1
|
Ingholt MM, Simonsen L, Mamelund SE, Noahsen P, van Wijhe M. The 1919-21 influenza pandemic in Greenland. Int J Circumpolar Health 2024; 83:2325711. [PMID: 38446074 PMCID: PMC10919313 DOI: 10.1080/22423982.2024.2325711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
In Alaska, the 1918-20 influenza pandemic was devastating, with mortality rates up to 90% of the population, while in other arctic regions in northern Sweden and Norway mortality was considerably lower. We investigated the timing and age-patterns in excess mortality in Greenland during the period 1918-21 and compare these to other epidemics and the 1889-92 pandemic. We accessed the Greenlandic National Archives and transcribed all deaths from 1880 to 1921 by age, geography, and cause of death. We estimated monthly excess mortality and studied the spatial-temporal patterns of the pandemics and compared them to other mortality crises in the 40-year period. The 1918-21 influenza pandemic arrived in Greenland in the summer of 1919, one year delayed due to ship traffic interruptions during the winter months. We found that 5.2% of the Greenland population died of the pandemic with substantial variability between counties (range, 0.1% to 11%). We did not see the typical pandemic age-pattern of high young-adult mortality, possibly due to high baseline mortality in this age-group or remoteness. However, despite substantial mortality, the mortality impact was not standing out relative to other mortality crises, or of similar devastation reported in Alaskan populations.
Collapse
Affiliation(s)
- Mathias Mølbak Ingholt
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
- Cambridge Group for the History of Population and Social Structure, Department of Geography, Downing Place, Cambridge, UK
| | - Lone Simonsen
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | | | - Paneeraq Noahsen
- Governmental agency, National Board of Health in Greenland, Nuuk, Greenland
| | - Maarten van Wijhe
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
2
|
Hay JA, Routledge I, Takahashi S. Serodynamics: A primer and synthetic review of methods for epidemiological inference using serological data. Epidemics 2024; 49:100806. [PMID: 39647462 DOI: 10.1016/j.epidem.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024] Open
Abstract
We present a review and primer of methods to understand epidemiological dynamics and identify past exposures from serological data, referred to as serodynamics. We discuss processing and interpreting serological data prior to fitting serodynamical models, and review approaches for estimating epidemiological trends and past exposures, ranging from serocatalytic models applied to binary serostatus data, to more complex models incorporating quantitative antibody measurements and immunological understanding. Although these methods are seemingly disparate, we demonstrate how they are derived within a common mathematical framework. Finally, we discuss key areas for methodological development to improve scientific discovery and public health insights in seroepidemiology.
Collapse
Affiliation(s)
- James A Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| | - Isobel Routledge
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Van Vinh Chau N, Loes AN, Huddleston J, Yu TC, Quynh Le M, Nhat NTD, Thi Le Thanh N, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. Cell Host Microbe 2024; 32:1397-1411.e11. [PMID: 39032493 PMCID: PMC11329357 DOI: 10.1016/j.chom.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
MESH Headings
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Mutation
- Adult
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Influenza, Human/virology
- Influenza, Human/immunology
- Age Factors
- Middle Aged
- Young Adult
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Adolescent
- Evolution, Molecular
- Aged
- Child
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA 98109, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA 98109, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Edler P, Schwab LSU, Aban M, Wille M, Spirason N, Deng YM, Carlock MA, Ross TM, Juno JA, Rockman S, Wheatley AK, Kent SJ, Barr IG, Price DJ, Koutsakos M. Immune imprinting in early life shapes cross-reactivity to influenza B virus haemagglutinin. Nat Microbiol 2024; 9:2073-2083. [PMID: 38890491 DOI: 10.1038/s41564-024-01732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Influenza exposures early in life are believed to shape future susceptibility to influenza infections by imprinting immunological biases that affect cross-reactivity to future influenza viruses. However, direct serological evidence linked to susceptibility is limited. Here we analysed haemagglutination-inhibition titres in 1,451 cross-sectional samples collected between 1992 and 2020, from individuals born between 1917 and 2008, against influenza B virus (IBV) isolates from 1940 to 2021. We included testing of 'future' isolates that circulated after sample collection. We show that immunological biases are conferred by early life IBV infection and result in lineage-specific cross-reactivity of a birth cohort towards future IBV isolates. This translates into differential estimates of susceptibility between birth cohorts towards the B/Yamagata and B/Victoria lineages, predicting lineage-specific birth-cohort distributions of observed medically attended IBV infections. Our data suggest that immunological measurements of imprinting could be important in modelling and predicting virus epidemiology.
