1
|
Sullivan MD, de C Williams AC. The social nature of human pain. Pain 2025; 166:20-23. [PMID: 38718198 DOI: 10.1097/j.pain.0000000000003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/10/2024] [Indexed: 12/18/2024]
|
2
|
Nakamura M, Nomoto K, Mogi K, Koide T, Kikusui T. Visual and olfactory signals of conspecifics induce emotional contagion in mice. Proc Biol Sci 2024; 291:20241815. [PMID: 39657812 PMCID: PMC11631419 DOI: 10.1098/rspb.2024.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Emotional contagion occurs in many animals, including rodents. To determine the social signals of emotional state-matching between individuals in mice, we conducted an empirical laboratory experiment using visual, olfactory and auditory stimuli. The Japanese wild-derived mouse strain MSM/Ms (MSM) was tested as observers, since our initial experiments indicated that MSM mice showed higher sensitivity to others' pain compared with the laboratory strain C57BL/6J (B6). MSM observers were shown footage of an unfamiliar B6 mouse receiving painful foot shocks via a screen. For olfactory stimuli, one of the following was presented during observation: (i) urine collected from a shocked B6 mouse, (ii) urine collected from an unshocked B6 mouse, or (iii) reverse osmosis water. Consequently, MSM mice observing the footage with urine from shocked mice demonstrated significantly higher fear-induced freezing behaviour than in the other two conditions. Regarding visual and auditory stimuli, observing the pixelated video clip was significantly associated with reduced freeze responses, whereas blocking auditory cues did not affect the duration of freezing. These results provide clear-cut evidence that multiple cues, including olfactory and visual information, are sufficient social signals for emotional contagion in mice.
Collapse
Affiliation(s)
- Madoka Nakamura
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa252-5201, Japan
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo187-8553, Japan
| | - Kensaku Nomoto
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa252-5201, Japan
- Department of Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsugagun, Tochigi321-0293, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa252-5201, Japan
| | - Tsuyoshi Koide
- Mouse Genomics Resource Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka411-8540, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka411-8540, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, 1-17-71, Fuchinobe, Sagamihara, Kanagawa252-5201, Japan
| |
Collapse
|
3
|
Ketterer-Sykes EB, Saraceno E, Hough F, Wyse M, Restifo-Bernstein G, Blais AY, Khondokar M, Hoen P, López HH. Anxiolytic treatment of a trapped rat reduces helping and anxiogenic treatment increases helping: Evidence for emotional contagion in altruism. Pharmacol Biochem Behav 2024; 244:173846. [PMID: 39127241 DOI: 10.1016/j.pbb.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The present experiment used the trapped rat model to explore whether pharmacological manipulation of distress affects the likelihood of helping behavior. 120 Sprague-Dawley rats (30 male pairs and 30 female pairs) completed 12 consecutive, daily trials assessing helping behavior. During an individual trial, a trapped rat was placed in a restrainer in the center of an open field, while its cagemate could move around freely and possibly open the restrainer by lifting a door. Trapped rats received an intraperitoneal injection of either 1) physiological saline, 2) the anxiolytic midazolam (1.5 mg/kg), or 3) the anxiogenic yohimbine (2.5 mg/kg) 30 min prior to the start of each trial. Dependent variables measured were: 1) door opening latency (sec), 2) percentage of trials in which a door opening occurred, and 3) the number of free rats classified as "openers." Based on emotional contagion theory, we predicted that 1) free rats paired with midazolam-subjects would show attenuated helping behavior (e.g., higher door opening latency) compared to controls, and conversely 2) free rats paired with yohimbine-subjects would show enhanced helping behavior. First, a significant sex-difference was observed, in that more females were classified as openers than males. This supports previous evidence that females express higher altruistic motivation and experience stronger emotional contagion than males. Second, midazolam-treatment significantly attenuated helping behavior. From trials 4-12, free rats paired with midazolam-subjects expressed slower door opening latencies compared to controls. Third, yohimbine-treatment significantly increased helping behavior (e.g., reduced door opening latencies) - but only on trials 1-3; by trials 9-12, this pattern was reversed. These results are consistent with emotional contagion theory and indicate that intensity of distress directly modulates altruistic motivation through vicarious state-matching.
Collapse
Affiliation(s)
- Eleanor B Ketterer-Sykes
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Elisabeth Saraceno
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Frances Hough
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Maya Wyse
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Gabriella Restifo-Bernstein
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Allison Y Blais
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Maisha Khondokar
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Penn Hoen
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America
| | - Hassan H López
- Department of Psychology, Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States of America.
| |
Collapse
|
4
|
Zhang MM, Chen T. Empathic pain: Underlying neural mechanism. Neuroscientist 2024:10738584241283435. [PMID: 39365808 DOI: 10.1177/10738584241283435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Empathy is usually regarded as the ability to perceive the emotional state of others, which is an altruistic motivation to promote prosocial behavior and thus plays a key role in human life and social development. Empathic pain-the capacity to feel and understand the pain of others-constitutes a significant aspect in the study of empathy behaviors. For an extended duration, investigations into empathic pain have predominantly centered on human neuroimaging studies. Fortunately, recent advancements have witnessed the utilization of animal models in the exploration of the fundamental neural underpinnings of empathic pain. There is substantial evidence implicating multiple brain regions and neural networks in the generation and maintenance of empathic pain. Nevertheless, further elucidation of the neural mechanisms underlying empathic pain is warranted. This review provides a concise overview of prior studies on the neural mechanisms of empathic pain, outlining the pertinent brain regions, neural pathways, synaptic mechanisms, and associated molecules while also delving into future prospects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Choi J, Jung S, Kim J, So D, Kim A, Kim S, Choi S, Yoo E, Kim JY, Jang YC, Lee H, Kim J, Shin HS, Chae S, Keum S. ARNT2 controls prefrontal somatostatin interneurons mediating affective empathy. Cell Rep 2024; 43:114659. [PMID: 39180750 DOI: 10.1016/j.celrep.2024.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Empathy, crucial for social interaction, is impaired across various neuropsychiatric conditions. However, the genetic and neural underpinnings of empathy variability remain elusive. By combining forward genetic mapping with transcriptome analysis, we discover that aryl hydrocarbon receptor nuclear translocator 2 (ARNT2) is a key driver modulating observational fear, a basic form of affective empathy. Disrupted ARNT2 expression in the anterior cingulate cortex (ACC) reduces affect sharing in mice. Specifically, selective ARNT2 ablation in somatostatin (SST)-expressing interneurons leads to decreased pyramidal cell excitability, increased spontaneous firing, aberrant Ca2+ dynamics, and disrupted theta oscillations in the ACC, resulting in reduced vicarious freezing. We further demonstrate that ARNT2-expressing SST interneurons govern affective state discrimination, uncovering a potential mechanism by which ARNT2 polymorphisms associate with emotion recognition in humans. Our findings advance our understanding of the molecular mechanism controlling empathic capacity and highlight the neural substrates underlying social affective dysfunctions in psychiatric disorders.
Collapse
Affiliation(s)
- Jiye Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Seungmoon Jung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jieun Kim
- Department of Bio-Health Technology, College of Biomedicine Science, Kangwon National University, Chuncheon 24341, South Korea; Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Dahm So
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Arie Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sowon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sungjoon Choi
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Eunsu Yoo
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jee Yeon Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Yoon Cheol Jang
- Research Solution Center, Institute for Basic Science, Daejeon 34126, South Korea
| | - Hyoin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Jeongyeon Kim
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - Sehyun Chae
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, South Korea; Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, South Korea.
| | - Sehoon Keum
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea.
| |
Collapse
|
6
|
Casarrubea M, Leca JB, Gunst N, Aiello S, Crescimanno G. Behavioral mirroring in Wistar rats investigated through temporal pattern analysis. Sci Rep 2024; 14:20877. [PMID: 39242741 PMCID: PMC11379692 DOI: 10.1038/s41598-024-71428-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The study of social interactions lies at the core of several disciplines such as psychiatry, psychology and ethology, just to name a few. In this context, understanding the temporal patterns underlying interactive behaviors is of crucial importance. Here, we employed T-pattern detection and analysis to study social interactions in ten pairs of Wistar rats tested in an Open-Field environment. We found four different categories of interactive behaviors. One of them was of particular interest to us because it consisted of behavioral events that, taken individually, should not underlie an interaction of any kind; however, they were included in T-patterns, which is suggestive of a dyadic temporal coordination in the behavioral expression of two individuals. Within this category, we described for the first time a new subcategory of apparent interaction patterns characterized by events that one of the two rats repeats only if previously produced by the partner (i.e., behavioral mirroring). These findings are discussed in functional terms for rodents and in light of our current understanding of social interactions in humans.
