1
|
González-Lodeiro LG, Martín Dunn A, Martín Prieto D, Medina-Carrasco D, García de Castro LE, Maldonado Bauzá D, Chinea Santiago G, Huerta Galindo V. Dominant epitopes of cross-reactive anti-domain III human antibody response change from early to late convalescence of infection with dengue virus. J Med Virol 2024; 96:e29443. [PMID: 38373154 DOI: 10.1002/jmv.29443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024]
Abstract
Cross-neutralizing activity of human antibody response against Dengue virus complex (DENV) changes importantly over time. Domain III (DIII) of the envelope protein of DENV elicits a potently neutralizing and mostly type-specific IgG response. We used sera from 24 individuals from early- or late convalescence of DENV1 infection to investigate the evolution of anti-DIII human IgG with the time lapse since the infection. We evaluated the correlation between the serotype-specific reactivity against recombinant DIII proteins and the neutralization capacity against the four serotypes, and examined its behavior with the time of convalescence. Also, we use a library of 71 alanine mutants of surface-exposed amino acid residues to investigate the dominant epitopes. In early convalescence anti-DIII titers and potency of virus neutralization were positively associated with correlation coefficients from 0.82 to 1.0 for the four serotypes. For late convalescence, a positive correlation (r = 0.69) was found only for DENV1. The dominant epitope of the type-specific response is centered in the FG-loop (G383, E384, and K385) and includes most of the lateral ridge. The dominant epitope of the anti-DIII cross-reactive IgG in secondary infections shifts from the A-strand during early convalescence to a site centered in residues E314-H317 of the AB-loop and I352-E368 of the DI/DIII interface, in late convalescence. An immunoassay based on the detection of IgG anti-DIII response can be implemented for detection of infecting serotype in diagnosis of DENV infection, either primary or secondary. Human dominant epitopes of the cross-reactive circulating antibodies change with time of convalescence.
Collapse
Affiliation(s)
| | - Alejandro Martín Dunn
- Department of Systems Biology, Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Dayron Martín Prieto
- Department of Systems Biology, Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Danya Medina-Carrasco
- Department of Systems Biology, Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Daniela Maldonado Bauzá
- Department of Systems Biology, Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Faculty of Biology student, University of Havana, Havana, Cuba
| | - Glay Chinea Santiago
- Department of Systems Biology, Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Vivian Huerta Galindo
- Department of Systems Biology, Biomedical Research, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
2
|
Keelapang P, Kraivong R, Pulmanausahakul R, Sriburi R, Prompetchara E, Kaewmaneephong J, Charoensri N, Pakchotanon P, Duangchinda T, Suparattanagool P, Luangaram P, Masrinoul P, Mongkolsapaya J, Screaton G, Ruxrungtham K, Auewarakul P, Yoksan S, Malasit P, Puttikhunt C, Ketloy C, Sittisombut N. Blockade-of-Binding Activities toward Envelope-Associated, Type-Specific Epitopes as a Correlative Marker for Dengue Virus-Neutralizing Antibody. Microbiol Spectr 2023; 11:e0091823. [PMID: 37409936 PMCID: PMC10433959 DOI: 10.1128/spectrum.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming. In this study, a blockade-of-binding enzyme-linked immunoassay was developed to assess antibody activity by using a set of neutralizing anti-E monoclonal antibodies and blood samples from dengue virus-infected or -immunized macaques. Diluted blood samples were incubated with plate-bound dengue virus particles before the addition of an enzyme-conjugated antibody specific to the epitope of interest. Based on blocking reference curves constructed using autologous purified antibodies, sample blocking activity was determined as the relative concentration of unconjugated antibody that resulted in the same percent signal reduction. In separate DENV-1-, -2-, -3-, and -4-related sets of samples, moderate to strong correlations of the blocking activity with neutralizing antibody titers were found with the four type-specific antibodies 1F4, 3H5, 8A1, and 5H2, respectively. Significant correlations were observed for single samples taken 1 month after infection as well as samples drawn before and at various time points after infection/immunization. Similar testing using a cross-reactive EDE-1 antibody revealed a moderate correlation between the blocking activity and the neutralizing antibody titer only for the DENV-2-related set. The potential usefulness of the blockade-of-binding activity as a correlative marker of neutralizing antibodies against dengue viruses needs to be validated in humans. IMPORTANCE This study describes a blockade-of-binding assay for the determination of antibodies that recognize a selected set of serotype-specific or group-reactive epitopes in the envelope of dengue virus. By employing blood samples collected from dengue virus-infected or -immunized macaques, moderate to strong correlations of the epitope-blocking activities with the virus-neutralizing antibody titers were observed with serotype-specific blocking activities for each of the four dengue serotypes. This simple, rapid, and less laborious method should be useful for the evaluation of antibody responses to dengue virus infection and may serve as, or be a component of, an in vitro correlate of protection against dengue in the future.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Romchat Kraivong
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamart Kaewmaneephong
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nicha Charoensri
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarakul Pakchotanon
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thaneeya Duangchinda
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasit Luangaram
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Juthathip Mongkolsapaya
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| |
Collapse
|
3
|
Singh S, Alallah J, Amrit A, Maheshwari A, Boppana S. Neurological Manifestations of Perinatal Dengue. NEWBORN (CLARKSVILLE, MD.) 2023; 2:158-172. [PMID: 37559696 PMCID: PMC10411360 DOI: 10.5005/jp-journals-11002-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Dengue viruses (DENVs) are single-stranded RNA viruses belonging to the family Flaviviridae. There are four distinct antigenically related serotypes, DENVs types 1, 2, 3, and 4. These are all mosquito-borne human pathogens. Congenital dengue disease occurs when there is mother-to-fetus transmission of the virus and should be suspected in endemic regions in neonates presenting with fever, maculopapular rash, and thrombocytopenia. Although most of the infected infants remain asymptomatic, some can develop clinical manifestations such as sepsis-like illness, gastric bleeding, circulatory failure, and death. Neurological manifestations include intracerebral hemorrhages, neurological malformations, and acute focal/disseminated encephalitis/encephalomyelitis. Dengue NS1Ag, a highly conserved glycoprotein, can help the detection of cases in the viremic stage. We do not have proven specific therapies yet; management is largely supportive and is focused on close monitoring and maintaining adequate intravascular volume.