Collapse
Affiliation(s)
- Peta Edler
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Lara S U Schwab
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Malet Aban
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Spirason
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yi-Mo Deng
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Centre, Cleveland Clinic, Port Saint Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Centre, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Vaccine Product Development, CSL Seqirus Ltd, Parkville, Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ian G Barr
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J Price
- Department of Infectious Diseases, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Centre for Epidemiology & Biostatistics, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Wang L, Huang AT, Katzelnick LC, Lefrancq N, Escoto AC, Duret L, Chowdhury N, Jarman R, Conte MA, Berry IM, Fernandez S, Klungthong C, Thaisomboonsuk B, Suntarattiwong P, Vandepitte W, Whitehead SS, Cauchemez S, Cummings DAT, Salje H. Antigenic distance between primary and secondary dengue infections correlates with disease risk. Sci Transl Med 2024; 16:eadk3259. [PMID: 38657027 DOI: 10.1126/scitranslmed.adk3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection even in previously exposed individuals. In addition, for some pathogens, such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease through a mechanism known as antibody-dependent enhancement. However, it remains unclear whether the antigenic distances between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalizations across years. Here, we develop a framework that combines detailed antigenic and genetic characterization of viruses with details on hospitalized cases from 21 years of dengue surveillance in Bangkok, Thailand, to identify the role of the antigenic profile of circulating viruses in determining disease risk. We found that the risk of hospitalization depended on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximized at intermediate antigenic distances. These findings suggest that immune imprinting helps determine dengue disease risk and provide a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.
Collapse
Affiliation(s)
- Lin Wang
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Angkana T Huang
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Leah C Katzelnick
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Ana Coello Escoto
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loréna Duret
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Nayeem Chowdhury
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Jarman
- Coalition for Epidemic Preparedness Initiative, Washington, DC 20006, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand
| | | | - Warunee Vandepitte
- Queen Sirikit National Institute of Child Health, Bangkok 10400, Thailand
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris 75015, France
| | - Derek A T Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, UK
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Hay JA, Zhu H, Jiang CQ, Kwok KO, Shen R, Kucharski A, Yang B, Read JM, Lessler J, Cummings DAT, Riley S. Reconstructed influenza A/H3N2 infection histories reveal variation in incidence and antibody dynamics over the life course. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.18.24304371. [PMID: 38562868 PMCID: PMC10984066 DOI: 10.1101/2024.03.18.24304371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Humans experience many influenza infections over their lives, resulting in complex and varied immunological histories. Although experimental and quantitative analyses have improved our understanding of the immunological processes defining an individual's antibody repertoire, how these within-host processes are linked to population-level influenza epidemiology remains unclear. Here, we used a multi-level mathematical model to jointly infer antibody dynamics and individual-level lifetime influenza A/H3N2 infection histories for 1,130 individuals in Guangzhou, China, using 67,683 haemagglutination inhibition (HI) assay measurements against 20 A/H3N2 strains from repeat serum samples collected between 2009 and 2015. These estimated infection histories allowed us to reconstruct historical seasonal influenza patterns and to investigate how influenza incidence varies over time, space and age in this population. We estimated median annual influenza infection rates to be approximately 18% from 1968 to 2015, but with substantial variation between years. 88% of individuals were estimated to have been infected at least once during the study period (2009-2015), and 20% were estimated to have three or more infections in that time. We inferred decreasing infection rates with increasing age, and found that annual attack rates were highly correlated across all locations, regardless of their distance, suggesting that age has a stronger impact than fine-scale spatial effects in determining an individual's antibody profile. Finally, we reconstructed each individual's expected antibody profile over their lifetime and inferred an age-stratified relationship between probability of infection and HI titre. Our analyses show how multi-strain serological panels provide rich information on long term, epidemiological trends, within-host processes and immunity when analyzed using appropriate inference methods, and adds to our understanding of the life course epidemiology of influenza A/H3N2.
