1
|
Al-Beltagi M, Saeed NK, Bediwy AS, Bediwy EA, Elbeltagi R. Decoding the genetic landscape of autism: A comprehensive review. World J Clin Pediatr 2024; 13:98468. [PMID: 39350903 PMCID: PMC11438927 DOI: 10.5409/wjcp.v13.i3.98468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by heterogeneous symptoms and genetic underpinnings. Recent advancements in genetic and epigenetic research have provided insights into the intricate mechanisms contributing to ASD, influencing both diagnosis and therapeutic strategies. AIM To explore the genetic architecture of ASD, elucidate mechanistic insights into genetic mutations, and examine gene-environment interactions. METHODS A comprehensive systematic review was conducted, integrating findings from studies on genetic variations, epigenetic mechanisms (such as DNA methylation and histone modifications), and emerging technologies [including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and single-cell RNA sequencing]. Relevant articles were identified through systematic searches of databases such as PubMed and Google Scholar. RESULTS Genetic studies have identified numerous risk genes and mutations associated with ASD, yet many cases remain unexplained by known factors, suggesting undiscovered genetic components. Mechanistic insights into how these genetic mutations impact neural development and brain connectivity are still evolving. Epigenetic modifications, particularly DNA methylation and non-coding RNAs, also play significant roles in ASD pathogenesis. Emerging technologies like CRISPR-Cas9 and advanced bioinformatics are advancing our understanding by enabling precise genetic editing and analysis of complex genomic data. CONCLUSION Continued research into the genetic and epigenetic underpinnings of ASD is crucial for developing personalized and effective treatments. Collaborative efforts integrating multidisciplinary expertise and international collaborations are essential to address the complexity of ASD and translate genetic discoveries into clinical practice. Addressing unresolved questions and ethical considerations surrounding genetic research will pave the way for improved diagnostic tools and targeted therapies, ultimately enhancing outcomes for individuals affected by ASD.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31511, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Medical Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Muharraq, Busaiteen 15503, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonology, Faculty of Medicine, Tanta University, Alghrabia, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Manama 26671, Bahrain
| | - Eman A Bediwy
- Internal Medicine, Faculty of Medicine, Tanta University, Algharbia, Tanta 31527, Egypt
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland-Bahrain, Muharraq, Busiateen 15503, Bahrain
| |
Collapse
|
2
|
Seneff S, Kyriakopoulos AM, Nigh G. Is autism a PIN1 deficiency syndrome? A proposed etiological role for glyphosate. J Neurochem 2024; 168:2124-2146. [PMID: 38808598 DOI: 10.1111/jnc.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Greg Nigh
- Immersion Health, Portland, Oregon, USA
| |
Collapse
|
3
|
Kim JH, Seok JY, Kim YH, Kim HJ, Lee JK, Kim HR. Exposure to Radiofrequency Induces Synaptic Dysfunction in Cortical Neurons Causing Learning and Memory Alteration in Early Postnatal Mice. Int J Mol Sci 2024; 25:8589. [PMID: 39201275 PMCID: PMC11355025 DOI: 10.3390/ijms25168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
The widespread use of wireless communication devices has necessitated unavoidable exposure to radiofrequency electromagnetic fields (RF-EMF). In particular, increasing RF-EMF exposure among children is primarily driven by mobile phone use. Therefore, this study investigated the effects of 1850 MHz RF-EMF exposure at a specific absorption rate of 4.0 W/kg on cortical neurons in mice at postnatal day 28. The results indicated a significant reduction in the number of mushroom-shaped dendritic spines in the prefrontal cortex after daily exposure for 4 weeks. Additionally, prolonged RF-EMF exposure over 9 days led to a gradual decrease in postsynaptic density 95 puncta and inhibited neurite outgrowth in developing cortical neurons. Moreover, the expression levels of genes associated with synapse formation, such as synaptic cell adhesion molecules and cyclin-dependent kinase 5, were reduced in the cerebral cortexes of RF-EMF-exposed mice. Behavioral assessments using the Morris water maze revealed altered spatial learning and memory after the 4-week exposure period. These findings underscore the potential of RF-EMF exposure during childhood to disrupt synaptic function in the cerebral cortex, thereby affecting the developmental stages of the nervous system and potentially influencing later cognitive function.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Jun Young Seok
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Yun-Hee Kim
- Department of Biology Education, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52609, Republic of Korea;
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea;
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (J.Y.S.); (J.-K.L.)
| |
Collapse
|
4
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
5
|
Pascual-Alonso A, Xiol C, Smirnov D, Kopajtich R, Prokisch H, Armstrong J. Multi-omics in MECP2 duplication syndrome patients and carriers. Eur J Neurosci 2024; 60:4004-4018. [PMID: 38746988 DOI: 10.1111/ejn.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 07/21/2024]
Abstract
MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder caused by the gain of dose of at least the genes MECP2 and IRAK1 and is characterised by intellectual disability (ID), developmental delay, hypotonia, epilepsy and recurrent infections. It mainly affects males, and females can be affected or asymptomatic carriers. Rett syndrome (RTT) is mainly triggered by loss of function mutations in MECP2 and is a well described syndrome that presents ID, epilepsy, lack of purposeful hand use and impaired speech, among others. As a result of implementing omics technology, altered biological pathways in human RTT samples have been reported, but such molecular characterisation has not been performed in patients with MDS. We gathered human skin fibroblasts from 17 patients with MDS, 10 MECP2 duplication carrier mothers and 21 patients with RTT, and performed multi-omics (RNAseq and proteomics) analysis. Here, we provide a thorough description and compare the shared and specific dysregulated biological processes between the cohorts. We also highlight the genes TMOD2, SRGAP1, COPS2, CNPY2, IGF2BP1, MOB2, VASP, FZD7, ECSIT and KIF3B as biomarker and therapeutic target candidates due to their implication in neuronal functions. Defining the RNA and protein profiles has shown that our four cohorts are less alike than expected by their shared phenotypes.
Collapse
Affiliation(s)
- Ainhoa Pascual-Alonso
- Fundació per la Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Clara Xiol
- Fundació per la Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Dmitrii Smirnov
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Rober Kopajtich
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Judith Armstrong
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto de Salud Carlos III (ISCIII), CIBER-ER (Biomedical Network Research Center for Rare Diseases), Madrid, Spain
- Genomic Unit, Molecular and Genetic Medicine Section, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
6
|
Bamford RA, Zuko A, Eve M, Sprengers JJ, Post H, Taggenbrock RLRE, Fäβler D, Mehr A, Jones OJR, Kudzinskas A, Gandawijaya J, Müller UC, Kas MJH, Burbach JPH, Oguro-Ando A. CNTN4 modulates neural elongation through interplay with APP. Open Biol 2024; 14:240018. [PMID: 38745463 PMCID: PMC11293442 DOI: 10.1098/rsob.240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/16/2024] Open
Abstract
The neuronal cell adhesion molecule contactin-4 (CNTN4) is genetically associated with autism spectrum disorder (ASD) and other psychiatric disorders. Cntn4-deficient mouse models have previously shown that CNTN4 plays important roles in axon guidance and synaptic plasticity in the hippocampus. However, the pathogenesis and functional role of CNTN4 in the cortex has not yet been investigated. Our study found a reduction in cortical thickness in the motor cortex of Cntn4 -/- mice, but cortical cell migration and differentiation were unaffected. Significant morphological changes were observed in neurons in the M1 region of the motor cortex, indicating that CNTN4 is also involved in the morphology and spine density of neurons in the motor cortex. Furthermore, mass spectrometry analysis identified an interaction partner for CNTN4, confirming an interaction between CNTN4 and amyloid-precursor protein (APP). Knockout human cells for CNTN4 and/or APP revealed a relationship between CNTN4 and APP. This study demonstrates that CNTN4 contributes to cortical development and that binding and interplay with APP controls neural elongation. This is an important finding for understanding the physiological function of APP, a key protein for Alzheimer's disease. The binding between CNTN4 and APP, which is involved in neurodevelopment, is essential for healthy nerve outgrowth.
Collapse
Affiliation(s)
- Rosemary A. Bamford
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Madeline Eve
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Jan J. Sprengers
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht, Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Renske L. R. E. Taggenbrock
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Dominique Fäβler
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Annika Mehr
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Owen J. R. Jones
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Aurimas Kudzinskas
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
| | - Ulrike C. Müller
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Functional Genomics, University of Heidelberg, Heidelberg69120, Germany
| | - Martien J. H. Kas
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - J. Peter H. Burbach
- Department of Translational Neuroscience, UMC Utrecht Brain Center, UMC Utrecht, Utrecht3508 AB, The Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, ExeterEX2 5DW, UK
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
7
|
Clarin JD, Reddy N, Alexandropoulos C, Gao WJ. The role of cell adhesion molecule IgSF9b at the inhibitory synapse and psychiatric disease. Neurosci Biobehav Rev 2024; 156:105476. [PMID: 38029609 PMCID: PMC10842117 DOI: 10.1016/j.neubiorev.2023.105476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Understanding perturbations in synaptic function between health and disease states is crucial to the treatment of neuropsychiatric illness. While genome-wide association studies have identified several genetic loci implicated in synaptic dysfunction in disorders such as autism and schizophrenia, many have not been rigorously characterized. Here, we highlight immunoglobulin superfamily member 9b (IgSF9b), a cell adhesion molecule thought to localize exclusively to inhibitory synapses in the brain. While both pre-clinical and clinical studies suggest its association with psychiatric diseases, our understanding of IgSF9b in synaptic maintenance, neural circuits, and behavioral phenotypes remains rudimentary. Moreover, these functions wield undiscovered influences on neurodevelopment. This review evaluates current literature and publicly available gene expression databases to explore the implications of IgSF9b dysfunction in rodents and humans. Through a focused analysis of one high-risk gene locus, we identify areas requiring further investigation and unearth clues related to broader mechanisms contributing to the synaptic etiology of psychiatric disorders.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Natasha Reddy
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Cassandra Alexandropoulos
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
8
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571709. [PMID: 38168404 PMCID: PMC10760095 DOI: 10.1101/2023.12.14.571709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic AMPA receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions. Highlights Prenatal exposure of valproic acid (VPA) in mice significantly reduces synaptic δ-catenin protein and AMPA receptor levels in the pups' brains.VPA treatment significantly impairs dendritic branching in cultured cortical neurons, which is reversed by increased δ-catenin expression.VPA exposed pups exhibit impaired communication such as ultrasonic vocalization.Neuronal activation linked to ultrasonic vocalization is absent in VPA-exposed pups.The loss of δ-catenin functions underlies VPA-induced autism spectrum disorder (ASD) in early childhood.