Collapse
Affiliation(s)
- Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy.
| | - Jean-Baptiste Leca
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
- School of Natural and Engineering Sciences, National Institute of Advanced Studies, Bangalore, India
| | - Noëlle Gunst
- Department of Psychology, University of Lethbridge, Lethbridge, AB, Canada
| | - Stefania Aiello
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| | - Giuseppe Crescimanno
- Laboratory of Behavioral Physiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Human Physiology Section "Giuseppe Pagano", University of Palermo, Palermo, Italy
| |
Collapse
|
7
|
Norscia I, Hecker M, Aldama BG, Santos SB, Cordoni G. Play contagion in African elephants: The closest, the better. Behav Processes 2024; 221:105092. [PMID: 39209084 DOI: 10.1016/j.beproc.2024.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Behavioural contagion is an automatic process through which a behaviour performed by an individual (trigger) is reproduced by an observer (responder) without necessarily replicating the exact motor sequence. It has been linked to inter-individual synchronisation and possibly emotional contagion. Play can convey emotions and enhance social bonding, although its contagiousness is understudied. To verify social play contagion presence and modulating factors, we gathered audio-video data on social play, distance and affiliation on a group of savannah African elephants (15 individuals) at Parque de la Naturaleza de Cabarceno (Cantabria, Spain). Social play was contagious as it was more likely started by uninvolved elephants (within 3-min) in Post-Play Condition (PP) - after that other elephants had started playing - than in Matched-control Condition (MC; no previous play). Social play contagion mostly occurred within 30 m - probably due to elephants' limited visual acuity - and it was highest between individuals that affiliated the most, with the distance-affiliation interaction having no effect. The most prominent individuals in the social play network were also the most influential in the play contagion network (Eigenvector-centrality measure). Play contagion was socially modulated, thus suggesting it may extend from motor replication to the replication of the underlying affective state.
Collapse
Affiliation(s)
- Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| | - Martin Hecker
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | | | | | - Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Italy.
| |
Collapse
|
8
|
Rütgen M, Lamm C. Dissecting shared pain representations to understand their behavioral and clinical relevance. Neurosci Biobehav Rev 2024; 163:105769. [PMID: 38879099 DOI: 10.1016/j.neubiorev.2024.105769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Accounts of shared representations posit that the experience of pain and pain empathy rely on similar neural mechanisms. Experimental research employing novel analytical and methodological approaches has made significant advances in both the identification and targeted manipulation of such shared experiences and their neural underpinnings. This revealed that painful experiences can be shared on different representational levels, from pain-specific to domain-general features, such as negative affect and its regulation. In view of direct links between such representations and social behaviors such as prosocial behavior, conditions characterized by aberrant pain processing may come along with heavy impairments in the social domain, depending on the affected representational level. This has wide potential implications in light of the high prevalence of pain-related clinical conditions, their management, and the overuse of pain medication. In this review and opinion paper, we aim to chart the path toward a better understanding of the link between shared affect and prosocial behavior.
Collapse
Affiliation(s)
- Markus Rütgen
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Dautan D, Monai A, Maltese F, Chang X, Molent C, Mauro D, Galbusera A, Vecchia D, Antonelli F, Benedetti A, Drago F, Leggio GM, Pagani M, Fellin T, Gozzi A, Schumann G, Managò F, Papaleo F. Cortico-cortical transfer of socially derived information gates emotion recognition. Nat Neurosci 2024; 27:1318-1332. [PMID: 38769153 DOI: 10.1038/s41593-024-01647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.
Collapse
Affiliation(s)
- Daniel Dautan
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
- Bioclinicum, Karolinska Institute, Stockholm, Sweden
| | - Anna Monai
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Xiao Chang
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
| | - Cinzia Molent
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Mauro
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Arianna Benedetti
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Psychotherapy, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
10
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. Comparative Analysis of Human-Chimpanzee Divergence in Brain Connectivity and its Genetic Correlates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597252. [PMID: 38895242 PMCID: PMC11185649 DOI: 10.1101/2024.06.03.597252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
11
|
Fang S, Luo Z, Wei Z, Qin Y, Zheng J, Zhang H, Jin J, Li J, Miao C, Yang S, Li Y, Liang Z, Yu XD, Zhang XM, Xiong W, Zhu H, Gan WB, Huang L, Li B. Sexually dimorphic control of affective state processing and empathic behaviors. Neuron 2024; 112:1498-1517.e8. [PMID: 38430912 DOI: 10.1016/j.neuron.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.
Collapse
Affiliation(s)
- Shunchang Fang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhengyi Luo
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zicheng Wei
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuxin Qin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jieyan Zheng
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongyang Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jianhua Jin
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiali Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Chenjian Miao
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shana Yang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yonglin Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zirui Liang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Dan Yu
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao Min Zhang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Wei Xiong
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongying Zhu
- Institute on Aging, Hefei, China and Brain Disorders, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | | | - Lianyan Huang
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| | - Boxing Li
- Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Advanced Medical Technology Center, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou 510655, China.
| |
Collapse
|
12
|
Cox SS, Brown BJ, Wood SK, Brown SJ, Kearns AM, Reichel CM. Neuronal, affective, and sensory correlates of targeted helping behavior in male and female Sprague Dawley rats. Front Behav Neurosci 2024; 18:1384578. [PMID: 38660390 PMCID: PMC11041374 DOI: 10.3389/fnbeh.2024.1384578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Empathic behaviors are driven by the ability to understand the emotional states of others along with the motivation to improve it. Evidence points towards forms of empathy, like targeted helping, in many species including rats. There are several variables that may modulate targeted helping, including sex, sensory modalities, and activity of multiple neural substrates. Methods Using a model of social contact-independent targeted helping, we first tested whether sex differences exist in helping behavior. Next, we explored sex differences in sensory and affective signaling, including direct visualization and an analysis of ultrasonic vocalizations made between animal pairs. Finally, we examined the neural activity in males and females of multiple regions of interest across time. Here, we aim to examine any behavioral differences in our lab's social contact independent targeted helping task between males and females. Results and Discussion These findings are the first to intimate that, like other prosocial behaviors, males and females may exhibit similar social-independent targeted helping behavior, but the underlying sensory communication in males and females may differ. In addition, this is the first set of experiments that explore the neural correlates of social-independent targeted helping in both males and females. These results lay the groundwork for future studies to explore the similarities and differences that drive targeted helping in both sexes.
Collapse
Affiliation(s)
- Stewart S. Cox
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | | | | | | | | | - Carmela M. Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
13
|
Kumar P, Abubakar AA, Verma AK, Umaraw P, Adewale Ahmed M, Mehta N, Nizam Hayat M, Kaka U, Sazili AQ. New insights in improving sustainability in meat production: opportunities and challenges. Crit Rev Food Sci Nutr 2023; 63:11830-11858. [PMID: 35821661 DOI: 10.1080/10408398.2022.2096562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treating livestock as senseless production machines has led to rampant depletion of natural resources, enhanced greenhouse gas emissions, gross animal welfare violations, and other ethical issues. It has essentially instigated constant scrutiny of conventional meat production by various experts and scientists. Sustainably in the meat sector is a big challenge which requires a multifaced and holistic approach. Novel tools like digitalization of the farming system and livestock market, precision livestock farming, application of remote sensing and artificial intelligence to manage production and environmental impact/GHG emission, can help in attaining sustainability in this sector. Further, improving nutrient use efficiency and recycling in feed and animal production through integration with agroecology and industrial ecology, improving individual animal and herd health by ensuring proper biosecurity measures and selective breeding, and welfare by mitigating animal stress during production are also key elements in achieving sustainability in meat production. In addition, sustainability bears a direct relationship with various social dimensions of meat production efficiency such as non-market attributes, balance between demand and consumption, market and policy failures. The present review critically examines the various aspects that significantly impact the efficiency and sustainability of meat production.