Collapse
Affiliation(s)
- Srijan Singh
- Department of Pediatrics, Grant Government Medical College and Sir JJ Group of Hospitals, Mumbai, Maharashtra, India
| | - Jubara Alallah
- Department of Pediatrics, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Astha Amrit
- Department of Neonatology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Akhil Maheshwari
- Department of Pediatrics, Division of Neonatal Medicine, Louisiana State University – Shreveport, Shreveport, Louisiana; Global Newborn Society, Baltimore, Maryland, United States of America
| | - Suresh Boppana
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
4
|
Charge-changing point mutations in the E protein of tick-borne encephalitis virus. Arch Virol 2023; 168:100. [PMID: 36871232 DOI: 10.1007/s00705-023-05728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 03/06/2023]
Abstract
Introduction of point mutations is one of the forces enabling arboviruses to rapidly adapt in a changing environment. The influence of these mutations on the properties of the virus is not always obvious. In this study, we attempted to clarify this influence using an in silico approach. Using molecular dynamics (MD) simulations, we investigated how the position of charge-changing point mutations influences the structure and conformational stability of the E protein for a set of variants of a single TBEV strain. The computational findings were supported by experimental evaluation of relevant properties of virions, such as binding to heparan sulfate, thermostability, and susceptibility of the viral hemagglutinating activity to detergents. Our results also point to relationships between E protein dynamics and viral neuroinvasiveness.
Collapse
|
5
|
Hussain Z, Rani S, Ma F, Li W, Shen W, Gao T, Wang J, Pei R. Dengue determinants: Necessities and challenges for universal dengue vaccine development. Rev Med Virol 2023; 33:e2425. [PMID: 36683235 DOI: 10.1002/rmv.2425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.
Collapse
Affiliation(s)
- Zahid Hussain
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China.,Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Saima Rani
- Molecular Virology Laboratory, Department of Biosciences, Comsats University Islamabad (CUI), Islamabad, Pakistan
| | - Fanshu Ma
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenjing Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Wenqi Shen
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Tian Gao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Jine Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China (USTC), Hefei, China.,CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
6
|
Biner DW, Grosch JS, Ortoleva PJ. B-cell epitope discovery: The first protein flexibility-based algorithm-Zika virus conserved epitope demonstration. PLoS One 2023; 18:e0262321. [PMID: 36920995 PMCID: PMC10016673 DOI: 10.1371/journal.pone.0262321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/22/2021] [Indexed: 03/16/2023] Open
Abstract
Antibody-antigen interaction-at antigenic local environments called B-cell epitopes-is a prominent mechanism for neutralization of infection. Effective mimicry, and display, of B-cell epitopes is key to vaccine design. Here, a physical approach is evaluated for the discovery of epitopes which evolve slowly over closely related pathogens (conserved epitopes). The approach is 1) protein flexibility-based and 2) demonstrated with clinically relevant enveloped viruses, simulated via molecular dynamics. The approach is validated against 1) seven structurally characterized enveloped virus epitopes which evolved the least (out of thirty-nine enveloped virus-antibody structures), 2) two structurally characterized non-enveloped virus epitopes which evolved slowly (out of eight non-enveloped virus-antibody structures), and 3) eight preexisting epitope and peptide discovery algorithms. Rationale for a new benchmarking scheme is presented. A data-driven epitope clustering algorithm is introduced. The prediction of five Zika virus epitopes (for future exploration on recombinant vaccine technologies) is demonstrated. For the first time, protein flexibility is shown to outperform solvent accessible surface area as an epitope discovery metric.
Collapse
Affiliation(s)
- Daniel W. Biner
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Jason S. Grosch
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Peter J. Ortoleva
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
7
|
Waickman AT, Newell K, Endy TP, Thomas SJ. Biologics for dengue prevention: up-to-date. Expert Opin Biol Ther 2023; 23:73-87. [PMID: 36417290 DOI: 10.1080/14712598.2022.2151837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Dengue is a worsening global public health problem. The vector-viral-host interactions driving the pathogenesis of dengue are multi-dimensional. Sequential dengue virus (DENV) infections with different DENV types significantly increase the risk of severe disease. Treatment is supportive in nature as there are no licensed anti-DENV antivirals or immuno-therapeutics. A single dengue vaccine has widely been licensed with two others in advanced clinical development. Dengvaxia® has been licensed in numerous countries but uptake has been slow as a result of safety signals noted in the youngest recipients and those who were dengue naïve at the time of vaccination. AREAS COVERED In this review, the current state of dengue vaccine and antiviral drug development will be discussed as well as new developments in controlled human infection models to support product development. EXPERT OPINION The world needs a safe and efficacious tetravalent dengue vaccine capable of protecting multiple different populations across a broad age range and different flavivirus immunologic backgrounds. Safe and effective antivirals are also needed to prevent or attenuate dengue disease in the unvaccinated, in cases of vaccine failure, or in high-risk populations.
Collapse
Affiliation(s)
- Adam T Waickman
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| | - Krista Newell
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| | - Timothy P Endy
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
8
|
Khare B, Kuhn RJ. The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity. Viruses 2022; 14:2213. [PMID: 36298768 PMCID: PMC9607441 DOI: 10.3390/v14102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
In the last three decades, several flaviviruses of concern that belong to different antigenic groups have expanded geographically. This has resulted in the presence of often more than one virus from a single antigenic group in some areas, while in Europe, Africa and Australia, additionally, multiple viruses belonging to the Japanese encephalitis (JE) serogroup co-circulate. Morphological heterogeneity of flaviviruses dictates antibody recognition and affects virus neutralization, which influences infection control. The latter is further impacted by sequential infections involving diverse flaviviruses co-circulating within a region and their cross-reactivity. The ensuing complex molecular virus-host interplay leads to either cross-protection or disease enhancement; however, the molecular determinants and mechanisms driving these outcomes are unclear. In this review, we provide an overview of the epidemiology of four JE serocomplex viruses, parameters affecting flaviviral heterogeneity and antibody recognition, host immune responses and the current knowledge of the cross-reactivity involving JE serocomplex flaviviruses that leads to differential clinical outcomes, which may inform future preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Baldeep Khare
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Richard J. Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Tuchynskaya K, Volok V, Illarionova V, Okhezin E, Polienko A, Belova O, Rogova A, Chernokhaeva L, Karganova G. Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure. Microorganisms 2021; 9:1172. [PMID: 34072340 PMCID: PMC8229799 DOI: 10.3390/microorganisms9061172] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.
