1
|
Rauch S, Costacurta F, Schöppe H, Peng JY, Bante D, Erisoez EE, Sprenger B, He X, Moghadasi SA, Krismer L, Sauerwein A, Heberle A, Rabensteiner T, Wang D, Naschberger A, Dunzendorfer-Matt T, Kaserer T, von Laer D, Heilmann E. Highly specific SARS-CoV-2 main protease (M pro) mutations against the clinical antiviral ensitrelvir selected in a safe, VSV-based system. Antiviral Res 2024; 231:105969. [PMID: 39053514 DOI: 10.1016/j.antiviral.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the SARS-CoV-2 pandemic, the so far two most effective approved antivirals are the protease inhibitors nirmatrelvir, in combination with ritonavir (Paxlovid) and ensitrelvir (Xocova). However, antivirals and indeed all antimicrobial drugs are sooner or later challenged by resistance mutations. Studying such mutations is essential for treatment decisions and pandemic preparedness. At the same time, generating resistant viruses to assess mutants is controversial, especially with pathogens of pandemic potential like SARS-CoV-2. To circumvent gain-of-function research with non-attenuated SARS-CoV-2, a previously developed safe system based on a chimeric vesicular stomatitis virus dependent on the SARS-CoV-2 main protease (VSV-Mpro) was used to select mutations against ensitrelvir. Ensitrelvir is clinically especially relevant due to its single-substance formulation, avoiding drug-drug interactions by the co-formulated CYP3A4 inhibitor ritonavir in Paxlovid. By treating VSV-Mpro with ensitrelvir, highly-specific resistant mutants against this inhibitor were selected, while being still fully or largely susceptible to nirmatrelvir. We then confirmed several ensitrelvir-specific mutants in gold standard enzymatic assays and SARS-CoV-2 replicons. These findings indicate that the two inhibitors can have distinct viral resistance profiles, which could determine treatment decisions.
Collapse
Affiliation(s)
- Stefanie Rauch
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Francesco Costacurta
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ju-Yi Peng
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - David Bante
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Ela Emilie Erisoez
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Bernhard Sprenger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Austria
| | - Xi He
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Laura Krismer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anna Sauerwein
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Anne Heberle
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Toni Rabensteiner
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dai Wang
- Department of Infectious Disease and Vaccines Research, MRL, Merck & Co., Inc., Rahway, NJ, USA
| | - Andreas Naschberger
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Theresia Dunzendorfer-Matt
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Dorothee von Laer
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria
| | - Emmanuel Heilmann
- Institute of Virology, Medical University of Innsbruck, Innsbruck, 6020, Tyrol, Austria; Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
2
|
Ferreira J, Fadl S, Cardoso T, Andrade B, Melo T, Silva E, Agarwal A, Turville S, Saksena N, Rabeh W. Boosting immunity: synergistic antiviral effects of luteolin, vitamin C, magnesium and zinc against SARS-CoV-2 3CLpro. Biosci Rep 2024; 44:BSR20240617. [PMID: 39045772 PMCID: PMC11327220 DOI: 10.1042/bsr20240617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024] Open
Abstract
SARS-CoV-2 was first discovered in 2019 and has disseminated throughout the globe to pandemic levels, imposing significant health and economic burdens. Although vaccines against SARS-CoV-2 have been developed, their long-term efficacy and specificity have not been determined, and antiviral drugs remain necessary. Flavonoids, which are commonly found in plants, fruits, and vegetables and are part of the human diet, have attracted considerable attention as potential therapeutic agents due to their antiviral and antimicrobial activities and effects on other biological activities, such as inflammation. The present study uses a combination of biochemical, cellular, molecular dynamics, and molecular docking experiments to provide compelling evidence that the flavonoid luteolin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one) has antiviral activity against SARS-CoV-2 3-chymotrypsin-like protease (3CLpro) that is synergistically enhanced by magnesium, zinc, and vitamin C. The IC50 of luteolin against 2 µM 3CLpro is 78 µM and decreases 10-fold to 7.6 µM in the presence of zinc, magnesium, and vitamin C. Thermodynamic stability analyses revealed that luteolin has minimal effects on the structure of 3CLpro, whereas metal ions and vitamin C significantly alter the thermodynamic stability of the protease. Interactome analysis uncovered potential host-virus interactions and functional clusters associated with luteolin activity, supporting the relevance of this flavone for combating SARS-CoV-2 infection. This comprehensive investigation sheds light on luteolin's therapeutic potential and provides insights into its mechanisms of action against SARS-CoV-2. The novel formulation of luteolin, magnesium, zinc, and vitamin C may be an effective avenue for treating COVID-19 patients.
Collapse
Affiliation(s)
- Juliana C. Ferreira
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Samar Fadl
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Thyago H.S. Cardoso
- G42 Healthcare Omics Excellence Center, Masdar City, Abu Dhabi, United Arabes Emirates
| | - Bruno Silva Andrade
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | - Tarcisio S. Melo
- UESB - Universidade Estatudal Do Sudoeste da Bahia. Deparmento de Ciencias Biologicas
| | | | | | | | - Nitin K. Saksena
- Victoria University, Footscray Park Campus, Melbourne, VIC, 3134, Australia
- Aegros Therapeutics Pty Ltd, 5-6 Eden Park Drive, Macquarie Park, NSW 2113, Australia
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Du W, Zhao L, Wu R, Huang B, Liu S, Liu Y, Huang H, Shi G. Predicting drug-Protein interaction with deep learning framework for molecular graphs and sequences: Potential candidates against SAR-CoV-2. PLoS One 2024; 19:e0299696. [PMID: 38728335 PMCID: PMC11086825 DOI: 10.1371/journal.pone.0299696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 05/12/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the COVID-19 disease, which represents a new life-threatening disaster. Regarding viral infection, many therapeutics have been investigated to alleviate the epidemiology such as vaccines and receptor decoys. However, the continuous mutating coronavirus, especially the variants of Delta and Omicron, are tended to invalidate the therapeutic biological product. Thus, it is necessary to develop molecular entities as broad-spectrum antiviral drugs. Coronavirus replication is controlled by the viral 3-chymotrypsin-like cysteine protease (3CLpro) enzyme, which is required for the virus's life cycle. In the cases of severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory syndrome coronavirus (MERS-CoV), 3CLpro has been shown to be a promising therapeutic development target. Here we proposed an attention-based deep learning framework for molecular graphs and sequences, training from the BindingDB 3CLpro dataset (114,555 compounds). After construction of such model, we conducted large-scale screening the in vivo/vitro dataset (276,003 compounds) from Zinc Database and visualize the candidate compounds with attention score. geometric-based affinity prediction was employed for validation. Finally, we established a 3CLpro-specific deep learning framework, namely GraphDPI-3CL (AUROC: 0.958) achieved superior performance beyond the existing state of the art model and discovered 10 molecules with a high binding affinity of 3CLpro and superior binding mode.
Collapse
Affiliation(s)
- Weian Du
- Department of Dermatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liang Zhao
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Rong Wu
- Department of Dermatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Boning Huang
- School of Finance, Shanghai University of Finance and Economics, Shanghai, China
| | - Si Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yufeng Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiqiu Huang
- Department of Dermatology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Flynn JM, Zvornicanin SN, Tsepal T, Shaqra AM, Kurt Yilmaz N, Jia W, Moquin S, Dovala D, Schiffer CA, Bolon DN. Contributions of Hyperactive Mutations in M pro from SARS-CoV-2 to Drug Resistance. ACS Infect Dis 2024; 10:1174-1184. [PMID: 38472113 PMCID: PMC11179160 DOI: 10.1021/acsinfecdis.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The appearance and spread of mutations that cause drug resistance in rapidly evolving diseases, including infections by the SARS-CoV-2 virus, are major concerns for human health. Many drugs target enzymes, and resistance-conferring mutations impact inhibitor binding or enzyme activity. Nirmatrelvir, the most widely used inhibitor currently used to treat SARS-CoV-2 infections, targets the main protease (Mpro) preventing it from processing the viral polyprotein into active subunits. Our previous work systematically analyzed resistance mutations in Mpro that reduce binding to inhibitors; here, we investigate mutations that affect enzyme function. Hyperactive mutations that increase Mpro activity can contribute to drug resistance but have not been thoroughly studied. To explore how hyperactive mutations contribute to resistance, we comprehensively assessed how all possible individual mutations in Mpro affect enzyme function using a mutational scanning approach with a fluorescence resonance energy transfer (FRET)-based yeast readout. We identified hundreds of mutations that significantly increased the Mpro activity. Hyperactive mutations occurred both proximal and distal to the active site, consistent with protein stability and/or dynamics impacting activity. Hyperactive mutations were observed 3 times more than mutations which reduced apparent binding to nirmatrelvir in recent studies of laboratory-grown viruses selected for drug resistance. Hyperactive mutations were also about three times more prevalent than nirmatrelvir binding mutations in sequenced isolates from circulating SARS-CoV-2. Our findings indicate that hyperactive mutations are likely to contribute to the natural evolution of drug resistance in Mpro and provide a comprehensive list for future surveillance efforts.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Sarah N. Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Tenzin Tsepal
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Ala M. Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Weiping Jia
- Novartis Biomedical Research, Emeryville, CA 94608 USA
| | | | - Dustin Dovala
- Novartis Biomedical Research, Emeryville, CA 94608 USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| |
Collapse
|
5
|
Westberg M, Su Y, Zou X, Huang P, Rustagi A, Garhyan J, Patel PB, Fernandez D, Wu Y, Hao C, Lo CW, Karim M, Ning L, Beck A, Saenkham-Huntsinger P, Tat V, Drelich A, Peng BH, Einav S, Tseng CTK, Blish C, Lin MZ. An orally bioavailable SARS-CoV-2 main protease inhibitor exhibits improved affinity and reduced sensitivity to mutations. Sci Transl Med 2024; 16:eadi0979. [PMID: 38478629 PMCID: PMC11193659 DOI: 10.1126/scitranslmed.adi0979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/21/2024] [Indexed: 05/09/2024]
Abstract
Inhibitors of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) such as nirmatrelvir (NTV) and ensitrelvir (ETV) have proven effective in reducing the severity of COVID-19, but the presence of resistance-conferring mutations in sequenced viral genomes raises concerns about future drug resistance. Second-generation oral drugs that retain function against these mutants are thus urgently needed. We hypothesized that the covalent hepatitis C virus protease inhibitor boceprevir (BPV) could serve as the basis for orally bioavailable drugs that inhibit SARS-CoV-2 Mpro more efficiently than existing drugs. Performing structure-guided modifications of BPV, we developed a picomolar-affinity inhibitor, ML2006a4, with antiviral activity, oral pharmacokinetics, and therapeutic efficacy similar or superior to those of NTV. A crucial feature of ML2006a4 is a derivatization of the ketoamide reactive group that improves cell permeability and oral bioavailability. Last, ML2006a4 was found to be less sensitive to several mutations that cause resistance to NTV or ETV and occur in the natural SARS-CoV-2 population. Thus, anticipatory design can preemptively address potential resistance mechanisms to expand future treatment options against coronavirus variants.