Collapse
Affiliation(s)
- James A. Hay
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Imperial College London
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/MOE Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (Shantou University/The University of Hong Kong), Shantou University, Shantou, China
- State Key Laboratory of Emerging Infectious Diseases / World Health Organization Influenza Reference Laboratory, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- 5EKIH (Gewuzhikang) Pathogen Research Institute, Guangdong, China
| | | | - Kin On Kwok
- The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Hong Kong Institute of Asia-Pacific Studies, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Ruiyin Shen
- Guangzhou No.12 Hospital, Guangzhou, Guangdong, China
| | - Adam Kucharski
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Bingyi Yang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jonathan M. Read
- Centre for Health Informatics Computing and Statistics, Lancaster University, Lancaster, United Kingdom
| | - Justin Lessler
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
- Department of Epidemiology, UNC Gillings School of Global Public Health, Chapel Hill, United States
- UNC Carolina Population Center, Chapel Hill, United States
| | - Derek A. T. Cummings
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Steven Riley
- MRC Centre for Global Infectious Disease Analysis, Imperial College London
| |
Collapse
|
7
|
Welsh FC, Eguia RT, Lee JM, Haddox HK, Galloway J, Chau NVV, Loes AN, Huddleston J, Yu TC, Le MQ, Nhat NTD, Thanh NTL, Greninger AL, Chu HY, Englund JA, Bedford T, Matsen FA, Boni MF, Bloom JD. Age-dependent heterogeneity in the antigenic effects of mutations to influenza hemagglutinin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571235. [PMID: 38168237 PMCID: PMC10760046 DOI: 10.1101/2023.12.12.571235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population, and how this heterogeneity affects virus evolution. Here we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of the A/Hong Kong/45/2019 (H3N2) and A/Perth/16/2009 (H3N2) strains affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that fixed in influenza variants after 2020 cause the greatest escape from sera from younger individuals. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups, and suggest approaches to understand how this heterogeneous selection shapes viral evolution.
Collapse
Affiliation(s)
- Frances C Welsh
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Rachel T Eguia
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Juhye M Lee
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Hugh K Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jared Galloway
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Nguyen Van Vinh Chau
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Andrea N Loes
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Timothy C Yu
- Molecular and Cellular Biology Graduate Program, University of Washington, and Basic Sciences Division, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Mai Quynh Le
- National Institutes for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nguyen T D Nhat
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen Thi Le Thanh
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Janet A Englund
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Trevor Bedford
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Frederick A Matsen
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| | - Maciej F Boni
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, Seattle, WA, 98109, USA
| |
Collapse
|
8
|
He P, Xia K, Song Y, Tandon R, Channappanavar R, Zhang F, Linhardt RJ. Synthesis of multivalent sialyllactose-conjugated PAMAM dendrimers: Binding to SARS-CoV-2 spike protein and influenza hemagglutinin. Int J Biol Macromol 2023; 246:125714. [PMID: 37423440 PMCID: PMC10528195 DOI: 10.1016/j.ijbiomac.2023.125714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) and influenza viruses have spread around the world at an unprecedented rate. Despite multiple vaccines, new variants of SARS-CoV-2 and influenza have caused a remarkable level of pathogenesis. The development of effective antiviral drugs to treat SARS-CoV-2 and influenza remains a high priority. Inhibiting viral cell surface attachment represents an early and efficient means to block virus infection. Sialyl glycoconjugates, on the surface of human cell membranes, play an important role as host cell receptors for influenza A virus and 9-O-acetyl-sialylated glycoconjugates are receptors for MERS, HKU1 and bovine coronaviruses. We designed and synthesized multivalent 6'-sialyllactose-counjugated polyamidoamine dendrimers through click chemistry at room temperature concisely. These dendrimer derivatives have good solubility and stability in aqueous solutions. SPR, a real-time analysis quantitative method for of biomolecular interactions, was used to study the binding affinities of our dendrimer derivatives by utilizing only 200 micrograms of each dendrimer. Three SARS-CoV-2 S-protein receptor binding domain (wild type and two Omicron mutants) bound to multivalent 9-O-acetyl-6'-sialyllactose-counjugated and 6'-sialyllactose-counjugated dendrimers bound to a single H3N2 influenza A virus's HA protein (A/Hong Kong/1/1968), the SPR study results suggest their potential anti-viral activities.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ritesh Tandon
- Center for Immunology and Microbial Research, Department of Cell Biology, Medicine and BioMolecular Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rudra Channappanavar