Collapse
|
9
|
Wang D, Perera D, He J, Cao C, Kossinna P, Li Q, Zhang W, Guo X, Platt A, Wu J, Zhang Q. cLD: Rare-variant linkage disequilibrium between genomic regions identifies novel genomic interactions. PLoS Genet 2023; 19:e1011074. [PMID: 38109434 PMCID: PMC10758262 DOI: 10.1371/journal.pgen.1011074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/01/2024] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Linkage disequilibrium (LD) is a fundamental concept in genetics; critical for studying genetic associations and molecular evolution. However, LD measurements are only reliable for common genetic variants, leaving low-frequency variants unanalyzed. In this work, we introduce cumulative LD (cLD), a stable statistic that captures the rare-variant LD between genetic regions, which reflects more biological interactions between variants, in addition to lack of recombination. We derived the theoretical variance of cLD using delta methods to demonstrate its higher stability than LD for rare variants. This property is also verified by bootstrapped simulations using real data. In application, we find cLD reveals an increased genetic association between genes in 3D chromatin interactions, a phenomenon recently reported negatively by calculating standard LD between common variants. Additionally, we show that cLD is higher between gene pairs reported in interaction databases, identifies unreported protein-protein interactions, and reveals interacting genes distinguishing case/control samples in association studies.
Collapse
Affiliation(s)
- Dinghao Wang
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Deshan Perera
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Jingni He
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Chen Cao
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Pathum Kossinna
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Qing Li
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - William Zhang
- The Harker School, San Jose, California, United States of America
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alexander Platt
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jingjing Wu
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Bastien BL, Cowen MH, Hart MP. Distinct neurexin isoforms cooperate to initiate and maintain foraging activity. Transl Psychiatry 2023; 13:367. [PMID: 38036526 PMCID: PMC10689797 DOI: 10.1038/s41398-023-02668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/24/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Neurexins are synaptic adhesion molecules that play diverse roles in synaptic development, function, maintenance, and plasticity. Neurexin genes have been associated with changes in human behavior, where variants in NRXN1 are associated with autism, schizophrenia, and Tourette syndrome. While NRXN1, NRXN2, and NRXN3 all encode major α and β isoforms, NRXN1 uniquely encodes a γ isoform, for which mechanistic roles in behavior have yet to be defined. Here, we show that both α and γ isoforms of neurexin/nrx-1 are required for the C. elegans behavioral response to food deprivation, a sustained period of hyperactivity upon food loss. We find that the γ isoform regulates initiation and the α isoform regulates maintenance of the behavioral response to food deprivation, demonstrating cooperative function of multiple nrx-1 isoforms in regulating a sustained behavior. The γ isoform alters monoamine signaling via octopamine, relies on specific expression of NRX-1 isoforms throughout the relevant circuit, and is independent of neuroligin/nlg-1, the canonical trans-synaptic partner of nrx-1. The α isoform regulates the pre-synaptic structure of the octopamine producing RIC neuron and its maintenance role is conditional on neuroligin/nlg-1. Collectively, these results demonstrate that neurexin isoforms can have separate behavioral roles and act cooperatively across neuronal circuits to modify behavior, highlighting the need to directly analyze and consider all isoforms when defining the contribution of neurexins to behavior.
Collapse
Affiliation(s)
- Brandon L Bastien
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mara H Cowen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Hart
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Li P, Wei J, Zhu Y. CellGO: a novel deep learning-based framework and webserver for cell-type-specific gene function interpretation. Brief Bioinform 2023; 25:bbad417. [PMID: 37995133 PMCID: PMC10790717 DOI: 10.1093/bib/bbad417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/25/2023] Open
Abstract
Interpreting the function of genes and gene sets identified from omics experiments remains a challenge, as current pathway analysis tools often fail to consider the critical biological context, such as tissue or cell-type specificity. To address this limitation, we introduced CellGO. CellGO tackles this challenge by leveraging the visible neural network (VNN) and single-cell gene expressions to mimic cell-type-specific signaling propagation along the Gene Ontology tree within a cell. This design enables a novel scoring system to calculate the cell-type-specific gene-pathway paired active scores, based on which, CellGO is able to identify cell-type-specific active pathways associated with single genes. In addition, by aggregating the activities of single genes, CellGO extends its capability to identify cell-type-specific active pathways for a given gene set. To enhance biological interpretation, CellGO offers additional features, including the identification of significantly active cell types and driver genes and community analysis of pathways. To validate its performance, CellGO was assessed using a gene set comprising mixed cell-type markers, confirming its ability to discern active pathways across distinct cell types. Subsequent benchmarking analyses demonstrated CellGO's superiority in effectively identifying cell types and their corresponding cell-type-specific pathways affected by gene knockouts, using either single genes or sets of genes differentially expressed between knockout and control samples. Moreover, CellGO demonstrated its ability to infer cell-type-specific pathogenesis for disease risk genes. Accessible as a Python package, CellGO also provides a user-friendly web interface, making it a versatile and accessible tool for researchers in the field.
Collapse
Affiliation(s)
- Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Junfeng Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
St George-Hyslop F, Haneklaus M, Kivisild T, Livesey FJ. Loss of CNTNAP2 Alters Human Cortical Excitatory Neuron Differentiation and Neural Network Development. Biol Psychiatry 2023; 94:780-791. [PMID: 37001843 DOI: 10.1016/j.biopsych.2023.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 05/14/2023]
Abstract
BACKGROUND Loss-of-function mutations in the contactin-associated protein-like 2 (CNTNAP2) gene are causal for neurodevelopmental disorders, including autism, schizophrenia, epilepsy, and intellectual disability. CNTNAP2 encodes CASPR2, a single-pass transmembrane protein that belongs to the neurexin family of cell adhesion molecules. These proteins have a variety of functions in developing neurons, including connecting presynaptic and postsynaptic neurons, and mediating signaling across the synapse. METHODS To study the effect of loss of CNTNAP2 function on human cerebral cortex development, and how this contributes to the pathogenesis of neurodevelopmental disorders, we generated human induced pluripotent stem cells from one neurotypical control donor null for full-length CNTNAP2, modeling cortical development from neurogenesis through to neural network formation in vitro. RESULTS CNTNAP2 is particularly highly expressed in the first two populations of early-born excitatory cortical neurons, and loss of CNTNAP2 shifted the relative proportions of these two neuronal types. Live imaging of excitatory neuronal growth showed that loss of CNTNAP2 reduced neurite branching and overall neuronal complexity. At the network level, developing cortical excitatory networks null for CNTNAP2 had complex changes in activity compared with isogenic controls: an initial period of relatively reduced activity compared with isogenic controls, followed by a lengthy period of hyperexcitability, and then a further switch to reduced activity. CONCLUSIONS Complete loss of CNTNAP2 contributes to the pathogenesis of neurodevelopmental disorders through complex changes in several aspects of human cerebral cortex excitatory neuron development that culminate in aberrant neural network formation and function.
Collapse
Affiliation(s)
- Frances St George-Hyslop
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Moritz Haneklaus
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Frederick J Livesey
- University College London Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College London, London, United Kingdom.
| |
Collapse
|
13
|
Cording KR, Bateup HS. Altered motor learning and coordination in mouse models of autism spectrum disorder. Front Cell Neurosci 2023; 17:1270489. [PMID: 38026686 PMCID: PMC10663323 DOI: 10.3389/fncel.2023.1270489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with increasing prevalence. Over 1,000 risk genes have now been implicated in ASD, suggesting diverse etiology. However, the diagnostic criteria for the disorder still comprise two major behavioral domains - deficits in social communication and interaction, and the presence of restricted and repetitive patterns of behavior (RRBs). The RRBs associated with ASD include both stereotyped repetitive movements and other motor manifestations including changes in gait, balance, coordination, and motor skill learning. In recent years, the striatum, the primary input center of the basal ganglia, has been implicated in these ASD-associated motor behaviors, due to the striatum's role in action selection, motor learning, and habit formation. Numerous mouse models with mutations in ASD risk genes have been developed and shown to have alterations in ASD-relevant behaviors. One commonly used assay, the accelerating rotarod, allows for assessment of both basic motor coordination and motor skill learning. In this corticostriatal-dependent task, mice walk on a rotating rod that gradually increases in speed. In the extended version of this task, mice engage striatal-dependent learning mechanisms to optimize their motor routine and stay on the rod for longer periods. This review summarizes the findings of studies examining rotarod performance across a range of ASD mouse models, and the resulting implications for the involvement of striatal circuits in ASD-related motor behaviors. While performance in this task is not uniform across mouse models, there is a cohort of models that show increased rotarod performance. A growing number of studies suggest that this increased propensity to learn a fixed motor routine may reflect a common enhancement of corticostriatal drive across a subset of mice with mutations in ASD-risk genes.