Collapse
Affiliation(s)
- Pavan Kumar
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Abubakar Ahmed Abubakar
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Akhilesh Kumar Verma
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Pramila Umaraw
- Department of Livestock Products Technology, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Muideen Adewale Ahmed
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nitin Mehta
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Balinisteanu T. Pilot Studies on Empathy and Closeness in Mutual Entrainment/Improvisation vs. Formalised Dance with Different Types of Rhythm (Regular, Irregular, and No Rhythm) and Coupling (Visual, Haptic, Full Coupling): Building a Case for the Origin of Dance in Mutual Entrainment Empathic Interactions in the Mother-Infant Dyad. Behav Sci (Basel) 2023; 13:859. [PMID: 37887509 PMCID: PMC10604627 DOI: 10.3390/bs13100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
This paper employs a novel research design to examine changes in empathy and closeness in partnered face-to-face dance, considering both different types of rhythm (regular, irregular, and no external rhythm, or 'mutual entrainment only') and different types of coupling (visual only, haptic only, and full visual and haptic coupling). Two studies were undertaken to pilot the design. In both studies, the Interpersonal Reactivity Index and Inclusion of Other in the Self were used to measure empathy and closeness, respectively. Study 1 employed 24 participants (12 pairs) distributed across two rhythm conditions, external regular rhythm, and no external rhythm, with full coupling in both conditions. Closeness increased similarly in both conditions. Empathic concern (EC) was significantly affected in the 'no rhythm' condition. Study 2 employed 54 participants assigned to form pairs and distributed across all combinations of rhythm and coupling types. Closeness decreased with irregular rhythm. EC increased in the 'no rhythm' conditions relative to regular rhythm. Fantasy (F) decreased with haptic coupling only (no visual coupling) while personal distress (PD) increased. In addition, the analyses suggest that perspective taking (PT) increases with irregular rhythm and in the condition without rhythm (mutual entrainment only). The discussion gauges the value of the designs and results for capturing changes in empathy and closeness with different rhythm and coupling types. Capturing such changes is important for research on the origins of dance in empathic mutual entrainment in the mother-infant dyad.
Collapse
Affiliation(s)
- Tudor Balinisteanu
- Neuroaesthetics Lab, University of Suceava, 720229 Suceava, Romania;
- Psychology Department, Goldsmiths, University of London, London SE14 6NW, UK
| |
Collapse
|
15
|
Berendzen KM. Understanding social attachment as a window into the neural basis of prosocial behavior. Front Neurol 2023; 14:1247480. [PMID: 37869145 PMCID: PMC10585278 DOI: 10.3389/fneur.2023.1247480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
The representation and demonstration of human values are intimately tied to our status as a social species. Humans are relatively unique in our ability to form enduring social attachments, characterized by the development of a selective bond that persists over time. Such relationships include the bonds between parents and offspring, pair bonds between partners and other affiliative contacts, in addition to group relationships to which we may form direct and symbolic affiliations. Many of the cognitive and behavioral processes thought to be linked to our capacity for social attachment-including consolation, empathy, and social motivation, and the implicated neural circuits mediating these constructs, are shared with those thought to be important for the representation of prosocial values. This perspective piece will examine the hypothesis that our ability to form such long-term bonds may play an essential role in the construction of human values and ethical systems, and that components of prosocial behaviors are shared across species. Humans are one of a few species that form such long-term and exclusive attachments and our understanding of the neurobiology underlying attachment behavior has been advanced by studying behavior in non-human animals. The overlap in behavioral and affective constructs underlying attachment behavior and value representation is discussed, followed by evidence from other species that demonstrate attachment behavior that supports the overlapping neurobiological basis for social bonds and prosocial behavior. The understanding of attachment biology has broad implications for human health as well as for understanding the basis for and variations in prosocial behavior.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Biological Sciences, University of California, San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
16
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. PLoS One 2023; 18:e0281794. [PMID: 37797037 PMCID: PMC10553809 DOI: 10.1371/journal.pone.0281794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Nathaniel S. Rieger
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Bridget H. Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Bridget N. Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Alexandra J. Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - John P. Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| |
Collapse
|
17
|
Nelson XJ, Taylor AH, Cartmill EA, Lyn H, Robinson LM, Janik V, Allen C. Joyful by nature: approaches to investigate the evolution and function of joy in non-human animals. Biol Rev Camb Philos Soc 2023; 98:1548-1563. [PMID: 37127535 DOI: 10.1111/brv.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The nature and evolution of positive emotion is a major question remaining unanswered in science and philosophy. The study of feelings and emotions in humans and animals is dominated by discussion of affective states that have negative valence. Given the clinical and social significance of negative affect, such as depression, it is unsurprising that these emotions have received more attention from scientists. Compared to negative emotions, such as fear that leads to fleeing or avoidance, positive emotions are less likely to result in specific, identifiable, behaviours being expressed by an animal. This makes it particularly challenging to quantify and study positive affect. However, bursts of intense positive emotion (joy) are more likely to be accompanied by externally visible markers, like vocalisations or movement patterns, which make it more amenable to scientific study and more resilient to concerns about anthropomorphism. We define joy as intense, brief, and event-driven (i.e. a response to something), which permits investigation into how animals react to a variety of situations that would provoke joy in humans. This means that behavioural correlates of joy are measurable, either through newly discovered 'laughter' vocalisations, increases in play behaviour, or reactions to cognitive bias tests that can be used across species. There are a range of potential situations that cause joy in humans that have not been studied in other animals, such as whether animals feel joy on sunny days, when they accomplish a difficult feat, or when they are reunited with a familiar companion after a prolonged absence. Observations of species-specific calls and play behaviour can be combined with biometric markers and reactions to ambiguous stimuli in order to enable comparisons of affect between phylogenetically distant taxonomic groups. Identifying positive affect is also important for animal welfare because knowledge of positive emotional states would allow us to monitor animal well-being better. Additionally, measuring if phylogenetically and ecologically distant animals play more, laugh more, or act more optimistically after certain kinds of experiences will also provide insight into the mechanisms underlying the evolution of joy and other positive emotions, and potentially even into the evolution of consciousness.
Collapse
Affiliation(s)
- Ximena J Nelson
- Private Bag 4800, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Alex H Taylor
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys, 23, Barcelona, Spain
- School of Psychology, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erica A Cartmill
- Departments of Anthropology and Psychology, UCLA, 375 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Heidi Lyn
- Department of Psychology, University of South Alabama, 75 S. University Blvd., Mobile, AL, 36688, USA
| | - Lauren M Robinson
- Domestication Lab, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Vienna, A-1160, Austria
| | - Vincent Janik
- Scottish Oceans Institute, School of Biology, University of St. Andrews, St Andrews, KY16 8LB, UK
| | - Colin Allen
- Department of History & Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning, 4200 Fifth Ave, Pittsburgh, PA, 15260, USA
| |
Collapse
|
18
|
Hess EM, Venniro M, Gould TD. Relative to females, male rats are more willing to forego obtaining sucrose reward in order to prevent harm to their cage mate. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06435-2. [PMID: 37530881 DOI: 10.1007/s00213-023-06435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Empathy, or the ability to perceive, share, and act upon the emotions of another, is a crucial social skill and is dysfunctional in autism and schizophrenia. While the complexities of human empathy are difficult to model in rodents, behavioral paradigms utilizing rats which study decision-making in social contexts may provide a translational framework for assessing biological, pharmacotherapeutic, and environmental interventions. OBJECTIVES Modify and expand upon the three-session rat harm aversion task, which measures the willingness of rats to cease pressing a lever that earns them sucrose reward but delivers a shock to their cage mate. We sought to test the sustainability of harm aversion across seven sessions in male and female rats. METHODS Same-sex pair-housed rats were assigned as either the observer, which had access to the lever, or the demonstrator, which would receive shocks. After training the observer to press the lever to receive sucrose pellets, the demonstrator was placed into an adjacent chamber at which point lever responses would also deliver a shock. If the observer did not press the lever, no shock and no sucrose was delivered. RESULTS A sex difference in harm aversion was observed with female rats having significantly higher response rates and decreased response latencies across the seven test sessions, thus delivering more shocks and obtaining more sucrose, relative to males. CONCLUSIONS These data demonstrate that male rats sustain harm aversion to a greater extent relative to females.