- Department of Veterinary Pathobiology, Oklahoma Center for Respiratory and Infectious Diseases (OCRID), Oklahoma State University, Stillwater, OK, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
9
|
Wang L, Huang AT, Katzelnick LC, Lefrancq N, Escoto AC, Duret L, Chowdhury N, Jarman R, Conte MA, Berry IM, Fernandez S, Klungthong C, Thaisomboonsuk B, Suntarattiwong P, Vandepitte W, Whitehead S, Cauchemez S, Cummings DA, Salje H. Antigenic diversity and dengue disease risk. RESEARCH SQUARE 2023:rs.3.rs-3214507. [PMID: 37577717 PMCID: PMC10418532 DOI: 10.21203/rs.3.rs-3214507/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection. In addition, for some pathogens such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease, through a mechanism known as antibody-dependent enhancement. However, it remains a mystery whether the antigenic distance between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalisations across years. Here we develop an inferential framework that combines detailed antigenic and genetic characterisation of viruses, and hospitalised cases from 21 years of surveillance in Bangkok, Thailand to identify the role of the antigenic profile of circulating viruses in determining disease risk. We find that the risk of hospitalisation depends on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximised at intermediate antigenic distances. These findings suggest immune imprinting helps determine dengue disease risk, and provides a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.
Collapse
Affiliation(s)
- Lin Wang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Angkana T. Huang
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Leah C. Katzelnick
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Ana Coello Escoto
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Loréna Duret
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Nayeem Chowdhury
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Jarman
- Coalition for Epidemic Preparedness Initiative, Washington DC, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Chonticha Klungthong
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Stephen Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, Paris, France
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Miller ZR, Allesina S. Habitat Heterogeneity, Environmental Feedbacks, and Species Coexistence across Timescales. Am Nat 2023; 202:E53-E64. [PMID: 37531282 DOI: 10.1086/724821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractClassic ecological theory explains species coexistence in variable environments. While spatial variation is often treated as an intrinsic feature of a landscape, it may be shaped and even generated by the resident community. All species modify their local environment to some extent, driving changes that can feed back to affect the composition and coexistence of the community, potentially over timescales very different from population dynamics. We introduce a simple nested modeling framework for community dynamics in heterogeneous environments, including the possible evolution of heterogeneity over time due to community-environment feedbacks. We use this model to derive analytical conditions for species coexistence in environments where heterogeneity is either fixed or shaped by feedbacks. Among other results, our approach reveals how dispersal and environmental specialization interact to shape realized patterns of habitat association and demonstrates that environmental feedbacks can tune landscape conditions to allow the stable coexistence of any number of species. Our flexible modeling framework helps explain feedback dynamics that arise in a wide range of ecosystems and offers a generic platform for exploring the interplay between species and landscape diversity.
Collapse
|
11
|
Cao F, Peng S, An Y, Xu K, Zheng T, Dai L, Ogino K, Ngai T, Xia Y, Ma G. Inside-out assembly of viral antigens for the enhanced vaccination. Signal Transduct Target Ther 2023; 8:189. [PMID: 37221173 DOI: 10.1038/s41392-023-01414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 03/08/2023] [Indexed: 05/25/2023] Open
Abstract
Current attempts in vaccine delivery systems concentrate on replicating the natural dissemination of live pathogens, but neglect that pathogens evolve to evade the immune system rather than to provoke it. In the case of enveloped RNA viruses, it is the natural dissemination of nucleocapsid protein (NP, core antigen) and surface antigen that delays NP exposure to immune surveillance. Here, we report a multi-layered aluminum hydroxide-stabilized emulsion (MASE) to dictate the delivery sequence of the antigens. In this manner, the receptor-binding domain (RBD, surface antigen) of the spike protein was trapped inside the nanocavity, while NP was absorbed on the outside of the droplets, enabling the burst release of NP before RBD. Compared with the natural packaging strategy, the inside-out strategy induced potent type I interferon-mediated innate immune responses and triggered an immune-potentiated environment in advance, which subsequently boosted CD40+ DC activations and the engagement of the lymph nodes. In both H1N1 influenza and SARS-CoV-2 vaccines, rMASE significantly increased antigen-specific antibody secretion, memory T cell engagement, and Th1-biased immune response, which diminished viral loads after lethal challenge. By simply reversing the delivery sequence of the surface antigen and core antigen, the inside-out strategy may offer major implications for enhanced vaccinations against the enveloped RNA virus.