Collapse
Affiliation(s)
- Katherine R. Cording
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Helen S. Bateup
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
14
|
Messina A, Crescimanno C, Cuccì G, Caraci F, Signorelli MS. Cell adhesion molecules in the pathogenesis of the schizophrenia. Folia Med (Plovdiv) 2023; 65:707-712. [PMID: 38351751 DOI: 10.3897/folmed.65.e101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 02/16/2024] Open
Abstract
The causes of schizophrenia remain obscure and complex to identify. Alterations in dopaminergic and serotonergic neurotransmission are, to date, the primary pharmacological targets in treatment. Underlying abnormalities in neural networks have been identified as cell adhesion molecules (CAMs) involved in synaptic remodeling and interplay between neurons-neurons and neurons-glial cells. Among the CAMs, several families have been identified, such as integrins, selectins, cadherins, immunoglobulins, nectins, and the neuroligin-neurexin complex. In this paper, cell adhesion molecules involved in the pathogenesis of schizophrenia will be described.
Collapse
|
15
|
Dawson MS, Gordon-Fleet K, Yan L, Tardos V, He H, Mui K, Nawani S, Asgarian Z, Catani M, Fernandes C, Drescher U. Sexual dimorphism in the social behaviour of Cntnap2-null mice correlates with disrupted synaptic connectivity and increased microglial activity in the anterior cingulate cortex. Commun Biol 2023; 6:846. [PMID: 37582968 PMCID: PMC10427688 DOI: 10.1038/s42003-023-05215-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
A biological understanding of the apparent sex bias in autism is lacking. Here we have identified Cntnap2 KO mice as a model system to help better understand this dimorphism. Using this model, we observed social deficits in juvenile male KO mice only. These male-specific social deficits correlated with reduced spine densities of Layer 2/3 and Layer 5 pyramidal neurons in the Anterior Cingulate Cortex, a forebrain region prominently associated with the control of social behaviour. Furthermore, in male KO mice, microglia showed an increased activated morphology and phagocytosis of synaptic structures compared to WT mice, whereas no differences were seen in female KO and WT mice. Our data suggest that sexually dimorphic microglial activity may be involved in the aetiology of ASD, disrupting the development of neural circuits that control social behaviour by overpruning synapses at a developmentally critical period.
Collapse
Affiliation(s)
- Matt S Dawson
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kevin Gordon-Fleet
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Lingxin Yan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Vera Tardos
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Huanying He
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Kwong Mui
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
| | - Smriti Nawani
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
| | - Zeinab Asgarian
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK
- Molecular Therapeutics Lab, University College London, Research Department of Targeted Intervention, London, W1W 7TY, UK
| | - Marco Catani
- NatBrainLab, Departments of Neuroimaging Sciences and Forensic and Neurodevelopmental Sciences, IoPPN, King's College London, London, SE1 1UL, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King's College London, London, SE1 1UL, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, SE1 1UL, UK.
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Shafique A, Sultan T, Alzahrani F, Hun Seo G, Alkuraya FS, Naz S. Genomic Analysis of Multiplex Consanguineous Families Reveals Causes of Neurodevelopmental Disorders with Epilepsy. Gene 2023:147599. [PMID: 37393059 DOI: 10.1016/j.gene.2023.147599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
INTRODUCTION Neurodevelopmental disorders (NDD) are a diverse group of disorders that affect the development of the nervous system. Epilepsy is a common phenotypic aspect of NDD. METHODS We recruited eight consanguineous families from Pakistan which segregated recessively inherited NDD with epilepsy. Magnetic Resonance imaging (MRI) and Electroencephalogram (EEG) were completed. Exome sequencing was carried out for selected participants from each family. The exome data were analyzed for exonic and splice-site variants that had allele frequencies of less than 0.01 in public databases. RESULTS Clinical investigations determined that developmental delay, intellectual disability and seizures were manifested by most patients in early childhood. EEG findings were abnormal in the participants of four families. MRI revealed demyelination orcerebral atrophic changes in multiple participants. We identified four novel homozygous variants including nonsense andmissense variants in OCLN, ALDH7A1, IQSEC2 and COL3A1, segregating with the phenotypes in the participants of four families. Previously reported homozygous variants of CNTNAP2, TRIT1 and NARS1 were found in individuals from three families. Clinical utility was observed in directing treatment in case of patients with an ALDH7A1 variant which included pyridoxine administration and enabling accurate counseling about the natural history and recurrence risk. CONCLUSION Our results add to the clinical and molecular delineation of very rare NDD with epilepsy. The high success rate of exome sequencing is likely attributable to the expectation of homozygous variants in patients of consanguineous families, and in one case, the availability of positional mapping data that greatly aided the variant prioritization.
Collapse
Affiliation(s)
- Anum Shafique
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Tipu Sultan
- Children's Hospital & the Institute of Child Health, Lahore, Pakistan.
| | - Fatema Alzahrani
- Center for Genomic Medicine, Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | | - Fowzan S Alkuraya
- Center for Genomic Medicine, Department of Translational Genomics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
17
|
Wang QW, Qin J, Chen YF, Tu Y, Xing YY, Wang Y, Yang LY, Lu SY, Geng L, Shi W, Yang Y, Yao J. 16p11.2 CNV gene Doc2α functions in neurodevelopment and social behaviors through interaction with Secretagogin. Cell Rep 2023; 42:112691. [PMID: 37354460 DOI: 10.1016/j.celrep.2023.112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/22/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Copy-number variations (CNVs) of the human 16p11.2 genetic locus are associated with neurodevelopmental disorders, including autism spectrum disorders (ASDs) and schizophrenia. However, it remains largely unclear how this locus is involved in the disease pathogenesis. Doc2α is localized within this locus. Here, using in vivo and ex vivo electrophysiological and morphological approaches, we show that Doc2α-deficient mice have neuronal morphological abnormalities and defects in neural activity. Moreover, the Doc2α-deficient mice exhibit social and repetitive behavioral deficits. Furthermore, we demonstrate that Doc2α functions in behavioral and neural phenotypes through interaction with Secretagogin (SCGN). Finally, we demonstrate that SCGN functions in social/repetitive behaviors, glutamate release, and neuronal morphology of the mice through its Doc2α-interacting activity. Therefore, Doc2α likely contributes to neurodevelopmental disorders through its interaction with SCGN.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junhong Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Yun Xing
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Yuchen Wang
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lv-Yu Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si-Yao Lu
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Libo Geng
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China
| | - Wei Shi
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Yiming Yang
- Jiangsu Key Laboratory of Language and Cognitive Neuroscience, School of Linguistic Sciences and Arts, Jiangsu Normal University, Xuzhou 221116, China; Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou 221009, China.
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
18
|
Ryan NM, Heron EA. Evidence for parent-of-origin effects in autism spectrum disorder: a narrative review. J Appl Genet 2023; 64:303-317. [PMID: 36710277 PMCID: PMC10076404 DOI: 10.1007/s13353-022-00742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous group of early-onset neurodevelopmental disorders known to be highly heritable with a complex genetic architecture. Abnormal brain developmental trajectories that impact synaptic functioning, excitation-inhibition balance and brain connectivity are now understood to play a central role in ASD. Ongoing efforts to identify the genetic underpinnings still prove challenging, in part due to phenotypic and genetic heterogeneity.This review focuses on parent-of-origin effects (POEs), where the phenotypic effect of an allele depends on its parental origin. POEs include genomic imprinting, transgenerational effects, mitochondrial DNA, sex chromosomes and mutational transmission bias. The motivation for investigating these mechanisms in ASD has been driven by their known impacts on early brain development and brain functioning, in particular for the most well-documented POE, genomic imprinting. Moreover, imprinting is implicated in syndromes such as Angelman and Prader-Willi, which frequently share comorbid symptoms with ASD. In addition to other regions in the genome, this comprehensive review highlights the 15q11-q13 and 7q chromosomal regions as well as the mitochondrial DNA as harbouring the majority of currently identified POEs in ASD.
Collapse
Affiliation(s)
- Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
The Interactions of the 70 kDa Fragment of Cell Adhesion Molecule L1 with Topoisomerase 1, Peroxisome Proliferator-Activated Receptor γ and NADH Dehydrogenase (Ubiquinone) Flavoprotein 2 Are Involved in Gene Expression and Neuronal L1-Dependent Functions. Int J Mol Sci 2023; 24:ijms24032097. [PMID: 36768419 PMCID: PMC9916828 DOI: 10.3390/ijms24032097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1's functions critically depend on proteolysis which underlies dynamic cell interactions and signal transduction. We showed that a 70 kDa fragment (L1-70) supports mitochondrial functions and gene transcription. To gain further insights into L1-70's functions, we investigated several binding partners. Here we show that L1-70 interacts with topoisomerase 1 (TOP1), peroxisome proliferator-activated receptor γ (PPARγ) and NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2). TOP1, PPARγ and NDUFV2 siRNAs reduced L1-dependent neurite outgrowth, and the topoisomerase inhibitors topotecan and irinotecan inhibited L1-dependent neurite outgrowth, neuronal survival and migration. In cultured neurons, L1 siRNA reduces the expression levels of the long autism genes neurexin-1 (Nrxn1) and neuroligin-1 (Nlgn1) and of the mitochondrially encoded gene NADH:ubiquinone oxidoreductase core subunit 2 (ND2). In mutant mice lacking L1-70, Nrxn1 and Nlgn1, but not ND2, mRNA levels are reduced. Since L1-70's interactions with TOP1, PPARγ and NDUFV2 contribute to the expression of two essential long autism genes and regulate important neuronal functions, we propose that L1 may not only ameliorate neurological problems, but also psychiatric dysfunctions.