Collapse
Affiliation(s)
- Michael Westberg
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Chemistry, Aarhus University; 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University; 8000 Aarhus C, Denmark
| | - Yichi Su
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Xinzhi Zou
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Pinghan Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Jaishree Garhyan
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Puja Bhavesh Patel
- Stanford In Vitro Biosafety Level 3 Service Center, Stanford University; Stanford, CA 94305, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University; Stanford, CA 94305, USA
- Sarafan ChEM-H, Macromolecular Structure Knowledge Center, Stanford University; Stanford, CA 94305, USA
| | - Yan Wu
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Chieh-Wen Lo
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Marwah Karim
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | - Lin Ning
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
| | - Aimee Beck
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
| | | | - Vivian Tat
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Shirit Einav
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch; Galveston, TX 77555, USA
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch; Galveston, TX 77555, USA
| | - Catherine Blish
- Department of Medicine, Stanford University; Stanford, CA 94305, USA
- Chan Zuckerberg Biohub; San Francisco, CA 94158, USA
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University; Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University; Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
6
|
Tran TT, Fanucci GE. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate. Viruses 2024; 16:236. [PMID: 38400012 PMCID: PMC10892587 DOI: 10.3390/v16020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
HIV infection remains a global health issue plagued by drug resistance and virological failure. Natural polymorphisms (NPs) contained within several African and Brazilian protease (PR) variants have been shown to induce a conformational landscape of more closed conformations compared to the sequence of subtype B prevalent in North America and Western Europe. Here we demonstrate through experimental pulsed EPR distance measurements and molecular dynamic (MD) simulations that the two common NPs D60E and I62V found within subtypes F and H can induce a closed conformation when introduced into HIV-1PR subtype B. Specifically, D60E alters the conformation in subtype B through the formation of a salt bridge with residue K43 contained within the nexus between the flap and hinge region of the HIV-1 PR fold. On the other hand, I62V modulates the packing of the hydrophobic cluster of the cantilever and fulcrum, also resulting in a more closed conformation.
Collapse
Affiliation(s)
| | - Gail E. Fanucci
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Dixit H, Kulharia M, Verma SK. Metal-binding proteins and proteases in RNA viruses: unravelling functional diversity and expanding therapeutic horizons. J Virol 2023; 97:e0139923. [PMID: 37982624 PMCID: PMC10734521 DOI: 10.1128/jvi.01399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Metal-binding proteins are pivotal components with diverse functions in organisms, including viruses. Despite their significance, many metalloproteins in viruses remain uncharacterized, posing challenges to understanding viral systems. This study addresses this knowledge gap by identifying and analyzing metal-binding proteins and proteases in RNA viruses. The findings emphasize the prevalence of these proteins as essential functional classes within viruses and shed light on the role of metal ions and metalloproteins in viral replication and pathogenesis. Moreover, this research serves as a crucial foundation for further investigations in this field, offering the potential for developing innovative antiviral strategies. Additionally, the study enhances our understanding of the distribution and evolutionary patterns of metal-binding proteases in major human viruses. Continually exploring metal-binding proteomes across diverse viruses will deepen our knowledge of metal-dependent biological processes and provide valuable insights for combating viral infections, including respiratory viruses and other life-threatening diseases.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | | |
Collapse
|
8
|
Prévost J, Chen Y, Zhou F, Tolbert WD, Gasser R, Medjahed H, Nayrac M, Nguyen DN, Gottumukkala S, Hessell AJ, Rao VB, Pozharski E, Huang RK, Matthies D, Finzi A, Pazgier M. Structure-function analyses reveal key molecular determinants of HIV-1 CRF01_AE resistance to the entry inhibitor temsavir. Nat Commun 2023; 14:6710. [PMID: 37872202 PMCID: PMC10593844 DOI: 10.1038/s41467-023-42500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The HIV-1 entry inhibitor temsavir prevents the viral receptor CD4 (cluster of differentiation 4) from interacting with the envelope glycoprotein (Env) and blocks its conformational changes. To do this, temsavir relies on the presence of a residue with small side chain at position 375 in Env and is unable to neutralize viral strains like CRF01_AE carrying His375. Here we investigate the mechanism of temsavir resistance and show that residue 375 is not the sole determinant of resistance. At least six additional residues within the gp120 inner domain layers, including five distant from the drug-binding pocket, contribute to resistance. A detailed structure-function analysis using engineered viruses and soluble trimer variants reveals that the molecular basis of resistance is mediated by crosstalk between His375 and the inner domain layers. Furthermore, our data confirm that temsavir can adjust its binding mode to accommodate changes in Env conformation, a property that likely contributes to its broad antiviral activity.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - William D Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Romain Gasser
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Manon Nayrac
- Centre de Recherche du CHUM, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Dung N Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Ann J Hessell
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Venigalla B Rao
- Department of Biology, the Catholic University of America, Washington, DC, USA
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, Rockville, MD, 20850, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rick K Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
9
|
Rajendran M, Ferran MC, Mouli L, Babbitt GA, Lynch ML. Evolution of drug resistance drives destabilization of flap region dynamics in HIV-1 protease. BIOPHYSICAL REPORTS 2023; 3:100121. [PMID: 37662576 PMCID: PMC10469570 DOI: 10.1016/j.bpr.2023.100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023]
Abstract
The HIV-1 protease is one of several common key targets of combination drug therapies for human immunodeficiency virus infection and acquired immunodeficiency syndrome. During the progression of the disease, some individual patients acquire drug resistance due to mutational hotspots on the viral proteins targeted by combination drug therapies. It has recently been discovered that drug-resistant mutations accumulate on the "flap region" of the HIV-1 protease, which is a critical dynamic region involved in nonspecific polypeptide binding during invasion and infection of the host cell. In this study, we utilize machine learning-assisted comparative molecular dynamics, conducted at single amino acid site resolution, to investigate the dynamic changes that occur during functional dimerization and drug binding of wild-type and common drug-resistant versions of the main protease. We also use a multiagent machine learning model to identify conserved dynamics of the HIV-1 main protease that are preserved across simian and feline protease orthologs. We find that a key conserved functional site in the flap region, a solvent-exposed isoleucine (Ile50) that controls flap dynamics is functionally targeted by drug resistance mutations, leading to amplified molecular dynamics affecting the functional ability of the flap region to hold the drugs. We conclude that better long-term patient outcomes may be achieved by designing drugs that target protease regions that are less dependent upon single sites with large functional binding effects.
Collapse
Affiliation(s)
- Madhusudan Rajendran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Maureen C. Ferran
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Leora Mouli
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | - Gregory A. Babbitt
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York
| | | |
Collapse
|
10
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
11
|
Flynn JM, Huang QYJ, Zvornicanin SN, Schneider-Nachum G, Shaqra AM, Yilmaz NK, Moquin SA, Dovala D, Schiffer CA, Bolon DN. Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease. ACS Infect Dis 2023; 9:1372-1386. [PMID: 37390404 PMCID: PMC11161032 DOI: 10.1021/acsinfecdis.3c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Drugs that target the main protease (Mpro) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in Mpro, we performed comprehensive surveys of amino acid changes that can cause resistance to nirmatrelvir (Pfizer), and ensitrelvir (Xocova) in a yeast screen. We identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir, many of which have not been previously reported. Ninety-nine mutations caused apparent resistance to both inhibitors, suggesting likelihood for the evolution of cross-resistance. The mutation with the strongest drug resistance score against nirmatrelvir in our study (E166V) was the most impactful resistance mutation recently reported in multiple viral passaging studies. Many mutations that exhibited inhibitor-specific resistance were consistent with the distinct interactions of each inhibitor in the substrate binding site. In addition, mutants with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct-resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and compensatory mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.
Collapse
Affiliation(s)
- Julia M. Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qiu Yu J. Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah N. Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gila Schneider-Nachum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ala M. Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Dustin Dovala
- Novartis Institute for Biomedical Research, Emeryville, CA 94608, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel N.A. Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
12
|
Han S, Lu Y. Fluorine in anti-HIV drugs approved by FDA from 1981 to 2023. Eur J Med Chem 2023; 258:115586. [PMID: 37393791 DOI: 10.1016/j.ejmech.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS). Nowadays, FDA has approved over thirty antiretroviral drugs grouped in six categories. Interestingly, one-third of these drugs contain different number of fluorine atoms. The introduction of fluorine to obtain drug-like compounds is a well-accepted strategy in medicinal chemistry. In this review, we summarized 11 fluorine-containing anti-HIV drugs, focusing on their efficacy, resistance, safety, and specific roles of fluorine in the development of each drug. These examples may be of help for the discovery of new drug candidates bearing fluorine in their structures.