Collapse
Affiliation(s)
- Ksenia Tuchynskaya
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Viktor Volok
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Illarionova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Okhezin
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra Polienko
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Oxana Belova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Anastasia Rogova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Liubov Chernokhaeva
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Galina Karganova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
10
|
Zhang S, Loy T, Ng TS, Lim XN, Chew SYV, Tan TY, Xu M, Kostyuchenko VA, Tukijan F, Shi J, Fink K, Lok SM. A Human Antibody Neutralizes Different Flaviviruses by Using Different Mechanisms. Cell Rep 2021; 31:107584. [PMID: 32348755 DOI: 10.1016/j.celrep.2020.107584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/25/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022] Open
Abstract
Human antibody SIgN-3C neutralizes dengue virus (DENV) and Zika virus (ZIKV) differently. DENV:SIgN-3C Fab and ZIKV:SIgN-3C Fab cryoelectron microscopy (cryo-EM) complex structures show Fabs crosslink E protein dimers at extracellular pH 8.0 condition and also when further incubated at acidic endosomal conditions (pH 8.0-6.5). We observe Fab binding to DENV (pH 8.0-5.0) prevents virus fusion, and the number of bound Fabs increase (from 120 to 180). For ZIKV, although there are already 180 copies of Fab at pH 8.0, virus structural changes at pH 5.0 are not inhibited. The immunoglobulin G (IgG):DENV structure at pH 8.0 shows both Fab arms bind to epitopes around the 2-fold vertex. On ZIKV, an additional Fab around the 5-fold vertex at pH 8.0 suggests one IgG arm would engage with an epitope, although the other may bind to other viruses, causing aggregation. For DENV2 at pH 5.0, a similar scenario would occur, suggesting DENV2:IgG complex would aggregate in the endosome. Hence, a single antibody employs different neutralization mechanisms against different flaviviruses.
Collapse
Affiliation(s)
- Shuijun Zhang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Thomas Loy
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138632, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thiam-Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Xin-Ni Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shyn-Yun Valerie Chew
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ter Yong Tan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Meihui Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Victor A Kostyuchenko
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Farhana Tukijan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Jian Shi
- Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore; CryoEM unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Katja Fink
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138632, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| |
Collapse
|
11
|
Meshram HS, Kute V, Patel H, Banerjee S, Chauhan S, Desai S. Successful management of dengue in renal transplant recipients: A retrospective cohort from a single center. Clin Transplant 2021; 35:e14332. [PMID: 33914386 DOI: 10.1111/ctr.14332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The literature on dengue infection in renal transplant recipients has shown wide diversity in clinical presentation and outcome. The objective of this study was to report the clinical profile, short-term and long-term outcomes of dengue among renal transplant recipients. METHODS A total of 59 post-transplant dengue suspected cases were admitted from July 2019 to April 2020 of which 31 had confirmed dengue infection. The clinical and laboratory profile of the confirmed dengue cases (n = 31) were compared with non-dengue cases (n = 28). RESULTS Among the clinical and laboratory features retro-orbital pain, conjunctival redness, thrombocytopenia on admission, and absence of arthralgia were significantly associated with dengue compared to non-dengue cases. No mortality was observed in the dengue cases. Allograft dysfunction, acute rejection and graft losses were identified in 64.5% (n = 20), 6.4% (n = 2) and 6.4% (n = 2) dengue cases respectively. No rejection or graft losses were observed in 1-year follow-up. CONCLUSIONS We report a differential clinical profile for dengue in transplant settings which will aid in the diagnosis. We also report successful management of dengue infection in renal transplant recipients with the majority having allograft dysfunction. A long-term follow-up of the cohort was uneventful.
Collapse
Affiliation(s)
| | - Vivek Kute
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Himanshu Patel
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Subho Banerjee
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Sanshriti Chauhan
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| | - Sudeep Desai
- Department of Nephrology and Transplantation, IKDRC-ITS, Ahmedabad, India
| |
Collapse
|
12
|
Renner M, Dejnirattisai W, Carrique L, Martin IS, Karia D, Ilca SL, Ho SF, Kotecha A, Keown JR, Mongkolsapaya J, Screaton GR, Grimes JM. Flavivirus maturation leads to the formation of an occupied lipid pocket in the surface glycoproteins. Nat Commun 2021; 12:1238. [PMID: 33623019 PMCID: PMC7902656 DOI: 10.1038/s41467-021-21505-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
Flaviviruses such as Dengue (DENV) or Zika virus (ZIKV) assemble into an immature form within the endoplasmatic reticulum (ER), and are then processed by furin protease in the trans-Golgi. To better grasp maturation, we carry out cryo-EM reconstructions of immature Spondweni virus (SPOV), a human flavivirus of the same serogroup as ZIKV. By employing asymmetric localised reconstruction we push the resolution to 3.8 Å, enabling us to refine an atomic model which includes the crucial furin protease recognition site and a conserved Histidine pH-sensor. For direct comparison, we also solve structures of the mature forms of SPONV and DENV to 2.6 Å and 3.1 Å, respectively. We identify an ordered lipid that is present in only the mature forms of ZIKV, SPOV, and DENV and can bind as a consequence of rearranging amphipathic stem-helices of E during maturation. We propose a structural role for the pocket and suggest it stabilizes mature E.
Collapse
Affiliation(s)
- Max Renner
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Loïc Carrique
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Itziar Serna Martin
- Bijvoet Centre for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Dimple Karia
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Serban L Ilca
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Shu F Ho
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Abhay Kotecha
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jeremy R Keown
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Gavin R Screaton
- Nuffield Department of Medicine, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Jonathan M Grimes
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Science Division, Diamond Light Source Ltd, Didcot, UK.
| |
Collapse
|
13
|
Fibriansah G, Lim EXY, Marzinek JK, Ng TS, Tan JL, Huber RG, Lim XN, Chew VSY, Kostyuchenko VA, Shi J, Anand GS, Bond PJ, Crowe JE, Lok SM. Antibody affinity versus dengue morphology influences neutralization. PLoS Pathog 2021; 17:e1009331. [PMID: 33621239 PMCID: PMC7935256 DOI: 10.1371/journal.ppat.1009331] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/05/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Different strains within a dengue serotype (DENV1-4) can have smooth, or “bumpy” surface morphologies with different antigenic characteristics at average body temperature (37°C). We determined the neutralizing properties of a serotype cross-reactive human monoclonal antibody (HMAb) 1C19 for strains with differing morphologies within the DENV1 and DENV2 serotypes. We mapped the 1C19 epitope to E protein domain II by hydrogen deuterium exchange mass spectrometry, cryoEM and molecular dynamics simulations, revealing that this epitope is likely partially hidden on the virus surface. We showed the antibody has high affinity for binding to recombinant DENV1 E proteins compared to those of DENV2, consistent with its strong neutralizing activities for all DENV1 strains tested regardless of their morphologies. This finding suggests that the antibody could out-compete E-to-E interaction for binding to its epitope. In contrast, for DENV2, HMAb 1C19 can only neutralize when the epitope becomes exposed on the bumpy-surfaced particle. Although HMAb 1C19 is not a suitable therapeutic candidate, this study with HMAb 1C19 shows the importance of choosing a high-affinity antibody that could neutralize diverse dengue virus morphologies for therapeutic purposes. Dengue virus consists of four serotypes (DENV1-4) and there are different strains within a serotype. DENV can have smooth or bumpy surface morphologies at physiological body temperature of 37°C, depending on the strain. We have determined the cryoEM structures of a cross-reactive neutralizing human monoclonal antibody (HMAb) 1C19 in complex with strains of DENV1 and DENV2 that form either smooth or bumpy surface morphologies. We have mapped the epitope of HMAb 1C19 to E protein domain II and the epitope is likely partially hidden on the virus surface. We showed that the antibody has high affinity for binding to recombinant DENV1 E protein than to DENV2 E protein. This explains the strong neutralization activity for all DENV1 strains tested regardless of their morphologies at physiological temperature, whereas it can only neutralize DENV2 strain that exposes the epitope on the bumpy surface particles. These results suggest that high-affinity therapeutic antibodies could neutralize diverse dengue virus morphologies.