Collapse
Affiliation(s)
- Fengqiang Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Yaling An
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Kun Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, The First Affiliated Hospital, Hainan Medical University, Hainan, 571199, PR China
| | - Tianyi Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo, 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 999077, PR China
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing, 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- Innovation Academy for Green Manufacture Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
12
|
Cable J, Sun J, Cheon IS, Vaughan AE, Castro IA, Stein SR, López CB, Gostic KM, Openshaw PJM, Ellebedy AH, Wack A, Hutchinson E, Thomas MM, Langlois RA, Lingwood D, Baker SF, Folkins M, Foxman EF, Ward AB, Schwemmle M, Russell AB, Chiu C, Ganti K, Subbarao K, Sheahan TP, Penaloza-MacMaster P, Eddens T. Respiratory viruses: New frontiers-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1522:60-73. [PMID: 36722473 PMCID: PMC10580159 DOI: 10.1111/nyas.14958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory viruses are a common cause of morbidity and mortality around the world. Viruses like influenza, RSV, and most recently SARS-CoV-2 can rapidly spread through a population, causing acute infection and, in vulnerable populations, severe or chronic disease. Developing effective treatment and prevention strategies often becomes a race against ever-evolving viruses that develop resistance, leaving therapy efficacy either short-lived or relevant for specific viral strains. On June 29 to July 2, 2022, researchers met for the Keystone symposium "Respiratory Viruses: New Frontiers." Researchers presented new insights into viral biology and virus-host interactions to understand the mechanisms of disease and identify novel treatment and prevention approaches that are effective, durable, and broad.
Collapse
Affiliation(s)
| | - Jie Sun
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - In Su Cheon
- Division of Pulmonary and Critical Medicine, Department of Medicine; Department of Immunology; and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Carter Immunology Center and Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Andrew E Vaughan
- University of Pennsylvania School of Veterinary Medicine, Biomedical Sciences, Philadelphia, Pennsylvania, USA
| | - Italo A Castro
- Virology Research Center, Ribeirao Preto Medical School, University of São Paulo - USP, São Paulo, Brazil
| | - Sydney R Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center and Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Katelyn M Gostic
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | | | - Ali H Ellebedy
- Department of Pathology and Immunology; The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs; and Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, Missouri, USA
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | | | | | - Ryan A Langlois
- Center for Immunology and Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Steven F Baker
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Melanie Folkins
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Ellen F Foxman
- Department of Laboratory Medicine and Department of Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alistair B Russell
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kanta Subbarao
- Department of Microbiology and Immunology, WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Taylor Eddens
- Pediatric Scientist Development Program, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Abstract
Since the identification of sickle cell trait as a heritable form of resistance to malaria, candidate gene studies, linkage analysis paired with sequencing, and genome-wide association (GWA) studies have revealed many examples of genetic resistance and susceptibility to infectious diseases. GWA studies enabled the identification of many common variants associated with small shifts in susceptibility to infectious diseases. This is exemplified by multiple loci associated with leprosy, malaria, HIV, tuberculosis, and coronavirus disease 2019 (COVID-19), which illuminate genetic architecture and implicate pathways underlying pathophysiology. Despite these successes, most of the heritability of infectious diseases remains to be explained. As the field advances, current limitations may be overcome by applying methodological innovations such as cellular GWA studies and phenome-wide association (PheWA) studies as well as by improving methodological rigor with more precise case definitions, deeper phenotyping, increased cohort diversity, and functional validation of candidate loci in the laboratory or human challenge studies.