Collapse
|
20
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
21
|
Napolitano A, Schiavi S, La Rosa P, Rossi-Espagnet MC, Petrillo S, Bottino F, Tagliente E, Longo D, Lupi E, Casula L, Valeri G, Piemonte F, Trezza V, Vicari S. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front Psychiatry 2022; 13:889636. [PMID: 35633791 PMCID: PMC9136002 DOI: 10.3389/fpsyt.2022.889636] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder with a worldwide prevalence of about 1%, characterized by impairments in social interaction, communication, repetitive patterns of behaviors, and can be associated with hyper- or hypo-reactivity of sensory stimulation and cognitive disability. ASD comorbid features include internalizing and externalizing symptoms such as anxiety, depression, hyperactivity, and attention problems. The precise etiology of ASD is still unknown and it is undoubted that the disorder is linked to some extent to both genetic and environmental factors. It is also well-documented and known that one of the most striking and consistent finding in ASD is the higher prevalence in males compared to females, with around 70% of ASD cases described being males. The present review looked into the most significant studies that attempted to investigate differences in ASD males and females thus trying to shade some light on the peculiar characteristics of this prevalence in terms of diagnosis, imaging, major autistic-like behavior and sex-dependent uniqueness. The study also discussed sex differences found in animal models of ASD, to provide a possible explanation of the neurological mechanisms underpinning the different presentation of autistic symptoms in males and females.
Collapse
Affiliation(s)
- Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- NESMOS, Neuroradiology Department, S. Andrea Hospital Sapienza University, Rome, Italy
| | - Sara Petrillo
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Bottino
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Daniela Longo
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisabetta Lupi
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Casula
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanni Valeri
- Head Child and Adolescent Psychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fiorella Piemonte
- Neuromuscular and Neurodegenerative Diseases Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Science Department, Roma Tre University, Rome, Italy
| | - Stefano Vicari
- Child Neuropsychiatry Unit, Neuroscience Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| |
Collapse
|
22
|
Manyukhina VO, Prokofyev AO, Galuta IA, Goiaeva DE, Obukhova TS, Schneiderman JF, Altukhov DI, Stroganova TA, Orekhova EV. Globally elevated excitation-inhibition ratio in children with autism spectrum disorder and below-average intelligence. Mol Autism 2022; 13:20. [PMID: 35550191 PMCID: PMC9102291 DOI: 10.1186/s13229-022-00498-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/25/2022] [Indexed: 12/04/2022] Open
Abstract
Background Altered neuronal excitation–inhibition (E–I) balance is strongly implicated in ASD. However, it is not known whether the direction and degree of changes in the E–I ratio in individuals with ASD correlates with intellectual disability often associated with this developmental disorder. The spectral slope of the aperiodic 1/f activity reflects the E–I balance at the scale of large neuronal populations and may uncover its putative alternations in individuals with ASD with and without intellectual disability. Methods Herein, we used magnetoencephalography (MEG) to test whether the 1/f slope would differentiate ASD children with average and below–average (< 85) IQ. MEG was recorded at rest with eyes open/closed in 49 boys with ASD aged 6–15 years with IQ ranging from 54 to 128, and in 49 age-matched typically developing (TD) boys. The cortical source activity was estimated using the beamformer approach and individual brain models. We then extracted the 1/f slope by fitting a linear function to the log–log-scale power spectra in the high-frequency range. Results The global 1/f slope averaged over all cortical sources demonstrated high rank-order stability between the two conditions. Consistent with previous research, it was steeper in the eyes-closed than in the eyes-open condition and flattened with age. Regardless of condition, children with ASD and below-average IQ had flatter slopes than either TD or ASD children with average or above-average IQ. These group differences could not be explained by differences in signal-to-noise ratio or periodic (alpha and beta) activity. Limitations Further research is needed to find out whether the observed changes in E–I ratios are characteristic of children with below-average IQ of other diagnostic groups. Conclusions The atypically flattened spectral slope of aperiodic activity in children with ASD and below-average IQ suggests a shift of the global E–I balance toward hyper-excitation. The spectral slope can provide an accessible noninvasive biomarker of the E–I ratio for making objective judgments about treatment effectiveness in people with ASD and comorbid intellectual disability. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-022-00498-2.
Collapse
Affiliation(s)
- Viktoriya O Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.,Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Andrey O Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Ilia A Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Dmitrii I Altukhov
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Tatiana A Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Elena V Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation.
| |
Collapse
|
23
|
Allen M, Huang BS, Notaras MJ, Lodhi A, Barrio-Alonso E, Lituma PJ, Wolujewicz P, Witztum J, Longo F, Chen M, Greening DW, Klann E, Ross ME, Liston C, Colak D. Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca 2+ signaling. Mol Psychiatry 2022; 27:2470-2484. [PMID: 35365802 PMCID: PMC9135629 DOI: 10.1038/s41380-022-01486-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 01/08/2023]
Abstract
The cellular mechanisms of autism spectrum disorder (ASD) are poorly understood. Cumulative evidence suggests that abnormal synapse function underlies many features of this disease. Astrocytes regulate several key neuronal processes, including the formation of synapses and the modulation of synaptic plasticity. Astrocyte abnormalities have also been identified in the postmortem brain tissue of ASD individuals. However, it remains unclear whether astrocyte pathology plays a mechanistic role in ASD, as opposed to a compensatory response. To address this, we combined stem cell culturing with transplantation techniques to determine disease-specific properties inherent to ASD astrocytes. We demonstrate that ASD astrocytes induce repetitive behavior as well as impair memory and long-term potentiation when transplanted into the healthy mouse brain. These in vivo phenotypes were accompanied by reduced neuronal network activity and spine density caused by ASD astrocytes in hippocampal neurons in vitro. Transplanted ASD astrocytes also exhibit exaggerated Ca2+ fluctuations in chimeric brains. Genetic modulation of evoked Ca2+ responses in ASD astrocytes modulates behavior and neuronal activity deficits. Thus, this study determines that astrocytes derived from ASD iPSCs are sufficient to induce repetitive behavior as well as cognitive deficit, suggesting a previously unrecognized primary role for astrocytes in ASD.
Collapse
Affiliation(s)
- Megan Allen
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ben S Huang
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Michael J Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Estibaliz Barrio-Alonso
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pablo J Lituma
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Paul Wolujewicz
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jonathan Witztum
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY, USA
| | - Maoshan Chen
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Conor Liston
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
24
|
Cwetsch AW, Ziogas I, Narducci R, Savardi A, Bolla M, Pinto B, Perlini LE, Bassani S, Passafaro M, Cancedda L. A rat model of a focal mosaic expression of PCDH19 replicates human brain developmental abnormalities and behaviors. Brain Commun 2022; 4:fcac091. [PMID: 35528232 PMCID: PMC9070467 DOI: 10.1093/braincomms/fcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022] Open
Abstract
Protocadherin 19 gene-related epilepsy or protocadherin 19 clustering epilepsy is an infantile-onset epilepsy syndrome characterized by psychiatric (including autism-related), sensory, and cognitive impairment of varying degrees. Protocadherin 19 clustering epilepsy is caused by X-linked protocadherin 19 protein loss of function. Due to random X-chromosome inactivation, protocadherin 19 clustering epilepsy-affected females present a mosaic population of healthy and protocadherin 19-mutant cells. Unfortunately, to date, no current mouse model can fully recapitulate both the brain histological and behavioural deficits present in people with protocadherin 19 clustering epilepsy. Thus, the search for a proper understanding of the disease and possible future treatment is hampered. By inducing a focal mosaicism of protocadherin 19 expression using in utero electroporation in rats, we found here that protocadherin 19 signalling in specific brain areas is implicated in neuronal migration, heat-induced epileptic seizures, core/comorbid behaviours related to autism and cognitive function.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
- Instituto de Biotecnologia y Biomedicina (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Spain
| | - Ilias Ziogas
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Roberto Narducci
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Annalisa Savardi
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| | - Maria Bolla
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Laura E Perlini
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | | | | | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Dulbecco Telethon Institute, Italy
| |
Collapse
|
25
|
DiCarlo GE, Wallace MT. Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neurosci Biobehav Rev 2022; 133:104494. [PMID: 34906613 PMCID: PMC8792250 DOI: 10.1016/j.neubiorev.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Autism Spectrum Disorder (ASD) is a highly heterogeneous neurodevelopmental disorder characterized by deficits in social communication and by patterns of restricted interests and/or repetitive behaviors. The Simons Foundation Autism Research Initiative's Human Gene and CNV Modules now list over 1000 genes implicated in ASD and over 2000 copy number variant loci reported in individuals with ASD. Given this ever-growing list of genetic changes associated with ASD, it has become evident that there is likely not a single genetic cause of this disorder nor a single neurobiological basis of this disorder. Instead, it is likely that many different neurobiological perturbations (which may represent subtypes of ASD) can result in the set of behavioral symptoms that we called ASD. One such of possible subtype of ASD may be associated with dopamine dysfunction. Precise regulation of synaptic dopamine (DA) is required for reward processing and behavioral learning, behaviors which are disrupted in ASD. Here we review evidence for DA dysfunction in ASD and in animal models of ASD. Further, we propose that these studies provide a scaffold for scientists and clinicians to consider subcategorizing the ASD diagnosis based on the genetic changes, neurobiological difference, and behavioral features identified in individuals with ASD.
