1
|
Tepekule B, Barcik W, Staiger WI, Bergadà-Pijuan J, Scheier T, Brülisauer L, Hall AR, Günthard HF, Hilty M, Kouyos RD, Brugger SD. Computational and in vitro evaluation of probiotic treatments for nasal Staphylococcus aureus decolonization. Proc Natl Acad Sci U S A 2025; 122:e2412742122. [PMID: 39932999 DOI: 10.1073/pnas.2412742122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Despite the rising challenge of antibiotic resistance, current approaches to eradicate nasal pathobionts Staphylococcus aureus and Streptococcus pneumoniae rely on antibacterials. An alternative is the artificial inoculation of commensal bacteria, i.e., probiotic treatment, supported by the increasing evidence for commensal-mediated inhibition of pathogens. To systematically investigate the potential of this approach, we developed a quantitative framework simulating the nasal microbiome dynamics by combining mathematical modeling with longitudinal microbiota data. By inferring community parameters using 16S ribosomal RNA (rRNA) amplicon sequencing data and simulating the nasal microbial dynamics of patients colonized with S. aureus, we compared the decolonization performance of probiotic and antibiotic treatments under different assumptions on patients' community composition and susceptibility profile. To further compare the robustness of these treatments, we simulated an S. aureus challenge and quantified the recolonization probability. Through in vitro experiments using nasal swabs of adults colonized with S. aureus, we confirmed that after antibiotic treatment, recolonization of S. aureus was inhibited in samples treated with a probiotic mixture compared to the nontreated control. Our results suggest that probiotic treatment outperforms antibiotics in terms of decolonization performance, recolonization robustness, and leads to less collateral reduction in the microbiome diversity. Thus, probiotic treatment may provide a promising alternative to combat antibiotic resistance, with the additional advantage of personalized treatment options via using the patient's own metagenomic data. The combination of an in silico framework with in vitro experiments using clinical samples reported in this work is an important step forward to further investigate this alternative in clinical trials.
Collapse
Affiliation(s)
- Burcu Tepekule
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Weronika Barcik
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Willy I Staiger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Judith Bergadà-Pijuan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Thomas Scheier
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Laura Brülisauer
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Alex R Hall
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern 3001, Switzerland
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich 8057, Switzerland
| | - Silvio D Brugger
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| |
Collapse
|
2
|
Saraiva HCADS, Panzenhagen P, Santos AMPD, Portes AB, Ferreira JFDS, Junior CAC. Unravelling the advances of CRISPR-Cas9 as a precise antimicrobial therapy: a systematic review. J Glob Antimicrob Resist 2025:S2213-7165(25)00036-0. [PMID: 39954947 DOI: 10.1016/j.jgar.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Antimicrobial resistance (AMR) is a critical public health threat, compromising treatment effectiveness. The spread of resistant pathogens, facilitated by genetic variability and horizontal gene transfer, primarily through plasmids, poses significant challenges to health systems. This review explores the potential of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology and Cas9 nucleases in combating AMR. The literature review followed the PRISMA guidelines using PubMed, Embase, and Scopus databases until July 2023. The Enterobacterales family, particularly Escherichia coli, was the main focus. The resistance genes targeted were mainly associated with β-lactam antibiotics, specifically bla genes, and colistin resistance linked to the mcr-1 gene. Plasmid vectors have been the primary delivery method for the CRISPR-Cas9 system, with conjugative plasmids resensitizing bacterial strains to various antimicrobials. Other delivery methods included electroporation, phage-mediated delivery, and nanoparticles. The efficacy of the CRISPR-Cas9 system in resensitizing bacterial strains ranged from 4.7% to 100%. Despite challenges in delivery strategies and clinical application, studies integrating nanotechnology present promising approaches to overcome these limitations. This review highlights new perspectives for the clinical use of CRISPR-Cas9 as a specific and efficient antimicrobial agent, potentially replacing traditional broad-spectrum antimicrobials in the future.
Collapse
Affiliation(s)
- Hannay Crystynah Almeida de Souza Saraiva
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Analytical and Molecular Laboratory Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil.
| | - Anamaria Mota Pereira Dos Santos
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil
| | - Ana Beatriz Portes
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Laboratory of Microorganism Structure, Department of General Microbiology, Institute of Microbiology Paulo de Góes (IMPG), Federal University of Rio de Janeiro 21941-902, Rio de Janeiro, Brazil
| | - Juliana Fidelis Dos Santos Ferreira
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Graduate Program in Food Science, Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Cidade Universitária, 21941-909, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Graduate Program in Biochemistry (PPGBq), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Analytical and Molecular Laboratory Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil; Graduate Program in Veterinary Hygiene (PGHIGVET), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, 24230-340, Brazil
| |
Collapse
|
3
|
Azzam MI, Nasr-Eldin MA, Mohammed FA, Omran KA. Whole genome sequencing of the novel polyvalent bacteriophage Malk1: A powerful biocontrol agent for water pollution. WATER RESEARCH 2025; 276:123259. [PMID: 39952074 DOI: 10.1016/j.watres.2025.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
In this study, a novel Malk1 phage, was isolated and characterized for its ability to target a broad range of multidrug-resistant (MDR) bacterial strains. Malk1, classified within the Siphoviridae family, showed lytic activity with a capsid diameter of 84 nm and a tail length of 205 nm. It demonstrated a short latent period of 18 min and a burst size of 102 virions per infected cell. The phage exhibited strong thermal stability up to 60 °C and maintained activity across a pH range of 6.0-10.0. However, exposure to hand soap and 70 % ethanol reduced its titers by over 94 % and 97 %, respectively. Malk1 lysed 92 % of the tested bacterial strains and had a genome of 44.3 kb, encoding 75 open reading frames (ORFs), with no genes for toxins, antibiotic resistance, or CRISPR elements, making it a virulent phage. A novel design utilizing immobilized polyvalent Malk1 phage on plastic sheets demonstrated superior efficacy in reducing multi-drug resistant (MDR) bacterial strains. The removal efficiencies for C.freundii (78-91 %), E.coli (74-85 %), S.enterica (60-76 %), and S.flexneri (63-72 %) were significantly higher compared to purified phage, which achieved removal efficiencies of 63-69 %, 58-66 %, 52-63 %, and 55-68 %, respectively, after 6 to 8 h. Furthermore, the immobilized phage treatment led to a 94.1 % improvement in the removal of physicochemical pollutants in wastewater, significantly surpassing the 65.3 % removal achieved with purified phage. The treatment process led to significant improvements in water quality, achieving an average removal efficiency of 71.1 % for electrical conductivity, 67.52 % for turbidity, 73.67 % for total dissolved solids (TDS), 88.02 % for biochemical oxygen demand (BOD), and 81.88 % for ammonia (NH₃). Additionally, the average dissolved oxygen (DO) levels increased by 79.17 % compared to untreated wastewater. These findings highlight the promising potential of Malk1 phage, particularly in its immobilized form, for pathogen control and enhancing water quality. ORIGINALITY-SIGNIFICANCE STATEMENT: We introduce the newly isolated polyvalent Malk1 phage, which has been thoroughly genome characterized and annotated. Immobilized Malk1 phage has proven effective in controlling drainage water pollution and addressing global concerns for irrigation water quality. Our experiments successfully reduced several multi-drug-resistant (MDR) bacterial strains in highly polluted drainage water, leading to significant improvements in water quality in a short time and at an affordable cost, facilitated by our innovative laboratory design.
Collapse
Affiliation(s)
- Mohamed Ibrahim Azzam
- Virology Unit, Microbiology Department, Central Laboratory for Environmental Quality Monitoring, National Water Research Center, El-Kanater El-Khairia 13621/6, Qalibia, Egypt.
| | - Mohamed A Nasr-Eldin
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Fafy A Mohammed
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Egypt
| | - Kawthar A Omran
- Department of Environmental Protection Technology, Applied College, Shaqra University, Al Quwayiyah, Saudi Arabia
| |
Collapse
|
4
|
Zhang T, Jin Q, Ji J. Antimicrobial Peptides and Their Mimetics: Promising Candidates of Next-Generation Therapeutic Agents Combating Multidrug-Resistant Bacteria. Adv Biol (Weinh) 2025:e2400461. [PMID: 39913150 DOI: 10.1002/adbi.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/05/2025] [Indexed: 02/07/2025]
Abstract
The increasing morbidity and mortality caused by multidrug-resistant bacteria alerts human beings to the fact that conventional antibiotics are no longer reliable and effective alternatives are imperatively needed. Owing to wide range of sources, diverse structures, and unique mode of action, antimicrobial peptides have been highly anticipated and extensively studied in recent years. Besides, the integration of artificial intelligence helps researchers gain access to the vast unexplored chemical space, which opens more opportunities for the optimization and design of novel structures. Moreover, Due to advances in chemistry and synthetic biology, researchers have also begun to focus on the potential of chemical mimetics of antimicrobial peptides. In this review, a comprehensive discussion about natural and synthesized antimicrobial peptides as well as their chemical mimetics is made, so as to provide a comprehensive summary of this field and inspire follow-up research.
Collapse
Affiliation(s)
- Tianyi Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
5
|
Yuan L, Lei L, Zhang Y, Fang Y, Lu K. Bee venom peptide Anoplin conjugates as antibacterial agents for both Gram-positive and Gram-negative bacteria. Toxicon 2025; 255:108267. [PMID: 39889890 DOI: 10.1016/j.toxicon.2025.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
The Bee venom peptide Anoplin (GLLKRIKTLL) was synthesized and modified by using antibiotics at its N-terminus, resulting in three peptide derivatives: Ano1, Ano2 and Ano3. The synthetic yields were 92.3%, 75.1% and 95.4%, respectively. Multi-spectroscopy methods were employed to investigate the interaction between these peptides and ct-DNA. The experimental results revealed that Anoplin, Ano1 and Ano2 interacted with ct-DNA in a groove-binding mode, whereas Ano3 exhibited a mosaic-binding mode. Moreover, circular dichroism revealed that these peptides have ability to unfold parallel G-quadruplex structures, indicating that they can interact with secondary nucleic acid structure. Notably, antimicrobial activity results indicated that all three derived peptides exhibited excellent antimicrobial activity against both gram-positive and gram-negative bacteria. The synthesized peptide conjugate Ano3 exhibited a MIC value of 1.4 μM to S. flexneri. Scanning electron microscopy results distinctly showed that Ano3 could rupture the cell wall of bacteria. These results provide novel methods to create effective antibacterial agents for both Gram-positive and Gram-negative bacteria by utilizing natural toxic molecules.