Collapse
Affiliation(s)
- Kyle D Gibbs
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA;
| | - Benjamin H Schott
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, North Carolina, USA; .,Duke University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA.,Division of Infectious Diseases, Department of Medicine, School of Medicine, Duke University, Durham, North Carolina, USA
| |
Collapse
|
14
|
Kumata R, Sasaki A. Antigenic escape is accelerated by the presence of immunocompromised hosts. Proc Biol Sci 2022; 289:20221437. [PMID: 36350217 PMCID: PMC9653221 DOI: 10.1098/rspb.2022.1437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2022] [Indexed: 04/01/2024] Open
Abstract
The repeated emergence of SARS-CoV-2 escape mutants from host immunity has obstructed the containment of the current pandemic and poses a serious threat to humanity. Prolonged infection in immunocompromised patients has received increasing attention as a driver of immune escape, and accumulating evidence suggests that viral genomic diversity and emergence of immune-escape mutants are promoted in immunocompromised patients. However, because immunocompromised patients comprise a small proportion of the host population, whether they have a significant impact on antigenic evolution at the population level is unknown. We consider an evolutionary epidemiological model that combines antigenic evolution and epidemiological dynamics. Applying this model to a heterogeneous host population, we study the impact of immunocompromised hosts on the evolutionary dynamics of pathogen antigenic escape from host immunity. We derived analytical formulae of the speed of antigenic evolution in heterogeneous host populations and found that even a small number of immunocompromised hosts in the population significantly accelerates antigenic evolution. Our results demonstrate that immunocompromised hosts play a key role in viral adaptation at the population level and emphasize the importance of critical care and surveillance of immunocompromised hosts.
Collapse
Affiliation(s)
- Ryuichi Kumata
- Department of Evolutionary Studies of Biosystems, The Graduate University of Advanced Studies, SOKENDAI, Hayama, Kanagawa 2400139, Japan
| | - Akira Sasaki
- Department of Evolutionary Studies of Biosystems, The Graduate University of Advanced Studies, SOKENDAI, Hayama, Kanagawa 2400139, Japan
| |
Collapse
|
15
|
Brouwer AF, Balmaseda A, Gresh L, Patel M, Ojeda S, Schiller AJ, Lopez R, Webby RJ, Nelson MI, Kuan G, Gordon A. Birth cohort relative to an influenza A virus's antigenic cluster introduction drives patterns of children's antibody titers. PLoS Pathog 2022; 18:e1010317. [PMID: 35192673 PMCID: PMC8896668 DOI: 10.1371/journal.ppat.1010317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
An individual's antibody titers to influenza A strains are a result of the complicated interplay between infection history, cross-reactivity, immune waning, and other factors. It has been challenging to disentangle how population-level patterns of humoral immunity change as a function of age, calendar year, and birth cohort from cross-sectional data alone. We analyzed 1,589 longitudinal sera samples from 260 children across three studies in Nicaragua, 2006-16. Hemagglutination inhibition (HAI) titers were determined against four H3N2 strains, one H1N1 strain, and two H1N1pdm strains. We assessed temporal patterns of HAI titers using an age-period-cohort modeling framework. We found that titers against a given virus depended on calendar year of serum collection and birth cohort but not on age. Titer cohort patterns were better described by participants' ages relative to year of likely introduction of the virus's antigenic cluster than by age relative to year of strain introduction or by year of birth. These cohort effects may be driven by a decreasing likelihood of early-life infection after cluster introduction and by more broadly reactive antibodies at a young age. H3N2 and H1N1 viruses had qualitatively distinct cohort patterns, with cohort patterns of titers to specific H3N2 strains reaching their peak in children born 3 years prior to that virus's antigenic cluster introduction and with titers to H1N1 and H1N1pdm strains peaking for children born 1-2 years prior to cluster introduction but not being dramatically lower for older children. Ultimately, specific patterns of strain circulation and antigenic cluster introduction may drive population-level antibody titer patterns in children.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (AFB); (AG)
| | - Angel Balmaseda
- Sócrates Flores Vivas Health Center, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Lionel Gresh
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Mayuri Patel
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sergio Ojeda
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Amy J. Schiller
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roger Lopez