Collapse
Affiliation(s)
- Gabriella E DiCarlo
- Massachusetts General Hospital, Department of Medicine, Boston, MA, United States
| | - Mark T Wallace
- Vanderbilt University Brain Institute, Nashville, TN, United States; Department of Psychology, Vanderbilt University, Nashville, TN, United States; Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Pharmacology, Vanderbilt University, Nashville, TN, United States; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
26
|
Petkova-Tuffy A, Gödecke N, Viotti J, Korte M, Dresbach T. Neuroligin-1 mediates presynaptic maturation through brain-derived neurotrophic factor signaling. BMC Biol 2021; 19:215. [PMID: 34579720 PMCID: PMC8474808 DOI: 10.1186/s12915-021-01145-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Background Maturation is a process that allows synapses to acquire full functionality, optimizing their activity to diverse neural circuits, and defects in synaptic maturation may contribute to neurodevelopmental disorders. Neuroligin-1 (NL1) is a postsynaptic cell adhesion molecule essential for synapse maturation, a role typically attributed to binding to pre-synaptic ligands, the neurexins. However, the pathways underlying the action of NL1 in synaptic maturation are incompletely understood, and some of its previously observed effects seem reminiscent of those described for the neurotrophin brain-derived neurotrophic factor (BDNF). Here, we show that maturational increases in active zone stability and synaptic vesicle recycling rely on the joint action of NL1 and brain-derived neurotrophic factor (BDNF). Results Applying BDNF to hippocampal neurons in primary cultures or organotypical slice cultures mimicked the effects of overexpressing NL1 on both structural and functional maturation. Overexpressing a NL1 mutant deficient in neurexin binding still induced presynaptic maturation. Like NL1, BDNF increased synaptic vesicle recycling and the augmentation of transmitter release by phorbol esters, both hallmarks of presynaptic maturation. Mimicking the effects of NL1, BDNF also increased the half-life of the active zone marker bassoon at synapses, reflecting increased active zone stability. Overexpressing NL1 increased the expression and synaptic accumulation of BDNF. Inhibiting BDNF signaling pharmacologically or genetically prevented the effects of NL1 on presynaptic maturation. Applying BDNF to NL1-knockout mouse cultures rescued defective presynaptic maturation, indicating that BDNF acts downstream of NL1 and can restore presynaptic maturation at late stages of network development. Conclusions Our data introduce BDNF as a novel and essential component in a transsynaptic pathway linking NL1-mediated cell adhesion, neurotrophin action, and presynaptic maturation. Our findings connect synaptic cell adhesion and neurotrophin signaling and may provide a therapeutic approach to neurodevelopmental disorders by targeting synapse maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01145-7.
Collapse
Affiliation(s)
- Andonia Petkova-Tuffy
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Nina Gödecke
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Julio Viotti
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, TU Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,Helmholtz Centre for Infection Research, Research group Neuroinflammation and Neurodegeneration, Imhoffenstr. 7, 38104, Braunschweig, Germany
| | - Thomas Dresbach
- Institute for Anatomy and Embryology, University Medical Center Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany.
| |
Collapse
|
27
|
Traetta ME, Uccelli NA, Zárate SC, Gómez Cuautle D, Ramos AJ, Reinés A. Long-Lasting Changes in Glial Cells Isolated From Rats Subjected to the Valproic Acid Model of Autism Spectrum Disorder. Front Pharmacol 2021; 12:707859. [PMID: 34421599 PMCID: PMC8374432 DOI: 10.3389/fphar.2021.707859] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023] Open
Abstract
Synaptic alterations concomitant with neuroinflammation have been described in patients and experimental models of autism spectrum disorder (ASD). However, the role of microglia and astroglia in relation to synaptic changes is poorly understood. Male Wistar rats prenatally exposed to valproic acid (VPA, 450 mg/kg, i.p.) or saline (control) at embryonic day 10.5 were used to study synapses, microglia, and astroglia in the prefrontal cortex (PFC) at postnatal days 3 and 35 (PND3 and PND35). Primary cultures of cortical neurons, microglia, and astroglia isolated from control and VPA animals were used to study each cell type individually, neuron-microglia and microglia-astroglia crosstalk. In the PFC of VPA rats, synaptic changes characterized by an increase in the number of excitatory synapses were evidenced at PND3 and persisted until PND35. At PND3, microglia and astroglia from VPA animals were morphologically similar to those of age-matched controls, whereas at PND35, reactive microgliosis and astrogliosis were observed in the PFC of VPA animals. Cortical neurons isolated from VPA rats mimicked in vitro the synaptic pattern seen in vivo. Cortical microglia and astroglia isolated from VPA animals exhibited reactive morphology, increased pro-inflammatory cytokines, and a compromised miRNA processing machinery. Microglia from VPA animals also showed resistance to a phagocytic challenge. In the presence of neurons from VPA animals, microglia isolated from VPA rats revealed a non-reactive morphology and promoted neurite outgrowth, while microglia from control animals displayed a reactive profile and promoted dendritic retraction. In microglia-astroglia co-cultures, microglia from VPA animals displayed a reactive profile and exacerbated astrocyte reactivity. Our study indicates that cortical microglia from VPA animals are insensitive or adapted to neuronal cues expressed by neurons from VPA animals. Further, long-term in vivo microgliosis could be the result of altered microglia-astroglia crosstalk in VPA animals. Thus, our study highlights cortical microglia-astroglia communication as a new mechanism implicated in neuroinflammation in ASD; consequently, we propose that this crosstalk is a potential target for interventions in this disorder.
Collapse
Affiliation(s)
- Marianela Evelyn Traetta
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nonthué Alejandra Uccelli
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Cristina Zárate
- Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dante Gómez Cuautle
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, Departamento de Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Reinés
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
28
|
Gao H, Ni Y, Mo X, Li D, Teng S, Huang Q, Huang S, Liu G, Zhang S, Tang Y, Lu L, Liang H. Drug repositioning based on network-specific core genes identifies potential drugs for the treatment of autism spectrum disorder in children. Comput Struct Biotechnol J 2021; 19:3908-3921. [PMID: 34306572 PMCID: PMC8280514 DOI: 10.1016/j.csbj.2021.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Identification of exact causative genes is important for in silico drug repositioning based on drug-gene-disease relationships. However, the complex polygenic etiology of the autism spectrum disorder (ASD) is a challenge in the identification of etiological genes. The network-based core gene identification method can effectively use the interactions between genes and accurately identify the pathogenic genes of ASD. We developed a novel network-based drug repositioning framework that contains three steps: network-specific core gene (NCG) identification, potential therapeutic drug repositioning, and candidate drug validation. First, through the analysis of transcriptome data for 178 brain tissues, gene network analysis identified 365 NCGs in 18 coexpression modules that were significantly correlated with ASD. Second, we evaluated two proposed drug repositioning methods. In one novel approach (dtGSEA), we used the NCGs to probe drug-gene interaction data and identified 35 candidate drugs. In another approach, we compared NCG expression patterns with drug-induced transcriptome data from the Connectivity Map database and found 46 candidate drugs. Third, we validated the candidate drugs using an in-house mental diseases and compounds knowledge graph (MCKG) that contained 7509 compounds, 505 mental diseases, and 123,890 edges. We found a total of 42 candidate drugs that were associated with mental illness, among which 10 drugs (baclofen, sulpiride, estradiol, entinostat, everolimus, fluvoxamine, curcumin, calcitriol, metronidazole, and zinc) were postulated to be associated with ASD. This study proposes a powerful network-based drug repositioning framework and also provides candidate drugs as well as potential drug targets for the subsequent development of ASD therapeutic drugs.
Collapse
Affiliation(s)
- Huan Gao
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Yuan Ni
- Ping An Technology, No. 20 Keji South 12 Road, Shen Zhen 518063, Guangdong, China
| | - Xueying Mo
- School of Information Management, Wuhan University, Wuhan 430072, Hubei, China
| | - Dantong Li
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Shan Teng
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou,510515, China
| | - Qingsheng Huang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, Guangdong, China
| | - Shuai Huang
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Guangjian Liu
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| | - Sheng Zhang
- Ping An Technology, No. 20 Keji South 12 Road, Shen Zhen 518063, Guangdong, China
| | - Yaping Tang
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, Guangdong, China
| | - Long Lu
- School of Information Management, Wuhan University, Wuhan 430072, Hubei, China
- Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9 Jinsui Road, Guangzhou 510623, Guangdong, China
| | - Huiying Liang
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou 510080, Guangdong, China
| |
Collapse
|
29
|
Frei JA, Niescier RF, Bridi MS, Durens M, Nestor JE, Kilander MBC, Yuan X, Dykxhoorn DM, Nestor MW, Huang S, Blatt GJ, Lin YC. Regulation of Neural Circuit Development by Cadherin-11 Provides Implications for Autism. eNeuro 2021; 8:ENEURO.0066-21.2021. [PMID: 34135003 PMCID: PMC8266214 DOI: 10.1523/eneuro.0066-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurologic condition characterized by alterations in social interaction and communication, and restricted and/or repetitive behaviors. The classical Type II cadherins cadherin-8 (Cdh8, CDH8) and cadherin-11 (Cdh11, CDH11) have been implicated as autism risk gene candidates. To explore the role of cadherins in the etiology of autism, we investigated their expression patterns during mouse brain development and in autism-specific human tissue. In mice, expression of cadherin-8 and cadherin-11 was developmentally regulated and enriched in the cortex, hippocampus, and thalamus/striatum during the peak of dendrite formation and synaptogenesis. Both cadherins were expressed in synaptic compartments but only cadherin-8 associated with the excitatory synaptic marker neuroligin-1. Induced pluripotent stem cell (iPSC)-derived cortical neural precursor cells (NPCs) and cortical organoids generated from individuals with autism showed upregulated CDH8 expression levels, but downregulated CDH11. We used Cdh11 knock-out (KO) mice of both sexes to analyze the function of cadherin-11, which could help explain phenotypes observed in autism. Cdh11-/- hippocampal neurons exhibited increased dendritic complexity along with altered neuronal and synaptic activity. Similar to the expression profiles in human tissue, levels of cadherin-8 were significantly elevated in Cdh11 KO brains. Additionally, excitatory synaptic markers neuroligin-1 and postsynaptic density (PSD)-95 were both increased. Together, these results strongly suggest that cadherin-11 is involved in regulating the development of neuronal circuitry and that alterations in the expression levels of cadherin-11 may contribute to the etiology of autism.