Collapse
Affiliation(s)
- Evan M Hess
- Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 936, Baltimore, MD, 21201, USA.
| | - Marco Venniro
- Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 936, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, 685 W. Baltimore St., MSTF 936, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Baltimore Veterans Affairs Medical Center, Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
| |
Collapse
|
19
|
Panksepp JB, Lahvis GP. Sociability versus empathy in adolescent mice: Different or distinctive? LEARNING AND MOTIVATION 2023; 83:101892. [PMID: 37614811 PMCID: PMC10443922 DOI: 10.1016/j.lmot.2023.101892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, a growing number of pre-clinical studies have made use of the social abilities of mice, asking how gene variants (e.g., null, transgenic or mutant alleles) give rise to abnormalities in neurodevelopment. Two distinct courses of research provide the foundation for these studies. One course has mostly focused on how we can assess "sociability" using metrics, often automated, to quantitate mouse approach and withdrawal responses to a variety of social stimuli. The other course has focused on psychobiological constructs that underlie the socio-emotional capacities of mice, including motivation, reward and empathy. Critically, we know little about how measures of mouse sociability align with their underlying socio-emotional capacities. In the present work, we compared the expression of sociability in adolescent mice from several strains versus a precisely defined behavioral model of empathy that makes use of a vicarious fear learning paradigm. Despite substantial strain-dependent variation within each behavioral domain, we found little evidence of a relationship between these social phenotypes (i.e., the rank order of strain differences was unique for each test). By contrast, emission of ultrasonic vocalizations was highly associated with sociability, suggesting that these two measures reflect the same underlying construct. Taken together, our results indicate that sociability and vicarious fear learning are not manifestations of a single, overarching social trait. These findings thus underscore the necessity for a robust and diverse set of measures when using laboratory mice to model the social dimensions of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jules B. Panksepp
- University of Wisconsin, Waisman Center, 1500 Highland Ave. Madison, WI, 53705, USA
| | | |
Collapse
|
20
|
Electroencephalogram and Physiological Responses as Affected by Slaughter Empathy in Goats. Animals (Basel) 2023; 13:ani13061100. [PMID: 36978640 PMCID: PMC10044356 DOI: 10.3390/ani13061100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Recent advances in emotions and cognitive science make it imperative to assess the emotional stress in goats at the time of slaughter. The present study was envisaged to study the electroencephalogram and physiological responses as affected by slaughter empathy in goats. A total of 12 goats were divided into two groups viz., E-group (goats exposed to slaughter environment, n = 6) and S-group (goat slaughtered in front of E-group, n = 6). The electroencephalogram and physiological responses in male Boer cross goats (E-group) were recorded in a slaughterhouse in two stages viz., control (C) without exposure to the slaughter of conspecifics and treatment (T) while visualizing the slaughter of conspecifics (S—slaughter group). The exposure of the goat to the slaughter of a conspecific resulted in a heightened emotional state. It caused significant alterations in neurobiological activity as recorded with the significant changes in the EEG spectrum (beta waves (p = 0.000491), theta waves (p = 0.017), and median frequency MF or F50 (p = 0.002)). Emotional stress was also observed to significantly increase blood glucose (p = 0.031) and a non-significant (p = 0.225) increase in heart rate in goats. Thus, slaughter empathy was observed to exert a significant effect on the electric activity of neurons in the cerebrocortical area of the brain and an increase in blood glucose content.
Collapse
|
21
|
Nikrahan GR. Theory of brain complexity and marital behaviors: The application of complexity science and neuroscience to explain the complexities of marital behaviors. Front Hum Neurosci 2023; 17:1050164. [PMID: 36959907 PMCID: PMC10027753 DOI: 10.3389/fnhum.2023.1050164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
The extant theories on the quality and stability of marital relationships have some difficulties in explaining some of the complexities of marital behaviors. The present article is an initial attempt to explain the complexities of marital behaviors based on the science of complexity and neuroscience. This article proposes a new theoretical framework relying on this simple argument that marital behaviors, as one of the most complex human behaviors, are the product of one's brain's complex adaptive system (CAS). Hence, to understand the complexities of marital behaviors, a movement toward familiarity with the brain's CAS involved in marital behaviors needs to be started. The article presents the theory of brain complexity and marital behaviors (BCM) and outlines its assumptions, concepts, and propositions. Then, BCM is compared with the extant theories on happy and stable marriage, and finally, it was concluded by discussing the testability and the potential application of the theory. This article might inspire interdisciplinary studies of marital relationships, complex systems, and neuroscience and may have considerable practical implications.
Collapse
Affiliation(s)
- Gholam Reza Nikrahan
- Department of Psychology, Farhangian University, Tehran, Iran
- Department of Psychology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
22
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526780. [PMID: 36778382 PMCID: PMC9915682 DOI: 10.1101/2023.02.02.526780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget N Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
23
|
Cox SS, Reichel CM. The intersection of empathy and addiction. Pharmacol Biochem Behav 2023; 222:173509. [PMID: 36565789 PMCID: PMC10518853 DOI: 10.1016/j.pbb.2022.173509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Empathy, the ability to perceive the affective state of another, is a complex process that is integral to many of the prosocial behaviors expressed in humans and across the animal kingdom. Research into the behavioral and neurobiological underpinnings of empathic behaviors has increased in recent years. Growing evidence suggests changes in empathy may contribute to a myriad of psychiatric illnesses, including substance use disorder (SUD). Indeed, both clinical and preclinical research in SUD demonstrates a strong relationship between drug taking or relapse events and changes to empathic behavior. Further, there is significant overlap in the underlying neural substrates of these complex behaviors, including the insula, paraventricular nucleus of thalamus (PVT), and the paraventricular nucleus of the hypothalamus (PVN). In this review, we will discuss our current understanding of the interplay between empathic behaviors and SUD. We will also examine the underlying neurobiology that may regulate this interaction, focusing specifically on the insula, PVT, and PVN. Finally, we discuss the biologic and therapeutic importance of taking empathic processes into consideration when discussing SUD.
Collapse
Affiliation(s)
- Stewart S Cox
- Medical University of South Carolina, Dept. of Neurosciences, United States of America.
| | - Carmela M Reichel
- Medical University of South Carolina, Dept. of Neurosciences, United States of America.
| |
Collapse
|
24
|
Kaufmann LV, Brecht M, Ishiyama S. Tickle contagion in the rat somatosensory cortex. iScience 2022; 25:105718. [PMID: 36578320 PMCID: PMC9791364 DOI: 10.1016/j.isci.2022.105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
The cellular mechanisms of emotional contagion are unknown. We investigated tickle contagion and the underlying neuronal representations in playful rats. We recorded trunk somatosensory cortex activity of observer rats while they received tickling and audiovisual playback of tickling footage and while they witnessed tickling of demonstrator rats. Observers vocalized and showed "Freudensprünge" ("joy jumps") during witnessing live tickling, while they showed little behavioral responses to playbacks. Deep layers in the trunk somatosensory neurons showed a larger correlation between direct and witnessed tickling responses compared to superficial layers. Trunk somatosensory neurons discharged upon emission of own and demonstrator's vocalizations and might drive contagious "laughter". We conclude that trunk somatosensory cortex might represent ticklishness contagion.
Collapse
Affiliation(s)
- Lena V. Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany,Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany,NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Shimpei Ishiyama
- Bernstein Center for Computational Neuroscience Berlin, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, Haus 6, 10115 Berlin, Germany,Institut für Pathophysiologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Duesbergweg 6, 55128 Mainz, Germany,Corresponding author
| |
Collapse
|
25
|
Leconstant C, Spitz E. Integrative Model of Human-Animal Interactions: A One Health-One Welfare Systemic Approach to Studying HAI. Front Vet Sci 2022; 9:656833. [PMID: 35968006 PMCID: PMC9372562 DOI: 10.3389/fvets.2022.656833] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The Integrative Model of Human-Animal Interactions (IMHAI) described herewith provides a conceptual framework for the study of interspecies interactions and aims to model the primary emotional processes involved in human-animal interactions. This model was developed from theoretical inputs from three fundamental disciplines for understanding interspecies interactions: neuroscience, psychology and ethology, with the objective of providing a transdisciplinary approach on which field professionals and researchers can build and collaborate. Seminal works in affective neuroscience offer a common basis between humans and animals and, as such, can be applied to the study of interspecies interactions from a One Health-One Welfare perspective. On the one hand, Jaak Panksepp's research revealed that primary/basic emotions originate in the deep subcortical regions of the brain and are shared by all mammals, including humans. On the other hand, several works in the field of neuroscience show that the basic physiological state is largely determined by the perception of safety. Thus, emotional expression reflects the state of an individual's permanent adaptation to ever-changing environmental demands. Based on this evidence and over 5 years of action research using grounded theory, alternating between research and practice, the IMHAI proposes a systemic approach to the study of primary-process emotional affects during interspecies social interactions, through the processes of emotional transfer, embodied communication and interactive emotional regulation. IMHAI aims to generate new hypotheses and predictions on affective behavior and interspecies communication. Application of such a model should promote risk prevention and the establishment of positive links between humans and animals thereby contributing to their respective wellbeing.