Collapse
Affiliation(s)
- Guntur Fibriansah
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Elisa X. Y. Lim
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jan K. Marzinek
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Thiam-Seng Ng
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Joanne L. Tan
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Roland G. Huber
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Xin-Ni Lim
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Valerie S. Y. Chew
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Victor A. Kostyuchenko
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Jian Shi
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| | - Ganesh S. Anand
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Peter J. Bond
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - James E. Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JEC); (SML)
| | - Shee-Mei Lok
- Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
- Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
- * E-mail: (JEC); (SML)
| |
Collapse
|
14
|
Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol 2021; 151:99-133. [PMID: 34656289 PMCID: PMC8438590 DOI: 10.1016/bs.ai.2021.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In some cases, antibodies can enhance virus entry and replication in cells. This phenomenon is called antibody-dependent infection enhancement (ADE). ADE not only promotes the virus to be recognized by the target cell and enters the target cell, but also affects the signal transmission in the target cell. Early formalin-inactivated virus vaccines such as aluminum adjuvants (RSV and measles) have been shown to induce ADE. Although there is no direct evidence that there is ADE in COVID-19, this potential risk is a huge challenge for prevention and vaccine development. This article focuses on the virus-induced ADE phenomenon and its molecular mechanism. It also summarizes various attempts in vaccine research and development to eliminate the ADE phenomenon, and proposes to avoid ADE in vaccine development from the perspective of antigens and adjuvants.
Collapse
|
15
|
Zuzic L, Marzinek JK, Warwicker J, Bond PJ. A Benzene-Mapping Approach for Uncovering Cryptic Pockets in Membrane-Bound Proteins. J Chem Theory Comput 2020; 16:5948-5959. [PMID: 32786908 DOI: 10.1021/acs.jctc.0c00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations in combination with small organic probes present in the solvent have previously been used as a method to reveal cryptic pockets that may not have been identified in experimental structures. We report such a method implemented within the CHARMM force field using the GROMACS simulation package to effectively explore cryptic pockets on the surfaces of membrane-embedded proteins using benzene as a probe molecule. This method, for which we have made implementation files freely available, relies on modified nonbonded parameters in addition to repulsive potentials between membrane lipids and benzene molecules. The method was tested on part of the outer shell of the dengue virus (DENV), for which research into a safe and effective neutralizing antibody or drug molecule is still ongoing. In particular, the envelope (E) protein, associated with the membrane (M) protein, is a lipid membrane-embedded complex which forms a dimer in the mature viral envelope. Solvent mapping was performed for the full, membrane-embedded EM protein complex and compared with similar calculations performed for the isolated, soluble E protein ectodomain dimer in the solvent. Ectodomain-only simulations with benzene exhibited unfolding effects not observed in the more physiologically relevant membrane-associated systems. A cryptic pocket which has been experimentally shown to bind n-octyl-β-d-glucoside detergent was consistently revealed in all benzene-containing simulations. The addition of benzene also enhanced the flexibility and hydrophobic exposure of cryptic pockets at a key, functional interface in the E protein and revealed a novel, potentially druggable pocket that may be targeted to prevent conformational changes associated with viral entry into the cell.
Collapse
Affiliation(s)
- Lorena Zuzic
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore.,Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Jan K Marzinek
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, United Kingdom
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
16
|
Adaptive immune responses to primary and secondary dengue virus infections. Nat Rev Immunol 2019; 19:218-230. [PMID: 30679808 DOI: 10.1038/s41577-019-0123-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dengue is the leading mosquito-borne viral illness infecting humans. Owing to the circulation of multiple serotypes, global expansion of the disease and recent gains in vaccination coverage, pre-existing immunity to dengue virus is abundant in the human population, and secondary dengue infections are common. Here, we contrast the mechanisms initiating and sustaining adaptive immune responses during primary infection with the immune pathways that are pre-existing and reactivated during secondary dengue. We also discuss new developments in our understanding of the contributions of CD4+ T cells, CD8+ T cells and antibodies to immunity and memory recall. Memory recall may lead to protective or pathological outcomes, and understanding of these processes will be key to developing or refining dengue vaccines to be safe and effective.
Collapse
|
17
|
Nelson BR, Roby JA, Dobyns WB, Rajagopal L, Gale M, Adams Waldorf KM. Immune Evasion Strategies Used by Zika Virus to Infect the Fetal Eye and Brain. Viral Immunol 2019; 33:22-37. [PMID: 31687902 PMCID: PMC6978768 DOI: 10.1089/vim.2019.0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that caused a public health emergency in the Americas when an outbreak in Brazil became linked to congenital microcephaly. Understanding how ZIKV could evade the innate immune defenses of the mother, placenta, and fetus has become central to determining how the virus can traffic into the fetal brain. ZIKV, like other flaviviruses, evades host innate immune responses by leveraging viral proteins and other processes that occur during viral replication to allow spread to the placenta. Within the placenta, there are diverse cell types with coreceptors for ZIKV entry, creating an opportunity for the virus to establish a reservoir for replication and infect the fetus. The fetal brain is vulnerable to ZIKV, particularly during the first trimester, when it is beginning a dynamic process, to form highly complex and specialized regions orchestrated by neuroprogenitor cells. In this review, we provide a conceptual framework to understand the different routes for viral trafficking into the fetal brain and the eye, which are most likely to occur early and later in pregnancy. Based on the injury profile in human and nonhuman primates, ZIKV entry into the fetal brain likely occurs across both the blood/cerebrospinal fluid barrier in the choroid plexus and the blood/brain barrier. ZIKV can also enter the eye by trafficking across the blood/retinal barrier. Ultimately, the efficient escape of innate immune defenses by ZIKV is a key factor leading to viral infection. However, the host immune response against ZIKV can lead to injury and perturbations in developmental programs that drive cellular division, migration, and brain growth. The combined effect of innate immune evasion to facilitate viral propagation and the maternal/placental/fetal immune response to control the infection will determine the extent to which ZIKV can injure the fetal brain.