Collapse
Affiliation(s)
- Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Madel Durens
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Jonathan E Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | | | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Michael W Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Gene J Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| |
Collapse
|
30
|
Frei JA, Brandenburg CJ, Nestor JE, Hodzic DM, Plachez C, McNeill H, Dykxhoorn DM, Nestor MW, Blatt GJ, Lin YC. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open 2021; 10:bio056457. [PMID: 34100899 PMCID: PMC8214424 DOI: 10.1242/bio.056457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Genetic studies have linked FAT1 (FAT atypical cadherin 1) with autism spectrum disorder (ASD); however, the role that FAT1 plays in ASD remains unknown. In mice, the function of Fat1 has been primarily implicated in embryonic nervous system development with less known about its role in postnatal development. We show for the first time that FAT1 protein is expressed in mouse postnatal brains and is enriched in the cerebellum, where it localizes to granule neurons and Golgi cells in the granule layer, as well as inhibitory neurons in the molecular layer. Furthermore, subcellular characterization revealed FAT1 localization in neurites and soma of granule neurons, as well as being present in the synaptic plasma membrane and postsynaptic densities. Interestingly, FAT1 expression was decreased in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) from individuals with ASD. These findings suggest a novel role for FAT1 in postnatal development and may be particularly important for cerebellum function. As the cerebellum is one of the vulnerable brain regions in ASD, our study warrants further investigation of FAT1 in the disease etiology.
Collapse
Affiliation(s)
- Jeannine A. Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Cheryl J. Brandenburg
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
- Graduate Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan E. Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Didier M. Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Celine Plachez
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Derek M. Dykxhoorn
- Hussman Institute for Human Genomics and John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Michael W. Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Gene J. Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Olgun G, Nabi A, Tastan O. NoRCE: non-coding RNA sets cis enrichment tool. BMC Bioinformatics 2021; 22:294. [PMID: 34078267 PMCID: PMC8170991 DOI: 10.1186/s12859-021-04112-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND While some non-coding RNAs (ncRNAs) are assigned critical regulatory roles, most remain functionally uncharacterized. This presents a challenge whenever an interesting set of ncRNAs needs to be analyzed in a functional context. Transcripts located close-by on the genome are often regulated together. This genomic proximity on the sequence can hint at a functional association. RESULTS We present a tool, NoRCE, that performs cis enrichment analysis for a given set of ncRNAs. Enrichment is carried out using the functional annotations of the coding genes located proximal to the input ncRNAs. Other biologically relevant information such as topologically associating domain (TAD) boundaries, co-expression patterns, and miRNA target prediction information can be incorporated to conduct a richer enrichment analysis. To this end, NoRCE includes several relevant datasets as part of its data repository, including cell-line specific TAD boundaries, functional gene sets, and expression data for coding & ncRNAs specific to cancer. Additionally, the users can utilize custom data files in their investigation. Enrichment results can be retrieved in a tabular format or visualized in several different ways. NoRCE is currently available for the following species: human, mouse, rat, zebrafish, fruit fly, worm, and yeast. CONCLUSIONS NoRCE is a platform-independent, user-friendly, comprehensive R package that can be used to gain insight into the functional importance of a list of ncRNAs of any type. The tool offers flexibility to conduct the users' preferred set of analyses by designing their own pipeline of analysis. NoRCE is available in Bioconductor and https://github.com/guldenolgun/NoRCE .
Collapse
Affiliation(s)
- Gulden Olgun
- Department of Computer Engineering, Bilkent University, Ankara, Turkey.,Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Afshan Nabi
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Oznur Tastan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey. .,Cancer Data Science Lab, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Yoshida T, Yamagata A, Imai A, Kim J, Izumi H, Nakashima S, Shiroshima T, Maeda A, Iwasawa-Okamoto S, Azechi K, Osaka F, Saitoh T, Maenaka K, Shimada T, Fukata Y, Fukata M, Matsumoto J, Nishijo H, Takao K, Tanaka S, Okabe S, Tabuchi K, Uemura T, Mishina M, Mori H, Fukai S. Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nat Commun 2021; 12:1848. [PMID: 33758193 PMCID: PMC7988105 DOI: 10.1038/s41467-021-22059-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan. .,JST PRESTO, Saitama, Japan.
| | | | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Juhyon Kim
- Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shogo Nakashima
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Asami Maeda
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiho Iwasawa-Okamoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kenji Azechi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Fumina Osaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Saitoh
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Shimada
- SHIMADZU Bioscience Research Partnership, Innovation Center, Shimadzu Scientific Instruments, Bothell, WA, USA
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Jumpei Matsumoto
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Tabuchi
- JST PRESTO, Saitama, Japan.,Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.,Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
33
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
34
|
Kopp N, Amarillo I, Martinez-Agosto J, Quintero-Rivera F. Pathogenic paternally inherited NLGN4X deletion in a female with autism spectrum disorder: Clinical, cytogenetic, and molecular characterization. Am J Med Genet A 2020; 185:894-900. [PMID: 33369065 DOI: 10.1002/ajmg.a.62025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/27/2020] [Indexed: 11/07/2022]
Abstract
Neuroligin 4 X-linked (NLGN4X) is an X-linked postsynaptic scaffolding protein, with functional role in excitatory synapsis development and maintenance, that has been associated with neuropsychiatric disorders such as intellectual disability, autism spectrum disorders (ASD), anxiety, attention deficit hyperactivity disorder (ADHD), and Tourette's syndrome. Chromosomal microarray analysis identified a paternally inherited, 445 Kb deletion on Xp22.3 that includes the entire NLGN4X in a 2.5 year old female (46,XX) with congenital hypotonia, strabismus, ASD, and increased aggressive behavioral issues. Her family history is significant for a mother with learning disabilities, a father with anxiety, major depressive disorder, and substance abuse, as well as two maternal half-brothers with developmental delays. X-inactivation studies in the proband's blood showed random X-inactivation despite the presence of an abnormal X chromosome. Furthermore, trio exome sequencing did not reveal any other deleterious variant that could explain her phenotype. Our report describes the first example of a paternally inherited NLGN4X microdeletion as the genetic etiology of ASD in a female proband, and the psychiatric phenotypes in the father. It also provides further evidence that NLGN4X is sensitive to dosage changes in females, and can contribute to a variety of psychiatric features within the same family.
Collapse
Affiliation(s)
- Nathan Kopp
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA
| | - Ina Amarillo
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julian Martinez-Agosto
- Department of Pediatrics and Human Genetics, UCLA Clinical Genomics Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Fabiola Quintero-Rivera
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
35
|
Shi W, He JJ, Mei XF, Lu KJ, Zeng ZX, Zhang YY, Sheng ZA, Elsheikha HM, Huang WY, Zhu XQ. Dysregulation of hepatic microRNA expression in C57BL/6 mice affected by excretory-secretory products of Fasciola gigantica. PLoS Negl Trop Dis 2020; 14:e0008951. [PMID: 33332355 PMCID: PMC7775122 DOI: 10.1371/journal.pntd.0008951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
The excretory-secretory products released by the liver fluke Fasciola gigantica (FgESPs) play important roles in regulating the host immune response during the infection. Identification of hepatic miRNAs altered by FgESPs may improve our understanding of the pathogenesis of F. gigantica infection. In this study, we investigated the alterations in the hepatic microRNAs (miRNAs) in mice treated with FgESPs using high-throughput small RNA (sRNA) sequencing and bioinformatics analysis. The expression of seven miRNAs was confirmed by quantitative stem-loop reverse transcription quantitative PCR (qRT-PCR). A total of 1,313 miRNAs were identified in the liver of mice, and the differentially expressed (DE) miRNAs varied across the time lapsed post exposure to FgESPs. We identified 67, 154 and 53 dysregulated miRNAs at 1, 4 and 12 weeks post-exposure, respectively. 5 miRNAs (miR-126a-3p, miR-150-5p, miR-155-5p, miR-181a-5p and miR-362-3p) were commonly dysregulated at the three time points. We also found that most of the DE miRNAs were induced by FgESPs in the mouse liver after 4 weeks of exposure. These were subjected to Gene Ontology (GO) enrichment analysis, which showed that the predicted targets of the hepatic DE miRNAs of mice 4 weeks of FgESPs injection were enriched in GO terms, including cell membrane, ion binding, cellular communication, organelle and DNA damage. KEGG analysis indicated that the predicted targets of the most downregulated miRNAs were involved in 15 neural activity-related pathways, 6 digestion-related pathways, 20 immune response-related pathways and 17 cancer-related pathways. These data provide new insights into how FgESPs can dysregulate hepatic miRNAs, which play important roles in modulating several aspects of F. gigantica pathogenesis.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- * E-mail:
| | - Xue-Fang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ke-Jing Lu
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zi-Xuan Zeng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yao-Yao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhao-An Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Wei-Yi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People’s Republic of China
| |
Collapse
|
36
|
Semick SA, Collado-Torres L, Markunas CA, Shin JH, Deep-Soboslay A, Tao R, Huestis M, Bierut LJ, Maher BS, Johnson EO, Hyde TM, Weinberger DR, Hancock DB, Kleinman JE, Jaffe AE. Developmental effects of maternal smoking during pregnancy on the human frontal cortex transcriptome. Mol Psychiatry 2020; 25:3267-3277. [PMID: 30131587 PMCID: PMC6438764 DOI: 10.1038/s41380-018-0223-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/05/2023]
Abstract
Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Stephen A. Semick
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Center for Computational Biology, Johns Hopkins University,