Collapse
|
26
|
Affective Neuroscience Personality Scales and Early Maladaptive Schemas in Depressive Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138062. [PMID: 35805734 PMCID: PMC9265663 DOI: 10.3390/ijerph19138062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023]
Abstract
Aim: The aim of this study was to assess the interrelationships of Young’s early maladaptive schemas with indicators of specific neural emotional systems conceptualized in Panksepp’s theory in a group of people suffering from depressive disorders. Materials and methods: The Affective Neuroscience Personality Scales (ANPS) v. 2.4. and J. Young’s Early Maladaptive Schema Questionnaire (YSQ-S3-PL) were used. Ninety (90) individuals aged 18–58, including 45 people treated for depression (DD group), were qualified to participate in the experiment. Results: The subjects in the DD group scored statistically significantly lower than the subjects from the control group (CG group) on the three ANPS scale domains, namely SEEKING, PLAY, and ANGER. The subjects with depressive symptoms scored significantly higher in the YSQ-S3-PL questionnaire on two domains of early maladaptive schemas, i.e., “Impaired autonomy and performance” and “Other-directedness”. Regression analysis results indicate that impairment of the emotional SEEKING system explains most of the variability in the following typical domains of depression: “Disconnection and rejection”, “Impaired autonomy and performance”, and “Other-directedness”. For score variability in the domain area of “Impaired limits”, the ANGER system was found to be most significant, and the FEAR system proved the same for “Overvigilance and Inhibition”. Conclusions: 1. Two domains of early maladaptive schemas are significant for the onset of depressive symptoms, namely “Impaired autonomy and performance” and “Other-directedness”, linked to difficulties in engaging in behaviors to meet one’s own needs. 2. Impairment of the neural emotional SEEKING system most significantly explains the variability in depression-typical areas of early maladaptive schemas.
Collapse
|
27
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Luo W, Berson IR, Berson MJ. Bi-directional Emotional Contagion: An Analysis of Chinese Parents’ Social Media Data. COMPUTERS AND EDUCATION OPEN 2022. [DOI: 10.1016/j.caeo.2022.100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
29
|
The effects of embodying wildlife in virtual reality on conservation behaviors. Sci Rep 2022; 12:6439. [PMID: 35440749 PMCID: PMC9019095 DOI: 10.1038/s41598-022-10268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Efforts to mitigate environmental threats are often inversely related to the magnitude of casualty, human or otherwise. This “compassion fade” can be explained, in part, by differential processing of large- versus small-scale threats: it is difficult to form empathic connections with unfamiliar masses versus singular victims. Despite robust findings, little is known about how non-human casualty is processed, and what strategies override this bias. Across four experiments, we show how embodying threatened megafauna-Loggerhead sea turtles (Caretta Caretta)-using virtual reality can offset and reverse compassion fade. After observing compassion fade during exposure to non-human casualty in virtual reality (Study 1; N = 60), we then tested a custom virtual reality simulation designed to facilitate body transfer with a threatened Loggerhead sea turtle (Study 2; N = 98). Afterwards, a field experiment (Study 3; N = 90) testing the simulation with varied number of victims showed body transfer offset compassion fade. Lastly, a fourth study (N = 25) found that charitable giving among users embodying threatened wildlife was highest when exposed to one versus several victims, though this effect was reversed if victims were of a different species. The findings demonstrate how animal embodiment in virtual reality alters processing of environmental threats and non-human casualty, thereby influencing conservation outcomes.
Collapse
|
30
|
Self-perceived empathic abilities of people with autism towards living beings mostly differs for humans. Sci Rep 2022; 12:6300. [PMID: 35428857 PMCID: PMC9012821 DOI: 10.1038/s41598-022-10353-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Being phylogenetically close involves greater empathic perceptions towards other species. To explore this phenomenon, this study investigates the influence of neurocognitive predispositions to empathy on our perceptions of other organisms. Autistic spectrum disorders (ASD) are characterized, among others, by weakened empathic skills. Our online survey involved a group of 202 raters with ASD and a control group of 1100 raters, who had to make choices to assess their empathic perceptions toward an extended photographic sampling of organisms. Results highlight that both groups present overall similar trends in their empathic preferences, with empathy scores significantly decreasing with the phylogenetic distance relatively to humans. However, the empathy score attributed to Homo sapiens in the ASD group represents a striking outlier in the yet very sharp overall correlation between empathy scores and divergence time, scoring our species as low as cold-blooded vertebrates. These results are consistent with previous studies, which emphasized that (1) understanding human beings would be more difficult for people with ASD than decoding “animals” and (2) that Theory of Mind impairment would not represent a global deficit in people with ASD but may relate to the mindreading of specifically human agents.
Collapse
|
31
|
Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational pain. Neuron 2022; 110:1993-2008.e6. [PMID: 35443154 DOI: 10.1016/j.neuron.2022.03.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Empathic pain has attracted the interest of a substantial number of researchers studying the social transfer of pain in the sociological, psychological, and neuroscience fields. However, the neural mechanism of empathic pain remains elusive. Here, we establish a long-term observational pain model in mice and find that glutamatergic projection from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for the formation of observational pain. The selective activation or inhibition of the IC-BLA projection pathway strengthens or weakens the intensity of observational pain, respectively. The synaptic molecules are screened, and the upregulated synaptotagmin-2 and RIM3 are identified as key signals in controlling the increased synaptic glutamate transmission from the IC to the BLA. Together, these results reveal the molecular and synaptic mechanisms of a previously unidentified neural pathway that regulates observational pain in mice.
Collapse
|
32
|
Coria-Avila GA, Pfaus JG, Orihuela A, Domínguez-Oliva A, José-Pérez N, Hernández LA, Mota-Rojas D. The Neurobiology of Behavior and Its Applicability for Animal Welfare: A Review. Animals (Basel) 2022; 12:ani12070928. [PMID: 35405916 PMCID: PMC8997080 DOI: 10.3390/ani12070928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Animal welfare is the result of physical and psychological well-being and is expected to occur if animals are free: (1) from hunger, thirst and malnutrition, (2) from discomfort, (3) from pain, (4) to express normal behavior, and (5) from fear and distress. Nevertheless, well-being is not a constant state but rather the result of certain brain dynamics underlying innate motivated behaviors and learned responses. Thus, by understanding the foundations of the neurobiology of behavior we fathom how emotions and well-being occur in the brain. Herein, we discuss the potential applicability of this approach for animal welfare. First, we provide a general view of the basic responses coordinated by the central nervous system from the processing of internal and external stimuli. Then, we discuss how those stimuli mediate activity in seven neurobiological systems that evoke innate emotional and behavioral responses that directly influence well-being and biological fitness. Finally, we discuss the basic mechanisms of learning and how it affects motivated responses and welfare. Abstract Understanding the foundations of the neurobiology of behavior and well-being can help us better achieve animal welfare. Behavior is the expression of several physiological, endocrine, motor and emotional responses that are coordinated by the central nervous system from the processing of internal and external stimuli. In mammals, seven basic emotional systems have been described that when activated by the right stimuli evoke positive or negative innate responses that evolved to facilitate biological fitness. This review describes the process of how those neurobiological systems can directly influence animal welfare. We also describe examples of the interaction between primary (innate) and secondary (learned) processes that influence behavior.