Collapse
Affiliation(s)
- Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Justin A. Roby
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Lakshmi Rajagopal
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Pediatrics, University of Washington, Seattle, Washington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Immunology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Kristina M. Adams Waldorf
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
18
|
Raut R, de Silva AM. Structural differences between dengue viruses circulating in humans and viruses used for vaccine research. Future Virol 2019. [DOI: 10.2217/fvl-2019-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Rajendra Raut
- Department of Microbiology & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Aravinda M de Silva
- Department of Microbiology & Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Complementary use of mass spectrometry and cryo-electron microscopy to assess the maturity of live attenuated dengue vaccine viruses. Vaccine 2019; 37:3580-3587. [DOI: 10.1016/j.vaccine.2019.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 01/19/2023]
|
20
|
Matsudaira PT, Verma CS. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 143:1-4. [PMID: 30951764 DOI: 10.1016/j.pbiomolbio.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul T Matsudaira
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| | - Chandra S Verma
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| |
Collapse
|
21
|
Morrone SR, Lok SM. Structural perspectives of antibody-dependent enhancement of infection of dengue virus. Curr Opin Virol 2019; 36:1-8. [PMID: 30844538 DOI: 10.1016/j.coviro.2019.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) consists of four serotypes. Sequential serotype infections can cause increased disease severity, likely due to antibody-dependent enhancement (ADE) of infection. Here, we review two recent papers showing major advancements in the understanding of the ADE mechanism for both mature and immature DENV. The surface of both mature and immature DENV contains E and another protein - M in mature and prM in immature virus. On mature DENV, the orientation of anti-E antibody with respect to the virus surface determines the antibody enhancement properties. On the immature virus, binding of anti-prM antibody aids the dissociation of pr from the fusion loop of E protein allowing virus-endosomal membrane interaction, thus overcoming the hurdle in the early step of fusion.
Collapse
Affiliation(s)
- Seamus R Morrone
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, KTP Building, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, KTP Building, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| |
Collapse
|
22
|
Rey FA, Lok SM. Common Features of Enveloped Viruses and Implications for Immunogen Design for Next-Generation Vaccines. Cell 2019. [PMID: 29522750 PMCID: PMC7112304 DOI: 10.1016/j.cell.2018.02.054] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Enveloped viruses enter cells by inducing fusion of viral and cellular membranes, a process catalyzed by a specialized membrane-fusion protein expressed on their surface. This review focuses on recent structural studies of viral fusion proteins with an emphasis on their metastable prefusion form and on interactions with neutralizing antibodies. The fusion glycoproteins have been difficult to study because they are present in a labile, metastable form at the surface of infectious virions. Such metastability is a functional requirement, allowing these proteins to refold into a lower energy conformation while transferring the difference in energy to catalyze the membrane fusion reaction. Structural studies have shown that stable immunogens presenting the same antigenic sites as the labile wild-type proteins efficiently elicit potently neutralizing antibodies, providing a framework with which to engineer the antigens for stability, as well as identifying key vulnerability sites that can be used in next-generation subunit vaccine design.
Collapse
Affiliation(s)
- Felix A Rey
- Institut Pasteur, Structural Virology Unit, CNRS UMR3569, 25-28 rue du Dr. Roux, 75015 Paris, France.
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore AND Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
23
|
Chauhan N, Powale K, Kamble B. Biocomputational approaches towards deciphering anti-dengue viral properties of synthetic and natural moieties. ADVANCES IN HUMAN BIOLOGY 2019. [DOI: 10.4103/2321-8568.266224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
24
|
Wirawan M, Fibriansah G, Marzinek JK, Lim XX, Ng TS, Sim AYL, Zhang Q, Kostyuchenko VA, Shi J, Smith SA, Verma CS, Anand G, Crowe JE, Bond PJ, Lok SM. Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody. Structure 2018; 27:253-267.e8. [PMID: 30471923 DOI: 10.1016/j.str.2018.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 11/19/2022]
Abstract
Dengue virus (DENV) particles are released from cells in different maturation states. Fully immature DENV (immDENV) is generally non-infectious, but can become infectious when complexed with anti-precursor membrane (prM) protein antibodies. It is unknown how anti-prM antibody-coated particles can undergo membrane fusion since the prM caps the envelope (E) protein fusion loop. Here, we determined cryoelectron microscopy (cryo-EM) maps of the immDENV:anti-prM complex at different pH values, mimicking the extracellular (pH 8.0) or endosomal (pH 5.0) environments. At pH 5.0, there are two structural classes with fewer antibodies bound than at pH 8.0. These classes may represent different maturation states. Molecular simulations, together with the measured high-affinity pr:antibody interaction (versus the weak pr:E interaction) and also the low pH cryo-EM structures, suggest how antibody:pr complex can dislodge from the E protein at low pH. This exposes the E protein fusion loop enhancing virus interaction with endosomes.
Collapse
Affiliation(s)
- Melissa Wirawan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xin Xiang Lim
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Thiam-Seng Ng
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Adelene Y L Sim
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), Singapore 138671, Singapore
| | - Qian Zhang
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Victor A Kostyuchenko
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Jian Shi
- Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Scott A Smith
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chandra S Verma
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ganesh Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - James E Crowe
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Peter J Bond
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| |
Collapse
|
25
|
Shen WF, Galula JU, Liu JH, Liao MY, Huang CH, Wang YC, Wu HC, Liang JJ, Lin YL, Whitney MT, Chang GJJ, Chen SR, Wu SR, Chao DY. Epitope resurfacing on dengue virus-like particle vaccine preparation to induce broad neutralizing antibody. eLife 2018; 7:38970. [PMID: 30334522 PMCID: PMC6234032 DOI: 10.7554/elife.38970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022] Open
Abstract
Dengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein VLP derived from DENV serotype-2 were engineered becoming highly matured (mD2VLP) and showed variable size distribution with diameter of ~31 nm forming the major population under cryo-electron microscopy examination. Furthermore, mD2VLP particles of 31 nm diameter possess a T = 1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes. Mice vaccinated with mD2VLP generated higher cross-reactive (CR) neutralization antibodies (NtAbs) and were fully protected against all 4 serotypes of DENV. Our results highlight the potential of ‘epitope-resurfaced’ mature-form D2VLPs in inducing quaternary structure-recognizing broad CR NtAbs to guide future dengue vaccine design.