Baltimore, MD, 21205, USA
| | - Christina A. Markunas
- Behavioral and Urban Health Program, Behavioral Health and
Criminal Justice Division, RTI International, Research Triangle Park, NC, 27709,
USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Ran Tao
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA
| | - Marilyn Huestis
- The Lambert Center for the Study of Medicinal Cannabis and
Hemp, Institute of Emerging Health Professions, Thomas Jefferson University,
Philadelphia, PA, USA
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of
Medicine, St. Louis, MO 63110, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, 21205, USA
| | - Eric O. Johnson
- Fellow Program and Behavioral Health and Criminal Justice
Division, RTI International, Research Triangle Park, NC, 27709, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Department of Psychiatry and Behavioral Sciences, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Department of Neurology, Johns Hopkins School of Medicine,
Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Department of Psychiatry and Behavioral Sciences, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Department of Neurology, Johns Hopkins School of Medicine,
Baltimore, MD, 21205, USA,Department of Neuroscience, Johns Hopkins School of
Medicine, Baltimore, MD, 21205, USA,McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Dana B. Hancock
- Behavioral and Urban Health Program, Behavioral Health and
Criminal Justice Division, RTI International, Research Triangle Park, NC, 27709,
USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Department of Psychiatry and Behavioral Sciences, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Contact: Lieber Institute for Brain Development,
855 N Wolfe St, Ste 300. Baltimore MD 21205. Ph: 1-410-955-1000
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins
Medical Campus, Baltimore, MD, 21205, USA,Center for Computational Biology, Johns Hopkins University,
Baltimore, MD, 21205, USA,Department of Mental Health, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, 21205, USA,McKusick-Nathans Institute of Genetic Medicine, Johns
Hopkins School of Medicine, Baltimore, MD 21205, USA,Department of Biostatistics, Johns Hopkins Bloomberg
School of Public Health, Baltimore, MD, 21205, USA,Contact: Lieber Institute for Brain Development, 855
N Wolfe St, Ste 300. Baltimore MD 21205. Ph: 1-410-955-1000
| |
Collapse
|
37
|
Jia Z, Wu Q. Clustered Protocadherins Emerge as Novel Susceptibility Loci for Mental Disorders. Front Neurosci 2020; 14:587819. [PMID: 33262685 PMCID: PMC7688460 DOI: 10.3389/fnins.2020.587819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clustered protocadherins (cPcdhs) are a subfamily of type I single-pass transmembrane cell adhesion molecules predominantly expressed in the brain. Their stochastic and combinatorial expression patterns encode highly diverse neural identity codes which are central for neuronal self-avoidance and non-self discrimination in brain circuit formation. In this review, we first briefly outline mechanisms for generating a tremendous diversity of cPcdh cell-surface assemblies. We then summarize the biological functions of cPcdhs in a wide variety of neurodevelopmental processes, such as neuronal migration and survival, dendritic arborization and self-avoidance, axonal tiling and even spacing, and synaptogenesis. We focus on genetic, epigenetic, and 3D genomic dysregulations of cPcdhs that are associated with various neuropsychiatric and neurodevelopmental diseases. A deeper understanding of regulatory mechanisms and physiological functions of cPcdhs should provide significant insights into the pathogenesis of mental disorders and facilitate development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Qiang Wu
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, School of Life Sciences and Biotechnology, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
38
|
Sacai H, Sakoori K, Konno K, Nagahama K, Suzuki H, Watanabe T, Watanabe M, Uesaka N, Kano M. Autism spectrum disorder-like behavior caused by reduced excitatory synaptic transmission in pyramidal neurons of mouse prefrontal cortex. Nat Commun 2020; 11:5140. [PMID: 33046712 PMCID: PMC7552417 DOI: 10.1038/s41467-020-18861-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is thought to result from deviation from normal development of neural circuits and synaptic function. Many genes with mutation in ASD patients have been identified. Here we report that two molecules associated with ASD susceptibility, contactin associated protein-like 2 (CNTNAP2) and Abelson helper integration site-1 (AHI1), are required for synaptic function and ASD-related behavior in mice. Knockdown of CNTNAP2 or AHI1 in layer 2/3 pyramidal neurons of the developing mouse prefrontal cortex (PFC) reduced excitatory synaptic transmission, impaired social interaction and induced mild vocalization abnormality. Although the causes of reduced excitatory transmission were different, pharmacological enhancement of AMPA receptor function effectively restored impaired social behavior in both CNTNAP2- and AHI1-knockdown mice. We conclude that reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons of the PFC leads to impaired social interaction and mild vocalization abnormality in mice. CNTNAP2 or AHI1 are autism-associated genes. Here the authors show using knockdown of the genes that this results in reduced excitatory synaptic transmission in layer 2/3 pyramidal neurons in the prefrontal cortex and is associated with impaired social interaction in mice.
Collapse
Affiliation(s)
- Hiroaki Sacai
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kazuto Sakoori
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kohtarou Konno
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kenichiro Nagahama
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Honoka Suzuki
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, 113-0033, Japan.
| |
Collapse
|
39
|
Burrows E, Koyama L, May C, Hill-Yardin E, Hannan A. Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav 2020; 195:172955. [DOI: 10.1016/j.pbb.2020.172955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
|
40
|
Lee CYQ, Franks AE, Hill-Yardin EL. Autism-associated synaptic mutations impact the gut-brain axis in mice. Brain Behav Immun 2020; 88:275-282. [PMID: 32485290 DOI: 10.1016/j.bbi.2020.05.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Interactions between the gut microbiome and the brain affect mood and behaviour in health and disease. Using preclinical animal models, recent discoveries begin to explain how bacteria in the gut influence our mood as well as highlighting new findings relevant to autism. Autism-associated gene mutations known to alter synapse function in the CNS also affect inflammatory response and modify the enteric nervous system resulting in abnormal gastrointestinal motility and structure. Strikingly, these mutations additionally affect the gut microbiome in mice. This review describes the changes in gut physiology and microbiota in mouse models of autism with modified synapse function. The rationale for different regions of the gastrointestinal tract having variable susceptibility to dysfunction is also discussed. To dissect underlying biological mechanisms involving gut-brain axis dysfunction in preclinical models, a range of multidisciplinary approaches are required. This research will provide insights into the role of the gut-brain axis in health and neurodevelopmental disorders including autism.
Collapse
Affiliation(s)
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
41
|
Cody JD. The Consequences of Abnormal Gene Dosage: Lessons from Chromosome 18. Trends Genet 2020; 36:764-776. [PMID: 32660784 DOI: 10.1016/j.tig.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
Accurate interpretation of genomic copy number variation (CNV) remains a challenge and has important consequences for both congenital and late-onset disease. Hemizygosity dosage characterization of the genes on chromosome 18 reveals a spectrum of outcomes ranging from no clinical effect, to risk factors for disease, to both low- and high-penetrance disease. These data are important for accurate and predictive clinical management. Additionally, the potential mechanisms of reduced penetrance due to dosage compensation are discussed as a key to understanding avenues for potential treatment. This review describes the chromosome 18 findings, and discusses the molecular mechanisms that allow haploinsufficiency, reduced penetrance, and dosage compensation.
Collapse
Affiliation(s)
- Jannine DeMars Cody
- Department of Pediatrics, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Chromosome 18 Registry and Research Society, San Antonio, TX 78229, USA.
| |
Collapse
|
42
|
Breen MS, Browne A, Hoffman GE, Stathopoulos S, Brennand K, Buxbaum JD, Drapeau E. Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Mol Autism 2020; 11:53. [PMID: 32560742 PMCID: PMC7304190 DOI: 10.1186/s13229-020-00355-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a rare genetic disorder with high risk of autism spectrum disorder (ASD), intellectual disability, and language delay, and is caused by 22q13.3 deletions or mutations in the SHANK3 gene. To date, the molecular and pathway changes resulting from SHANK3 haploinsufficiency in PMS remain poorly understood. Uncovering these mechanisms is critical for understanding pathobiology of PMS and, ultimately, for the development of new therapeutic interventions. METHODS We developed human-induced pluripotent stem cell (hiPSC)-based models of PMS by reprogramming peripheral blood samples from individuals with PMS (n = 7) and their unaffected siblings (n = 6). For each participant, up to three hiPSC clones were generated and differentiated into induced neural progenitor cells (hiPSC-NPCs; n = 39) and induced forebrain neurons (hiPSC-neurons; n = 41). Genome-wide RNA-sequencing was applied to explore transcriptional differences between PMS probands and unaffected siblings. RESULTS Transcriptome analyses identified 391 differentially expressed genes (DEGs) in hiPSC-NPCs and 82 DEGs in hiPSC-neurons, when comparing cells from PMS probands and unaffected siblings (FDR < 5%). Genes under-expressed in PMS were implicated in Wnt signaling, embryonic development, and protein translation, while over-expressed genes were enriched for pre- and postsynaptic density genes, regulation of synaptic plasticity, and G-protein-gated potassium channel activity. Gene co-expression network analysis identified two modules in hiPSC-neurons that were over-expressed in PMS, implicating postsynaptic signaling and GDP binding, and both modules harbored a significant enrichment of genetic risk loci for developmental delay and intellectual disability. Finally, PMS-associated genes were integrated with other ASD hiPSC transcriptome findings and several points of convergence were identified, indicating altered Wnt signaling and extracellular matrix. LIMITATIONS Given the rarity of the condition, we could not carry out experimental validation in independent biological samples. In addition, functional and morphological phenotypes caused by loss of SHANK3 were not characterized here. CONCLUSIONS This is the largest human neural sample analyzed in PMS. Genome-wide RNA-sequencing in hiPSC-derived neural cells from individuals with PMS revealed both shared and distinct transcriptional signatures across hiPSC-NPCs and hiPSC-neurons, including many genes implicated in risk for ASD, as well as specific neurobiological pathways, including the Wnt pathway.