Collapse
Affiliation(s)
- Genaro A. Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico;
- Correspondence: (G.A.C.-A.); (D.M.-R.)
| | - James G. Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico;
- Department of Psychology and Life Sciences, Charles University, 182 00 Prague, Czech Republic
- Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Nancy José-Pérez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Laura Astrid Hernández
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
- Correspondence: (G.A.C.-A.); (D.M.-R.)
| |
Collapse
|
33
|
Kitano K, Yamagishi A, Horie K, Nishimori K, Sato N. Helping behavior in prairie voles: A model of empathy and the importance of oxytocin. iScience 2022; 25:103991. [PMID: 35310938 PMCID: PMC8931361 DOI: 10.1016/j.isci.2022.103991] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022] Open
Abstract
Several studies suggest that rodents show empathic responses and helping behavior toward others. We examined whether prairie voles would help conspecifics who were soaked in water by opening a door to a safe area. Door-opening latency decreased as task sessions progressed. Female and male voles stayed close to the soaked voles' side at equal rates and opened the door with similar latencies. When the conspecific was not soaked in water, the door-opening latency did not decrease. This suggests that the distress of the conspecific is necessary for learning to open the door and that the door-opening performed by prairie voles corresponds to helping behavior. Additionally, we examined the helping behavior in prairie voles in which oxytocin receptors were genetically knocked out. Oxytocin receptor knockout voles demonstrated less learning of the door-opening behavior and less interest in soaked conspecifics. This suggests that oxytocin is important for the emergence of helping behavior. Prairie voles demonstrated helping behavior toward a cagemate in distress There was no difference in helping behavior depending on the helper’s sex Learning of the helping behavior was prevented when cagemates were not in distress Oxytocin receptor knockout prairie voles demonstrated less helping behavior
Collapse
Affiliation(s)
- Kota Kitano
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Atsuhito Yamagishi
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
| | - Kengo Horie
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| | - Katsuhiko Nishimori
- Department of Obesity and Inflammation Research, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Fukushima 960-1295, Japan
| | - Nobuya Sato
- Department of Psychological Sciences, Kwansei Gakuin University, 1-1-155, Uegahara, Nishinomiya, Hyogo 662-8501, Japan
- Corresponding author
| |
Collapse
|
34
|
Cox SS, Kearns AM, Woods SK, Brown BJ, Brown SJ, Reichel CM. The role of the anterior insular during targeted helping behavior in male rats. Sci Rep 2022; 12:3315. [PMID: 35228625 PMCID: PMC8885669 DOI: 10.1038/s41598-022-07365-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Empathy, the understanding of the emotional state of others, can be examined across species using the Perception Action Model, where shared affect promotes an action by "Observers" to aid a distressed "Target". The anterior insula (AI) has garnered interest in empathic behavior due to its role integrating sensory and emotional information of self and other. In the following studies, the AI was inhibited pharmacologically and chemogenetically during targeted helping. We demonstrate the insula is active during, and is necessary for the maintenance of, targeted helping. Analysis of ultrasonic vocalizations revealed distress calls from Targets increased when Observers' helping was attenuated due to insula inhibition. Targets' elevated distress was directly correlated to Observers' diminished helping behavior, suggesting emotional transfer between Observer and Target is blunted following Observer AI inhibition. Finally, the AI may selectively blunt targeted helping, as social exploration did not change in a social reward place conditioning task. These studies help further establish the anterior insula as a critical node in the empathic brain during targeted helping, even in the absence of direct social contact.
Collapse
Affiliation(s)
- Stewart S Cox
- Medical University of South Carolina, 173 Ashley Avenue, Basic Science Building Suite 416a, Charleston, SC, 29425, USA.
| | - Angela M Kearns
- Medical University of South Carolina, 173 Ashley Avenue, Basic Science Building Suite 416a, Charleston, SC, 29425, USA
| | - Samuel K Woods
- Medical University of South Carolina, 173 Ashley Avenue, Basic Science Building Suite 416a, Charleston, SC, 29425, USA
| | - Brogan J Brown
- Medical University of South Carolina, 173 Ashley Avenue, Basic Science Building Suite 416a, Charleston, SC, 29425, USA
| | - Samantha J Brown
- Medical University of South Carolina, 173 Ashley Avenue, Basic Science Building Suite 416a, Charleston, SC, 29425, USA
| | - Carmela M Reichel
- Medical University of South Carolina, 173 Ashley Avenue, Basic Science Building Suite 416a, Charleston, SC, 29425, USA.
| |
Collapse
|
35
|
Beals K, Sperry SH, Sheffield JM. Empathy, Emotion Recognition, and Paranoia in the General Population. Front Psychol 2022; 13:804178. [PMID: 35282255 PMCID: PMC8908382 DOI: 10.3389/fpsyg.2022.804178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 11/14/2022] Open
Abstract
Background Paranoia is associated with a multitude of social cognitive deficits, observed in both clinical and subclinical populations. Empathy is significantly and broadly impaired in schizophrenia, yet its relationship with subclinical paranoia is poorly understood. Furthermore, deficits in emotion recognition - a very early component of empathic processing - are present in both clinical and subclinical paranoia. Deficits in emotion recognition may therefore underlie relationships between paranoia and empathic processing. The current investigation aims to add to the literature on social cognition and paranoia by: (1) characterizing the relationship between paranoia and empathy, and (2) testing whether there is an indirect effect of emotion recognition on the relationship between empathy and paranoia. Methods Paranoia, empathy, and emotion recognition were assessed in a non-clinical sample of adults (n = 226) from the Nathan Kline Institute-Rockland (NKI-Rockland) dataset. Paranoia was measured using the Peters Delusions Inventory-21 (PDI-21). Empathy was measured using the Interpersonal Reactivity Index (IRI), a self-report instrument designed to assess empathy using four subscales: Personal Distress, Empathic Concern, Perspective Taking, and Fantasy. Emotion recognition was assessed using the Penn Emotion Recognition Test (ER-40). Structural equation modeling (SEM) was used to estimate relationships between paranoia, the four measures of empathy and emotion recognition. Results Paranoia was associated with the Fantasy subscale of the IRI, such that higher Fantasy was associated with more severe paranoia (p < 0.001). No other empathy subscales were associated with paranoia. Fantasy was also associated with the emotion recognition of fear, such that higher Fantasy was correlated with better recognition of fear (p = 0.008). Paranoia and emotion recognition were not significantly associated. The Empathic Concern subscale was negatively associated with emotion recognition, with higher empathic concern related to worse overall emotion recognition (p = 0.002). All indirect paths through emotion recognition were non-significant. Discussion These results suggest that imaginative perspective-taking contributes to paranoia in the general population. These data do not, however, point to robust global relationships between empathy and paranoia or to emotion recognition as an underlying mechanism. Deficits in empathy and emotion recognition observed in schizophrenia may be associated with the broader pathology of schizophrenia, and therefore not detectable with subclinical populations.
Collapse
Affiliation(s)
- Kendall Beals
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sarah H. Sperry
- Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Julia M. Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
36
|
Behavioral, hormonal, and neural alterations induced by social contagion for pain in mice. Neuropharmacology 2022; 203:108878. [PMID: 34774550 DOI: 10.1016/j.neuropharm.2021.108878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
Neurobiology of social contagion/empathy aims to collaborate with the development of treatments for human disorders characterized by the absence of this response - autism spectrum disorder, schizophrenia, and antisocial personality disorder. Previous studies using sustained aversive stimuli (e.g., neuropathic pain or stress) to induce social contagion behaviors in rodents have demonstrated that these conditions may increase hypernociception, anxiogenic-like effects, and defensive behaviors in cagemates. To amplify the knowledge about behavioral, hormonal, and neural alterations induced by cohabitation with a pair in neuropathic pain, we investigated the effects of this protocol on (i) pain (writhing, formalin, hot plate tests) and depression (sucrose splash test) responses, (ii) the serum levels of corticosterone, testosterone, and oxytocin, (iii) noradrenalin, dopamine and its metabolite (DOPAC and HVA) levels in the amygdaloid complex and insular cortex, (iv) neuronal activation pattern (FosB labeling) in the ventral tegmental area (VTA), paraventricular nucleus of the hypothalamus (PVN) and supraoptic nucleus (SO). One day after weaning, male Swiss mice were housed in pairs for 14 days. Then, they were divided into two groups: sciatic nerve constricted cagemate [CNC; i.e., one animal of each pair was subjected to sciatic nerve constriction (NC)], and cagemate sham (CS; a similar procedure but with no nerve constriction), and housed for further 14 days. After 28 days of cohabiting, four independent groups were subjected to (a) behavioral analyses (Exp. 1) and (b) blood samples collected for Elisa assays of corticosterone, testosterone, and oxytocin (Exp. 2), remotion of brains for the (c) HPLC in the noradrenaline dopamine and metabolites quantification (Exp. 3) or (d) immunoassays analyses for FosB labeling (Exp. 4). Results showed that cohabitation with a conspecific in chronic pain induces hypernociception and antinociception in the writhing and formalin tests, respectively, and anhedonic-like effects in the sucrose splash test. Hormonal results indicated a decrease in plasma corticosterone only in nerve constricted mice, in testosterone (CNC and NC animals), and an increase in oxytocin serum levels. The neurochemical analyses demonstrated that the social contagion for pain protocol increases in dopamine turnover in the amygdala and insula. This assay also revealed an increase in noradrenaline levels and dopamine turnover within the insula of NC mice. In the FosB labeling measure, we observed a rise in the VTA, PVN and SO in the CNC group whereas for the NC group an increase of this activation pattern occurred only in the VTA. Present results suggest the role of hormones (testosterone and oxytocin) and neurotransmitters (dopamine) in the modulation of behavioral changes induced by social contagion in animals cohabitating with a conspecific in pain.