Collapse
Affiliation(s)
- Wen-Fan Shen
- Microbial Genomics Ph.D. Program, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Jyung-Hurng Liu
- Institute of Genomics and Bioinformatics, College of Life Science, National Chung-Hsing University, Taichung City, Taiwan
| | - Mei-Ying Liao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Cheng-Hao Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Yu-Chun Wang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Matthew T Whitney
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States
| | - Sheng-Ren Chen
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung City, Taiwan
| |
Collapse
|
26
|
Characterization of a potent and highly unusual minimally enhancing antibody directed against dengue virus. Nat Immunol 2018; 19:1248-1256. [PMID: 30323338 DOI: 10.1038/s41590-018-0227-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary heterologous infections. Antibody-dependent enhancement (ADE) may drive higher viral loads in these secondary infections and is purported to result from antibodies that recognize dengue virus but fail to fully neutralize it. Here we characterize two antibodies, 2C8 and 3H5, that bind to the envelope protein. Antibody 3H5 is highly unusual as it not only is potently neutralizing but also promotes little if any ADE, whereas antibody 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immunocomplexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and constitutes the primary mechanism of how ADE is avoided.
Collapse
|
27
|
Kudlacek ST, Premkumar L, Metz SW, Tripathy A, Bobkov AA, Payne AM, Graham S, Brackbill JA, Miley MJ, de Silva AM, Kuhlman B. Physiological temperatures reduce dimerization of dengue and Zika virus recombinant envelope proteins. J Biol Chem 2018; 293:8922-8933. [PMID: 29678884 PMCID: PMC5995514 DOI: 10.1074/jbc.ra118.002658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
The spread of dengue (DENV) and Zika virus (ZIKV) is a major public health concern. The primary target of antibodies that neutralize DENV and ZIKV is the envelope (E) glycoprotein, and there is interest in using soluble recombinant E (sRecE) proteins as subunit vaccines. However, the most potent neutralizing antibodies against DENV and ZIKV recognize epitopes on the virion surface that span two or more E proteins. Therefore, to create effective DENV and ZIKV vaccines, presentation of these quaternary epitopes may be necessary. The sRecE proteins from DENV and ZIKV crystallize as native-like dimers, but studies in solution suggest that these dimers are marginally stable. To better understand the challenges associated with creating stable sRecE dimers, we characterized the thermostability of sRecE proteins from ZIKV and three DENV serotypes, DENV2-4. All four proteins irreversibly unfolded at moderate temperatures (46-53 °C). At 23 °C and low micromolar concentrations, DENV2 and ZIKV were primarily dimeric, and DENV3-4 were primarily monomeric, whereas at 37 °C, all four proteins were predominantly monomeric. We further show that the dissociation constant for DENV2 dimerization is very temperature-sensitive, ranging from <1 μm at 25 °C to 50 μm at 41 °C, due to a large exothermic enthalpy of binding of -79 kcal/mol. We also found that quaternary epitope antibody binding to DENV2-4 and ZIKV sRecE is reduced at 37 °C. Our observation of reduced sRecE dimerization at physiological temperature highlights the need for stabilizing the dimer as part of its development as a subunit vaccine.
Collapse
Affiliation(s)
- Stephan T Kudlacek
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Lakshmanane Premkumar
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stefan W Metz
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Ashutosh Tripathy
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Andrey A Bobkov
- the Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Alexander Matthew Payne
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Stephen Graham
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - James A Brackbill
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Michael J Miley
- the Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, and
| | - Aravinda M de Silva
- the Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | - Brian Kuhlman
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599,
- the Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
28
|
Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018; 19:206-224. [PMID: 29282215 PMCID: PMC5797954 DOI: 10.15252/embr.201745302] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/07/2023] Open
Abstract
Zika and dengue viruses belong to the Flavivirus genus, a close group of antigenically related viruses that cause significant arthropod-transmitted diseases throughout the globe. Although infection by a given flavivirus is thought to confer lifelong protection, some of the patient's antibodies cross-react with other flaviviruses without cross-neutralizing. The original antigenic sin phenomenon may amplify such antibodies upon subsequent heterologous flavivirus infection, potentially aggravating disease by antibody-dependent enhancement (ADE). The most striking example is provided by the four different dengue viruses, where infection by one serotype appears to predispose to more severe disease upon infection by a second one. A similar effect was postulated for sequential infections with Zika and dengue viruses. In this review, we analyze the molecular determinants of the dual antibody response to flavivirus infection or vaccination in humans. We highlight the role of conserved partially cryptic epitopes giving rise to cross-reacting and poorly neutralizing, ADE-prone antibodies. We end by proposing a strategy for developing an epitope-focused vaccine approach to avoid eliciting undesirable antibodies while focusing the immune system on producing protective antibodies only.
Collapse
Affiliation(s)
- Félix A Rey
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Marie-Christine Vaney
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Mariano Dellarole
- Structural Virology Unit, Virology Department, Institut Pasteur, Paris, France
- CNRS UMR 3569, Paris, France
| | - Franz X Heinz
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Friberg H, Mathew A. Detection, phenotyping and quantification of dengue virus-specific B cells using fluorescent probes. Hum Vaccin Immunother 2017; 13:2780-2784. [PMID: 28604254 DOI: 10.1080/21645515.2017.1322747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Dengue viruses are some of the most important mosquito-borne pathogens worldwide. They cause illness in 50-100 million individuals per year and have a significant global health impact in low- and middle-income countries. It is important to improve our understanding of the humoral response to dengue virus, as antibodies (Abs) are associated with protection from or susceptibility to severe dengue disease. In recent years, significant advances have been made toward identifying Ab targets and evaluating the functional properties of Abs. However, much less is known about the cellular source of Abs, B cells, in part because the reagents to phenotype and characterize antigen-specific B cells have been challenging to develop. Here, we discuss our recent experience with developing and using fluorescent viruses to probe the B cell response to dengue virus. We present the strengths and weaknesses of flow cytometric analysis of antigen-specific B cells and discuss the use of these probes to phenotype and characterize specific B cells during and after natural infection and in ongoing dengue vaccine trials.