Collapse
Affiliation(s)
- Libo Yuan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China.
| | - Lei Lei
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| | - Yuan Fang
- Pharmacy Department, Zhengzhou People's Hospital, Zhengzhou, 450003, PR China.
| | - Kui Lu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, PR China
| |
Collapse
|
6
|
Maneekul J, Chiaha A, Hughes R, Labry F, Saito J, Almendares M, Banda BN, Lopez L, McGaskey N, Miranda M, Rana J, Zadeh BR, Hughes LE. Investigating novel Streptomyces bacteriophage endolysins as potential antimicrobial agents. Microbiol Spectr 2025; 13:e0117024. [PMID: 39570052 PMCID: PMC11705968 DOI: 10.1128/spectrum.01170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
As antibiotic resistance has become a major global threat, the World Health Organization (WHO) has urgently called for alternative strategies for control of bacterial infections. Endolysin, a phage-encoded protein, can degrade bacterial peptidoglycan (PG) and disrupt bacterial growth. According to the WHO, there are only three endolysin products currently in clinical phase development. In this study, we explore novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using several bioinformatics tools, we identified nine different functional domain combinations from 250 Streptomyces phages putative endolysins. LazerLemon gp35 (CHAP; LL35lys), Nabi gp26 (amidase; Nb26lys), and Tribute gp42 (PGRP/amidase; Tb42lys) were selected for experimental studies. We hypothesized that (i) the proteins of interest will have the ability to degrade purified PG, and (ii) the proteins will have potential antimicrobial activity against bacteria from families of importance in antibiotic resistance, such as ESKAPE safe relatives (Enterococcus raffinosus, Staphylococcus epidermidis, Klebsiella aerogenes, Acinetobacter baylyi, Pseudomonas putida, and Escherichia coli). LL35lys, Nb26lys, and Tb42lys exhibit PG-degrading activity on zymography and hydrolysis assay. The enzymes (100 µg/mL) can reduce PG turbidity to 32%-40%. The killing assay suggests that Tb42lys has a broader range (E. coli, P. putida, A. baylyi and K. aerogenes). While Nb26lys better attacks Gram-negative than -positive bacteria, LL35lys can only reduce the growth of the Gram-positive ESKAPE strains but does so effectively with a low MIC90 of 2 µg/mL. A higher concentration (≥300 µg/mL) of Nb26lys is needed to inhibit P. putida and K. aerogenes. From 250 putative endolysins, bioinformatic methods were used to select three putative endolysins for cloning and study: LL35lys, Nb26lys, and Tb42lys. All have shown PG-degrading activity, a critical function of endolysin. With a low MIC, LL35lys shows activity for the Gram-positive ESKAPE strains, while Nb26lys and Tb42lys are active against the Gram negatives. Therefore, endolysins from Streptomyces phages have potential as possible antimicrobial agents against ESKAPE bacteria. IMPORTANCE As antibiotic resistance has become a major global threat, the World Health Organization (WHO) has urgently called for alternative strategies for control of bacterial infections. Endolysin, a phage-encoded protein, can degrade bacterial peptidoglycan in the bacterial cell wall and disrupt bacterial growth. According to the WHO, there are only three endolysin products currently in clinical phase development. In this study we explored novel endolysins from Streptomyces phages as only a few of them have been experimentally characterized. Using several bioinformatics tools, we identified nine different combinations of functional enzymatic domain types from 250 Streptomyces bacteriophages possible endolysins. From these, three potential endolysins were selected for experimental characterization. All three showed positive results in degrading cell wall material and disrupting bacterial growth, indicating their potential as possible antimicrobial agents.
Collapse
Affiliation(s)
- Jindanuch Maneekul
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Amanda Chiaha
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Rachel Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Faith Labry
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Joshua Saito
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Matthew Almendares
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Brenda N. Banda
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Leslie Lopez
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Nyeomi McGaskey
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Melizza Miranda
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Jenil Rana
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Brandon R. Zadeh
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Lee E. Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
7
|
Baindara P, Roy D, Boosani CS, Mandal SM, Green JA. AAV-based gene delivery of antimicrobial peptides to combat drug-resistant pathogens. Appl Environ Microbiol 2025:e0170224. [PMID: 39760495 DOI: 10.1128/aem.01702-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as potential alternatives to conventional antibiotics due to their novelty and multiple mechanisms of action. Because they are peptides, AMPs are amenable to bioengineering and suitable for cloning and expression at large production scales. However, the efficient delivery of AMPs is an unaddressed issue, particularly due to their large size, possible toxicities, and the development of adverse immune responses. Here, we have reviewed the possibilities of adeno-associated virus (AAV)-based localized gene delivery of AMPs for the treatment of infectious diseases with a special focus on respiratory infections. By discussing the gene delivery mechanism of AAV and the accompanying technical and therapeutic challenges with AMPs, we describe a foundation that emphasizes the use of viral vector-based gene delivery of AMPs for disease treatment.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Dinata Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, India
| | - Chandra S Boosani
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Santi M Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Jonathan A Green
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
Yu J, Xu W, Chen H, Yuan H, Wang Y, Qian X, Zhang J, Ji Y, Zhao Q, Li S. Charge Engineering of Star-Shaped Organic Photosensitizers Enables Efficient Type-I Radicals for Photodynamic Therapy of Multidrug-Resistant Bacterial Infection. Adv Healthc Mater 2025; 14:e2402615. [PMID: 39648533 DOI: 10.1002/adhm.202402615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Indexed: 12/10/2024]
Abstract
Infection induced by multidrug-resistant bacteria is now the second most common cause of accidental death worldwide. However, identifying a high-performance strategy with good efficiency and low toxicity is still urgently needed. Antibacterial photodynamic therapy (PDT) is considered a non-invasive and efficient approach with minimal drug resistance. Whereas, the precise molecular design for highly efficient oxygen-independent type-I photosensitizers is still undefined. In this work, the regulation of the positive charge of star-shaped NIR-emissive organic photosensitizers can boost radical generation for the efficient treatment of wounds infected with multidrug-resistant bacteria. With positive charge engineering, TPAT-DNN, which has six positive charges, mainly produces hydroxyl radicals via the type-I pathway, while TPAT-DN, which has three positive charges, tends to generate singlet oxygen and superoxide radicals. For multidrug-resistant bacteria, TPAT-DNN exhibited specific killing effects on multidrug-resistant gram-positive bacteria at low concentrations, while TPAT-DN is similar antibacterial effects on both multidrug-resistant gram-negative and gram-positive bacteria. Furthermore, the efficiency and safety of TPAT-DNN for eradicating multidrug-resistant bacteria methicillin-resistant S. aureus (MRSA) infection and accelerating wound healing in an MRSA-infected mouse model are demonstrated. This work offers a new approach toward manipulating efficient type-I photosensitizers for MRSA treatment.
Collapse
Affiliation(s)
- Jie Yu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wenchang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Huan Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Haitao Yuan
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery System Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yu Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Xiandie Qian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Yu Ji
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
9
|
Luo L, Li Q, Xing C, Li C, Pan Y, Sun H, Yu X, Wen K, Shen J, Wang Z. Antibody-based therapy: An alternative for antimicrobial treatment in the post-antibiotic era. Microbiol Res 2025; 290:127974. [PMID: 39577369 DOI: 10.1016/j.micres.2024.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The consecutive growth of antimicrobial resistance and the spread of resistance genes worldwide, especially the emergence of superbugs, have made traditional antibiotic-based treatments inadequate to fight bacterial infections. Therefore, new therapeutic modalities for bacterial infections are urgently needed. Antibodies are considered to be an effective alternative to antibiotics. The emergence and advancement of technologies such as hybridoma, antibody purification, transgenic mice, phage display, and protein engineering have enabled the production of large quantities of humanized antibodies with high purity and affinity. Antibodies has achieved remarkable achievements in the field of medicine in the past decades. Antibody-based therapy is expected to be an effective way to treat drug-resistant bacterial infections in the post-antibiotic era due to its merits of high specificity, which leads to no selective pressure on non-target bacteria and could cooperate with antibiotics to enhance the antimicrobial effect. This review first introduces the mechanism of action of antibodies against bacterial infections, then summarizes the reported antimicrobial antibodies according to different targets, discusses the advantages and limitations of the antibody-based therapy for antimicrobial treatment, and finally, the perspectives of antimicrobial antibodies developing have been prospected, providing a reference for the development of new antimicrobial antibodies.
Collapse
Affiliation(s)
- Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Chen Xing
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yantong Pan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - He Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China.
| |
Collapse
|
10
|
Vollenweider V, Rehm K, Chepkirui C, Pérez-Berlanga M, Polymenidou M, Piel J, Bigler L, Kümmerli R. Antimicrobial activity of iron-depriving pyoverdines against human opportunistic pathogens. eLife 2024; 13:RP92493. [PMID: 39693130 DOI: 10.7554/elife.92493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karoline Rehm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Shi Y, Peng H, Liao Y, Li J, Yin Y, Peng H, Wang L, Tan Y, Li C, Bai H, Ma C, Tan W, Li X. The Prophylactic Protection of Salmonella Typhimurium Infection by Lentilactobacillus buchneri GX0328-6 in Mice. Probiotics Antimicrob Proteins 2024; 16:2054-2072. [PMID: 37668855 PMCID: PMC11573835 DOI: 10.1007/s12602-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
Salmonellosis is a disease caused by non-typhoid Salmonella, and although some lactic acid bacteria strains have been shown previously to relieve Salmonellosis symptoms, little has been studied about the preventive mechanism of Lentilactobacillus buchneri (L. buchneri) against Salmonella infection in vivo. Therefore, the L. buchneri was fed to C57BL/6 mice for 10 days to build a protective system of mice to study its prevention and possible mechanisms. The results showed that L. buchneri GX0328-6 alleviated symptoms caused by Salmonella typhimurium infection among C57BL/6 mice, including low survival rate, weight loss, increase in immune organ index and hepatosplenomegaly, and modulated serum immunoglobulin levels and intrinsic immunity. Importantly, the L. buchneri GX0328-6 enhanced the mucosal barrier of the mouse jejunum by upregulating the expression of tight junction proteins such as ZO-1, occludins, and claudins-4 and improved absorptive capacity by increasing the length of mouse jejunal villus and the ratio of villus length to crypt depth and decreasing the crypt depth. L. buchneri GX0328-6 reduced the intestinal proliferation and invasion of Salmonella typhimurium by modulating the expression of antimicrobial peptides in the intestinal tract of mice, and reduced intestinal inflammation and systemic spread in mice by downregulating the expression of IL-6 and promoting the expression of IL-10. Furthermore, L. buchneri GX0328-6 increased the relative abundance of beneficial bacteria colonies and decreased the relative abundance of harmful bacteria in the cecum microflora by modulating the microflora in the cecum contents.