Collapse
|
37
|
Fear, love, and the origins of canid domestication: An oxytocin hypothesis. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 9:100100. [PMID: 35755921 PMCID: PMC9216449 DOI: 10.1016/j.cpnec.2021.100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/22/2022] Open
Abstract
The process of dog domestication likely involved at least two functional stages. The initial stage occurred when subpopulations of wolves became synanthropes, benefiting from life nearby or in human environments. The second phase was characterized by the evolution of novel forms of interspecific cooperation and social relationships between humans and dogs. Here, we discuss possible roles of the oxytocin system across these functional stages of domestication. We hypothesize that in early domestication, oxytocin played important roles in attenuating fear and stress associated with human contact. In later domestication, we hypothesize that oxytocin's most critical functions were those associated with affiliative social behavior, social engagement, and cooperation with humans. We outline possible neurobiological changes associated with these processes and present a Siberian fox model of canid domestication in which these predictions can be tested. Lastly, we identify limitations of current studies on the neuroendocrinology of domestication and discuss challenges and opportunities for future research. We propose various roles for oxytocin across canid domestication. In early domestication, oxytocin primarily regulated fear and anxiety toward humans. In late domestication, oxytocin facilitated interspecific social bonds and cooperation. Comparative neurobiology is critical for understanding oxytocin's roles in domestication. Experimentally domesticated Siberian foxes provide a powerful model for these studies.
Collapse
|
38
|
Paz LV, Viola TW, Milanesi BB, Sulzbach JH, Mestriner RG, Wieck A, Xavier LL. Contagious Depression: Automatic Mimicry and the Mirror Neuron System - A Review. Neurosci Biobehav Rev 2021; 134:104509. [PMID: 34968526 DOI: 10.1016/j.neubiorev.2021.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/19/2021] [Accepted: 12/19/2021] [Indexed: 12/21/2022]
Abstract
Contagious depression is a theory proposing that depression can be induced or triggered by our social environment. This theory is based on emotional contagion, the idea that affective states can be transferred during social interaction, since humans can use emotional contagion to communicate feelings and emotions in conscious and unconscious ways. This review presents behavioral, physiological, and neuroanatomical aspects of two essential contagious depression mechanisms, automatic mimicry and the mirror neuron system.
Collapse
Affiliation(s)
- Lisiê Valéria Paz
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Celular e Tecidual, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| | - Thiago Wendt Viola
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Psicologia, Avenida Ipiranga 6681, prédio 11, sala 926, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| | - Bruna Bueno Milanesi
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Celular e Tecidual, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| | - Juliana Henz Sulzbach
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Celular e Tecidual, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| | - Régis Gemerasca Mestriner
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Celular e Tecidual, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| | - Andrea Wieck
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Celular e Tecidual, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| | - Léder Leal Xavier
- Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Biologia Celular e Tecidual, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande do Sul CEP 90619-900, Brazil.
| |
Collapse
|
39
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
40
|
Bos PA, Lesemann FHP, Spencer H, Stein DJ, van Honk J, Montoya ER. Preliminary data on increased reactivity towards children in distress after testosterone administration in women: A matter of protection? Biol Psychol 2021; 165:108176. [PMID: 34474128 DOI: 10.1016/j.biopsycho.2021.108176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
Emotional reactivity to others' distress is a vital prerequisite for a caring response. Testosterone, in contrast, is mostly associated with protection of personal dominance and decreased responsiveness to others' needs. However, experimental work also indicates that rising testosterone levels in response to infant distress can potentially facilitate protection. We assessed the impact of testosterone administration on participants' emotional reactivity to infants in distress, measuring their facial responses on the corrugator supercilii forehead muscle ('frowning') and the zygomaticus major ('smiling') as an index of emotional responses towards children. Moreover, we probed whether the effect of testosterone is moderated by participants' self-reported nurturance and protective tendencies. Our preliminary results showed that testosterone not only increased emotional reactivity to empathy eliciting images of children, but that this increase was strongest in participants with strong protective tendencies. Our administration study is the first to link testosterone to infant protection.
Collapse
Affiliation(s)
- Peter A Bos
- Institute of Education and Child Studies, Leiden University, Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands; Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands.
| | - Franca H Parianen Lesemann
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| | - Hannah Spencer
- Research Institute of Child Development and Education, University of Amsterdam, PO Box 15780, 1001 NG, Amsterdam, the Netherlands
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block Groote Schuur Hospital Observatory, Cape Town, South Africa
| | - Jack van Honk
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands; SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Mental Health, University of Cape Town, J-Block Groote Schuur Hospital Observatory, Cape Town, South Africa
| | - Estrella R Montoya
- Department of Experimental Psychology, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
41
|
Laviola G, Leonardo A, Ceci FM, Fiore M. Callous unemotional trait-like mice and their stressed dams. Psychoneuroendocrinology 2021; 131:105296. [PMID: 34175559 DOI: 10.1016/j.psyneuen.2021.105296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
The co-occurrence of excess rates of aggression, general violation of societal norms and callous-unemotional trait confers specific risk for adult psychopathy. With the aim to address experimentally a model of conduct disorder, we investigated the male offspring of individual mouse dams characterized by high basal plasma corticosterone concentration (HC trait). Notably, classification indices correlated selectively in these females with quite poor maternal care devoted to their offspring. Contrary to their HC mothers, adult male offspring exhibited an integrated profile of dampened physiological reactivity to external stressors co-occurring poor sociability/emotional contagion, impaired punishment-induced memory, and exacerbated aggression. A significant reduction of glucocorticoid and opioid mu receptors' expression in frontal cortex of model HC offspring was also evidenced. Moreover, in the absence of changes in oxytocin receptor in behaviorally-relevant neural areas, we showed that intranasal oxytocin administration (0 or 20.0 µg/kg) selectively modulated specific components of the behavioral phenotype. Ultimately, current data support the notion that maternally-inoculated environmental stress early in development may represent a critical risk factor in disturbances characterised by abnormal aggression and excess callousness.
Collapse
Affiliation(s)
- Giovanni Laviola
- Reference Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome I-00161, Italy.
| | - Arianna Leonardo
- Reference Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome I-00161, Italy
| | - Flavio Maria Ceci
- Department of Experimental Medicine, Sapienza University, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology - IBBC - CNR, Viale del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
42
|
Scott ES, Ross DA, Fenstermacher E. Stand By or Stand Up: Exploring the Biology of the Bystander Effect. Biol Psychiatry 2021; 90:e3-e5. [PMID: 34210387 PMCID: PMC8692770 DOI: 10.1016/j.biopsych.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Elise S Scott
- Department of Psychiatry & Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - David A Ross
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
43
|
Affective empathy and prosocial behavior in rodents. Curr Opin Neurobiol 2021; 68:181-189. [PMID: 34091136 DOI: 10.1016/j.conb.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/30/2022]
Abstract
Empathy is an essential function for humans as social animals. Emotional contagion, the basic form of afffective empathy, comprises the cognitive process of perceiving and sharing the affective state of others. The observational fear assay, an animal model of emotional contagion, has enabled researchers to undertake molecular, cellular, and circuit mechanism of this behavior. Such studies have revealed that observational fear is mediated through neural circuits involved in processing the affective dimension of direct pain experiences. A mouse can also respond to milder social stimuli induced by either positive or negative emotional changes in another mouse, which seems not dependent on the affective pain circuits. Further studies should explore how different neural circuits contribute to integrating different dimensions of affective empathy.
