madrid, Spain
| |
Collapse
|