Collapse
Affiliation(s)
- Sheng Han
- School of Medicine, Shanghai University, Shanghai, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
13
|
Yildirim A, Tekpinar M. Building Quantitative Bridges between Dynamics and Sequences of SARS-CoV-2 Main Protease and a Diverse Set of Thirty-Two Proteins. J Chem Inf Model 2023; 63:9-19. [PMID: 36513349 DOI: 10.1021/acs.jcim.2c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteases are major drug targets for many viral diseases. However, mutations can render several antiprotease drugs inefficient rapidly even though these mutations may not alter protein structures significantly. Understanding relations between quickly mutating residues, protease structures, and the dynamics of the proteases is crucial for designing potent drugs. Due to this reason, we studied relations between the evolutionary information on residues in the amino acid sequences and protein dynamics for SARS-CoV-2 main protease. More precisely, we analyzed three dynamical quantities (Schlitter entropy, root-mean-square fluctuations, and dynamical flexibility index) and their relation to the amino acid conservation extracted from multiple sequence alignments of the main protease. We showed that a quantifiable similarity can be built between a sequence-based quantity called Jensen-Shannon conservation and those three dynamical quantities. We validated this similarity for a diverse set of 32 different proteins, other than the SARS-CoV-2 main protease. We believe that establishing these kinds of quantitative bridges will have larger implications for all viral proteases as well as all proteins.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Biology, Siirt University, 56100Siirt, Turkey
| | - Mustafa Tekpinar
- CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative - UMR 7238, Sorbonne University, 75005Paris, France
| |
Collapse
|
14
|
Wong-Sam A, Wang YF, Kneller DW, Kovalevsky AY, Ghosh AK, Harrison RW, Weber IT. HIV-1 protease with 10 lopinavir and darunavir resistance mutations exhibits altered inhibition, structural rearrangements and extreme dynamics. J Mol Graph Model 2022; 117:108315. [PMID: 36108568 PMCID: PMC10091457 DOI: 10.1016/j.jmgm.2022.108315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Antiretroviral drug resistance is a therapeutic obstacle for people with HIV. HIV protease inhibitors darunavir and lopinavir are recommended for resistant infections. We characterized a protease mutant (PR10x) derived from a highly resistant clinical isolate including 10 mutations associated with resistance to lopinavir and darunavir. Compared to the wild-type protease, PR10x exhibits ∼3-fold decrease in catalytic efficiency and Ki values of 2-3 orders of magnitude worse for darunavir, lopinavir, and potent investigational inhibitor GRL-519. Crystal structures of the mutant were solved in a ligand-free form and in complex with GRL-519. The structures show altered interactions in the active site, flap-core interface, hydrophobic core, hinge region, and 80s loop compared to the corresponding wild-type protease structures. The ligand-free crystal structure exhibits a highly curled flap conformation which may amplify drug resistance. Molecular dynamics simulations performed for 1 μs on ligand-free dimers showed extremely large fluctuations in the flaps for PR10x compared to equivalent simulations on PR with a single L76V mutation or wild-type protease. This analysis offers insight about the synergistic effects of mutations in highly resistant variants.
Collapse
Affiliation(s)
- Andres Wong-Sam
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrey Y Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert W Harrison
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA; Department of Computer Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA; Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
15
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
16
|
Honey as an Adjuvant in the Treatment of COVID-19 Infection: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since ancestor times, honey has been used to promote human health due to its medicinal, and nutritious properties, mainly due to bioactive compounds present, such as phenolic compounds. The emergence of COVID-19, caused by the SARS-CoV-2 virus, led to the pursuit of solutions for the treatment of symptoms and/or disease. Honey has proven to be effective against viral infections, principally due to its potential antioxidant and anti-inflammatory activities that attenuate oxidative damage induced by pathogens, and by improving the immune system. Therefore, the aim of this review is to overview the abilities of honey to attenuate different COVID-19 symptoms, highlighting the mechanisms associated with these actions and relating the with the different bioactive compounds present. A brief, detailed approach to SARS-CoV-2 mechanism of action is first overviewed to allow readers a deep understanding. Additionally, the compounds and beneficial properties of honey, and its previously application in other similar diseases, are detailed in depth. Despite the already reported efficacy of honey against different viruses and their complications, further studies are urgently needed to explain the molecular mechanisms of activity against COVID-19 and, most importantly, clinical trials enrolling COVID-19 patients.
Collapse
|
17
|
Moghadasi SA, Esler MA, Otsuka Y, Becker JT, Moraes SN, Anderson CB, Chamakuri S, Belica C, Wick C, Harki DA, Young DW, Scampavia L, Spicer TP, Shi K, Aihara H, Brown WL, Harris RS. Gain-of-Signal Assays for Probing Inhibition of SARS-CoV-2 M pro/3CL pro in Living Cells. mBio 2022; 13:e0078422. [PMID: 35471084 PMCID: PMC9239272 DOI: 10.1128/mbio.00784-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here, we report quantitative reporters for Mpro function in living cells in which protease inhibition by genetic or chemical methods results in robust signal readouts by fluorescence (enhanced green fluorescent protein [eGFP]) or bioluminescence (firefly luciferase). These gain-of-signal systems are scalable to high-throughput platforms for quantitative discrimination between Mpro mutants and/or inhibitor potencies as evidenced by validation of several reported inhibitors. Additional utility is shown by single Mpro amino acid variants and structural information combining to demonstrate that both inhibitor conformational dynamics and amino acid differences are able to influence inhibitor potency. We further show that a recent variant of concern (Omicron) has an unchanged response to a clinically approved drug, nirmatrelvir, whereas proteases from divergent coronavirus species show differential susceptibility. Together, we demonstrate that these gain-of-signal systems serve as robust, facile, and scalable assays for live cell quantification of Mpro inhibition, which will help expedite the development of next-generation antivirals and enable the rapid testing of emerging variants. IMPORTANCE The main protease, Mpro, of SARS-CoV-2 is an essential viral protein required for the earliest steps of infection. It is therefore an attractive target for antiviral drug development. Here, we report the development and implementation of two complementary cell-based systems for quantification of Mpro inhibition by genetic or chemical approaches. The first is fluorescence based (eGFP), and the second is luminescence based (firefly luciferase). Importantly, both systems rely upon gain-of-signal readouts such that stronger inhibitors yield higher fluorescent or luminescent signal. The high versatility and utility of these systems are demonstrated by characterizing Mpro mutants and natural variants, including Omicron, as well as a panel of existing inhibitors. These systems rapidly, safely, and sensitively identify Mpro variants with altered susceptibilities to inhibition, triage-nonspecific, or off-target molecules and validate bona fide inhibitors, with the most potent thus far being the first-in-class drug nirmatrelvir.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Morgan A. Esler
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuka Otsuka
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, Florida, USA
| | - Jordan T. Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Constance B. Anderson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Srinivas Chamakuri
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chloe Wick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel A. Harki
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Damian W. Young
- Center for Drug Discovery, Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Louis Scampavia
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, Florida, USA
| | - Timothy P. Spicer
- Department of Molecular Medicine, Scripps Research, The Scripps Research Molecular Screening Center, Jupiter, Florida, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Shaqra AM, Zvornicanin SN, Huang QYJ, Lockbaum GJ, Knapp M, Tandeske L, Bakan DT, Flynn J, Bolon DNA, Moquin S, Dovala D, Kurt Yilmaz N, Schiffer CA. Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance. Nat Commun 2022; 13:3556. [PMID: 35729165 PMCID: PMC9211792 DOI: 10.1038/s41467-022-31210-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
Coronaviruses can evolve and spread rapidly to cause severe disease morbidity and mortality, as exemplified by SARS-CoV-2 variants of the COVID-19 pandemic. Although currently available vaccines remain mostly effective against SARS-CoV-2 variants, additional treatment strategies are needed. Inhibitors that target essential viral enzymes, such as proteases and polymerases, represent key classes of antivirals. However, clinical use of antiviral therapies inevitably leads to emergence of drug resistance. In this study we implemented a strategy to pre-emptively address drug resistance to protease inhibitors targeting the main protease (Mpro) of SARS-CoV-2, an essential enzyme that promotes viral maturation. We solved nine high-resolution cocrystal structures of SARS-CoV-2 Mpro bound to substrate peptides and six structures with cleavage products. These structures enabled us to define the substrate envelope of Mpro, map the critical recognition elements, and identify evolutionarily vulnerable sites that may be susceptible to resistance mutations that would compromise binding of the newly developed Mpro inhibitors. Our results suggest strategies for developing robust inhibitors against SARS-CoV-2 that will retain longer-lasting efficacy against this evolving viral pathogen.
Collapse
Affiliation(s)
- Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Sarah N Zvornicanin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Qiu Yu J Huang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Gordon J Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Mark Knapp
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Laura Tandeske
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - David T Bakan
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Julia Flynn
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US
| | - Stephanie Moquin
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Dustin Dovala
- Novartis Institutes for Biomedical Research, Emeryville, CA, 94608, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US.