Collapse
|
44
|
Meade GM, Charron LS, Kilburn LW, Pei Z, Wang HY, Robinson S. A model of negative emotional contagion between male-female rat dyads: Effects of voluntary exercise on stress-induced behavior and BDNF-TrkB signaling. Physiol Behav 2021; 234:113286. [DOI: 10.1016/j.physbeh.2020.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
|
45
|
Prosociality and reciprocity in capybaras (Hydrochoerus hydrochaeris) in a non-reproductive context. Behav Processes 2021; 188:104407. [PMID: 33895253 DOI: 10.1016/j.beproc.2021.104407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
Prosocial behaviours (providing benefits to a recipient with or without cost for the donor) have been found to be highly influenced by sex and by hierarchy. Rodents, in particular, are good model for studying prosocial responses, as they were found to exhibit intentional prosocial behaviours to reward a conspecific, and are very sensitive to reciprocity. In our study, we conducted a Prosocial Choice Test (PCT) in which four capybaras (Hydrochoerus hydrochaeris) living in a social group could choose between three tokens: choosing the prosocial token rewarded simultaneously the subject and a recipient, while choosing the selfish token only rewarded the subject; and choosing the null token provided no reward to anyone. Dominance within each dyad was also studied, both before and during the PCT experiment. Our results showed an influence of hierarchy: subjects were more prosocial towards the recipient when it was a subordinate than when it was a dominant individual. These results could be interpreted as a desire of strengthening a hierarchical rank regarding the subordinate, of punishing aggressive conspecifics (usually the subject's direct dominant), and of weakening dominant individuals in order to modify the pre-existing hierarchy. Additionally, our results highlighted a direct reciprocity phenomenon, a subject being more likely to be prosocial towards a prosocial recipient. All these findings suggest that prosociality could be well developed in other taxa than Primates and that, in long enough PCT experiments, subtle rules could influence individual prosocial strategies.
Collapse
|
46
|
Abstract
Empathy is a complex phenomenon critical for group survival and societal bonds. In addition, there is mounting evidence demonstrating empathic behaviors are dysregulated in a multitude of psychiatric disorders ranging from autism spectrum disorder, substance use disorders, and personality disorders. Therefore, understanding the underlying drive and neurobiology of empathy is paramount for improving the treatment outcomes and quality of life for individuals suffering from these psychiatric disorders. While there is a growing list of human studies, there is still much about empathy to understand, likely due to both its complexity and the inherent limitations of imaging modalities. It is therefore imperative to develop, validate, and utilize rodent models of empathic behaviors as translational tools to explore this complex topic in ways human research cannot. This review outlines some of the more prevailing theories of empathy, lists some of the psychiatric disorders with disrupted empathic processes, describes rat and mouse models of empathic behaviors currently used, and discusses ways in which these models have elucidated social, environmental, and neurobiological factors that may modulate empathy. The research tools afforded to rodent models will provide an increasingly clear translational understanding of empathic processes and consequently result in improvements in care for those diagnosed with any one of the many psychiatric disorders.
Collapse
Affiliation(s)
- Stewart S. Cox
- Medical University of South Carolina, Charleston SC, USA
| | | |
Collapse
|
47
|
Abstract
The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.
Collapse
|
48
|
Jung T, Jang M, Noh J. Role of Medial Prefrontal Cortical Neurons and Oxytocin Modulation in the Establishment of Social Buffering. Exp Neurobiol 2021; 30:48-58. [PMID: 33632984 PMCID: PMC7926045 DOI: 10.5607/en20038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/24/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Fear-related behaviors are rigidly controlled by the medial prefrontal cortex (mPFC). The mPFC is activated by the prosocial hormone oxytocin, which plays an important role in social buffering. We used a slice patch current-clamp recording in single- and pair-exposed rats who were subjected to electric shocks, to determine the cellular mechanism of the action of oxytocin in the mPFC under social buffering conditions. Pair-exposed rats showed a significant reduction in both freezing and passive avoidance behaviors compared to single-exposed rats. It was observed that input resistance in pyramidal neurons decreased in both single- and pair-exposed rats than na?ve rats, but input resistance in interneurons increased in pair-exposed rats than single-exposed rats. We found that the number of action potential (AP) spikes in the mPFC pyramidal neurons decreased significantly in pair-exposed rats than in single-exposed rats. The pyramidal neurons in the mPFC were similarly regulated by oxytocin in singleand pair-exposed rats, while the number of AP spikes in interneurons by oxytocin decreased in single-exposed rats, but there was no significant change in pair-exposed rats. Therefore, our findings reveal that a decrease in mPFC pyramidal neuronal activity in pair-exposed rats through social interaction induces a reduction in fear-related behavior via obstruction of fear-memory formation; however, no such reduction was observed in single-exposed rats. Moreover, we suggest that the oxytocin-mediated decrease in neuronal activity in the mPFC could facilitate social buffering.
Collapse
Affiliation(s)
- Taesub Jung
- Department of Science Education, Dankook University, Yongin 16890, Korea
| | - Minji Jang
- Department of Science Education, Dankook University, Yongin 16890, Korea
| | - Jihyun Noh
- Department of Science Education, Dankook University, Yongin 16890, Korea
| |
Collapse
|
49
|
Cordoni G, Favilli E, Palagi E. Earlier than previously thought: Yawn contagion in preschool children. Dev Psychobiol 2021; 63:931-944. [PMID: 33506489 DOI: 10.1002/dev.22094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/18/2022]
Abstract
Yawning is a primitive and stereotyped motor action involving orofacial, laryngeal, pharyngeal, thoracic and abdominal muscles. Contagious yawning, an involuntarily action induced by viewing or listening to others' yawns, has been demonstrated in human and several non-human species. Previous studies with humans showed that infants and preschool children, socially separated during video experiments, were not infected by others' yawns. Here, we tested the occurrence of yawn contagion in 129 preschool children (ranging from 2.5 to 5.5 years) belonging to five different classes by video recording them in their classrooms during the ordinary school activities. As it occurs in adult humans, children of all ages were infected by others' yawns within the 2 min after the perception of the stimulus. The yawn contagion occurred earlier than previously thought. For children, it appears that the natural social setting is more conducive to yawn contagion than the inherently artificial experimental approach. Moreover, children's gender did not affect the level of contagious yawning. The neural, emotional and behavioural traits of preschool children are probably not sufficiently mature to express variability between boys and girls; nevertheless, children appeared to be already well equipped with the 'neural toolkit' necessary for expressing yawn contagion.
Collapse
Affiliation(s)
- Giada Cordoni
- Natural History Museum, University of Pisa, Calci Pisa, Italy
| | | | - Elisabetta Palagi
- Natural History Museum, University of Pisa, Calci Pisa, Italy.,Unit of Ethology, Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Rivera DS, Lindsay CB, Oliva CA, Codocedo JF, Bozinovic F, Inestrosa NC. Effects of long-lasting social isolation and re-socialization on cognitive performance and brain activity: a longitudinal study in Octodon degus. Sci Rep 2020; 10:18315. [PMID: 33110163 PMCID: PMC7591540 DOI: 10.1038/s41598-020-75026-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Social isolation is considered a stressful situation that results in increased physiological reactivity to novel stimuli, altered behaviour, and impaired brain function. Here, we investigated the effects of long-term social isolation on working memory, spatial learning/memory, hippocampal synaptic transmission, and synaptic proteins in the brain of adult female and male Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects, makes it a unique animal model that can be highly applicable for further social, emotional, cognitive, and aging studies. These animals were socially isolated from post-natal and post-weaning until adulthood. We also evaluated if re-socialization would be able to compensate for reactive stress responses in chronically stressed animals. We showed that long-term social isolation impaired the HPA axis negative feedback loop, which can be related to cognitive deficits observed in chronically stressed animals. Notably, re-socialization restored it. In addition, we measured physiological aspects of synaptic transmission, where chronically stressed males showed more efficient transmission but deficient plasticity, as the reverse was true on females. Finally, we analysed synaptic and canonical Wnt signalling proteins in the hypothalamus, hippocampus, and prefrontal cortex, finding both sex- and brain structure-dependent modulation, including transient and permanent changes dependent on stress treatment.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile.
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Francisco Codocedo
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|