Collapse
Affiliation(s)
- Yan Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China.
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Yangyan Yin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyan Peng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Leping Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yizhou Tan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
- Fangchenggang Administrative Examination and Approval Service Center, Fangchenggang, 538001, Guangxi, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, 530021, China
| | - Wenbao Tan
- Qibainong Chicken Industry Development Center of Dahua Yao Autonomous County, Dahua Guangxi, 530800, China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
13
|
Gao N, Fang C, Bai P, Wang J, Dong N, Shan A, Zhang L. De novo design of Na +-activated lipopeptides with selective antifungal activity: A promising strategy for antifungal drug discovery. Int J Biol Macromol 2024; 283:137894. [PMID: 39571872 DOI: 10.1016/j.ijbiomac.2024.137894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
In recent years, invasive fungal infections have posed a significant threat to human health, particularly due to the limited availability of effective antifungal medications. This study responds to the urgent need for powerful and selective antifungal agents by designing and synthesizing a series of lipopeptides with lipoylation at the N-terminus of the antimicrobial peptide I6. Compared to the parent peptide I6, lipopeptides exhibited selective antifungal efficacy in the presence of Na+. Among the variants tested, C8-I6 emerged as the most effective, with an average effective concentration of 5.3 μM against 12 different fungal species. C8-I6 combated fungal infections by disrupting both cytoplasmic and mitochondrial membranes, impairing the proton motive force, generating reactive oxygen species, and triggering apoptosis in fungal cells. Importantly, C8-I6 exhibited minimal hemolysis and cytotoxicity while effectively inhibiting fungal biofilm formation. In vivo experiments further validated the safety and therapeutic potential of C8-I6 in treating fungal skin infections. These findings underscore the significance of lipoylation in enhancing the efficacy of antimicrobial peptides, positioning C8-I6 as a promising candidate in fighting against drug-resistant fungal infections.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyang Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
14
|
Dhungana G, Nepal R, Houtak G, Bouras G, Vreugde S, Malla R. Preclinical characterization and in silico safety assessment of three virulent bacteriophages targeting carbapenem-resistant uropathogenic Escherichia coli. Int Microbiol 2024; 27:1747-1763. [PMID: 38517580 PMCID: PMC11611945 DOI: 10.1007/s10123-024-00508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Phage therapy has recently been revitalized in the West with many successful applications against multi-drug-resistant bacterial infections. However, the lack of geographically diverse bacteriophage (phage) genomes has constrained our understanding of phage diversity and its genetics underpinning host specificity, lytic capability, and phage-bacteria co-evolution. This study aims to locally isolate virulent phages against uropathogenic Escherichia coli (E. coli) and study its phenotypic and genomic features. Three obligately virulent Escherichia phages (øEc_Makalu_001, øEc_Makalu_002, and øEc_Makalu_003) that could infect uropathogenic E. coli were isolated and characterized. All three phages belonged to Krischvirus genus. One-step growth curve showed that the latent period of the phages ranged from 15 to 20 min, the outbreak period ~ 50 min, and the burst size ranged between 74 and 127 PFU/bacterium. Moreover, the phages could tolerate a pH range of 6 to 9 and a temperature range of 25-37 °C for up to 180 min without significant loss of phage viability. All phages showed a broad host spectrum and could lyse up to 30% of the 35 tested E. coli isolates. Genomes of all phages were approximately ~ 163 kb with a gene density of 1.73 gene/kbp and an average gene length of ~ 951 bp. The coding density in all phages was approximately 95%. Putative lysin, holin, endolysin, and spanin genes were found in the genomes of all three phages. All phages were strictly virulent with functional lysis modules and lacked any known virulence or toxin genes and antimicrobial resistance genes. Pre-clinical experimental and genomic analysis suggest these phages may be suitable candidates for therapeutic applications.
Collapse
Affiliation(s)
- Gunaraj Dhungana
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal.
- Government of Nepal, Nepal Health Research Council, Kathmandu, Nepal.
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia.
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- The Department of Surgery-Otolaryngology Head and Neck Surgery, The Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Adelaide, South Australia, Australia
| | - Rajani Malla
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
15
|
Ghosh R, Pathan S, Jayakannan M. Structural Engineering of Cationic Block Copolymer Architectures for Selective Breaching of Prokaryotic and Eukaryotic Biological Species. ACS APPLIED BIO MATERIALS 2024; 7:7062-7075. [PMID: 39422071 DOI: 10.1021/acsabm.4c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Positively charged antimicrobial polymers are known to cause severe damage to biological systems, and thus synthetic strategies are urgently required to design next-generation nontoxic cationic macromolecular architectures for healthcare applications. Here, we report a structural-engineering strategy to build cationic linear and star-block copolymer nanoarchitectures having identical chemical composition, molar mass, nanoparticle size, and positive surface charge, yet they differ distinctly in their biological action in breaching prokaryotic species such as E. coli (Gram-negative bacteria) without affecting eukaryotic species like red-blood and mammalian cells. For this purpose, linear and star-block structures are built on a polycaprolactone biodegradable platform having an imidazolium positive handle. Under physiological conditions, the linear architecture exhibits toxicity indiscriminately to all biological species, whereas its star counterpart is remarkably selective in membrane breaching action toward bacteria while maintaining inertness toward eukaryotic species. Confocal microscopy analysis of HPTS fluorescent dye-loaded star-polymer nanoparticles substantiated their antimicrobial action in E. coli. Tissue-penetrable near-infrared fluorescent dye (IR-780) loaded NP aided the in vivo biodistribution analysis and ex vivo quantification of cationic species' accumulations in vital organs in mice. Azithromycin, a clinical water-insoluble macrolide, is delivered from the star platform to accomplish synergistic antimicrobial activity by the combination of bactericidal-bacteriostatic action of the polymer carrier and drug together in a single system.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Shahidkhan Pathan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry Indian Institute of Science Education and Research (IISER Pune) Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
16
|
Wang H, Zeng P, Zhang P, Zuo Z, Liu Y, Xia J, Lam JKW, Chan HK, Leung SSY. Phage-derived polysaccharide depolymerase potentiates ceftazidime efficacy against Acinetobacter baumannii pneumonia via low-serum-dependent mechanisms. Int J Biol Macromol 2024; 282:137486. [PMID: 39528188 DOI: 10.1016/j.ijbiomac.2024.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The emergence of multidrug-resistant Acinetobacter baumannii (MDR-AB), which most commonly manifests as pneumonia, has posed significant clinical challenges and called for novel treatment strategies. Phage depolymerases, which degrade bacterial surface carbohydrates, have emerged as potential antimicrobial agents. However, their preclinical application is limited to systemic infections due to their dependency on serum-mediated bacterial killing. To extend the treatment paradigm of depolymerase to low-serum lung infections, we explored the feasibility of applying phage depolymerase to potentiate antibiotic efficacy in controlling MDR-AB pneumonia. Using a model depolymerase, Dpo71, we observed that it could effectively potentiate antibiotic efficacy against MDR-AB2 bacteria in low-serum conditions mimicking lung milieu but showed no adjuvant effect in serum-free conditions. Unprecedentedly, we reported this low-serum-dependent mechanism that polysaccharide-degrading enzyme Dpo71 exposed bacteria to serum-induced membrane permeabilization and oxidative phosphorylation pathway inhibition, leading to a weakened ATP-dependent efflux pump and strengthened ROS-induced membrane permeabilization. These joint effects facilitated antibiotic (ceftazidime, CFZ) binding, ultimately exerting bactericidal effects. Resultantly, the bacterial load in the lungs of the Dpo71-CFZ combination group was significantly reduced compared with the Dpo71-alone and CFZ-alone groups. Overall, this study unravels the low-serum-dependent mechanisms by which depolymerase potentiated antibiotic efficacy, highlighting its potential as a novel strategy to enhance antibiotic activity against severe pneumonia.
Collapse
Affiliation(s)
- Honglan Wang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Ping Zeng
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Hong Kong
| | - Jenny Ka Wing Lam
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX, UK
| | - Hak-Kim Chan
- Sydney Pharmacy School, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
17
|
Liu F, Yang S, Zhang L, Zhang M, Bi Y, Wang S, Wang X, Wang Y. Design, synthesis and biological evaluation of amphiphilic benzopyran derivatives as potent antibacterial agents against multidrug-resistant bacteria. Eur J Med Chem 2024; 277:116784. [PMID: 39178727 DOI: 10.1016/j.ejmech.2024.116784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024]
Abstract
Antimicrobial resistance has emerged as a significant threat to global public health. To develop novel, high efficiency antibacterial alternatives to combat multidrug-resistant bacteria, A total of thirty-two novel amphiphilic benzopyran derivatives by mimicking the structure and function of antimicrobial peptides were designed and synthesized. Among them, the most promising compounds 4h and 17e displayed excellent antibacterial activity against Gram-positive bacteria (MICs = 1-4 μg/mL) with weak hemolytic activity and good membrane selectivity. Additionally, compounds 4h and 17e had rapid bactericidal properties, low resistance frequency, good plasma stability, and strong capabilities of inhibiting and eliminating bacterial biofilms. Mechanistic studies revealed that compounds 4h and 17e could effectively disrupt the integrity of bacterial cell membranes, and accompanied by an increase in intracellular reactive oxygen species and the leakage of proteins and DNA, ultimately leading to bacterial death. Notably, compound 4h exhibited comparable in vivo antibacterial potency in a mouse septicemia model infected by Staphylococcus aureus ATCC43300, as compared to vancomycin. These findings indicated that 4h might be a promising antibacterial candidate to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Fangquan Liu
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Siyu Yang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Lei Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Meiyue Zhang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ying Bi
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Shuo Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China.