Collapse
Affiliation(s)
- Heather Friberg
- a Viral Diseases Branch , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| | - Anuja Mathew
- b Institute for Immunology and Informatics , University of Rhode Island , Providence , RI , USA
| |
Collapse
|
30
|
High prevalence of dengue antibodies and the arginine variant of the FcγRIIa polymorphism in asymptomatic individuals in a population of Minas Gerais State, Southeast Brazil. Immunogenetics 2017; 70:355-362. [DOI: 10.1007/s00251-017-1046-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/12/2017] [Indexed: 12/30/2022]
|
31
|
Wang J, Bardelli M, Espinosa DA, Pedotti M, Ng TS, Bianchi S, Simonelli L, Lim EXY, Foglierini M, Zatta F, Jaconi S, Beltramello M, Cameroni E, Fibriansah G, Shi J, Barca T, Pagani I, Rubio A, Broccoli V, Vicenzi E, Graham V, Pullan S, Dowall S, Hewson R, Jurt S, Zerbe O, Stettler K, Lanzavecchia A, Sallusto F, Cavalli A, Harris E, Lok SM, Varani L, Corti D. A Human Bi-specific Antibody against Zika Virus with High Therapeutic Potential. Cell 2017; 171:229-241.e15. [PMID: 28938115 PMCID: PMC5673489 DOI: 10.1016/j.cell.2017.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/14/2017] [Accepted: 08/31/2017] [Indexed: 11/15/2022]
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, causes devastating congenital birth defects. We isolated a human monoclonal antibody (mAb), ZKA190, that potently cross-neutralizes multi-lineage ZIKV strains. ZKA190 is highly effective in vivo in preventing morbidity and mortality of ZIKV-infected mice. NMR and cryo-electron microscopy show its binding to an exposed epitope on DIII of the E protein. ZKA190 Fab binds all 180 E protein copies, altering the virus quaternary arrangement and surface curvature. However, ZIKV escape mutants emerged in vitro and in vivo in the presence of ZKA190, as well as of other neutralizing mAbs. To counter this problem, we developed a bispecific antibody (FIT-1) comprising ZKA190 and a second mAb specific for DII of E protein. In addition to retaining high in vitro and in vivo potencies, FIT-1 robustly prevented viral escape, warranting its development as a ZIKV immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/chemistry
- Antibodies, Viral/therapeutic use
- Cryoelectron Microscopy
- Epitopes
- Humans
- Magnetic Resonance Spectroscopy
- Mice
- Models, Molecular
- Sequence Alignment
- Viral Envelope Proteins/chemistry
- Zika Virus/chemistry
- Zika Virus/immunology
- Zika Virus Infection/therapy
Collapse
Affiliation(s)
- Jiaqi Wang
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Marco Bardelli
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Diego A Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, California, 94720-3370, USA
| | - Mattia Pedotti
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Thiam-Seng Ng
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Siro Bianchi
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Elisa X Y Lim
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Mathilde Foglierini
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Fabrizia Zatta
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Stefano Jaconi
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Martina Beltramello
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Elisabetta Cameroni
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Guntur Fibriansah
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Jian Shi
- Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore; CryoEM unit, Department of Biological Sciences, National University of Singapore, Singapore 117557
| | - Taylor Barca
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, California, 94720-3370, USA
| | - Isabel Pagani
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Alicia Rubio
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Vania Broccoli
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; CNR-Institute of Neuroscience, Via Vanvitelli 32, 20129, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogens and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Victoria Graham
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Steven Pullan
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Stuart Dowall
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Karin Stettler
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Federica Sallusto
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Andrea Cavalli
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, 185 Li Ka Shing Center, 1951 Oxford Street, Berkeley, California, 94720-3370, USA
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Centre for BioImaging Sciences, National University of Singapore, Singapore 117557, Singapore.
| | - Luca Varani
- Insitute for Research in Biomedicine, Università della Svizzera italiana, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland.
| | - Davide Corti
- Humabs BioMed SA a subsidiary of Vir Biotechnology, Inc., Via Mirasole 1, 6500 Bellinzona, Switzerland.
| |
Collapse
|
32
|
Lim XX, Chandramohan A, Lim XYE, Crowe JE, Lok SM, Anand GS. Epitope and Paratope Mapping Reveals Temperature-Dependent Alterations in the Dengue-Antibody Interface. Structure 2017; 25:1391-1402.e3. [PMID: 28823471 DOI: 10.1016/j.str.2017.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Uncovering mechanisms of antibody-mediated neutralization for viral infections requires epitope and paratope mapping in the context of whole viral particle interactions with the antibody in solution. In this study, we use amide hydrogen/deuterium exchange mass spectrometry to describe the interface of a dengue virus-neutralizing antibody, 2D22, with its target epitope. 2D22 binds specifically to DENV2, a serotype showing strain-specific structural expansion at human host physiological temperatures of 37°C. Our results identify the heavy chain of 2D22 to be the primary determinant for binding DENV2. Temperature-mediated expansion alters the mode of interaction of 2D22 binding. Importantly, 2D22 interferes with the viral expansion process and offers a basis for its neutralization mechanism. The relative magnitude of deuterium exchange protection upon antibody binding across the various epitope loci allows a deconstruction of the antibody-viral interface in host-specific environments and offers a robust approach for targeted antibody engineering.
Collapse
Affiliation(s)
- Xin-Xiang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Arun Chandramohan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Xin-Ying Elisa Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232-0417, USA
| | - Shee-Mei Lok
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore; Centre for BioImaging Sciences, CryoEM Unit, Department of Biological Sciences, National University of Singapore, Singapore 117557, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
33
|
Mathew A. Humanized mouse models to study human cell-mediated and humoral responses to dengue virus. Curr Opin Virol 2017; 25:76-80. [PMID: 28802204 DOI: 10.1016/j.coviro.2017.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 11/20/2022]
Abstract
Several candidate dengue virus vaccines are in clinical trials and show promise as an effective measure to control dengue. However, it is becoming clear that additional vaccine candidates may be needed as there is concern about the durability of the immune response to all four serotypes of vaccine components and efficacy varies dependent on the immune status of the individual. The lack of an appropriate animal model to mimic human dengue has deterred the development of vaccines and anti-viral therapies to dengue virus. The focus of this review is to discuss advances in the development of humanized animal models and to highlight how they could be used for antiviral and dengue vaccine testing if limitations with cell-mediated immunity and seroconversion to IgG are overcome.
Collapse
Affiliation(s)
- Anuja Mathew
- Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA.
| |
Collapse
|
34
|
Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol 2017; 39:563-574. [PMID: 28401256 DOI: 10.1007/s00281-017-0625-1] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/28/2023]
Abstract
Dengue remains one of the most important mosquito-borne diseases worldwide. Infection with one of the serologically related dengue viruses (DENVs) can lead to a wide range of clinical manifestations and severity. Severe dengue is characterized by plasma leakage and abnormal bleeding that can lead to shock and death. There is currently no specific treatment for severe dengue due to gaps in understanding of the underlying mechanisms. The transient period of vascular leakage is usually followed by a rapid recovery and is suggestive of the effects of short-lived biological mediators. Both the innate and the adaptive immune systems are activated in severe dengue and contribute to the cytokine production. We discuss the immunological events elicited during a DENV infection and identify candidate cytokines that may play a key role in the severe manifestations of dengue and possible interventions.