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, US.
| |
Collapse
|
19
|
Osmani Z, Sabet MS, Nakahara KS. Aspartic protease inhibitor enhances resistance to potato virus Y and A in transgenic potato plants. BMC PLANT BIOLOGY 2022; 22:241. [PMID: 35549883 PMCID: PMC9097181 DOI: 10.1186/s12870-022-03596-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Viruses are the major threat to commercial potato (Solanum tuberosum) production worldwide. Because viral genomes only encode a small number of proteins, all stages of viral infection rely on interactions between viral proteins and host factors. Previously, we presented a list of the most important candidate genes involved in potato plants' defense response to viruses that are significantly activated in resistant cultivars. Isolated from this list, Aspartic Protease Inhibitor 5 (API5) is a critical host regulatory component of plant defense responses against pathogens. The purpose of this study is to determine the role of StAPI5 in defense of potato against potato virus Y and potato virus A, as well as its ability to confer virus resistance in a transgenic susceptible cultivar of potato (Desiree). Potato plants were transformed with Agrobacterium tumefaciens via a construct encoding the potato StAPI5 gene under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. RESULTS Transgenic plants overexpressing StAPI5 exhibited comparable virus resistance to non-transgenic control plants, indicating that StAPI5 functions in gene regulation during virus resistance. The endogenous StAPI5 and CaMV 35S promoter regions shared nine transcription factor binding sites. Additionally, the net photosynthetic rate, stomatal conductivity, and maximum photochemical efficiency of photosystem II were significantly higher in virus-infected transgenic plants than in wild-type plants. CONCLUSION Overall, these findings indicate that StAPI5 may be a viable candidate gene for engineering plant disease resistance to viruses that inhibit disease development.
Collapse
Affiliation(s)
- Zhila Osmani
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14111713116, Iran
| | - Mohammad Sadegh Sabet
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14111713116, Iran.
| | - Kenji S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition. Commun Biol 2022; 5:391. [PMID: 35478219 PMCID: PMC9046202 DOI: 10.1038/s42003-022-03277-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Protease inhibitors are among the most powerful antiviral drugs. However, for SARS-CoV-2 only a small number of protease inhibitors have been identified thus far and there is still a great need for assays that efficiently report protease activity and inhibition in living cells. Here, we engineer a safe VSV-based system to report both gain- and loss-of-function of coronavirus main protease (Mpro/3CLpro/Nsp5) activity in living cells. We use SARS-CoV-2 3CLpro in this system to confirm susceptibility to known inhibitors (boceprevir, GC376, PF-00835231, and PF-07321332/nirmatrelvir) and reevaluate other reported inhibitors (baicalein, ebselen, carmofur, ethacridine, ivermectin, masitinib, darunavir, and atazanavir). Moreover, we show that the system can be adapted to report both the function and the chemical inhibition of proteases from different coronavirus species as well as from distantly related viruses. Together with the fact that live cell assays also reflect compound permeability and toxicity, we anticipate that this system will be useful for both identification and optimization of additional coronavirus protease inhibitors.
Collapse
|
21
|
Ritonavir and xk263 Binding-Unbinding with HIV-1 Protease: Pathways, Energy and Comparison. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010116. [PMID: 35054509 PMCID: PMC8779838 DOI: 10.3390/life12010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 01/22/2023]
Abstract
Understanding non-covalent biomolecular recognition, which includes drug-protein bound states and their binding/unbinding processes, is of fundamental importance in chemistry, biology, and medicine. Fully revealing the factors that govern the binding/unbinding processes can further assist in designing drugs with desired binding kinetics. HIV protease (HIVp) plays an integral role in the HIV life cycle, so it is a prime target for drug therapy. HIVp has flexible flaps, and the binding pocket can be accessible by a ligand via various pathways. Comparing ligand association and dissociation pathways can help elucidate the ligand-protein interactions such as key residues directly involved in the interaction or specific protein conformations that determine the binding of a ligand under certain pathway(s). Here, we investigated the ligand unbinding process for a slow binder, ritonavir, and a fast binder, xk263, by using unbiased all-atom accelerated molecular dynamics (aMD) simulation with a re-seeding approach and an explicit solvent model. Using ritonavir-HIVp and xk263-HIVp ligand-protein systems as cases, we sampled multiple unbinding pathways for each ligand and observed that the two ligands preferred the same unbinding route. However, ritonavir required a greater HIVp motion to dissociate as compared with xk263, which can leave the binding pocket with little conformational change of HIVp. We also observed that ritonavir unbinding pathways involved residues which are associated with drug resistance and are distal from catalytic site. Analyzing HIVp conformations sampled during both ligand-protein binding and unbinding processes revealed significantly more overlapping HIVp conformations for ritonavir-HIVp rather than xk263-HIVp. However, many HIVp conformations are unique in xk263-HIVp unbinding processes. The findings are consistent with previous findings that xk263 prefers an induced-fit model for binding and unbinding, whereas ritonavir favors a conformation selection model. This study deepens our understanding of the dynamic process of ligand unbinding and provides insights into ligand-protein recognition mechanisms and drug discovery.
Collapse
|
22
|
Rahmah L, Abarikwu SO, Arero AG, Essouma M, Jibril AT, Fal A, Flisiak R, Makuku R, Marquez L, Mohamed K, Ndow L, Zarębska-Michaluk D, Rezaei N, Rzymski P. Oral antiviral treatments for COVID-19: opportunities and challenges. Pharmacol Rep 2022; 74:1255-1278. [PMID: 35871712 PMCID: PMC9309032 DOI: 10.1007/s43440-022-00388-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023]
Abstract
The use of antiviral COVID-19 medications can successfully inhibit SARS-CoV-2 replication and prevent disease progression to a more severe form. However, the timing of antiviral treatment plays a crucial role in this regard. Oral antiviral drugs provide an opportunity to manage SARS-CoV-2 infection without a need for hospital admission, easing the general burden that COVID-19 can have on the healthcare system. This review paper (i) presents the potential pharmaceutical antiviral targets, including various host-based targets and viral-based targets, (ii) characterizes the first-generation anti-SARS-CoV-2 oral drugs (nirmatrelvir/ritonavir and molnupiravir), (iii) summarizes the clinical progress of other oral antivirals for use in COVID-19, (iv) discusses ethical issues in such clinical trials and (v) presents challenges associated with the use of oral antivirals in clinical practice. Oral COVID-19 antivirals represent a part of the strategy to adapt to long-term co-existence with SARS-CoV-2 in a manner that prevents healthcare from being overwhelmed. It is pivotal to ensure equal and fair global access to the currently available oral antivirals and those authorized in the future.
Collapse
Affiliation(s)
- Laila Rahmah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ,Universal Scientific Education and Research Network (USERN), Jakarta, Indonesia
| | - Sunny O. Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria ,Universal Scientific Education and Research Network (USERN), Choba, Nigeria
| | - Amanuel Godana Arero
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran ,Universal Scientific Education and Research Network (USERN), Addis Ababa, Ethiopia
| | - Mickael Essouma
- Department of Internal Medicine and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon ,Universal Scientific Education and Research Network, Yaoundé, Cameroon
| | - Aliyu Tijani Jibril
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran ,Nutritional and Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,Universal Scientific Education and Research Network (USERN), Accra, Ghana
| | - Andrzej Fal
- Department of Population Health, Division of Public Health, Wroclaw Medical University, Wroclaw, Poland ,Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland ,Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Białystok, Białystok, Poland
| | - Rangarirai Makuku
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ,Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Leander Marquez
- College of Social Sciences and Philosophy, University of the Philippines Diliman, Quezon City, Philippines ,Education and Research Network (USERN), Universal Scientific, Quezon City, Philippines
| | - Kawthar Mohamed
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ,Universal Scientific Education and Research Network (USERN), Manama, Bahrain
| | - Lamin Ndow
- National Health Laboratory Service, Kotu, Gambia ,Universal Scientific Education and Research Network (USERN), Banjul, Gambia
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran ,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Piotr Rzymski
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland ,Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
23
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
24
|
Abstract
Viral proteases are diverse in structure, oligomeric state, catalytic mechanism, and substrate specificity. This chapter focuses on proteases from viruses that are relevant to human health: human immunodeficiency virus subtype 1 (HIV-1), hepatitis C (HCV), human T-cell leukemia virus type 1 (HTLV-1), flaviviruses, enteroviruses, and coronaviruses. The proteases of HIV-1 and HCV have been successfully targeted for therapeutics, with picomolar FDA-approved drugs currently used in the clinic. The proteases of HTLV-1 and the other virus families remain emerging therapeutic targets at different stages of the drug development process. This chapter provides an overview of the current knowledge on viral protease structure, mechanism, substrate recognition, and inhibition. Particular focus is placed on recent advances in understanding the molecular basis of diverse substrate recognition and resistance, which is essential toward designing novel protease inhibitors as antivirals.
Collapse
Affiliation(s)
- Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
25
|
Hall MD, Anderson JM, Anderson A, Baker D, Bradner J, Brimacombe KR, Campbell EA, Corbett KS, Carter K, Cherry S, Chiang L, Cihlar T, de Wit E, Denison M, Disney M, Fletcher CV, Ford-Scheimer SL, Götte M, Grossman AC, Hayden FG, Hazuda DJ, Lanteri CA, Marston H, Mesecar AD, Moore S, Nwankwo JO, O’Rear J, Painter G, Singh Saikatendu K, Schiffer CA, Sheahan TP, Shi PY, Smyth HD, Sofia MJ, Weetall M, Weller SK, Whitley R, Fauci AS, Austin CP, Collins FS, Conley AJ, Davis MI. Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. J Infect Dis 2021; 224:S1-S21. [PMID: 34111271 PMCID: PMC8280938 DOI: 10.1093/infdis/jiab305] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.