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
18
|
Yalçın MS, Özdemir S, Prokopiuk V, Virych P, Onishchenko A, Tollu G, Pavlenko V, Kutsevol N, Dizge N, Tkachenko A, Ocakoglu K. Toxicity, Antibacterial, Antioxidant, Antidiabetic, and DNA Cleavage Effects of Dextran-Graft-Polyacrylamide/Zinc Oxide Nanosystems. Curr Microbiol 2024; 81:437. [PMID: 39487865 DOI: 10.1007/s00284-024-03953-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024]
Abstract
Synthesis of metal oxide nanoparticles-polymer nanocomposites is an emerging strategy in nanotechnology to improve targeted delivery and reduce the toxicity of nanoparticles. In this study, we report biological effects of previously described hybrid nanocomposites containing dextran-graft-polyacrylamide/zinc oxide nanoparticles (D-PAA/ZnO NPs) prepared from zinc sulfate (D-PAA/ZnONPs(SO42-)) and zinc acetate (D-PAA/ZnONPs(-OAc)) focusing primarily on their antimicrobial activity. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems were tested in a complex way to assess their antioxidant activity (DPPH assay), antidiabetic potential (α-amylase inhibition), DNA cleavage activity, antimicrobial, and antibiofilm activity. In addition, the toxicity of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems against primary murine splenocytes was tested using MTT assay. The studied nanosystems inhibited E.coli growth. For all the investigated strains, minimum inhibitory concentrations (MICs) of D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) were in the range of 8 mg/L-128 mg/L and 16 mg/L-128 mg/L, respectively. The nanocomposites demonstrated effective antibiofilm properties as 94.27% and 86.43%. The compounds showed good antioxidant, anti-α-amylase, and DNA cleavage activities. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems reduced cell viability and promoted cell death of primary murine spleen cells at concentrations higher than those that proved to be antibacterial indicating the presence of therapeutic window. D-PAA/ZnONPs(SO42-) and D-PAA/ZnONPs(-OAc) nanosystems show antioxidant, antidiabetic, DNA cleavage, antimicrobial, and antibiofilm activity against the background of good biocompatibility suggesting the presence of therapeutic potential, which should be further investigated in vivo.
Collapse
Affiliation(s)
- M Serkan Yalçın
- Department of Chemistry and Chemical Processing Technologies, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, 61022, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Pavlo Virych
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Anatolii Onishchenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine
| | - Gülşah Tollu
- Laboratory and Veterinary Health, Technical Science Vocational School, Mersin University, Yenisehir, TR-33343, Mersin, Turkey
| | - Vadim Pavlenko
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Nataliya Kutsevol
- Department of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Yenişehir, 33343, Mersin, Turkey
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, 61015, Ukraine.
| | - Kasim Ocakoglu
- Department of Eng. Fundamental Sciences, Faculty of Engineering, Tarsus University, 33400, Tarsus, Turkey
| |
Collapse
|
19
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
20
|
Aseem A, Sagar P, Reddy NS, Veleri S. The antimicrobial resistance profile in poultry of Central and Southern India is evolving with distinct features. Comp Immunol Microbiol Infect Dis 2024; 114:102255. [PMID: 39432940 DOI: 10.1016/j.cimid.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Antimicrobial resistance (AMR) is fast emerging and is depleting antibiotics repertoire. Poultry is a major source for AMR because focus to enhance its production by modern practices widely uses antibiotics. India and China are major producers of meat and have hotspots of AMR. The Central and Southern India were predicted as emerging hotspots for AMR in poultry but no data available to substantiate it. To this end, we collected chicken feces from poultry farms in these regions and isolated genomic DNA. Further, shotgun whole genome sequencing was performed for metagenomics analysis. For the first time, we report the AMR gene profiles in poultry from Kerala and Telangana. The samples exhibited a higher prevalence of gram-negative and anaerobic species. The high priority pathogens in India were detected, like E.coli, Clostridium perfringens, Klebsiella pneumonia Staphylococcus aureus, Enterococcous faecalis, Pseudomonas aeruginosa, Bacteriodes fragiles. Conspicuously, the Southern India had the highest abundance of AMR genes than the Central India. E.coli was significantly more prevalent in the southernmost zone of India than in other sites. Our data had many common AMR profile features of the European Union (EU) poultry farms but lacked mcr-1, which was a lately emerged AMR gene in E.coli. Our data revealed the extent of AMR gene evolved in the Central and Southern India. It is comparable to the EU data but severity is lesser than in the EU.
Collapse
Affiliation(s)
- Ajmal Aseem
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | - Prarthi Sagar
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India
| | | | - Shobi Veleri
- Drug Safety Division, ICMR-National Institute of Nutrition, Hyderabad 500007, India.
| |
Collapse
|
21
|
Ruiz-Pérez R, Newman-Portela AM, Ruiz-Fresneda MA. Emerging global trends in next-generation alternatives to classic antibiotics for combatting multidrug-resistant bacteria. JOURNAL OF CLEANER PRODUCTION 2024; 478:143895. [DOI: 10.1016/j.jclepro.2024.143895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Licea-Herrera JI, Guerrero A, Mireles-Martínez M, Rodríguez-González Y, Aguilera-Arreola G, Contreras-Rodríguez A, Fernandez-Davila S, Requena-Castro R, Rivera G, Bocanegra-García V, Martínez-Vázquez AV. Agricultural Soil as a Reservoir of Pseudomonas aeruginosa with Potential Risk to Public Health. Microorganisms 2024; 12:2181. [PMID: 39597570 PMCID: PMC11596188 DOI: 10.3390/microorganisms12112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a high capacity to adapt to different factors. The aim of this study is to analyze the pathogenicity in P. aeruginosa strains and their resistance to heavy metals and antibiotics, in agricultural soil of the state of Tamaulipas, Mexico. Susceptibility to 16 antibiotics was tested using the Kirby-Bauer method (CLSI). Eight virulence factors (FV) and six genes associated with heavy metal resistance were detected by PCR. As a result, P. aeruginosa was detected in 55% of the samples. The eight virulence factors were identified in ≥80% of the strains. The strains showed some level of resistance to only three antibiotics: 32.8% to ticarcillin, 40.8% to ticarcillin/clavulanic acid and 2.4% to aztreonam. The most frequent heavy metal resistance genes were arsC (92.8%) and copA (90.4%). However, copB and arsB genes were also identified in a percentage greater than 80%, and the least frequent genes were merA in 14.4% and czcA in 7.2%. Although P. aeruginosa strains showed a high percentage of factor virulence (potential ability to cause infections), their high levels of susceptibility to antibiotics lead to the assumption that infections are easily curable.
Collapse
Affiliation(s)
- Jessica I. Licea-Herrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Abraham Guerrero
- Consejo Nacional de Ciencia y Tecnología (CONAHCyT), Centro de Investigación en Alimentación y Desarrollo (CIAD), Mazatlán 82100, Sinaloa, Mexico;
| | - Maribel Mireles-Martínez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Yuridia Rodríguez-González
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Guadalupe Aguilera-Arreola
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico; (G.A.-A.); (A.C.-R.)
| | - Araceli Contreras-Rodríguez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City 11340, Mexico; (G.A.-A.); (A.C.-R.)
| | - Susana Fernandez-Davila
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Rocío Requena-Castro
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Gildardo Rivera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Virgilio Bocanegra-García
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| | - Ana Verónica Martínez-Vázquez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico; (J.I.L.-H.); (M.M.-M.); (Y.R.-G.); (S.F.-D.); (R.R.-C.); (G.R.); (V.B.-G.)
| |
Collapse
|
23
|
Yan D, Kong H, Qu Y, Li R, Ampomah-Wireko M, Liu J, Qin S, Wang Z, Li W, Zhang E. Development of Phloroglucinol-Linked Tris-Quaternary Ammonium Salt Antimicrobial Peptide Mimics with Low Cytotoxicity and Broad-Spectrum Antibacterial Activity. J Med Chem 2024; 67:18576-18592. [PMID: 39376107 DOI: 10.1021/acs.jmedchem.4c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Encouraged by the significantly different toxicities and antibacterial activities of diverse linkers, such as alkyl and aromatic nuclei linkers, and the unique structure of phloroglucinol, we synthesized a series of tris-quaternary ammonium salt (tris-QAS) antibacterial peptide mimics based on the marketed drug phloroglucinol. Among them, 2f displayed excellent activity against Staphylococcus aureus (MIC = 0.5 μg/mL) and high selectivity (SI > 2560). Surprisingly, the cytotoxicity of 2f (CC50 = 152.7 μg/mL) was dramatically better than those of alkyl QAS I and hydroquinone QAS II. Additionally, 2f possessed rapid bactericidal capability, was not prone to inducing bacterial resistance, and also exhibited excellent activity against S. aureus biofilms and persistent bacteria. Mechanistic research and transcriptome analysis revealed that 2f can interfere with the normal metabolism of bacterial cells, and it can specifically bind with phosphatidylglycerol to destroy the cell membrane. Importantly, 2f exhibited potent in vivo antibacterial activity in a mouse subcutaneous methicillin-resistant S. aureus (MRSA) infection model.
Collapse
Affiliation(s)
- Dachao Yan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
24
|
Mohan N, Bosco K, Peter A, Abhitha K, Bhat SG. Bacteriophage entrapment strategies for the treatment of chronic wound infections: a comprehensive review. Arch Microbiol 2024; 206:443. [PMID: 39443305 DOI: 10.1007/s00203-024-04168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
The growing threat of antimicrobial resistance has made the quest for antibiotic alternatives or synergists one of the most pressing priorities of the 21st century. The emergence of multidrug-resistance in most of the common wound pathogens has amplified the risk of antibiotic-resistant wound infections. Bacteriophages, with their self-replicating ability and targeted specificity, can act as suitable antibiotic alternatives. Nevertheless, targeted delivery of phages to infection sites remains a crucial issue, specifically in the case of topical infections. Hence, different phage delivery systems have been studied in recent years. However, there have been no recent reviews of phage delivery systems focusing exclusively on phage application on wounds. This review provides a compendium of all the major delivery systems that have been used to deliver phages to wound infection sites. Special focus has also been awarded to phage-embedded hydrogels with a discussion on the different aspects to be considered during their preparation.
Collapse
Affiliation(s)
- Nivedya Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - Kiran Bosco
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Center for Infectious Diseases and Microbiology, Westmead, NSW, Australia
| | - Anmiya Peter
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
| | - K Abhitha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, 682022, India
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kerala, 682022, India.
- Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kerala, 682022, India.
| |
Collapse
|
25
|
Wu J, Liu W, Tang S, Wei S, He H, Ma M, Shi Y, Zhu Y, Chen S, Wang X. Light-Responsive Smart Nanoliposomes: Harnessing the Azobenzene Moiety for Controlled Drug Release under Near-Infrared Irradiation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56850-56861. [PMID: 39380427 DOI: 10.1021/acsami.4c13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The azobenzene moiety is an intriguing structure that deforms under UV and visible light, indicating a high potential for biomedical applications. However, its reaction to UV radiation is problematic because of its high energy and low tissue penetration. Unlike previous research on azobenzene structures in photoresponsive materials, this study presents a novel method for imparting photostimulation-responsive properties to liposomes by incorporating the azobenzene moiety and extending the light wavelength with up-conversion nanoparticles. First, the azobenzene structure was incorporated into a phospholipid molecule to create Azo-PSG, which could spontaneously form vesicle assemblies in aqueous solutions and isomerizes within 1 h of light exposure. Furthermore, orthogonal up-conversion nanoparticles with a core-shell structure were created by sequentially growing lanthanide rare earths in the shell layer, which efficiently converts near-infrared light into ultraviolet (400 nm) and blue-green (540 nm) light. Combining these core-shell structured up-conversion nanomaterials with Azo-PSG molecules resulted in the creation of a near-infrared light-responsive smart nanoliposome system. Under near-infrared light irradiation, UCNPs emit UV and blue-green light, causing conformational changes in Azo-PSG molecules that allow drug release within 6 h. The reversible structural shift of Azo-PSG in response to light stimulation holds enormous promise for improving drug release techniques. This novel technique also expands the usage of UV-responsive compounds beyond their constraints of low penetration and high biotoxicity, allowing for rapid medication release under NIR light.
Collapse
Affiliation(s)
- Jiangjie Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Wenjing Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Shuangying Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Sailong Wei
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Yulu Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Huzhou 313000, P.R. China
- Key Laboratory of Plastic Modification and Processing Technology, Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
26
|
Fang M, Zhang R, Wang C, Liu Z, Fei M, Tang B, Yang H, Sun D. Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system. Appl Environ Microbiol 2024; 90:e0081124. [PMID: 39254327 PMCID: PMC11497782 DOI: 10.1128/aem.00811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Many multidrug-resistant (MDR) bacteria have evolved through the accumulation of antibiotic resistance genes (ARGs). Although the potential risk of probiotics as reservoirs of ARGs has been recognized, strategies for blocking the transfer of ARGs while using probiotics have rarely been explored. The probiotic Escherichia coli Nissle 1917 (EcN) has long been used for treating intestinal diseases. Here, we demonstrate frequent transfer of ARGs into EcN both in vitro and in vivo, raising concerns about its potential risk of accumulating antibiotic resistance. Given that no CRISPR-Cas system was found in natural EcN, we integrated the type I-E CRISPR-Cas3 system derived from E. coli BW25113 into EcN. The engineered EcN was able to efficiently cleave multiple ARGs [i.e., mcr-1, blaNDM-1, and tet(X)] encoding enzymes for degrading last-resort antibiotics. Through co-incubation of EcN expressing Cas3-Cascade and that expressing Cas9, we showed that the growth of the former strain outcompeted the latter strain, demonstrating a better clinical application prospect of EcN expressing the type I-E CRISPR-Cas3 system. In the intestine of a model animal (i.e., zebrafish), the engineered EcN exhibited immunity against the transfer of CRISPR-targeted ARGs. Our work equips EcN with immunity against the transfer of multiple ARGs by exploiting the exogenous type I-E CRISPR-Cas3 system, thereby reducing the risk of the spread of ARGs while using it as a probiotic chassis for generating living therapeutics. IMPORTANCE To reduce the development of antibiotic resistance, probiotics have been considered as a substitute for antibiotics. However, probiotics themselves are reservoirs of antibiotic resistance genes (ARGs). This study introduces a new strategy for limiting the spread of ARGs by engineering the typical probiotic strain Escherichia coli Nissle 1917 (EcN), which has been used for treating intestinal diseases and developed as living therapeutics. We also demonstrate that the type I CRISPR-Cas system imposes a lower growth burden than the type II CRISPR-Cas system, highlighting its promising clinical application potential. Our work not only provides a new strategy for restricting the transfer of ARGs while using probiotics but also enriches the genetic engineering toolbox of EcN, paving the way for the safe use and development of probiotics as living therapeutics.
Collapse
Affiliation(s)
- Mengdie Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chenyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mingyue Fei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Vollenweider V, Roncoroni F, Kümmerli R. Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in Escherichia coli. MICROLIFE 2024; 5:uqae021. [PMID: 39502382 PMCID: PMC11536758 DOI: 10.1093/femsml/uqae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 10/13/2024] [Indexed: 11/08/2024]
Abstract
Antibiotic resistance is a growing concern for global health, demanding innovative and effective strategies to combat pathogenic bacteria. Pyoverdines, iron-chelating siderophores produced by environmental Pseudomonas spp., present a novel class of promising compounds to induce growth arrest in pathogens through iron starvation. While we previously demonstrated the efficacy of pyoverdines as antibacterials, our understanding of how these molecules interact with antibiotics and impact resistance evolution remains unknown. Here, we investigated the propensity of three Escherichia coli strains to evolve resistance against pyoverdine, the cephalosporin antibiotic ceftazidime, and their combination. We used a naive E. coli wildtype strain and two isogenic variants carrying the bla TEM-1 β-lactamase gene on either the chromosome or a costly multicopy plasmid to explore the influence of genetic background on selection for resistance. We found that strong resistance against ceftazidime and weak resistance against pyoverdine evolved in all E. coli variants under single treatment. Ceftazidime resistance was linked to mutations in outer membrane porin genes (envZ and ompF), whereas pyoverdine resistance was associated with mutations in the oligopeptide permease (opp) operon. In contrast, ceftazidime resistance phenotypes were attenuated under combination treatment, especially for the E. coli variant carrying bla TEM-1 on the multicopy plasmid. Altogether, our results show that ceftazidime and pyoverdine interact neutrally and that pyoverdine as an antibacterial is particularly potent against plasmid-carrying E. coli strains, presumably because iron starvation compromises both cellular metabolism and plasmid replication.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Flavie Roncoroni
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
28
|
Yang R, Cui L, Xu S, Zhong Y, Xu T, Liu J, Lan Z, Qin S, Guo Y. Membrane-Targeting Amphiphilic Honokiol Derivatives Containing an Oxazole Moiety as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:16858-16872. [PMID: 39259708 DOI: 10.1021/acs.jmedchem.4c01860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Infections with methicillin-resistant Staphylococcus aureus (MRSA) are becoming increasingly serious, making the development of novel antimicrobials urgent. Here, we synthesized some amphiphilic honokiol derivatives bearing an oxazole moiety and investigated their antibacterial and hemolytic activities. Bioactivity evaluation showed that E17 possessed significant in vitro antibacterial activity against S. aureus and MRSA, along with low hemolytic activity. Moreover, E17 exhibited rapid bactericidal properties and was not susceptible to resistance. Mechanistic studies indicated that E17 interacts with phosphatidylglycerol and cardiolipin of bacterial cell membranes, leading to changes in cell membrane permeability and polarization, increased intracellular ROS, and leakage of DNA and proteins, thus accelerating bacterial death. Transcriptome analysis further demonstrated that E17 has membrane-targeting effects, affecting the expression of genes related to cell membranes and ABC transporter proteins. Notably, in vivo activity showed that E17 has prominent anti-MRSA efficacy, comparable to vancomycin, and is expected to be a new anti-MRSA drug candidate.
Collapse
Affiliation(s)
- Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shengnan Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Yan Zhong
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenwei Lan
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
29
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
30
|
Gláucia-Silva F, Torres JVP, Torres-Rêgo M, Daniele-Silva A, Furtado AA, Ferreira SDS, Chaves GM, Xavier-Júnior FH, Rocha Soares KS, da Silva-Júnior AA, Fernandes-Pedrosa MDF. Tityus stigmurus-Venom-Loaded Cross-Linked Chitosan Nanoparticles Improve Antimicrobial Activity. Int J Mol Sci 2024; 25:9893. [PMID: 39337380 PMCID: PMC11432167 DOI: 10.3390/ijms25189893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The rapid resistance developed by pathogenic microorganisms against the current antimicrobial pool represents a serious global public health problem, leading to the search for new antibiotic agents. The scorpion Tityus stigmurus, an abundant species in Northeastern Brazil, presents a rich arsenal of bioactive molecules in its venom, with high potential for biotechnological applications. However, venom cytotoxicity constitutes a barrier to the therapeutic application of its different components. The objective of this study was to produce T. stigmurus-venom-loaded cross-linked chitosan nanoparticles (Tsv/CN) at concentrations of 0.5% and 1.0% to improve their biological antimicrobial activity. Polymeric nanoparticles were formed with a homogeneous particle size and spherical shape. Experimental formulation parameters were verified in relation to mean size (<180 nm), zeta potential, polydispersity index and encapsulation efficiency (>78%). Tsv/CN 1.0% demonstrated an ability to increase the antimicrobial venom effect against Staphylococcus aureus bacteria, exhibiting an MIC value of 44.6 μg/mL. It also inhibited different yeast species of the Candida genus, and Tsv/CN 0.5% and 1.0% led to a greater inhibitory effect of C. tropicalis and C. parapsilosis strains, presenting MIC values between 22.2 and 5.5 µg/mL, respectively. These data demonstrate the biotechnological potential of these nanosystems to obtain a new therapeutic agent with potential antimicrobial activity.
Collapse
Affiliation(s)
- Fiamma Gláucia-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - João Vicente Pereira Torres
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Manoela Torres-Rêgo
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande do Norte, Senador Salgado Filho Avenue, 3000, Lagoa Nova, Natal 59012-570, Brazil
| | - Alessandra Daniele-Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Allanny Alves Furtado
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Guilherme Maranhão Chaves
- Laboratory of Medical and Molecular Micology, Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil;
| | - Francisco Humberto Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus Universitário I, Castelo Branco III, Cidade Universitária, João Pessoa 58051-900, Brazil;
| | - Karla Samara Rocha Soares
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraiba, Campus Universitário I, Castelo Branco III, Cidade Universitária, João Pessoa 58051-900, Brazil;
| | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), Faculty of Pharmacy, Federal University of Rio Grande do Norte, General Gustavo Cordeiro de Farias Avenue, S/N, Petrópolis, Natal 59012-570, Brazil; (F.G.-S.); (J.V.P.T.); (M.T.-R.); (A.D.-S.); (A.A.F.); (S.d.S.F.); (K.S.R.S.); (A.A.d.S.-J.)
| |
Collapse
|
31
|
Wang C, Zhao J, Lin Y, Lwin SZC, El-Telbany M, Masuda Y, Honjoh KI, Miyamoto T. Characterization of Two Novel Endolysins from Bacteriophage PEF1 and Evaluation of Their Combined Effects on the Control of Enterococcus faecalis Planktonic and Biofilm Cells. Antibiotics (Basel) 2024; 13:884. [PMID: 39335057 PMCID: PMC11428236 DOI: 10.3390/antibiotics13090884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Endolysin, a bacteriophage-derived lytic enzyme, has emerged as a promising alternative antimicrobial agent against rising multidrug-resistant bacterial infections. Two novel endolysins LysPEF1-1 and LysPEF1-2 derived from Enterococcus phage PEF1 were cloned and overexpressed in Escherichia coli to test their antimicrobial efficacy against multidrug-resistant E. faecalis strains and their biofilms. LysPEF1-1 comprises an enzymatically active domain and a cell-wall-binding domain originating from the NLPC-P60 and SH3 superfamilies, while LysPEF1-2 contains a putative peptidoglycan recognition domain that belongs to the PGRP superfamily. LysPEF1-1 was active against 89.86% (62/69) of Enterococcus spp. tested, displaying a wider antibacterial spectrum than phage PEF1. Moreover, two endolysins demonstrated lytic activity against additional gram-positive and gram-negative species pretreated with chloroform. LysPEF1-1 showed higher activity against multidrug-resistant E. faecalis strain E5 than LysPEF1-2. The combination of two endolysins effectively reduced planktonic cells of E5 in broth and was more efficient at inhibiting biofilm formation and removing biofilm cells of E. faecalis JCM 7783T than used individually. Especially at 4 °C, they reduced viable biofilm cells by 4.5 log after 2 h of treatment on glass slide surfaces. The results suggest that two novel endolysins could be alternative antimicrobial agents for controlling E. faecalis infections.