- Sócrates Flores Vivas Health Center, Ministry of Health, Managua, Nicaragua
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Martha I. Nelson
- Laboratory of Parasitic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro Nacional de Diagnóstico y Referencia, Ministry of Health, Managua, Nicaragua
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (AFB); (AG)
| |
Collapse
|
16
|
Affinity maturation for an optimal balance between long-term immune coverage and short-term resource constraints. Proc Natl Acad Sci U S A 2022; 119:2113512119. [PMID: 35177475 PMCID: PMC8872716 DOI: 10.1073/pnas.2113512119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Humoral immunity relies on the mutation and selection of B cells to better recognize pathogens. This affinity maturation process produces cells with diverse recognition capabilities. Examining optimal immune strategies that maximize the long-term immune coverage at a minimal metabolic cost, we show when the immune system should mount a de novo response rather than rely on existing memory cells. Our theory recapitulates known modes of the B cell response, predicts the empirical form of the distribution of clone sizes, and rationalizes as a trade-off between metabolic and immune costs the antigenic imprinting effects that limit the efficacy of vaccines (original antigenic sin). Our predictions provide a framework to interpret experimental results that could be used to inform vaccination strategies. In order to target threatening pathogens, the adaptive immune system performs a continuous reorganization of its lymphocyte repertoire. Following an immune challenge, the B cell repertoire can evolve cells of increased specificity for the encountered strain. This process of affinity maturation generates a memory pool whose diversity and size remain difficult to predict. We assume that the immune system follows a strategy that maximizes the long-term immune coverage and minimizes the short-term metabolic costs associated with affinity maturation. This strategy is defined as an optimal decision process on a finite dimensional phenotypic space, where a preexisting population of cells is sequentially challenged with a neutrally evolving strain. We show that the low specificity and high diversity of memory B cells—a key experimental result—can be explained as a strategy to protect against pathogens that evolve fast enough to escape highly potent but narrow memory. This plasticity of the repertoire drives the emergence of distinct regimes for the size and diversity of the memory pool, depending on the density of de novo responding cells and on the mutation rate of the strain. The model predicts power-law distributions of clonotype sizes observed in data and rationalizes antigenic imprinting as a strategy to minimize metabolic costs while keeping good immune protection against future strains.
Collapse
|
17
|
Sariol CA, Serrano-Collazo C, Ortiz EJ, Pantoja P, Cruz L, Arana T, Atehortua D, Pabon-Carrero C, Espino AM. Limited Impact of Delta Variant's Mutations on the Effectiveness of Neutralization Conferred by Natural Infection or COVID-19 Vaccines in a Latino Population. Viruses 2021; 13:2405. [PMID: 34960674 PMCID: PMC8707683 DOI: 10.3390/v13122405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 pandemic has impacted public health systems all over the world. The Delta variant seems to possess enhanced transmissibility, but no clear evidence suggests it has increased virulence. Our data show that pre-exposed individuals had similar neutralizing activity against the authentic COVID-19 strain and the Delta and Epsilon variants. After only one vaccine dose, the neutralization capacity expanded to all tested variants in pre-exposed individuals. Healthy vaccinated individuals showed a limited breadth of neutralization. One vaccine dose did induce similar neutralizing antibodies against the Delta as against the authentic strain. However, even after two doses, this capacity only expanded to the Epsilon variant.
Collapse
Affiliation(s)
- Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
- Department of Internal Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Crisanta Serrano-Collazo
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Edwin J. Ortiz
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
- Puerto Rico Science, Technology and Research Trust, San Juan, PR 00927, USA; (D.A.); (C.P.-C.)
| | - Petraleigh Pantoja
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Lorna Cruz
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Teresa Arana
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (C.S.-C.); (E.J.O.); (P.P.)
| | - Dianne Atehortua
- Puerto Rico Science, Technology and Research Trust, San Juan, PR 00927, USA; (D.A.); (C.P.-C.)
| | - Christina Pabon-Carrero
- Puerto Rico Science, Technology and Research Trust, San Juan, PR 00927, USA; (D.A.); (C.P.-C.)
| | - Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (L.C.); (T.A.); (A.M.E.)
| |
Collapse
|