Collapse
Affiliation(s)
- Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - James M Anderson
- Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Annaliesa Anderson
- Pfizer Vaccine Research and Development, Pfizer, Pearl River, New York, USA
| | - David Baker
- University of Washington, Seattle, Washington, USA
| | - Jay Bradner
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Kyle R Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sara Cherry
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mark Denison
- Vanderbilt University, Nashville, Tennessee, USA
| | | | | | - Stephanie L Ford-Scheimer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | - Abigail C Grossman
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | | | | | | | - Hilary Marston
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Stephanie Moore
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Jules O’Rear
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Celia A Schiffer
- University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Pei-Yong Shi
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Hugh D Smyth
- University of Texas at Austin, Austin, Texas, USA
| | | | - Marla Weetall
- PTC Therapeutics, Inc, South Plainfield, New Jersey, USA
| | - Sandra K Weller
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Richard Whitley
- University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anthony S Fauci
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Francis S Collins
- Office of the Director, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony J Conley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mindy I Davis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Leidner F, Kurt Yilmaz N, Schiffer CA. Deciphering Antifungal Drug Resistance in Pneumocystis jirovecii DHFR with Molecular Dynamics and Machine Learning. J Chem Inf Model 2021; 61:2537-2541. [PMID: 34138546 PMCID: PMC9109225 DOI: 10.1021/acs.jcim.1c00403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drug resistance impacts the effectiveness of many new therapeutics. Mutations in the therapeutic target confer resistance; however, deciphering which mutations, often remote from the enzyme active site, drive resistance is challenging. In a series of Pneumocystis jirovecii dihydrofolate reductase variants, we elucidate which interactions are key bellwethers to confer resistance to trimethoprim using homology modeling, molecular dynamics, and machine learning. Six molecular features involving mainly residues that did not vary were the best indicators of resistance.
Collapse
Affiliation(s)
- Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
27
|
Khazeei Tabari MA, Iranpanah A, Bahramsoltani R, Rahimi R. Flavonoids as Promising Antiviral Agents against SARS-CoV-2 Infection: A Mechanistic Review. Molecules 2021; 26:3900. [PMID: 34202374 PMCID: PMC8271800 DOI: 10.3390/molecules26133900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/03/2023] Open
Abstract
A newly diagnosed coronavirus in 2019 (COVID-19) has affected all human activities since its discovery. Flavonoids commonly found in the human diet have attracted a lot of attention due to their remarkable biological activities. This paper provides a comprehensive review of the benefits of flavonoids in COVID-19 disease. Previously-reported effects of flavonoids on five RNA viruses with similar clinical manifestations and/or pharmacological treatments, including influenza, human immunodeficiency virus (HIV), severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and Ebola, were considered. Flavonoids act via direct antiviral properties, where they inhibit different stages of the virus infective cycle and indirect effects when they modulate host responses to viral infection and subsequent complications. Flavonoids have shown antiviral activity via inhibition of viral protease, RNA polymerase, and mRNA, virus replication, and infectivity. The compounds were also effective for the regulation of interferons, pro-inflammatory cytokines, and sub-cellular inflammatory pathways such as nuclear factor-κB and Jun N-terminal kinases. Baicalin, quercetin and its derivatives, hesperidin, and catechins are the most studied flavonoids in this regard. In conclusion, dietary flavonoids are promising treatment options against COVID-19 infection; however, future investigations are recommended to assess the antiviral properties of these compounds on this disease.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran;
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran;
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran;
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
28
|
Smith SJ, Zhao XZ, Passos DO, Pye VE, Cherepanov P, Lyumkis D, Burke TR, Hughes SH. HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infect Dis 2021; 7:1469-1482. [PMID: 33686850 PMCID: PMC8205226 DOI: 10.1021/acsinfecdis.0c00819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
![]()
Integrase strand transfer inhibitors
(INSTIs) block the integration
step of the retroviral lifecycle and are first-line drugs used for
the treatment of HIV-1/AIDS. INSTIs have a polycyclic core with heteroatom
triads, chelate the metal ions at the active site, and have a halobenzyl
group that interacts with viral DNA attached to the core by a flexible
linker. The most broadly effective INSTIs inhibit both wild-type (WT)
integrase (IN) and a variety of well-known mutants. However, because
there are mutations that reduce the potency of all of the available
INSTIs, new and better compounds are needed. Models based on recent
structures of HIV-1 and red-capped mangabey SIV INs suggest modifications
in the INSTI structures that could enhance interactions with the 3′-terminal
adenosine of the viral DNA, which could improve performance against
INSTI resistant mutants. We designed and tested a series of INSTIs
having modifications to their naphthyridine scaffold. One of the new
compounds retained good potency against an expanded panel of HIV-1
IN mutants that we tested. Our results suggest the possibility of
designing inhibitors that combine the best features of the existing
compounds, which could provide additional efficacy against known HIV-1
IN mutants.
Collapse
Affiliation(s)
- Steven J. Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Valerie E. Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
- St Mary’s Hospital, Department of Infectious Disease, Imperial College London, Section of Virology, Norfolk Place, London W2 1PG, U.K
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
29
|
Smith SJ, Zhao XZ, Passos DO, Pye VE, Cherepanov P, Lyumkis D, Burke TR, Hughes SH. HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infect Dis 2021. [PMID: 33686850 DOI: 10.1021/acsinfecdis.0c00819/suppl_file/id0c00819_liveslides.mp4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Integrase strand transfer inhibitors (INSTIs) block the integration step of the retroviral lifecycle and are first-line drugs used for the treatment of HIV-1/AIDS. INSTIs have a polycyclic core with heteroatom triads, chelate the metal ions at the active site, and have a halobenzyl group that interacts with viral DNA attached to the core by a flexible linker. The most broadly effective INSTIs inhibit both wild-type (WT) integrase (IN) and a variety of well-known mutants. However, because there are mutations that reduce the potency of all of the available INSTIs, new and better compounds are needed. Models based on recent structures of HIV-1 and red-capped mangabey SIV INs suggest modifications in the INSTI structures that could enhance interactions with the 3'-terminal adenosine of the viral DNA, which could improve performance against INSTI resistant mutants. We designed and tested a series of INSTIs having modifications to their naphthyridine scaffold. One of the new compounds retained good potency against an expanded panel of HIV-1 IN mutants that we tested. Our results suggest the possibility of designing inhibitors that combine the best features of the existing compounds, which could provide additional efficacy against known HIV-1 IN mutants.
Collapse
Affiliation(s)
- Steven J Smith
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dario Oliveira Passos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London NW1 1AT, U.K
- St Mary's Hospital, Department of Infectious Disease, Imperial College London, Section of Virology, Norfolk Place, London W2 1PG, U.K
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
30
|
Lu L, Su S, Yang H, Jiang S. Antivirals with common targets against highly pathogenic viruses. Cell 2021; 184:1604-1620. [PMID: 33740455 DOI: 10.1016/j.cell.2021.02.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China.
| |
Collapse
|
31
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
32
|
Mandal A, Jha AK, Hazra B. Plant Products as Inhibitors of Coronavirus 3CL Protease. Front Pharmacol 2021; 12:583387. [PMID: 33767619 PMCID: PMC7985176 DOI: 10.3389/fphar.2021.583387] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The ongoing COVID-19 pandemic has created an alarming situation due to extensive loss of human lives and economy, posing enormous threat to global health security. Till date, no antiviral drug or vaccine against SARS-CoV-2 has reached the market, although a number of clinical trials are under way. The viral 3-chymotrypsin-like cysteine protease (3CLpro), playing pivotal roles in coronavirus replication and polyprotein processing, is essential for its life cycle. In fact, 3CLpro is already a proven drug discovery target for SARS- and MERS-CoVs. This underlines the importance of 3CL protease in the design of potent drugs against COVID-19. Methods: We have collected one hundred twenty-seven relevant literatures to prepare the review article. PubMed, Google Scholar and other scientific search engines were used to collect the literature based on keywords, like "SARS-CoVs-3CL protease," "medicinal plant and anti-SARS-CoVs-3CL protease" published during 2003-2020. However, earlier publications related to this topic are also cited for necessary illustration and discussion. Repetitive articles and non-English studies were excluded. Results: From the literature search, we have enlisted medicinal plants reported to inhibit coronavirus 3CL protease. Some of the plants like Isatis tinctoria L. (syn. Isatis indigotica Fort.), Torreya nucifera (L.) Siebold and Zucc., Psoralea corylifolia L., and Rheum palmatum L. have exhibited strong anti-3CLpro activity. We have also discussed about the phytochemicals with encouraging antiviral activity, such as, bavachinin, psoralidin, betulinic acid, curcumin and hinokinin, isolated from traditional medicinal plants. Conclusion: Currently, searching for a plant-derived novel drug with better therapeutic index is highly desirable due to lack of specific treatment for SARS-CoV-2. It is expected that in-depth evaluation of medicinally important plants would reveal new molecules with significant potential to inhibit coronavirus 3CL protease for development into approved antiviral drug against COVID-19 in future.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Kolkata, India
| | - Ajeet Kumar Jha
- Animal Health Research Division, Nepal Agricultural Research Council, Kathmandu, Nepal
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
33
|
Ma Y, Frutos-Beltrán E, Kang D, Pannecouque C, De Clercq E, Menéndez-Arias L, Liu X, Zhan P. Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses. Chem Soc Rev 2021; 50:4514-4540. [PMID: 33595031 DOI: 10.1039/d0cs01084g] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the last forty years we have witnessed impressive advances in the field of antiviral drug discovery culminating with the introduction of therapies able to stop human immunodeficiency virus (HIV) replication, or cure hepatitis C virus infections in people suffering from liver disease. However, there are important viral diseases without effective treatments, and the emergence of drug resistance threatens the efficacy of successful therapies used today. In this review, we discuss strategies to discover antiviral compounds specifically designed to combat drug resistance. Currently, efforts in this field are focused on targeted proteins (e.g. multi-target drug design strategies), but also on drug conformation (either improving drug positioning in the binding pocket or introducing conformational constraints), in the introduction or exploitation of new binding sites, or in strengthening interaction forces through the introduction of multiple hydrogen bonds, covalent binding, halogen bonds, additional van der Waals forces or multivalent binding. Among the new developments, proteolysis targeting chimeras (PROTACs) have emerged as a valid approach taking advantage of intracellular mechanisms involving protein degradation by the ubiquitin-proteasome system. Finally, several molecules targeting host factors (e.g. human dihydroorotate dehydrogenase and DEAD-box polypeptide 3) have been identified as broad-spectrum antiviral compounds. Implementation of herein described medicinal chemistry strategies are expected to contribute to the discovery of new drugs effective against current and future threats due to emerging and re-emerging viral pandemics.