Collapse
Affiliation(s)
- Chen Wang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Junxin Zhao
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunzhi Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Su Zar Chi Lwin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Mohamed El-Telbany
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.W.); (J.Z.); (Y.L.); (S.Z.C.L.); (M.E.-T.)
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Facultuy of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (Y.M.); (K.-i.H.)
| |
Collapse
|
32
|
Datta LP, Dutta D, Mukherjee R, Das TK, Biswas S. Polyoxometalate-Polymer Directed Macromolecular Architectonics of Silver Nanoparticles as Effective Antimicrobials. Chem Asian J 2024; 19:e202400344. [PMID: 38822687 DOI: 10.1002/asia.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
A novel inorganic-organic-inorganic ternary bioactive material formulated on antimicrobial peptide-based polymer has been reported. Supramolecular approach has been employed to incorporate molecularly crowded tyrosine-based polymer stabilized silver nanoparticles into membrane bound vesicles exploiting polyoxometalate-triggered surface templating strategy. Utilizing the covalent reversible addition fragmentation chain transfer (RAFT) polymerization and exploiting templated supramolecular architectonics at biopolymer interface, the bioactive ternary polymeric nanohybrids have been designed against Shigellosis leveraging the antibacterial activities of silver nanoparticle, cationic amphiphilic tyrosine polymer and inorganic polyoxometalate. The detail investigation against Shigella flexneri 2a cell line demonstrates that the collaborative mechanism of the ternary hybrid composite enhances the bactericidal activity in comparison to only polyoxometalate and polymer stabilized silver nanoparticle with an altered mechanism of action which is established via detailed biological analysis.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Tapan Kumar Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Subharanjan Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| |
Collapse
|
33
|
Tahir H, Rashid F, Ali S, Summer M, Abaidullah R. Spectrophotometrically, Spectroscopically, Microscopically and Thermogravimetrically Optimized TiO 2 and ZnO Nanoparticles and their Bactericidal, Antioxidant and Cytotoxic Potential: A Novel Comparative Approach. J Fluoresc 2024; 34:2019-2033. [PMID: 37672182 DOI: 10.1007/s10895-023-03367-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 09/07/2023]
Abstract
Current study was aimed to determine the antibacterial, antioxidant and cytotoxic potential of Titanium dioxide nanoparticles (TiO2NPs) and Zinc oxide nanoparticles (ZnONPs). Nanoparticles were characterized by UV-Vis spectrophotometry, particle size analyzer (PSA), fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The Minimum inhibitory concentration (MIC) was determined by standard agar dilution method. Antibacterial potential of nanoparticles was analyzed by standard disc diffusion method against bacterial strains including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumonia. Different concentrations of NPs (0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4 mg/mL) were incorporated to evaluate the antimicrobial activity. Antioxidant activity and cytotoxicity of these NPs was analyzed by DPPH method and brine shrimp cytotoxicity assay, respectively. The MIC of TiO2NPs against E. coli, P. aeruginosa and K. pneumoniae was 0.04, 0.08 and 0.07 mg/mL respectively while the MIC of ZnONPs against the above strains was 0.01, 0.015 and 0.01 mg/mL. The maximum zone of inhibition was observed for K. pneumoniae i.e., 20mm and 25mm against TiO2 and ZnO NPs respectively, at 1.4 mg/mL concentration of NPs. The susceptibility of NPs against bacterial strains was evaluated in the following order: K. pneumoniae > P. aeruginosa > E. coli. The antioxidant activity of nanoparticles increased by increasing the concentration of NPs while cytotoxic analysis exhibited non-toxic effect of ZnO NPs while TiO2 had toxic effects on 1.2 and 1.4 mg/mL concentrations. Results revealed that ZnO NPs have more antibacterial and negligible cytotoxic potential in contrast to TiO2 NPs.
Collapse
Affiliation(s)
- Hunaiza Tahir
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Farzana Rashid
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Lahore, Pakistan.
| | - Muhammad Summer
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
34
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
35
|
Baindara P, Dinata R, Mandal SM. Marine Bacteriocins: An Evolutionary Gold Mine to Payoff Antibiotic Resistance. Mar Drugs 2024; 22:388. [PMID: 39330269 PMCID: PMC11433236 DOI: 10.3390/md22090388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The rapid evolution of drug resistance is one of the greatest health issues of the 21st century. There is an alarming situation to find new therapeutic strategies or candidate drugs to tackle ongoing multi-drug resistance development. The marine environment is one of the prime natural ecosystems on Earth, the majority of which is still unexplored, especially when it comes to the microbes. A wide variety of bioactive compounds have been obtained from a varied range of marine organisms; however, marine bacteria-produced bacteriocins are still undermined. Owing to the distinct environmental stresses that marine bacterial communities encounter, their bioactive compounds frequently undergo distinct adaptations that confer on them a variety of shapes and functions, setting them apart from their terrestrial counterparts. Bacterially produced ribosomally synthesized and posttranslationally modified peptides (RiPPs), known as bacteriocins, are one of the special interests to be considered as an alternative to conventional antibiotics because of their variety in structure and diverse potential biological activities. Additionally, the gut microbiome of marine creatures are a largely unexplored source of new bacteriocins with promising activities. There is a huge possibility of novel bacteriocins from marine bacterial communities that might come out as efficient candidates to fight against antibiotic resistance, especially in light of the growing pressure from antibiotic-resistant diseases and industrial desire for innovative treatments. The present review summarizes known and fully characterized marine bacteriocins, their evolutionary aspects, challenges, and the huge possibilities of unexplored novel bacteriocins from marine bacterial communities present in diverse marine ecosystems.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Roy Dinata
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India;
| | - Santi M. Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA;
| |
Collapse
|
36
|
Fu Y, Yu S, Li J, Lao Z, Yang X, Lin Z. DeepMineLys: Deep mining of phage lysins from human microbiome. Cell Rep 2024; 43:114583. [PMID: 39110597 DOI: 10.1016/j.celrep.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/21/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Vast shotgun metagenomics data remain an underutilized resource for novel enzymes. Artificial intelligence (AI) has increasingly been applied to protein mining, but its conventional performance evaluation is interpolative in nature, and these trained models often struggle to extrapolate effectively when challenged with unknown data. In this study, we present a framework (DeepMineLys [deep mining of phage lysins from human microbiome]) based on the convolutional neural network (CNN) to identify phage lysins from three human microbiome datasets. When validated with an independent dataset, our method achieved an F1-score of 84.00%, surpassing existing methods by 20.84%. We expressed 16 lysin candidates from the top 100 sequences in E. coli, confirming 11 as active. The best one displayed an activity 6.2-fold that of lysozyme derived from hen egg white, establishing it as the most potent lysin from the human microbiome. Our study also underscores several important issues when applying AI to biology questions. This framework should be applicable for mining other proteins.
Collapse
Affiliation(s)
- Yiran Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuting Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
37
|
Hong SH, Lee MH, Go EJ, Park JC. A promising strategy for combating bacterial infections through the use of light-triggered ROS in Ce6-immobilized hydrogels. Regen Biomater 2024; 11:rbae101. [PMID: 39323742 PMCID: PMC11424027 DOI: 10.1093/rb/rbae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 09/27/2024] Open
Abstract
The reactive oxygen species (ROS) are composed of highly reactive molecules, including superoxide anions (O 2 • - ), hydrogen peroxide (H2O2) and hydroxyl radicals. Researchers have explored the potential benefits of using hydrogel dressings that incorporate active substances to accelerate wound healing. The present investigation involved the development of a hyaluronic acid (HA) hydrogel capable of producing ROS using LED irradiation. The process of creating a composite hydrogel was created by chemically bonding Ce6 to an amide group. Our analysis revealed that the synthesized hydrogel had a well-structured amide bond, and the degree of cross-linking was assessed through swelling, enzyme stability and cytotoxicity tests. ROS production was found to be influenced by both the intensity and duration of light exposure. Furthermore, in situations where cell toxicity resulting from ROS generation in the hydrogel surpassed 70%, no detectable genotoxic consequences were evident, and antibacterial activity was confirmed to be directly caused by the destruction of bacterial membranes as a result of ROS damage. Furthermore, the utilization of the generated ROS influences the polarization of macrophages, resulting in the secretion of pro-inflammatory cytokines, which is a characteristic feature of M1 polarization. Subsequently, we validated the efficacy of a HA hydrogel that produces ROS to directly eradicate microorganisms. Furthermore, this hydrogel facilitated indirect antibacterial activity by stimulating macrophages to release pro-inflammatory cytokines. These cytokines are crucial for coordinating cell-mediated immune responses and for modulating the overall effectiveness of the immune system. Therefore, the Ce6-HA hydrogel has the potential to serve as an effective wound dressing solution for infected wounds because of its ability to produce substantial levels or a consistent supply.