Collapse
Affiliation(s)
- Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Browne
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sofia Stathopoulos
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kristen Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - Elodie Drapeau
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
43
|
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci 2020; 21:E4097. [PMID: 32521803 PMCID: PMC7312084 DOI: 10.3390/ijms21114097] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Paweł M. Boguszewski
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65201, USA;
| | - David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, DC069.10, One Hospital Drive, University of Missouri, Columbia, MO 65211, USA;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| |
Collapse
|
44
|
Su LD, Xu FX, Wang XT, Cai XY, Shen Y. Cerebellar Dysfunction, Cerebro-cerebellar Connectivity and Autism Spectrum Disorders. Neuroscience 2020; 462:320-327. [PMID: 32450293 DOI: 10.1016/j.neuroscience.2020.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
The cerebellum has long been conceptualized to control motor learning and motor coordination. However, increasing evidence suggests its roles in cognition and emotion behaviors. In particular, the cerebellum has been recognized as one of key brain regions affected in autism spectrum disorder (ASD). To better understand the contribution of the cerebellum in ASD pathogenesis, we here discuss recent behavioral, genetic, and molecular studies from the human and mouse models. In addition, we raise several questions that need to be investigated in future studies from the point view of cerebellar dysfunction, cerebro-cerebellar connectivity and ASD.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Fang-Xiao Xu
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin-Tai Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin-Yu Cai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
45
|
Gąssowska-Dobrowolska M, Cieślik M, Czapski GA, Jęśko H, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Polowy R, Filipkowski RK, Babiec L, Adamczyk A. Prenatal Exposure to Valproic Acid Affects Microglia and Synaptic Ultrastructure in a Brain-Region-Specific Manner in Young-Adult Male Rats: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21103576. [PMID: 32443651 PMCID: PMC7279050 DOI: 10.3390/ijms21103576] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental conditions categorized as synaptopathies. Environmental risk factors contribute to ASD aetiology. In particular, prenatal exposure to the anti-epileptic drug valproic acid (VPA) may increase the risk of autism. In the present study, we investigated the effect of prenatal exposure to VPA on the synaptic morphology and expression of key synaptic proteins in the hippocampus and cerebral cortex of young-adult male offspring. To characterize the VPA-induced autism model, behavioural outcomes, microglia-related neuroinflammation, and oxidative stress were analysed. Our data showed that prenatal exposure to VPA impaired communication in neonatal rats, reduced their exploratory activity, and led to anxiety-like and repetitive behaviours in the young-adult animals. VPA-induced pathological alterations in the ultrastructures of synapses accompanied by deregulation of key pre- and postsynaptic structural and functional proteins. Moreover, VPA exposure altered the redox status and expression of proinflammatory genes in a brain region-specific manner. The disruption of synaptic structure and plasticity may be the primary insult responsible for autism-related behaviour in the offspring. The vulnerability of specific synaptic proteins to the epigenetic effects of VPA may highlight the potential mechanisms by which prenatal VPA exposure generates behavioural changes.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
- Correspondence: (M.G.-D.); (A.A.); Tel.: +48-22-6086420 (M.G-D.); +48-22-6086572 (A.A.)
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Grzegorz Arkadiusz Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.F.-B.); (M.G.)
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.F.-B.); (M.G.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert Kuba Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5 St, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.C.); (G.A.C.); (H.J.); (L.B.)
- Correspondence: (M.G.-D.); (A.A.); Tel.: +48-22-6086420 (M.G-D.); +48-22-6086572 (A.A.)
| |
Collapse
|
46
|
Di Miceli M, Bosch-Bouju C, Layé S. PUFA and their derivatives in neurotransmission and synapses: a new hallmark of synaptopathies. Proc Nutr Soc 2020; 79:1-16. [PMID: 32299516 DOI: 10.1017/s0029665120000129] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PUFA of the n-3 and n-6 families are present in high concentration in the brain where they are major components of cell membranes. The main forms found in the brain are DHA (22 :6, n-3) and arachidonic acid (20:4, n-6). In the past century, several studies pinpointed that modifications of n-3 and n-6 PUFA levels in the brain through dietary supply or genetic means are linked to the alterations of synaptic function. Yet, synaptopathies emerge as a common characteristic of neurodevelopmental disorders, neuropsychiatric diseases and some neurodegenerative diseases. Understanding the mechanisms of action underlying the activity of PUFA at the level of synapses is thus of high interest. In this frame, dietary supplementation in PUFA aiming at restoring or promoting the optimal function of synapses appears as a promising strategy to treat synaptopathies. This paper reviews the link between dietary PUFA, synapse formation and the role of PUFA and their metabolites in synaptic functions.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Clémentine Bosch-Bouju
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Sophie Layé
- INRAE, University of Bordeaux, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| |
Collapse
|
47
|
Sharna SS, Balasuriya GK, Hosie S, Nithianantharajah J, Franks AE, Hill-Yardin EL. Altered Caecal Neuroimmune Interactions in the Neuroligin-3 R451C Mouse Model of Autism. Front Cell Neurosci 2020; 14:85. [PMID: 32327975 PMCID: PMC7160799 DOI: 10.3389/fncel.2020.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The intrinsic nervous system of the gut interacts with the gut-associated lymphoid tissue (GALT) via bidirectional neuroimmune interactions. The caecum is an understudied region of the gastrointestinal (GI) tract that houses a large supply of microbes and is involved in generating immune responses. The caecal patch is a lymphoid aggregate located within the caecum that regulates microbial content and immune responses. People with Autism Spectrum Disorder (ASD; autism) experience serious GI dysfunction, including inflammatory disorders, more frequently than the general population. Autism is a highly prevalent neurodevelopmental disorder defined by the presence of repetitive behavior or restricted interests, language impairment, and social deficits. Mutations in genes encoding synaptic adhesion proteins such as the R451C missense mutation in neuroligin-3 (NL3) are associated with autism and impair synaptic transmission. We previously reported that NL3R451C mice, a well-established model of autism, have altered enteric neurons and GI dysfunction; however, whether the autism-associated R451C mutation alters the caecal enteric nervous system and immune function is unknown. We assessed for gross anatomical changes in the caecum and quantified the proportions of caecal submucosal and myenteric neurons in wild-type and NL3R451C mice using immunofluorescence. In the caecal patch, we assessed total cellular density as well as the density and morphology of Iba-1 labeled macrophages to identify whether the R451C mutation affects neuro-immune interactions. NL3R451C mice have significantly reduced caecal weight compared to wild-type mice, irrespective of background strain. Caecal weight is also reduced in mice lacking Neuroligin-3. NL3R451C caecal ganglia contain more neurons overall and increased numbers of Nitric Oxide (NO) producing neurons (labeled by Nitric Oxide Synthase; NOS) per ganglion in both the submucosal and myenteric plexus. Overall caecal patch cell density was unchanged however NL3R451C mice have an increased density of Iba-1 labeled enteric macrophages. Macrophages in NL3R451C were smaller and more spherical in morphology. Here, we identify changes in both the nervous system and immune system caused by an autism-associated mutation in Nlgn3 encoding the postsynaptic cell adhesion protein, Neuroligin-3. These findings provide further insights into the potential modulation of neural and immune pathways.
Collapse
Affiliation(s)
- Samiha Sayed Sharna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Suzanne Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
48
|
Armstrong EC, Caruso A, Servadio M, Andreae LC, Trezza V, Scattoni ML, Fernandes C. Assessing the developmental trajectory of mouse models of neurodevelopmental disorders: Social and communication deficits in mice with Neurexin 1α deletion. GENES BRAIN AND BEHAVIOR 2020; 19:e12630. [DOI: 10.1111/gbb.12630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Armstrong
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College London London UK
- MRC Centre for Neurodevelopmental DisordersKing's College London London UK
| | - Angela Caruso
- Research Coordination and Support ServiceIstituto Superiore di Sanità Rome Italy
| | - Michela Servadio
- Department of ScienceSection of Biomedical Sciences and Technologies, University “Roma Tre” Rome Italy
| | - Laura C. Andreae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology & NeuroscienceKing's College London London UK
- MRC Centre for Neurodevelopmental DisordersKing's College London London UK
| | - Viviana Trezza
- Department of ScienceSection of Biomedical Sciences and Technologies, University “Roma Tre” Rome Italy
| | - Maria L. Scattoni
- Research Coordination and Support ServiceIstituto Superiore di Sanità Rome Italy
| | - Cathy Fernandes
- MRC Centre for Neurodevelopmental DisordersKing's College London London UK
- Social, Genetic & Developmental Psychiatry Centre, PO82, Institute of Psychiatry, Psychology & NeuroscienceKing's College London London UK
| |
Collapse
|
49
|
Fan C, Gao Y, Liang G, Huang L, Wang J, Yang X, Shi Y, Dräger UC, Zhong M, Gao TM, Yang X. Transcriptomics of Gabra4 knockout mice reveals common NMDAR pathways underlying autism, memory, and epilepsy. Mol Autism 2020; 11:13. [PMID: 32033586 PMCID: PMC7007694 DOI: 10.1186/s13229-020-0318-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/26/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neuronal developmental disorder with impaired social interaction and communication, often with abnormal intelligence and comorbidity with epilepsy. Disturbances in synaptic transmission, including the GABAergic, glutamatergic, and serotonergic systems, are known to be involved in the pathogenesis of this disorder, yet we do not know if there is a common molecular mechanism. As mutations in the GABAergic receptor subunit gene GABRA4 are reported in patients with ASD, we eliminated the Gabra4 gene in mice and found that the Gabra4 knockout mice showed autistic-like behavior, enhanced spatial memory, and attenuated susceptibility to pentylenetetrazol-induced seizures, a constellation of symptoms resembling human high-functioning autism. To search for potential molecular pathways involved in these phenotypes, we performed a hippocampal transcriptome profiling, constructed a hippocampal interactome network, and revealed an upregulation of the NMDAR system at the center of the converged pathways underlying high-functioning autism-like and anti-epilepsy phenotypes.
Collapse
Affiliation(s)
- Cuixia Fan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yue Gao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Guanmei Liang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Lang Huang
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxue Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yiwu Shi
- Institute of Neuroscience and Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Ursula C Dräger
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Key Laboratory of Psychiatric Disorders, Collaborative Innovation Center for Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xinping Yang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China. .,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Bhandari R, Paliwal JK, Kuhad A. Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. ADVANCES IN NEUROBIOLOGY 2020; 24:97-141. [PMID: 32006358 DOI: 10.1007/978-3-030-30402-7_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.
Collapse
Affiliation(s)
- Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Jyoti K Paliwal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, India.
| |
Collapse
|