Collapse
Affiliation(s)
- Yue Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, Shandong Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tekpinar M, Yildirim A. Impact of dimerization and N3 binding on molecular dynamics of SARS-CoV and SARS-CoV-2 main proteases. J Biomol Struct Dyn 2021; 40:6243-6254. [PMID: 33525993 PMCID: PMC7869440 DOI: 10.1080/07391102.2021.1880481] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 main protease is one of the major targets in drug development efforts against Covid-19. Even though several structures were reported to date, its dynamics is not understood well. In particular, impact of dimerization and ligand binding on the dynamics is an important issue to investigate. In this study, we performed molecular dynamics simulations of SARS-CoV and SARS-CoV-2 main proteases to investigate influence of dimerization on the dynamics by modeling monomeric and dimeric apo and holo forms. The dimerization causes an organization of the interdomain dynamics as well as some local structural changes. Moreover, we investigated impact of a peptide mimetic (N3) on the dynamics of SARS-CoV and SARS-CoV-2 Mpro. The ligand binding to the dimeric forms causes some key local changes at the dimer interface and it causes an allosteric interaction between the active sites of two protomers. Our results support the idea that only one protomer is active on SARS-CoV-2 due to this allosteric interaction. Additionally, we analyzed the molecular dynamics trajectories from graph theoretical perspective and found that the most influential residues – as measured by eigenvector centrality – are a group of residues in active site and dimeric interface of the protease. This study may form a bridge between what we know about the dynamics of SARS-CoV and SARS-CoV-2 Mpro. We think that enlightening allosteric communication of the active sites and the role of dimerization in SARS-CoV-2 Mpro can contribute to development of novel drugs against this global health problem as well as other similar proteases. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Mustafa Tekpinar
- Unit of Structural Dynamics of Biological Macromolecules, Pasteur Institute, UMR 3528 CNRS, Paris, France
| | | |
Collapse
|
35
|
Bagheri HS, Karimipour M, Heidarzadeh M, Rajabi H, Sokullu E, Rahbarghazi R. Does the Global Outbreak of COVID-19 or Other Viral Diseases Threaten the Stem Cell Reservoir Inside the Body? Stem Cell Rev Rep 2021; 17:214-230. [PMID: 33403490 PMCID: PMC7785129 DOI: 10.1007/s12015-020-10108-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2020] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic has profoundly influenced public health and contributed to global economic divergences of unprecedented dimensions. Due to the high prevalence and mortality rates, it is then expected that the consequence and public health challenges will last for long periods. The rapid global spread of COVID-19 and lack of enough data regarding the virus pathogenicity multiplies the complexity and forced governments to react quickly against this pandemic. Stem cells represent a small fraction of cells located in different tissues. These cells play a critical role in the regeneration and restoration of injured sites. Because of their specific niche and a limited number of stem cells, the key question is whether there are different anti-viral mechanisms against viral infection notably COVID-19. Here, we aimed to highlight the intrinsic antiviral resistance in different stem cells against viral infection. These data could help us to understand the possible viral infections in different stem cells and the activation of specific molecular mechanisms upon viral entrance.
Collapse
Affiliation(s)
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Heidarzadeh
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey
| | - Hadi Rajabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emel Sokullu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer, Istanbul, Turkey. .,School of Medicine, Biophysics Department, Koç University, Rumeli Fener, Sarıyer, Istanbul, Turkey.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Zong Z, Zhang Z, Wu L, Zhang L, Zhou F. The Functional Deubiquitinating Enzymes in Control of Innate Antiviral Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002484. [PMID: 33511009 PMCID: PMC7816709 DOI: 10.1002/advs.202002484] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/09/2020] [Indexed: 05/11/2023]
Abstract
Innate antiviral immunity is the first line of host defense against invading viral pathogens. Immunity activation primarily relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Viral proteins or nucleic acids mainly engage three classes of PRRs: Toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These receptors initiate a series of signaling cascades that lead to the production of proinflammatory cytokines and type I interferon (IFN-I) in response to viral infection. This system requires precise regulation to avoid aberrant activation. Emerging evidence has unveiled the crucial roles that the ubiquitin system, especially deubiquitinating enzymes (DUBs), play in controlling immune responses. In this review, an overview of the most current findings on the function of DUBs in the innate antiviral immune pathways is provided. Insights into the role of viral DUBs in counteracting host immune responses are also provided. Furthermore, the prospects and challenges of utilizing DUBs as therapeutic targets for infectious diseases are discussed.
Collapse
Affiliation(s)
- Zhi Zong
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Zhengkui Zhang
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Liming Wu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
| | - Long Zhang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003P. R. China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
37
|
Moghadasi SA, Becker JT, Belica C, Wick C, Brown WL, Harris RS. Gain-of-function assay for SARS-CoV-2 M pro inhibition in living cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.11.09.375139. [PMID: 33200129 PMCID: PMC7668733 DOI: 10.1101/2020.11.09.375139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The main protease, M pro , of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here we demonstrate a quantitative reporter for M pro function in living cells, in which protease inhibition by genetic or chemical methods results in strong eGFP fluorescence. This robust gain-of-function system readily distinguishes between inhibitor potencies and can be scaled-up to high-throughput platforms for drug testing.
Collapse
Affiliation(s)
- Seyad Arad Moghadasi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Jordan T Becker
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Christopher Belica
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Chloe Wick
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - William L Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Institute for Molecular Virology, University of Minnesota, Minneapolis, Minnesota, USA, 55455
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA, 55455
| |
Collapse
|
38
|
Darunavir-Resistant HIV-1 Protease Constructs Uphold a Conformational Selection Hypothesis for Drug Resistance. Viruses 2020; 12:v12111275. [PMID: 33171603 PMCID: PMC7695139 DOI: 10.3390/v12111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance continues to be a barrier to the effectiveness of highly active antiretroviral therapy in the treatment of human immunodeficiency virus 1 (HIV-1) infection. Darunavir (DRV) is a highly potent protease inhibitor (PI) that is oftentimes effective when drug resistance has emerged against first-generation inhibitors. Resistance to darunavir does evolve and requires 10–20 amino acid substitutions. The conformational landscapes of six highly characterized HIV-1 protease (PR) constructs that harbor up to 19 DRV-associated mutations were characterized by distance measurements with pulsed electron double resonance (PELDOR) paramagnetic resonance spectroscopy, namely double electron–electron resonance (DEER). The results show that the accumulated substitutions alter the conformational landscape compared to PI-naïve protease where the semi-open conformation is destabilized as the dominant population with open-like states becoming prevalent in many cases. A linear correlation is found between values of the DRV inhibition parameter Ki and the open-like to closed-state population ratio determined from DEER. The nearly 50% decrease in occupancy of the semi-open conformation is associated with reduced enzymatic activity, characterized previously in the literature.
Collapse
|
39
|
Wu Y, Chang KY, Lou L, Edwards LG, Doma BK, Xie ZR. In silico identification of drug candidates against COVID-19. INFORMATICS IN MEDICINE UNLOCKED 2020; 21:100461. [PMID: 33102688 PMCID: PMC7574721 DOI: 10.1016/j.imu.2020.100461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/18/2023] Open
Abstract
The COVID-19 pandemic has caused unprecedented health and economic crisis throughout the world. However, there is no effective medication or therapeutic strategy for treatment of this disease currently. Here, to elucidate the inhibitory effects, we first tested binding affinities of 11 HIV-1 protease inhibitors or their pharmacoenhancers docked onto SARS-CoV-2 main protease (M pro ), and 12 nucleotide-analog inhibitors docked onto RNA dependent RNA polymerase (RdRp). To further obtain the effective drug candidates, we screened 728 approved drugs via virtual screening on SARS-CoV-2 M pro . Our results demonstrate that remdesivir shows the best binding energy on RdRp and saquinvir is the best inhibitor of M pro . Based on the binding energies, we also list 10 top-ranked approved drugs which can be potential inhibitors for M pro . Overall, our results do not only propose drug candidates for further experiments and clinical trials but also pave the way for future lead optimization and drug design.
Collapse
Affiliation(s)
- Yifei Wu
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, 30602, GA, USA
| | - Kuan Y Chang
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung, 202, Taiwan
| | - Lei Lou
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, 30602, GA, USA
| | - Lorette G Edwards
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, 30602, GA, USA
- The Franklin College of Arts and Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Bly K Doma
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, 30602, GA, USA
| | - Zhong-Ru Xie
- Computational Drug Discovery Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Georgia, Athens, 30602, GA, USA
| |
Collapse
|
40
|
Keretsu S, Bhujbal SP, Cho SJ. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci Rep 2020; 10:17716. [PMID: 33077821 PMCID: PMC7572583 DOI: 10.1038/s41598-020-74468-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
In the rapidly evolving coronavirus disease (COVID-19) pandemic, repurposing existing drugs and evaluating commercially available inhibitors against druggable targets of the virus could be an effective strategy to accelerate the drug discovery process. The 3C-Like proteinase (3CLpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as an important drug target due to its role in viral replication. The lack of a potent 3CLpro inhibitor and the availability of the X-ray crystal structure of 3CLpro (PDB-ID 6LU7) motivated us to perform computational studies to identify commercially available potential inhibitors. A combination of modeling studies was performed to identify potential 3CLpro inhibitors from the protease inhibitor database MEROPS ( https://www.ebi.ac.uk/merops/index.shtml ). Binding energy evaluation identified key residues for inhibitor design. We found 15 potential 3CLpro inhibitors with higher binding affinity than that of an α-ketoamide inhibitor determined via X-ray structure. Among them, saquinavir and three other investigational drugs aclarubicin, TMC-310911, and faldaprevir could be suggested as potential 3CLpro inhibitors. We recommend further experimental investigation of these compounds.