Collapse
|
35
|
Keasey SL, Pugh CL, Jensen SMR, Smith JL, Hontz RD, Durbin AP, Dudley DM, O'Connor DH, Ulrich RG. Antibody Responses to Zika Virus Infections in Environments of Flavivirus Endemicity. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00036-17. [PMID: 28228395 PMCID: PMC5382833 DOI: 10.1128/cvi.00036-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/18/2017] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) infections occur in areas where dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and other viruses of the genus Flavivirus cocirculate. The envelope (E) proteins of these closely related flaviviruses induce specific long-term immunity, yet subsequent infections are associated with cross-reactive antibody responses that may enhance disease susceptibility and severity. To gain a better understanding of ZIKV infections against a background of similar viral diseases, we examined serological immune responses to ZIKV, WNV, DENV, and YFV infections of humans and nonhuman primates (NHPs). Using printed microarrays, we detected very specific antibody responses to primary infections with probes of recombinant E proteins from 15 species and lineages of flaviviruses pathogenic to humans, while high cross-reactivity between ZIKV and DENV was observed with 11 printed native viruses. Notably, antibodies from human primary ZIKV or secondary DENV infections that occurred in areas where flavivirus is endemic broadly recognized E proteins from many flaviviruses, especially DENV, indicating a strong influence of infection history on immune responses. A predictive algorithm was used to tentatively identify previous encounters with specific flaviviruses based on serum antibody interactions with the multispecies panel of E proteins. These results illustrate the potential impact of exposure to related viruses on the outcome of ZIKV infection and offer considerations for development of vaccines and diagnostics.
Collapse
Affiliation(s)
- Sarah L Keasey
- Department of Biology, University of Maryland-Baltimore County, Baltimore, Maryland, USA
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Christine L Pugh
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Stig M R Jensen
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jessica L Smith
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Robert D Hontz
- Naval Medical Research Center, Silver Spring, Maryland, USA, and U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | - Anna P Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Dawn M Dudley
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert G Ulrich
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
36
|
Raguram A, Sasisekharan V, Sasisekharan R. AChiralPentagonalPolyhedralFramework forCharacterizingVirusCapsidStructures. Trends Microbiol 2017; 25:438-446. [PMID: 28094093 DOI: 10.1016/j.tim.2016.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
Recent developments of rational strategies for the design of antiviral therapies, including monoclonal antibodies (mAbs), have naturally relied extensively on available viral structural information. As new strategies continue to be developed, it is equally important to continue to refine our understanding and interpretation of viral structural data. There are known limitations to the traditional (Caspar-Klug) theory for describing virus capsid structures that involves subdividing a capsid into triangular subunits. In this context, we describe a more general polyhedral framework for describing virus capsid structures that is able to account for many of these limitations, including a more thorough characterization of intersubunit interfaces. Additionally, our use of pentagonal subunits instead of triangular ones accounts for the intrinsic chirality observed in all capsids. In conjunction with the existing theory, the framework presented here provides a more complete picture of a capsid's structure and therefore can help contribute to the development of more effective antiviral strategies.
Collapse
Affiliation(s)
- Aditya Raguram
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - V Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ram Sasisekharan
- Department of Biological Engineering, Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 2016; 352:467-70. [PMID: 27033547 PMCID: PMC4845755 DOI: 10.1126/science.aaf5316] [Citation(s) in RCA: 547] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 12/25/2022]
Abstract
The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.
Collapse
Affiliation(s)
- Devika Sirohi
- Markey Center for Structural Biology and Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette,
IN 47907, USA
| | - Zhenguo Chen
- Markey Center for Structural Biology and Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette,
IN 47907, USA
| | - Lei Sun
- Markey Center for Structural Biology and Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette,
IN 47907, USA
| | - Thomas Klose
- Markey Center for Structural Biology and Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette,
IN 47907, USA
| | - Theodore C. Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National
Institute of Allergy and Infectious Diseases, National Institutes of Health,
Bethesda, MD 20892, USA
| | - Michael G. Rossmann
- Markey Center for Structural Biology and Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette,
IN 47907, USA
| | - Richard J. Kuhn
- Markey Center for Structural Biology and Purdue Institute for
Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette,
IN 47907, USA
| |
Collapse
|
38
|
Saiz JC, Vázquez-Calvo Á, Blázquez AB, Merino-Ramos T, Escribano-Romero E, Martín-Acebes MA. Zika Virus: the Latest Newcomer. Front Microbiol 2016; 7:496. [PMID: 27148186 PMCID: PMC4835484 DOI: 10.3389/fmicb.2016.00496] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/27/2016] [Indexed: 12/20/2022] Open
Abstract
Since the beginning of this century, humanity has been facing a new emerging, or re-emerging, virus threat almost every year: West Nile, Influenza A, avian flu, dengue, Chikungunya, SARS, MERS, Ebola, and now Zika, the latest newcomer. Zika virus (ZIKV), a flavivirus transmitted by Aedes mosquitoes, was identified in 1947 in a sentinel monkey in Uganda, and later on in humans in Nigeria. The virus was mainly confined to the African continent until it was detected in south-east Asia the 1980's, then in the Micronesia in 2007 and, more recently in the Americas in 2014, where it has displayed an explosive spread, as advised by the World Health Organization, which resulted in the infection of hundreds of thousands of people. ZIKV infection was characterized by causing a mild disease presented with fever, headache, rash, arthralgia, and conjunctivitis, with exceptional reports of an association with Guillain-Barre syndrome (GBS) and microcephaly. However, since the end of 2015, an increase in the number of GBS associated cases and an astonishing number of microcephaly in fetus and new-borns in Brazil have been related to ZIKV infection, raising serious worldwide public health concerns. Clarifying such worrisome relationships is, thus, a current unavoidable goal. Here, we extensively review what is currently known about ZIKV, from molecular biology, transmission routes, ecology, and epidemiology, to clinical manifestations, pathogenesis, diagnosis, prophylaxis, and public health.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
The development of therapeutic antibodies against dengue virus. Antiviral Res 2016; 128:7-19. [PMID: 26794397 DOI: 10.1016/j.antiviral.2016.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Dengue virus, a positive-sense RNA virus, is one of the major human pathogens transmitted by mosquitoes. However, no fully effective licensed dengue vaccines or therapeutics are currently available. Several potent neutralizing antibodies against DENV have been isolated from mice and humans, and the characterization of their properties by biochemical and biophysical methods have revealed important insights for development of therapeutic antibodies. In this review, we summarize recently reported antibody-antigen complex structures, their likely neutralization mechanisms and enhancement propensities, as well as their prophylactic and therapeutic capabilities in mouse models. This article forms part of a symposium on flavivirus drug discovery in the journal Antiviral Research.
Collapse
|