Collapse
Affiliation(s)
- Seung Hee Hong
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Mi Hee Lee
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Eun Jeong Go
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Chul Park
- Department of Medical Engineering, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University, College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
38
|
Qi J, Yu B, Hu Y, Luo Y, Zheng P, Mao X, Yu J, Zhao X, He T, Yan H, Wu A, He J. Protective Effect of Coated Benzoic Acid on Intestinal Epithelium in Weaned Pigs upon Enterotoxigenic Escherichia coli Challenge. Animals (Basel) 2024; 14:2405. [PMID: 39199939 PMCID: PMC11350680 DOI: 10.3390/ani14162405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The study was designed to investigate the protective effect of dietary supplementation with coated benzoic acid (CBA) on intestinal barrier function in weaned pigs challenged with enterotoxigenic Escherichia coli (ETEC). Thirty-two pigs were randomized to four treatments and given either a basal diet or a basal diet supplemented with 3.0 g/kg CBA, followed by oral administration of ETEC or culture medium. The results showed that CBA supplementation increased the average daily weight gain (ADWG) in the ETEC-challenged pigs (p < 0.05). CBA also increased the serum activity of total superoxide dismutase (T-SOD) and the total antioxidant capacity (T-AOC), as it decreased the serum concentrations of endotoxin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the ETEC-challenged pigs (p < 0.05). Interestingly, the CBA alleviated the ETEC-induced intestinal epithelial injury, as indicated by a reversal of the decrease in D-xylose absorption and a decrease in the serum levels of D-lactate and diamine oxidase (DAO) activity, as well as a decrease in the quantity of apoptotic cells in the jejunal epithelium following ETEC challenge (p < 0.05). Moreover, CBA supplementation significantly elevated the mucosal antioxidant capacity and increased the abundance of tight junction protein ZO-1 and the quantity of sIgA-positive cells in the jejunal epithelium (p < 0.05). Notably, CBA increased the expression levels of porcine beta defensin 2 (PBD2), PBD3, and nuclear factor erythroid-2 related factor 2 (Nrf-2), while downregulating the expression of toll-like receptor 4 (TLR4) in the jejunal mucosa (p < 0.05). Moreover, CBA decreased the expression levels of interleukin-1β (IL-1β), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) in the ileal mucosa upon ETEC challenge (p < 0.05). These results suggest that CBA may attenuate ETEC-induced damage to the intestinal epithelium, resulting in reduced inflammation, enhanced intestinal immunity and antioxidant capacity, and improved intestinal epithelial function.
Collapse
Affiliation(s)
- Jiawen Qi
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Youjun Hu
- Nuacid Nutrition Co., Ltd., Qingyuan 511500, China; (Y.H.); (X.Z.); (T.H.)
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiaonan Zhao
- Nuacid Nutrition Co., Ltd., Qingyuan 511500, China; (Y.H.); (X.Z.); (T.H.)
| | - Taiqian He
- Nuacid Nutrition Co., Ltd., Qingyuan 511500, China; (Y.H.); (X.Z.); (T.H.)
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; (J.Q.); (B.Y.); (Y.L.); (P.Z.); (X.M.); (J.Y.); (H.Y.); (A.W.)
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
39
|
Deonas AN, Souza LMDS, Andrade GJS, Germiniani-Cardozo J, Dahmer D, de Oliveira AG, Nakazato G, Torezan JMD, Kobayashi RKT. Green Synthesis of Silver Nanoparticle from Anadenanthera colubrina Extract and Its Antimicrobial Action against ESKAPEE Group Bacteria. Antibiotics (Basel) 2024; 13:777. [PMID: 39200077 PMCID: PMC11352003 DOI: 10.3390/antibiotics13080777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Given the urgent need for novel methods to control the spread of multidrug-resistant microorganisms, this study presents a green synthesis approach to produce silver nanoparticles (AgNPs) using the bark extract from Anadenanthera colubrina (Vell.) Brenan var. colubrina. The methodology included obtaining the extract and characterizing the AgNPs, which revealed antimicrobial activity against MDR bacteria. A. colubrina species is valued in indigenous and traditional medicine for its medicinal properties. Herein, it was employed to synthesize AgNPs with effective antibacterial activity (MIC = 19.53-78.12 μM) against clinical isolates from the ESKAPEE group, known for causing high hospitalization costs and mortality rates. Despite its complexity, AgNP synthesis is an affordable method with minimal environmental impacts and risks. Plant-synthesized AgNPs possess unique characteristics that affect their biological activity and cytotoxicity. In this work, A. colubrina bark extract resulted in the synthesis of nanoparticles measuring 75.62 nm in diameter, with a polydispersity index of 0.17 and an average zeta potential of -29 mV, as well as low toxicity for human erythrocytes, with a CC50 value in the range of 961 μM. This synthesis underscores its innovative potential owing to its low toxicity, suggesting applicability across several areas and paving the way for future research.
Collapse
Affiliation(s)
- Anastácia Nikolaos Deonas
- Department of Microbiology, Center for Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.N.D.); (L.M.d.S.S.); (A.G.d.O.); (G.N.)
| | - Lucas Marcelino dos Santos Souza
- Department of Microbiology, Center for Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.N.D.); (L.M.d.S.S.); (A.G.d.O.); (G.N.)
| | - Gabriel Jonathan Sousa Andrade
- Department of Biochemistry and Biotechnology, Center for Exact Sciences, State University of Londrina, Londrina 86057-970, Brazil; (G.J.S.A.); (J.G.-C.)
| | - Jennifer Germiniani-Cardozo
- Department of Biochemistry and Biotechnology, Center for Exact Sciences, State University of Londrina, Londrina 86057-970, Brazil; (G.J.S.A.); (J.G.-C.)
| | - Débora Dahmer
- Department of Biochemistry and Biotechnology, Center for Exact Sciences, State University of Londrina, Londrina 86057-970, Brazil; (G.J.S.A.); (J.G.-C.)
| | - Admilton Gonçalves de Oliveira
- Department of Microbiology, Center for Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.N.D.); (L.M.d.S.S.); (A.G.d.O.); (G.N.)
| | - Gerson Nakazato
- Department of Microbiology, Center for Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.N.D.); (L.M.d.S.S.); (A.G.d.O.); (G.N.)
| | - José Marcelo Domingues Torezan
- Department of Animal and Plant Biology, Center for Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil;
| | - Renata Katsuko Takayama Kobayashi
- Department of Microbiology, Center for Biological Sciences, State University of Londrina, Londrina 86057-970, Brazil; (A.N.D.); (L.M.d.S.S.); (A.G.d.O.); (G.N.)
| |
Collapse
|
40
|
Barman S, Dey R, Ghosh S, Mukherjee R, Mukherjee S, Haldar J. Amino Acid-Conjugated Polymer-Silver Bromide Nanocomposites for Eradicating Polymicrobial Biofilms and Treating Burn Wound Infections. ACS Infect Dis 2024; 10:2999-3012. [PMID: 39082818 DOI: 10.1021/acsinfecdis.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The rise in antimicrobial resistance, the increasing occurrence of bacterial, and fungal infections, and the challenges posed by polymicrobial biofilms necessitate the exploration of innovative therapeutic strategies. Silver-based antimicrobials have garnered attention for their broad-spectrum activity and multimodal mechanisms of action. However, their effectiveness against single-species or polymicrobial biofilms remains limited. In this study, we present the fabrication of polymer-silver bromide nanocomposites using amino acid conjugated polymers (ACPs) through a green and water-based in situ technique. The nanocomposite architecture facilitated prolonged and controlled release of the active components. Remarkably, the nanocomposites exhibited broad-spectrum activity against multidrug-resistant (MDR) human pathogenic bacteria (MIC = 2-16 μg/mL) and fungi (MIC = 1-8 μg/mL), while displaying no detectable toxicity to human erythrocytes (HC50 > 1024 μg/mL). In contrast to existing antimicrobials and silver-based therapies, the nanocomposite effectively eradicated bacterial, fungal, and polymicrobial biofilms, and prevented the development of microbial resistance due to their membrane-active properties. Furthermore, the lead polymer-silver bromide nanocomposite demonstrated a 99% reduction in the drug-resistant Pseudomonas aeruginosa burden in a murine model of burn wound infection, along with excellent in vivo biocompatibility.
Collapse
Affiliation(s)
- Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sreyan Ghosh
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Riya Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
41
|
Zhou C, Wang Q, Cao H, Jiang J, Gao L. Nanozybiotics: Advancing Antimicrobial Strategies Through Biomimetic Mechanisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403362. [PMID: 38874860 DOI: 10.1002/adma.202403362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Infectious diseases caused by bacterial, viral, and fungal pathogens present significant global health challenges. The rapid emergence of antimicrobial resistance exacerbates this issue, leading to a scenario where effective antibiotics are increasingly scarce. Traditional antibiotic development strategies are proving inadequate against the swift evolution of microbial resistance. Therefore, there is an urgent need to develop novel antimicrobial strategies with mechanisms distinct from those of existing antibiotics. Nanozybiotics, which are nanozyme-based antimicrobials, mimic the catalytic action of lysosomal enzymes in innate immune cells to kill infectious pathogens. This review reinforces the concept of nanozymes and provides a comprehensive summary of recent research advancements on potential antimicrobial candidates. Initially, nanozybiotics are categorized based on their activities, mimicking either oxidoreductase-like or hydrolase-like functions, thereby highlighting their superior mechanisms in combating antimicrobial resistance. The review then discusses the progress of nanozybiotics in treating bacterial, viral, and fungal infections, confirming their potential as novel antimicrobial candidates. The translational potential of nanozybiotic-based products, including hydrogels, nanorobots, sprays, bandages, masks, and protective clothing, is also considered. Finally, the current challenges and future prospects of nanozybiotic-related products are explored, emphasizing the design and antimicrobial capabilities of nanozybiotics for future applications.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Haolin Cao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Haidian, Beijing, 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang, Beijing, 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, 450052, China
| |
Collapse
|
42
|
Wu T, Zhou M, Zou J, Chen Q, Qian F, Kurths J, Liu R, Tang Y. AI-guided few-shot inverse design of HDP-mimicking polymers against drug-resistant bacteria. Nat Commun 2024; 15:6288. [PMID: 39060236 PMCID: PMC11282099 DOI: 10.1038/s41467-024-50533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Host defense peptide (HDP)-mimicking polymers are promising therapeutic alternatives to antibiotics and have large-scale untapped potential. Artificial intelligence (AI) exhibits promising performance on large-scale chemical-content design, however, existing AI methods face difficulties on scarcity data in each family of HDP-mimicking polymers (<102), much smaller than public polymer datasets (>105), and multi-constraints on properties and structures when exploring high-dimensional polymer space. Herein, we develop a universal AI-guided few-shot inverse design framework by designing multi-modal representations to enrich polymer information for predictions and creating a graph grammar distillation for chemical space restriction to improve the efficiency of multi-constrained polymer generation with reinforcement learning. Exampled with HDP-mimicking β-amino acid polymers, we successfully simulate predictions of over 105 polymers and identify 83 optimal polymers. Furthermore, we synthesize an optimal polymer DM0.8iPen0.2 and find that this polymer exhibits broad-spectrum and potent antibacterial activity against multiple clinically isolated antibiotic-resistant pathogens, validating the effectiveness of AI-guided design strategy.