Collapse
Affiliation(s)
- Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Swapnil P Bhujbal
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine, Chosun University, Gwangju, 501-759, Republic of Korea.
- Department of Cellular Molecular Medicine, College of Medicine, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
41
|
Abuelizz HA, Marzouk M, Bakheit AH, Al-Salahi R. Investigation of some benzoquinazoline and quinazoline derivatives as novel inhibitors of HCV-NS3/4A protease: biological, molecular docking and QSAR studies. RSC Adv 2020; 10:35820-35830. [PMID: 35517076 PMCID: PMC9056986 DOI: 10.1039/d0ra05604a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Morbidity and mortality due to hepatitis C virus (HCV) is a globe health concern. Hence, there is a persistent demand to design and optimize current HCV therapy and develop novel agents. HCV NS3/A4 protease plays an essential role in HCV life cycle and replication. Thus, HCV NS3/A4 protease inhibitors are one of the best therapeutic targets for the identification of novel candidate drugs. Recent studies have shown some benzoquinazolines as potent antiviral agents and promising HAV-3C protease inhibitors. In the present study, a series of benzo[g]quinazolines (1–13) and their quinazoline analogues (14–17) were evaluated for their HCV-NS3/4A inhibitory activities using in vitro assay. Our results revealed that the target compounds inhibited the activity of the NS3/4A enzyme, (IC50 = 6.41 ± 0.12 to 78.80 ± 1.70 μM) in comparison to telaprevir (IC50 = 1.72 ± 0.03 μM) as a reference drug. Compounds 1, 2, 3, 9, 10 and 13 showed the highest activity (IC50 = 11.02 ± 0.25, 6.41 ± 0.12, 9.35 ± 0.19, 9.08 ± 0.20, 16.03 ± 0.34 and 7.21 ± 0.15 μM, respectively). Molecular docking was performed to study the binding modes of the docked-chosen benzo[g]quinazolines, hydrogen bonding, and amino acid residues at the catalytic triad of the NS3/4A enzyme of HCV. The QSAR was determined to explore the relationships between the molecular structures of the targets and their biological activities by developing prediction models among the known HCV NS3/A4 inhibitors and then to predict the inhibitory activity of the target molecules synthesized. HCV NS3/A4 protease inhibitors are one of the best therapeutic targets for the identification of novel candidate drugs. A series of benzo[g]quinazolines and their quinazoline analogues were evaluated for their HCV-NS3/4A inhibitory activities.![]()
Collapse
Affiliation(s)
- Hatem A Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Mohamed Marzouk
- Chemistry of Natural Products Group, Center of Excellence for Advanced Sciences, National Research Centre 33 El-Bohouth St. (Former El-Tahrir St.), Dokki Cairo 12622 Egypt
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia .,Department of Chemistry, Faculty of Science and Technology, El-Neelain University P.O. Box 12702 Khartoum 11121 Sudan
| | - Rashad Al-Salahi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| |
Collapse
|
42
|
Jóźwik IK, Passos DO, Lyumkis D. Structural Biology of HIV Integrase Strand Transfer Inhibitors. Trends Pharmacol Sci 2020; 41:611-626. [PMID: 32624197 PMCID: PMC7429322 DOI: 10.1016/j.tips.2020.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Integrase (IN) strand transfer inhibitors (INSTIs) are recent compounds in the antiretroviral arsenal used against HIV. INSTIs work by blocking retroviral integration; an essential step in the viral lifecycle that is catalyzed by the virally encoded IN protein within a nucleoprotein assembly called an intasome. Recent structures of lentiviral intasomes from simian immunodeficiency virus (SIV) and HIV have clarified the INSTI binding modes within the intasome active sites and helped elucidate an important mechanism of viral resistance. The structures provide an accurate depiction of interactions of intasomes and INSTIs to be leveraged for structure-based drug design. Here, we review these recent structural findings and contrast with earlier studies on prototype foamy virus intasomes. We also present and discuss examples of the latest chemical compounds that show promising inhibitory potential as INSTI candidates.
Collapse
Affiliation(s)
- Ilona K Jóźwik
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Dario O Passos
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA; The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
43
|
Braun NJ, Quek JP, Huber S, Kouretova J, Rogge D, Lang‐Henkel H, Cheong EZK, Chew BLA, Heine A, Luo D, Steinmetzer T. Structure-Based Macrocyclization of Substrate Analogue NS2B-NS3 Protease Inhibitors of Zika, West Nile and Dengue viruses. ChemMedChem 2020; 15:1439-1452. [PMID: 32501637 PMCID: PMC7497253 DOI: 10.1002/cmdc.202000237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 11/06/2022]
Abstract
A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.
Collapse
Affiliation(s)
- Niklas J. Braun
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jun P. Quek
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
| | - Simon Huber
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Jenny Kouretova
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dorothee Rogge
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Heike Lang‐Henkel
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Ezekiel Z. K. Cheong
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Bing L. A. Chew
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- Institute of Health TechnologiesInterdisciplinary Graduate ProgrammeNanyang Technological University61 Nanyang Dr.Singapore637335Singapore
| | - Andreas Heine
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| | - Dahai Luo
- Lee Kong Chian School of MedicineNanyang Technological University, EMB 03–0759 Nanyang DriveSingapore636921Singapore
- Institute of Structural BiologyNanyang Technological University EMB 06–0159 Nanyang DriveSingapore636921Singapore
- School of Biological SciencesNanyang Technological University60 Nanyang Dr.Singapore637551Singapore
| | - Torsten Steinmetzer
- Institute of Pharmaceutical ChemistryPhilipps UniversityMarbacher Weg 635032MarburgGermany
| |
Collapse
|
44
|
MG132 exerts anti-viral activity against HSV-1 by overcoming virus-mediated suppression of the ERK signaling pathway. Sci Rep 2020; 10:6671. [PMID: 32317666 PMCID: PMC7174428 DOI: 10.1038/s41598-020-63438-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2020] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) causes a number of clinical manifestations including cold sores, keratitis, meningitis and encephalitis. Although current drugs are available to treat HSV-1 infection, they can cause side effects such as nephrotoxicity. Moreover, owing to the emergence of drug-resistant HSV-1 strains, new anti-HSV-1 compounds are needed. Because many viruses exploit cellular host proteases and encode their own viral proteases for survival, we investigated the inhibitory effects of a panel of protease inhibitors (TLCK, TPCK, E64, bortezomib, or MG132) on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection suppressed c-Raf-MEK1/2-ERK1/2-p90RSK signaling in host cells, which facilitated viral replication. The mechanism by which HSV-1 inhibited ERK signaling was mediated through the polyubiquitination and proteasomal degradation of Ras-guanine nucleotide-releasing factor 2 (Ras-GRF2). Importantly, the proteasome inhibitor MG132 inhibited HSV-1 replication by reversing ERK suppression in infected cells, inhibiting lytic genes (ICP5, ICP27 and UL42) expression, and overcoming the downregulation of Ras-GRF2. These results indicate that the suppression of ERK signaling via proteasomal degradation of Ras-GRF2 is necessary for HSV-1 infection and replication. Given that ERK activation by MG132 exhibits anti-HSV-1 activity, these results suggest that the proteasome inhibitor could serve as a novel therapeutic agent against HSV-1 infection.
Collapse
|
45
|
Pach S, Sarter TM, Yousef R, Schaller D, Bergemann S, Arkona C, Rademann J, Nitsche C, Wolber G. Catching a Moving Target: Comparative Modeling of Flaviviral NS2B-NS3 Reveals Small Molecule Zika Protease Inhibitors. ACS Med Chem Lett 2020; 11:514-520. [PMID: 32292558 DOI: 10.1021/acsmedchemlett.9b00629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 02/06/2023] Open
Abstract
The pivotal role of viral proteases in virus replication has already been successfully exploited in several antiviral drug design campaigns. However, no efficient antivirals are currently available against flaviviral infections. In this study, we present lead-like small molecule inhibitors of the Zika Virus (ZIKV) NS2B-NS3 protease. Since only few nonpeptide competitive ligands are known, we take advantage of the high structural similarity with the West Nile Virus (WNV) NS2B-NS3 protease. A comparative modeling approach involving our in-house software PyRod was employed to systematically analyze the binding sites and develop molecular dynamics-based 3D pharmacophores for virtual screening. The identified compounds were biochemically characterized revealing low micromolar affinity for both ZIKV and WNV proteases. Their lead-like properties together with rationalized binding modes represent valuable starting points for future lead optimization. Since the NS2B-NS3 protease is highly conserved among flaviviruses, these compounds may also drive the development of pan-flaviviral antiviral drugs.