Collapse
Affiliation(s)
- Tianyu Wu
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Qian
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, 14473, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
- The Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200433, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yang Tang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
43
|
Singh R, Sharma S, Kautu A, Joshi KB. Self-assembling short peptide amphiphiles as versatile delivery agents: a new frontier in antibacterial research. Chem Commun (Camb) 2024; 60:7687-7696. [PMID: 38958435 DOI: 10.1039/d4cc01762e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-assembling short peptide amphiphiles, crafted through a minimalistic approach, spontaneously generate well-ordered nanostructures, facilitating the creation of precise nanostructured biomaterials for diverse biomedical applications. The seamless integration of bioactive metal ions and nanoparticles endows them with the potential to serve as pioneering materials in combating bacterial infections. Nanomanipulation of these molecules' binary structures enables effective penetration of membranes, forming structured nanoarchitectures with antibacterial properties. Through a comprehensive exploration, we attempt to reveal the innovative potential of short peptide amphiphiles, particularly in conjugation with metal cations and nanoparticles, offering insights for future research trajectories.
Collapse
Affiliation(s)
- Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
44
|
Mahmoud AG, Sousa SA, Guedes da Silva MFC, Martins LMDRS, Leitão JH. Antimicrobial Activity of Water-Soluble Silver Complexes Bearing C-Scorpionate Ligands. Antibiotics (Basel) 2024; 13:647. [PMID: 39061329 PMCID: PMC11273918 DOI: 10.3390/antibiotics13070647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The novel hydrosoluble silver coordination polymer [Ag(NO3)(μ-1κN;2κN',N″-TPMOH)]n (1) (TPMOH = tris(1H-pyrazol-1-yl)ethanol) was obtained and characterized. While single crystal X-ray diffraction analysis of compound 1 disclosed an infinite 1D helical chain structure in the solid state, NMR analysis in polar solvents confirmed the mononuclear nature of compound 1 in solution. Compound 1 and the analogue [Ag(μ-1κN;2κN',N″-TPMS)]n (2) (TPMS = tris(1H-pyrazol-1-yl)methane sulfonate) were evaluated with regard to their antimicrobial activities towards the Gram-negative Escherichia coli, Pseudomonas aeruginosa, and Burkholderia contaminans, the Gram-positive Staphylococcus aureus, and the fungal species Candida albicans and Candida glabrata. Compound 1 exhibited minimal inhibitory concentration (MIC) values ranging from 2 to 7.7 µg/mL towards the tested Gram-negative bacteria, 18 µg/mL towards the Gram-positive S. aureus, and 15 and 31 µg/mL towards C. albicans and C. glabrata, respectively. Compound 2 was less effective towards the tested bacteria, with MIC values ranging from 15 to 19.6 µg/mL towards the Gram-negative bacteria and 51 µg/mL towards S. aureus; however, it was more effective against C. albicans and C. glabrata, with MIC values of about 6 µg/mL towards these fungal species. The toxicity of compounds 1 and 2 was assessed by evaluating the survival of the Caenorhabditis elegans model organism to concentrations of up to 100 µg/mL. The value of 50% lethality (LD50) could only be estimated as 73.2 µg/mL for compound 1 at 72 h, otherwise LD50 was >100 µg/mL for both compounds 1 and 2. These results indicate compounds 1 and 2 as novel silver complexes with interesting antimicrobial properties towards bacterial and fungal pathogens.
Collapse
Affiliation(s)
- Abdallah G. Mahmoud
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Sílvia A. Sousa
- Department of Bioengineering (DBE), Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge H. Leitão
- Department of Bioengineering (DBE), Institute for Bioengineering and Biosciences (iBB), The Associate Laboratory Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
45
|
Al-Fadhli AH, Jamal WY. Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review. Front Cell Infect Microbiol 2024; 14:1410115. [PMID: 38994001 PMCID: PMC11238145 DOI: 10.3389/fcimb.2024.1410115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Antibiotic resistance, a known global health challenge, involves the flow of bacteria and their genes among animals, humans, and their surrounding environment. It occurs when bacteria evolve and become less responsive to the drugs designated to kill them, making infections harder to treat. Despite several obstacles preventing the spread of genes and bacteria, pathogens regularly acquire novel resistance factors from other species, which reduces their ability to prevent and treat such bacterial infections. This issue requires coordinated efforts in healthcare, research, and public awareness to address its impact on human health worldwide. This review outlines how recent advances in gene editing technology, especially CRISPR/Cas9, unveil a breakthrough in combating antibiotic resistance. Our focus will remain on the relationship between CRISPR/cas9 and its impact on antibiotic resistance and its related infections. Moreover, the prospects of this new advanced research and the challenges of adopting these technologies against infections will be outlined by exploring its different derivatives and discussing their advantages and limitations over others, thereby providing a corresponding reference for the control and prevention of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Amani H Al-Fadhli
- Laboratory Sciences, Department of Medical, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Jabriya, Kuwait
| | - Wafaa Yousef Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
46
|
Gupta S, Luxami V, Paul K. Bacterial cell death to overcome drug resistance with multitargeting bis-naphthalimides as potent antibacterial agents against Enterococcus faecalis. J Mater Chem B 2024; 12:5645-5660. [PMID: 38747306 DOI: 10.1039/d3tb02804f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The increasing frequency of drug-resistant pathogens poses serious health issues to humans around the globe, leading to the development of new antibacterial agents to conquer drug resistance and bacterial infections. In view of this, we have synthesized a series of bis-naphthalimides to respond to awful drug resistance. Bioactivity assay and structure-activity relationship disclosed that compounds 5d and 5o exhibit potent antibacterial activity against E. faecalis, outperforming the marketed antibiotics. These drug candidates not only inhibit the biofilm formation of E. faecalis but also display rapid bactericidal properties, thus delaying the development of drug resistance within 20 passages. To explore the mechanism of antibacterial activity against E. faecalis, biofunctional examination was carried out which unveiled that 5d and 5o effectively disrupt bacterial cell membranes, causing the leakage of cytoplasmic contents and metabolic activity loss. Concurrently, 5d and 5o effectively intercalate with DNA to block DNA replication, causing the build-up of excessive reactive oxygen species and inhibiting the glutathione activity, ultimately leading to oxidative damage of E. faecalis and cell death. In addition, these compounds readily bind with HSA with a high binding constant, indicating that these drug candidates could be easily delivered to the target site. The above finding manifested that these newly synthesized bis-naphthalimides with multitargeting antibacterial properties offer a new prospect to overcome drug resistance.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| | - Vijay Luxami
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| | - Kamaldeep Paul
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
| |
Collapse
|
47
|
Li Z, Baidoun R, Brown AC. Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans. Colloids Surf B Biointerfaces 2024; 238:113870. [PMID: 38555763 PMCID: PMC11148792 DOI: 10.1016/j.colsurfb.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
48
|
Ravishankar S, Baldelli V, Angeletti C, Raffaelli N, Landini P, Rossi E. Fluoropyrimidines affect de novo pyrimidine synthesis impairing biofilm formation in Escherichia coli. Biofilm 2024; 7:100180. [PMID: 38370152 PMCID: PMC10869245 DOI: 10.1016/j.bioflm.2024.100180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Antivirulence agents are considered a promising strategy to treat bacterial infections. Fluoropyrimidines possess antivirulence and antibiofilm activity against Gram-negative bacteria; however, their mechanism of action is yet unknown. Consistent with their known antibiofilm activity, fluoropyrimidines, particularly 5-fluorocytosine (5-FC), impair curli-dependent surface adhesion by Escherichia coli MG1655 via downregulation of curli fimbriae gene transcription. Curli inhibition requires fluoropyrimidine conversion into fluoronucleotides and is not mediated by c-di-GMP or the ymg-rcs envelope stress response axis, previously suggested as the target of fluorouracil antibiofilm activity in E. coli. In contrast, 5-FC hampered the transcription of curli activators RpoS and stimulated the expression of Fis, a curli repressor affected by nucleotide availability. This last observation suggested a possible perturbation of the de novo pyrimidine biosynthesis by 5-FC: indeed, exposure to 5-FC resulted in a ca. 2-fold reduction of UMP intracellular levels while not affecting ATP. Consistently, expression of the de novo pyrimidine biosynthesis genes carB and pyrB was upregulated in the presence of 5-FC. Our results suggest that the antibiofilm activity of fluoropyrimidines is mediated, at least in part, by perturbation of the pyrimidine nucleotide pool. We screened a genome library in search of additional determinants able to counteract the effects of 5-FC. We found that a DNA fragment encoding the unknown protein D8B36_18,480 and the N-terminal domain of the penicillin-binding protein 1b (PBP1b), involved in peptidoglycan synthesis, could restore curli production in the presence of 5-FC. Deletion of the PBP1b-encoding gene mrcB, induced csgBAC transcription, while overexpression of the gene encoding the D8B36_18,480 protein obliterated its expression, possibly as part of a coordinated response in curli regulation with PBP1b. While the two proteins do not appear to be direct targets of 5-FC, their involvement in curli regulation suggests a connection between peptidoglycan biosynthesis and curli production, which might become even more relevant upon pyrimidine starvation and reduced availability of UDP-sugars needed in cell wall biosynthesis. Overall, our findings link the antibiofilm activity of fluoropyrimidines to the redirection of at least two global regulators (RpoS, Fis) by induction of pyrimidine starvation. This highlights the importance of the de novo pyrimidines biosynthesis pathway in controlling virulence mechanisms in different bacteria and makes the pathway a potential target for antivirulence strategies.
Collapse
Affiliation(s)
| | | | - Carlo Angeletti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Italy
| | - Paolo Landini
- Department of Biosciences, University of Milan, Milan, Italy
| | - Elio Rossi
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Sharma HK, Karna A, Verma SK, Gupta P, Nagpal D, Kumar A, Pandita D, Mukherjee M, Parmar VS, Agarwal P, Lather V. Exploring the Synergistic Effect of Thymol with Oxacillin against Methicillin Resistant Staphylococcus aureus. Indian J Microbiol 2024. [DOI: 10.1007/s12088-024-01311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/11/2024] [Indexed: 01/12/2025] Open
|
50
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|