Collapse
Affiliation(s)
- Szymon Pach
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Tim M. Sarter
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Rafe Yousef
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - David Schaller
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Silke Bergemann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Christoph Arkona
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Jörg Rademann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gerhard Wolber
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin 14195, Germany
| |
Collapse
|
46
|
Passos DO, Li M, Jóźwik IK, Zhao XZ, Santos-Martins D, Yang R, Smith SJ, Jeon Y, Forli S, Hughes SH, Burke TR, Craigie R, Lyumkis D. Structural basis for strand-transfer inhibitor binding to HIV intasomes. Science 2020; 367:810-814. [PMID: 32001521 PMCID: PMC7357238 DOI: 10.1126/science.aay8015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/17/2020] [Indexed: 01/21/2023]
Abstract
The HIV intasome is a large nucleoprotein assembly that mediates the integration of a DNA copy of the viral genome into host chromatin. Intasomes are targeted by the latest generation of antiretroviral drugs, integrase strand-transfer inhibitors (INSTIs). Challenges associated with lentiviral intasome biochemistry have hindered high-resolution structural studies of how INSTIs bind to their native drug target. Here, we present high-resolution cryo-electron microscopy structures of HIV intasomes bound to the latest generation of INSTIs. These structures highlight how small changes in the integrase active site can have notable implications for drug binding and design and provide mechanistic insights into why a leading INSTI retains efficacy against a broad spectrum of drug-resistant variants. The data have implications for expanding effective treatments available for HIV-infected individuals.
Collapse
Affiliation(s)
- Dario Oliveira Passos
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD 20892, USA
| | - Ilona K Jóźwik
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Xue Zhi Zhao
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Diogo Santos-Martins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Renbin Yang
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD 20892, USA
| | - Steven J Smith
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Youngmin Jeon
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephen H Hughes
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Terrence R Burke
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive Diseases, Bethesda, MD 20892, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, CA 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
47
|
Osmond MM, Otto SP, Martin G. Genetic Paths to Evolutionary Rescue and the Distribution of Fitness Effects Along Them. Genetics 2020; 214:493-510. [PMID: 31822480 PMCID: PMC7017017 DOI: 10.1534/genetics.119.302890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
The past century has seen substantial theoretical and empirical progress on the genetic basis of adaptation. Over this same period, a pressing need to prevent the evolution of drug resistance has uncovered much about the potential genetic basis of persistence in declining populations. However, we have little theory to predict and generalize how persistence-by sufficiently rapid adaptation-might be realized in this explicitly demographic scenario. Here, we use Fisher's geometric model with absolute fitness to begin a line of theoretical inquiry into the genetic basis of evolutionary rescue, focusing here on asexual populations that adapt through de novo mutations. We show how the dominant genetic path to rescue switches from a single mutation to multiple as mutation rates and the severity of the environmental change increase. In multi-step rescue, intermediate genotypes that themselves go extinct provide a "springboard" to rescue genotypes. Comparing to a scenario where persistence is assured, our approach allows us to quantify how a race between evolution and extinction leads to a genetic basis of adaptation that is composed of fewer loci of larger effect. We hope this work brings awareness to the impact of demography on the genetic basis of adaptation.
Collapse
Affiliation(s)
- Matthew M Osmond
- Biodiversity Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sarah P Otto
- Biodiversity Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Guillaume Martin
- Institut des Sciences de l'Evolution de Montpellier UMR5554, Universite de Montpellier, CNRS-IRD-EPHE-UM, France
| |
Collapse
|
48
|
Meriki HD, Tufon KA, Anong DN, Atanga PN, Anyangwe IA, Cho-Ngwa F, Nkuo-Akenji T. Genetic diversity and antiretroviral resistance-associated mutation profile of treated and naive HIV-1 infected patients from the Northwest and Southwest regions of Cameroon. PLoS One 2019; 14:e0225575. [PMID: 31751428 PMCID: PMC6874083 DOI: 10.1371/journal.pone.0225575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Antiretroviral therapy (ART) has improved the survival of HIV infected persons. However, rapid scale-up of ART and the high HIV-1 genetic variability, has greatly influenced the emergence of drug-resistant strains. This constitutes a potential threat to achieving the UNAIDS' 90-90-90 goals by 2020. We investigated the prevalent HIV-1 genotypes, drug resistance-associated mutations and assessed some predictors of the occurrence of these mutations. METHODS This was a hospital-based cross-sectional study conducted between October 2010 and June 2012. Participants were consecutively enrolled from selected HIV treatment centers of the Southwest and Northwest regions of Cameroon. Viral load was determined with the automated Abbott Real-time HIV-1 m2000rt System. HIV genotyping and antiretroviral resistance mutations analysis were performed using Bayer's HIV-1 TRUGENE™ Genotyping Kit and OpenGene DNA Sequencing system. The drug resistance mutation was interpreted with the Stanford HIV database. Epidemiological data were obtained using pre-tested semi-structured questionnaires. RESULTS Of the 387 participants, 239 were successfully genotyped. The median age of these participants was 33 years (interquartile range, IQR: 28-40 years), and a majority (65.7%) were female. A total of 29.3% of the participants were receiving ART. The median duration of ART was 10.5 months (IQR: 4-17.25 months). The median CD4 count and log10 viral load of study participants were 353.5 cells/ml (IQR:145-471) and 4.89 copies/ml (IQR: 3.91-5.55) respectively. CRF02 (A/G) (69%) was the most prevalent subtype followed by G (8.2%) and F (6.7%). Overall, resistance mutations were present in 37.1% of ART-experienced and 10.7% of ART-naive patients. Nucleoside reverse transcriptase inhibitors (NRTI) mutations occurred in 30% of ART-experienced and 2.4% of ART-naïve patients, while non-nucleoside reverse transcriptase inhibitors (NNRTI) mutations occurred in 34.2% of ART-experienced and 10.1% of -naïve patients. M184V (8.4%, 20/239) and K103N (5.4%, 13/239) were the most prevalent mutations. Major protease inhibitor mutations occurred in 3 (1.3%) out of the 239 sequences. The duration of ART independently predicted the occurrence of resistance mutation among ART-experienced patients. CONCLUSION The high resistance to NNRTIs, which are the main support to the backbone (NRTIs) first-line antiretroviral regimen in Cameroon, has prompted the need to rollout an integrase strand transfer inhibitor regimen (containing Dolutegravir) with a higher genetic barrier to resistance as the preferred first line regimen.
Collapse
Affiliation(s)
- Henry Dilonga Meriki
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
- BioCollections Worldwide Inc., Regional Office, Buea, SW Region, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, SW Region, Cameroon
| | - Kukwah Anthony Tufon
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, SW Region, Cameroon
| | - Damian Nota Anong
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
| | - Pascal Nji Atanga
- Cameroon Baptist Convention Health Service, Mutengene, South West Region, Cameroon
| | - Irene Ane Anyangwe
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
| | - Fidelis Cho-Ngwa
- Laboratory Department, Buea Regional Hospital, Buea, SW Region, Cameroon
| | - Theresa Nkuo-Akenji
- Department of Microbiology and Parasitology, University of Buea, Buea, SW Region, Cameroon
| |
Collapse
|
49
|
Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019; 19:1571-1598. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a chronic disease characterized by multiple life-threatening illnesses caused by a retro-virus, Human Immunodeficiency Virus (HIV). HIV infection slowly destroys the immune system and increases the risk of various other infections and diseases. Although, there is no immediate cure for HIV infection/AIDS, several drugs targeting various cruxes of HIV infection are used to slow down the progress of the disease and to boost the immune system. One of the key therapeutic strategies is Highly Active Antiretroviral Therapy (HAART) or ' AIDS cocktail' in a general sense, which is a customized combination of anti-retroviral drugs designed to combat the HIV infection. Since HAART's inception in 1995, this treatment was found to be effective in improving the life expectancy of HIV patients over two decades. Among various classes of HAART treatment regimen, Protease Inhibitors (PIs) are known to be widely used as a major component and found to be effective in treating HIV infection/AIDS. For the past several years, a variety of protease inhibitors have been reported. This review outlines the drug design strategies of PIs, chemical and pharmacological characteristics of some mechanism-based inhibitors, summarizes the recent developments in small molecule based drug discovery with HIV protease as a drug target. Further discussed are the pharmacology, PI drug resistance on HIV PR, adverse effects of HIV PIs and challenges/impediments in the successful application of HIV PIs as an important class of drugs in HAART regimen for the effective treatment of AIDS.
Collapse
Affiliation(s)
- Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
50
|
Meewan I, Zhang X, Roy S, Ballatore C, O’Donoghue AJ, Schooley RT, Abagyan R. Discovery of New Inhibitors of Hepatitis C Virus NS3/4A Protease and Its D168A Mutant. ACS OMEGA 2019; 4:16999-17008. [PMID: 31646247 PMCID: PMC6796237 DOI: 10.1021/acsomega.9b02491] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 06/01/2023]
Abstract
Hepatitis C virus (HCV) is a human pathogen with high morbidity. The HCV NS3/4A protease is essential for viral replication and is one of the top three drug targets. Several drugs targeting the protease have been developed, but drug-resistant mutant strains emerged. Here, we screened a library and synthesized a novel class of small molecules based on a tryptophan derivative scaffold identified as HCV NS3/4A protease inhibitors that are active against both wild type and mutant form of the protease. Only the compounds with predicted binding poses not affected by the most frequent mutations in the active site were selected for experimental validation. The antiviral activities were evaluated by replicon and enzymatic assays. Twenty-two compounds were found to inhibit HCV with EC50 values ranging between 0.64 and 63 μM with compound 22 being the most active. In protease assays, 22 had a comparable inhibition profile for the common mutant HCV GT1b D168A and the wild-type enzyme. However, in the same assay, the potency of the approved drug, simeprevir, decreased 5.7-fold for the mutant enzyme relative to the wild type. The top three inhibitors were also tested against four human serine proteases and were shown to be specific to the viral protease. The fluorescence-based cell viability assay demonstrated a sufficient therapeutic range for the top three candidates.
Collapse
Affiliation(s)
- Ittipat Meewan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| | - Xingquan Zhang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| | - Suchismita Roy
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| | - Carlo Ballatore
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| | - Robert T. Schooley
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| | - Ruben Abagyan
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, Department of Chemistry
and Biochemistry, and School of Medicine, University
of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|